新人教版九年级下册26.1 二次函数练习(5)
最新版人教版九年级数学下册26.1 二次函数及其图象同步练习及答案
26.1 二次函数及其图象专题一 开放题1.请写出一个开口向上,与y 轴交点纵坐标为﹣1,且经过点(1,3)的抛物线的解析 式.(答案不唯一)2.(1)若22()m m y m m x-=+是二次函数,求m 的值;(2)当k 为何值时,函数221(1)(3)kk y k x k x k --=++-+是二次函数?专题二 探究题3.如图,把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,则平移后抛物线的解析式是( )A .1)1(2-+=x yB .1)1(2++=x yC .1)1(2+-=x yD .1)1(2--=x y4.如图,若一抛物线y =ax 2与四条直线x =1、 x =2、 y =1、 y =2围成的正方形有公共点,求a 的取值范围.专题三 存在性问题5.如图,抛物线 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3. (1)求抛物线的解析式;(2)若点D (2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.注:二次函数c bx ax y ++=2(a ≠0)的对称轴是直线x =ab 2-. cbx x y ++-=221=6.如图,二次函数c x x y +-=221的图象与x 轴分别交于A 、B 两点,顶点M 关于x 轴的对称点是M′.(1)若A (-4,0),求二次函数的关系式;(2)在(1)的条件下,求四边形AMBM′的面积;(3)是否存在抛物线212y x x c =-+,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.【知识要点】1.二次函数的一般形式c bx ax y ++=2(其中a ≠0,a ,b ,c 为常数).2.二次函数2y ax =的对称轴是y 轴,顶点是原点,当a >0时,抛物线的开口向上, 顶点是抛物线的最低点,a 越大,抛物线的开口越小;当a <0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.3.抛物线2()y a x h k =-+的图象与性质:(1)二次函数2()y a x h k =-+的图象与抛物线2y ax =形状相同,位置不同,由抛物线2y ax=平移可以得到抛物线2()y a x h k =-+.平移的方向、距离要根据h ,k 的值确定.(2)①当0a >时,开口向上;当a <0时,开口向下;②对称轴是直线x h =;③顶点坐标是(h ,k ).4.二次函数y=ax 2+bx+c 的对称轴是直线x =ab 2-,顶点坐标为)44,2(2a b ac a b --. 【温馨提示】1.二次函数的一般形式y=ax 2+bx+c 中必须强调a ≠0.2.当a <0时,a 越小,开口越小,a 越大,开口越大.3.二次函数的增减性是以对称轴为分界线的.4.当a >0时,二次函数有最小值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最小值;当a <0时,二次函数有最大值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最大值.【方法技巧】1.一般地,抛物线的平移规律是 “上加下减常数项,左加右减自变量”.2.如已知三个点求抛物线解析式,则设一般式y=ax 2+bx+c .3.若已知顶点和其他一点,则设顶点式2()y a x h k =-+.参考答案1. 答案不唯一,如y=x 2+3x ﹣1等.【解析】设抛物线的解析式为y=ax 2+bx+c ,∵ 开口向上,∴a >0. ∵其与y 轴交点纵坐标为﹣1,∴c =﹣1.∵经过点(1,3),∴a+b -1=3.令a =1,则b =3,所以y=x 2+3x ﹣1.2.解:(1)由题意,得⎪⎩⎪⎨⎧=+=-,0,222m m m m 解得m =2.(2)由题意,得⎩⎨⎧≠+=--,01,2122k k k 解得k =3.3.C 【解析】把抛物线y=x 2沿直线y=x向右移1个单位长度,再根据“上加下减常数项,左加右减自变量”即可得到平移后的抛物线的解析式为2(1)1=-+y x ,答案为C.4.解:因为四条直线x =1、 x =2、 y =1、 y =2围成正方形ABCD ,所以A (1,2),C (2,1).设过A 点的抛物线解析式为y =a 1x 2,过C 点的抛物线解析式为y =a 2x 2,则a 2≤a ≤a 1.把A (1,2),C (2,1)分别代入,可求得a 1=2,a 2=14.所以a 的取值范围是14≤a ≤2.5.解:(1)将A (-2,0), C (0,3)代入y =c bx x ++-221得⎩⎨⎧=+--=,022,3c b c 解得b = 12 ,c = 3.∴此抛物线的解析式为 y = 21-x 2+21x +3. (2) 连接AD 交对称轴于点P ,则P 为所求的点.设直线AD 的解析式为y =kx +b.由已知得⎩⎨⎧=+=+-,22,02b k b k 解得k= 21,b =1.∴直线AD 的解析式为y =21x +1. 对称轴为直线x =-a b 2= 21.当x = 21时,y = 45,∴ P 点的坐标为(21,45). 6.解:(1) 把A (-4,0)代入c x x y +-=221,解出c =-12. ∴二次函数的关系式为12212--=x x y . (2)如图,令y =0,则有211202x x --=,解得14x =-,26x =,∴A (-4,0),B (6,0), ∴AB =10. ∵225)1(21122122--=--=x x x y ,∴M (1, 225-), ∴M ′(1, 225), ∴MM′=25. ∴四边形AMBM′的面积=12AB·MM′=21×10×25=125. (3) 存在.假设存在抛物线c x x y +-=221,使得四边形AMBM′为正方形.令y =0,则0212=+-=c x x y ,解得c x 211-±=. ∴A (c 211--,0),B (c 211-+,0),∴AB =c 212-.。
新人教版九年级数学下册 26.1.1 二次函数同步练习(含答案)
26.1.1 二次函数
1. 下列五个函数关系式:①25y ax x =-+,②y =-x 2+1,③y =32
+2x ,④2325y x x =--,⑤2256
y x x =-+.其中是二次函数的有( ) A .1个 B .2个 C .3个 D .4个 2. 下列结论正确的是( )
A .关于x 的二次函数y =a (x +2)2中,自变量的取值范围是x ≠-2
B .二次函数自变量的取值范围是所有实数
C .在函数y =-x 22
中,自变量的取值范围是x ≠0 D .二次函数自变量的取值范围是非零实数
3. 如图,直角三角形AOB 中,AB ⊥OB ,且AB =OB =3,设直线x =t 截此三角形所得的阴影部
分的面积为S ,则S 与t 之间的函数关系式为( )
A .S=t
B .212S t =
C .S=t 2
D .2112
S t =- 4. 当m =_________时,2(2)m m y m x +=+是关于x 的二次函数.
5. 国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18
元,降价后的价格为y 元,则y 与x 之间的函数关系式为 .
参考答案
1.B
2.B
3.B
4.1
5.y=18(1-x)2。
九年级数学下册 26.1《二次函数》习题精选 新人教版
一、选择题1.(口答)下列函数中,哪些是二次函数?(1)y=5x +1 (2)y=4x2-1(3)y=2x3-3x2 (4)y=5x4-3x +12、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。
3、直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )A.(0,0) B.(1,-2) C.(0,-1) D.(-2,1)4、已知二次函数b x a y +-=2)1(有最小值 –1,则a 与b 之间的大小关系是 ( )A .a <bB .a=bC .a >bD .不能确定二、填空题1、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =—————————2、已知抛物线y=x 2+(n-3)x+n+1经过坐标原点O ,求这条抛物线的顶点P 的坐标3、、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( )(A )1x =- (B )1x = (C )2x =(D )3x =4、顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为___________________.5、已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图象经过点(2,3),求这个函数的关系式.三、计算题1、某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现, 在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(10分)(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?2、如图(1),在Rt ⊿ABC 中,∠C=90°,BC=4,AC=8,点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE=x ,DF=y .(1)用含y 的代数式表示AE ;(2)求y 与x 之间的函数关系式,并求出x 的取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数关系,并求出S 的最大值.图(1) 图(2)参考答案选择题1.略 2、D 3、C 4、C填空题1.–3 2.(2,-4)3.A4.y=-(x+2)2 -55.y=-2x2+4x+3。
新人教版九年级下册 二次函数各课时同步练习及答案
26.1二次函数(1)◆基础扫描1. 下列函数中,不是二次函数的是( )A 、21y =-B 、22(1)4y x =+-C 、1(1)(4)2y x x =-+ D 、22(2)1y x x =--+ 2.在半径为4的圆中,挖去一个边长为xcm 的正方形,剩下部分面积为2ycm ,则关于y 与x 之间函数关系式为( )A 、24y x π=-B 、216y x π=-C 、216y x =-D 、24y x π=- 3.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为 .4.边长为2的正方形,如果边长增加x ,则面积S 与x 之间的函数关系是 .5.已知221(3)2a a y a x --=--是二次函数,则a = .◆能力拓展6.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5 m.如果长方体的长和宽用x(m)表示, 油漆每平方米所需费用是5元,油漆每个长方体所需费用为y 元.求y 与x 之间函数关系式.7.如图,矩形ABCD 中,AB=10cm,BC=5cm,点M 以1cm /s 的速度从点B 向点C 运动,同时,点N 以2cm /s 的速度从点C 向点D 运动.设运动开始第t 秒钟时,五边形ABMND 的面积为2Scm ,求出S 与t 的函数关系式,并指出自变量t 的取值范围.N DCB A◆创新学习8.已知函数2y ax bx c =++是二次函数,函数y ax b =+是一次函数且其图象不经过第一象限.请你给出符合上述条件的a 、b 的值参考答案1.D 2.B 3. 0 4.244S x x =++5.1a =- 6.23010y x x =+7.由题意得BM= t ,CN =2 t ,所以MC =5t -,得MCN ABCD S S S ∆=-矩形 11055)22t t =⨯-⨯-⨯(,即2550S t t -+=,自变量的取值范围是0<t <5.8.当1,1ab =-=-时,2y x xc =--+是二次函数,1y x =--的图形不经过第一象限(答案不唯一).26.1二次函数(2)◆基础扫描1.抛物线2222,2,21y x y x y x ==-=+共有的性质是( )A .开口向上B .对称轴都是y 轴C .都有最高点D .顶点都是原点2.已知a <1-,点1(1,)a y -、2(,)a y 、3(1,)a y +都在函数2y x =的图象上,则( ) A .1y <2y <3y B .1y <3y <2y C .3y <2y <1y D .2y <1y <3y 3.抛物线2112y x =-+的开口 ,对称轴是 ,顶点坐标是 . 4.把抛物线23y x =向下平移3个单位得到抛物线 .5.将抛物线21y x =+的图象绕原点O 旋转180°,则旋转后的抛物线解析式是 .◆能力拓展6.已知正方形的对角线长xcm,面积为2ycm .请写出y 与x 之间的函数关系式,并画出其图象.7. 如图所示,有一座抛物线形拱桥,桥下面在正常水位AB 时,宽20m ,水位上升3m 就达到警戒线CD,这时水面宽度为10m .(1)在如图所示的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?◆创新学习8. 如图,直线l 经过点A (4,0)和点B (0,4),且与二次函数2y ax =的图象在第一象限内相交于点P ,若△AOP 的面积为92,求二次函数的解析式。
新课程课堂同步练习册(九年级数学下册人教版)答案
数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
(完整版)人教九年级数学下册同步练习题及答案
2
-
3,如果
y 随 x 的增大而减小,那么
x 的取值范围是 ______.
2.抛物线 y= (x-1) 2+2 的对称轴是直线 ____顶点坐标为 ____。
3 .抛物线 y 3(x 1)2 2 可由抛物线 y 3 x 2 先向 ____ 平移 ______ 单位,再向 _____ 平移
_______ 单位得到。
1
1.形如 _______ ________ 的函数叫做二次函数 .
2.扇形周长为 10,半径为 x,面积为 y,则 y 与 x 的函数关系式为 _______________ 。
3.下列函数中 , 不是二次函数的是 ( )
A.y=1- 2 x 2
B.y=2(x-1) 2+4 C.y= 1 (x-1)(x+4) D.y=(x-2)
式 :a____0,b____0,c_____0;a+b+c_____0,a-b+c_____0.
2.函数 y=(x+1)(x-2) 的图像的对称轴是 _____, 顶点为 ____.
2
3.若二次函数 y=x - 2x+c 图象的顶点在 x 轴上,则 c 等于 ( )
A. - 1 B.1 4.已知一次函数
3 . 如 果 二 次 函 数 y x2 2 x c 的 图 象 过 点 ( 1 , 2 ), 则 这 个 二 次 函 数 的 解 析 式 为
_____________ 。
4.抛物线 y=x2+1 的图象大致是(
)
y
y
y
y
O
-1
x
O
-1
x
1
O
x
1
(完整版)人教九年级数学下册同步练习题及答案
第二十六章二次函数26.1二次函数(第一课时)一、课前小测1.已知函数y=(k+2)x+3是关于x的一次函数,则k_______.2.已知正方形的周长是ccm,面积为Scm2,则S与c之间的函数关系式为__ ___. 3.填表:4.在边长为4m的正方形中间挖去一个长为xm的小正方形, 剩下的四方框形的面积为y,则y与x间的函数关系式为_________.5.用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.二、基础训练121.形如_______ ________的函数叫做二次函数.2.扇形周长为10,半径为x ,面积为y ,则y 与x 的函数关系式为_______________。
3.下列函数中,不是二次函数的是( )x 2 B.y=2(x-1)2+4 C.y=12(x-1)(x+4) D.y=(x-2)2-x 2 4.在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y与x 的函数关系式为( )A.y=πx 2-4 B.y=π(2-x)2; C.y=-(x 2+4) D.y=-πx 2+16π 5.若y=(2-m)22m x -是二次函数,则m 等于( )A.±2 B.2 C.-2 D.不能确定三、综合训练1.已知y 与x 2成正比例,并且当x=1时,y=2,求函数y 与x 的函数关系式,并求当x=-3时,y的值.当y=8时,求x 的值.2.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?326.1二次函数(第二课时)一、课前小测1.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是( )A.a ≠0,b ≠0,c ≠0B.a <0,b ≠0,c ≠0C.a >0,b ≠0,c ≠0D.a ≠02.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是__ __(其中x 、t 为自变量).3.当k=__ ___时,27(3)k y k x -=+是二次函数。
人教版九下数学《二次函数》经典练习题(带答案)
人教版九下数学《二次函数》经典练习题(带答案)1.(课本P15第1题变型)(1)说出抛物线y=3(x+3)2-4的开口方向、对称轴及顶点坐标.(2)说出抛物线y=3(x-3)2+4的开口方向、对称轴及顶点坐标.(3)说出抛物线y=3(x-3)x-4的开口方向、对称轴及顶点坐标.2.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9), 求这个二次函数的关系式.3.已知二次函数y=ax2+bx+c的图象与x轴的两个交点的横坐标为x1=1,x2=2.当x=3时,y=4,求这个函数的关系式,并写出它的对称轴和顶点坐标.(1)一变:已知二次函数y=ax2+bx+c的图象与x轴两交点间的距离为1, 对称轴为x= ,且当x=3时,y=4.求这个函数的关系式,并写出图象的顶点坐标和最值.答案1.解:(1)抛物线y=3(x+3)2-4开口向上,对称轴是直线x=-3,顶点坐标为(-3,-4).(2)抛物线y=3(x-3)2+4开口向上,对称轴是直线x=3,顶点坐标为(3,4).(3)抛物线y=3(x-3)2-4开口向上,对称轴是直线x=3,顶点坐标为(3,-4).2.解法一:∵顶点坐标为(8,9),∴设所求二次函数关系式为y=a(x-8)2+ 9.把(0,1)代入上式,得 a(0-8)2+9=1,∴a=-18.∴y=-18(x-8)2+9,即y=-18x 2+2x+1.解法二:设所求二次函数关系式为y=ax 2+bx+c. 由题意,得2182494c b a ac b a⎧⎪=⎪⎪-=⎨⎪⎪-=⎪⎩, 解得1821a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴所求二次函数关系式为y=18-x 2+2x+1.3.解:∵两个交点横坐标为x 1=1,x 2=2,∴这两个交点坐标为(1,0),(2,0).把(1,0),(2,0),(3,4)分别代入y=ax 2+bx+c, 得0420934a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得264a b c =⎧⎪=-⎨⎪=⎩∴y=2x 2-6x+4. ∴231222y x ⎛⎫=-- ⎪⎝⎭ ∴顶点为31,22⎛⎫- ⎪⎝⎭,对称轴为直线x=32. (1)∵抛物线与x 轴两交点间距离为1,对称轴为x=32, ∴抛物线与x 轴的两个交点坐标为(1,0),(2,0).于是把(1,0),(2,0),(3,4)分别代入y=ax 2+bx+c,得0420934a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得264a b c =⎧⎪=-⎨⎪=⎩ ∴y=2x 2-6x+4.∴231222y x⎛⎫=--⎪⎝⎭, ∴顶点为31,22⎛⎫-⎪⎝⎭,∵a=2>0,∴函数有最小值,当x=32时,y最小值=12-.。
人教版九年级数学下册第26章二次函数测试(答案)
《二次函数》同步检测一、选择题(每题3分,共39分)1.二次函数y=x 2+2x -7的函数值是8,那么对应的x 的值是( D )A .3B .5C .-3和5D .3和-52、(2010三亚市月考).抛物线y=12x 2向左平移8个单位,再向下平移9个单位后,所得抛物线的表达式是( A )A. y=12(x+8)2-9 B. y=12(x-8)2+9 C. y=12(x-8)2-9 D. y=12(x+8)2+9 3、(2010年厦门湖里模拟)抛物线y =322+-x x 与坐标轴交点为 ( B )A .二个交点B .一个交点C .无交点D .三个交点 4、若二次函数y=x 2-x 与y=-x 2+k 的图象的顶点重合,则下列结论不正确的是( D )A .这两个函数图象有相同的对称轴B .这两个函数图象的开口方向相反C .方程-x 2+k=0没有实数根D .二次函数y=-x 2+k 的最大值为12 5、(2010年厦门湖里模拟)如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则 的值为 ( A )A. 0B. -1C. 1D. 26、(2010年杭州月考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
③当13x x =-=或时,函数y 的值都等于0. ④024<++c b a 其中正确结论的个数是( C )A.1B.2C.3D.47、已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有( A )A .042>-ac bB .042=-ac bC .042<-ac bD .042≤-ac b 8、小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( B ).A .3.5mB .4mC .4.5mD .4.6m9、(2010年西湖区月考)关于二次函数y =ax 2+bx+c 的图象有下列命题:①当c=0时,函数的图象经过原点;②当c >0时且函数的图象开口向下时,ax 2+bx+c=0必有两个不等实根;③函数图象最高点的纵坐标是ab ac 442-;④当b=0时,函数的图象关于y 轴对称.其中正确的个数是( C )A.1个 B 、2个 C 、3个 D. 4个10、(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )11、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c ,2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、512、(2009年兰州)在同一直角坐标系中,函数y mx m =+和函数xxxx222y mx x =-++(m 是常数,且0m ≠)的图象可能..是13、(2009年黄石市)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( ) A .①② B . ①③④ C .①②③⑤ D .①②③④⑤二、填空题(每题3分,共30分)1、(2010三亚市月考)Y=-2(x-1)2 +5 的图象开口向 下 ,顶点坐标为 (1,5) ,当x >1时,y 值随着x 值的增大而 减小 。
26_1 二次函数(难点练)原卷版
26.1 二次函数(难点练)一、单选题1.(2020·全国九年级课时练习)下列函数关系中,可以看作二次函数2y ax bx c =++(0a ≠)模型的是( )A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系2.(2018·全国九年级课时练习)已知函数y=(m 2+m )2x +mx+4为二次函数,则m 的取值范围是( )A .m≠0B .m ≠-1C .m≠0,且m≠-1D .m=-13.(2021·四川眉山·中考真题)在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---二、填空题4.(2021·全国九年级专题练习)若函数y =(m -3)2213m m x +-是二次函数,则m =______.5.(2018·全国九年级课时练习)当m ____时,函数y =(m -2)x 2+4x -5(m 是常数)是二次函数. 6.(2018·全国九年级单元测试)开口向下的抛物线y =(m 2-2)x 2+2mx +1的对称轴经过点(-1,3),则m =_____.7.(2018·全国九年级课时练习)一种函数21(1)53m y m x x +=-+-是二次函数,则m=________ 8.(2018·福建连城·九年级期中)平面直角坐标系下,一组有规律的点A 1(0,1)、A 2(1,0)、A 3(2,1)、A 4(3,0)、A 5(4,1)、A 6(5,0)…(注:当n 为奇数时,A n (n ﹣1,1),n 为偶数时,A n (n ﹣1,0)),抛物线C 1经过点A 1、A 2、A 3三点,…抛物线C n 经过C n ,C n +1,C n +2三点,请写出抛物线C 2n 的解析式_____. 9.(2019·安徽九年级月考)抛物线()26y a x k =-+经过点()0,2,当9x =时 2.43y >,当18x =时0y <,则k 的取值范围是__________.三、解答题10.(2019·广东九年级模拟预测)如图①,等边三角形ABC 的边长为2,P 是BC 边上的任一点(与,B C 不重合),设BP x =,连接AP ,以AP 为边向两侧作等边三角形APD 和等边三角形APE ,分别与边,AB AC 交于点,M N .(1)求证:AM AN =;(2)求四边形ADPE 与△ABC 重叠部分的面积S 与x 之间的函数关系式及S 的最小值;(3)如图②,连接DE ,分别与边,AB AC 交于点,G H .当x 为何值时,15BAD ∠=︒.11.(2021·吉林汽车经济技术开发区·九年级期末)如图,在Rt ABC 中,∠ACB =90°,AB =10,AC =6,点P 从点B 出发,以每秒5个单位长度的速度沿BC 向点C 运动,同时点M 从点A 出发,以每秒6个单位长度的速度沿AB 向点B 运动,过点P 作PQ ⊥AB 于点Q ,以PQ 、MQ 为邻边作矩形PQMN ,当点P 到达点C 时,整个运动停止.设点P 的运动时间为t (t >0)秒. (1)求BC 的长;(2)用含t 的代数式表示线段QM 的长;(3)设矩形PQMN 与ABC 重叠部分图形的面积为S (S >0),求S 与t 之间的函数关系式; (4)连结QN ,当QN 与ABC 的一边平行时,直接写出t 的值.12.(2021·吉林九台·九年级一模)如图,在矩形ABCD 中,AB =4,AD =3,连结BD .点P 从点A 出发,沿折线AB -BD -DC 以每秒1个单位长度的速度向终点C 运动.当点P 不与矩形ABCD 的顶点重合时,以AP 为对角线作正方形AEPF (点F 在直线AP 的右侧).设正方形AEPF 的面积为S (平方单位),点P 的运动时间为t (秒).(1)当点P 在线段BD 上时,用含t 的代数式表示PB 的长,并写出t 的取值范围;(2)当AP ⊥BD 时,求t 的值;(3)求S 与t 之间的函数关系式.(4)当直线BF 将正方形AEPF 分成的两部分图形面积相等时,直接写出t 的值.13.(2021·江苏泗洪·九年级二模)如图,在平面直角坐标系中,点A 坐标为()4,0-,点B 坐标为()4,0,点C 为线段AB 上的一个动点,分别以AC BC 、为边在x 轴上方作正方形ACDE 和正方形BCGF ,连接EF 交直线CG 于点P ,设P 点坐标为(),x y .(1)当C 运动到点()2,0-时,求P 点坐标;(2)当点C 从点A 运动到点B 的过程中(包含AB 、两点),试求出点P 运动路径图象的函数表达式,并写出自变量的取值范围;(3)连接CE CF 、,在点C 的运动过程中,是否存在PDE ∆和CEF ∆相似,若存在,试求出P 点坐标,若不存在,请说明理由.14.(2021·广东龙岗·深圳市东升学校九年级月考)在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD 交直线BE于点Q.(1)当点P在线段ED上时(如图1),求证:BE=PD;(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PF的长.15.(2019·浙江杭州·九年级模拟预测)如图,已知正方形ABCD的边长为4,点E、F分别从C、A两点同时出发,以相同的速度作直线运动.已知点E沿射线CB运动,点F沿边BA的延M DE交AC于点N.长线运动,连结DF、DE、EF,EF与对角线AC所在的直线交于点,⊥;(1)求证:DE DF=,AMF的面积为y,求y与x之间的函数关系式,并写出自变量的取值范围;(2)设CE x(3)随着点E在射线CB上运动,NA MC的值是否会发生变化?若不变,请求出NA MC的值;若变化,请说明理由.。
人教版九年级下册二次函数同步练习
26.1.1 二次函数1. 下列五个函数关系式:①256y ax x =-+,②y =-x 2+1,③y =32+2x ,④2325y x x =--,⑤2256y x x =-+.其中是二次函数的有( )A .1个B .2个C .3个D .4个 2. 下列结论正确的是( ) A .关于x 的二次函数y =a (x +2)2中,自变量的取值范围是x ≠-2 B .二次函数自变量的取值范围是所有实数C .在函数y =-x 22中,自变量的取值范围是x ≠0 D .二次函数自变量的取值范围是非零实数 3. 如图,直角三角形AOB 中,AB ⊥OB ,且AB =OB =3,设直线x =t 截此三角形所得的阴影部分的面积为S ,则S 与t 之间的函数关系式为( )A .S=tB .212S t =C .S=t 2D .2112S t =- 4. 当m =_________时,2(2)m m y m x +=+是关于x 的二次函数.5. 国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y元,则y与x之间的函数关系式为.参考答案1.B2.B3.B4.15.y=18(1-x)2先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
但由于某些不确定因素的存在,人生目标不一定非常具体详细,只要有一个明确的方向就可以。
而对于中学生来说,你们的目标应该是进入自己理想中的学校。
因此,每个学生都会为自己制定一个学习目标,学习目标可以分为两方面内容:一是阶段性目标,如自己要知道学习到底是为了什么?为自己、为父母,或是为其他需要感激和感恩的人?为了将来的发展,为了上大学,为了证明自己的价值?这都是很不错的理由。
只要你认为,它可以给你带来源源的动力,促使你向着自己希望的方向去发展,去努力,就可以当作自己的目标确定下来。
最新人教版九年级数学下册26.1 二次函数及其图象同步练习及答案
26.1 二次函数及其图象专题一 开放题1.请写出一个开口向上,与y 轴交点纵坐标为﹣1,且经过点(1,3)的抛物线的解析 式.(答案不唯一)2.(1)若22()m m y m m x-=+是二次函数,求m 的值;(2)当k 为何值时,函数221(1)(3)kk y k x k x k --=++-+是二次函数?专题二 探究题3.如图,把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,则平移后抛物线的解析式是( )A .1)1(2-+=x yB .1)1(2++=x yC .1)1(2+-=x yD .1)1(2--=x y4.如图,若一抛物线y =ax 2与四条直线x =1、 x =2、 y =1、 y =2围成的正方形有公共点,求a 的取值范围.专题三 存在性问题5.如图,抛物线 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3. (1)求抛物线的解析式;(2)若点D (2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.注:二次函数c bx ax y ++=2(a ≠0)的对称轴是直线x =ab 2-. cbx x y ++-=221=6.如图,二次函数c x x y +-=221的图象与x 轴分别交于A 、B 两点,顶点M 关于x 轴的对称点是M′.(1)若A (-4,0),求二次函数的关系式;(2)在(1)的条件下,求四边形AMBM′的面积;(3)是否存在抛物线212y x x c =-+,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.【知识要点】1.二次函数的一般形式c bx ax y ++=2(其中a ≠0,a ,b ,c 为常数).2.二次函数2y ax =的对称轴是y 轴,顶点是原点,当a >0时,抛物线的开口向上, 顶点是抛物线的最低点,a 越大,抛物线的开口越小;当a <0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.3.抛物线2()y a x h k =-+的图象与性质:(1)二次函数2()y a x h k =-+的图象与抛物线2y ax =形状相同,位置不同,由抛物线2y ax=平移可以得到抛物线2()y a x h k =-+.平移的方向、距离要根据h ,k 的值确定.(2)①当0a >时,开口向上;当a <0时,开口向下;②对称轴是直线x h =;③顶点坐标是(h ,k ).4.二次函数y=ax 2+bx+c 的对称轴是直线x =ab 2-,顶点坐标为)44,2(2a b ac a b --. 【温馨提示】1.二次函数的一般形式y=ax 2+bx+c 中必须强调a ≠0.2.当a <0时,a 越小,开口越小,a 越大,开口越大.3.二次函数的增减性是以对称轴为分界线的.4.当a >0时,二次函数有最小值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最小值;当a <0时,二次函数有最大值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最大值.【方法技巧】1.一般地,抛物线的平移规律是 “上加下减常数项,左加右减自变量”.2.如已知三个点求抛物线解析式,则设一般式y=ax 2+bx+c .3.若已知顶点和其他一点,则设顶点式2()y a x h k =-+.参考答案1. 答案不唯一,如y=x 2+3x ﹣1等.【解析】设抛物线的解析式为y=ax 2+bx+c ,∵ 开口向上,∴a >0. ∵其与y 轴交点纵坐标为﹣1,∴c =﹣1.∵经过点(1,3),∴a+b -1=3.令a =1,则b =3,所以y=x 2+3x ﹣1.2.解:(1)由题意,得⎪⎩⎪⎨⎧=+=-,0,222m m m m 解得m =2.(2)由题意,得⎩⎨⎧≠+=--,01,2122k k k 解得k =3.3.C 【解析】把抛物线y=x 2沿直线y=x向右移1个单位长度,再根据“上加下减常数项,左加右减自变量”即可得到平移后的抛物线的解析式为2(1)1=-+y x ,答案为C.4.解:因为四条直线x =1、 x =2、 y =1、 y =2围成正方形ABCD ,所以A (1,2),C (2,1).设过A 点的抛物线解析式为y =a 1x 2,过C 点的抛物线解析式为y =a 2x 2,则a 2≤a ≤a 1.把A (1,2),C (2,1)分别代入,可求得a 1=2,a 2=14.所以a 的取值范围是14≤a ≤2.5.解:(1)将A (-2,0), C (0,3)代入y =c bx x ++-221得⎩⎨⎧=+--=,022,3c b c 解得b = 12 ,c = 3.∴此抛物线的解析式为 y = 21-x 2+21x +3. (2) 连接AD 交对称轴于点P ,则P 为所求的点.设直线AD 的解析式为y =kx +b.由已知得⎩⎨⎧=+=+-,22,02b k b k 解得k= 21,b =1.∴直线AD 的解析式为y =21x +1. 对称轴为直线x =-a b 2= 21.当x = 21时,y = 45,∴ P 点的坐标为(21,45). 6.解:(1) 把A (-4,0)代入c x x y +-=221,解出c =-12. ∴二次函数的关系式为12212--=x x y . (2)如图,令y =0,则有211202x x --=,解得14x =-,26x =,∴A (-4,0),B (6,0), ∴AB =10. ∵225)1(21122122--=--=x x x y ,∴M (1, 225-), ∴M ′(1, 225), ∴MM′=25. ∴四边形AMBM′的面积=12AB·MM′=21×10×25=125. (3) 存在.假设存在抛物线c x x y +-=221,使得四边形AMBM′为正方形.令y =0,则0212=+-=c x x y ,解得c x 211-±=. ∴A (c 211--,0),B (c 211-+,0),∴AB =c 212-.。
人教版九年级数学下册二次函数测试习题及答案【推荐下载】
B . y3> y1= y2
C. y1> y2> y3
D .y1= y2>y3
6.(毕节中考 ) 一次函数 y= ax+ b(a≠ 0)与二次函数 y= ax2+ bx+ c(a≠0) 在同一平面直角坐标系
中的图象可能是 ( )
7. (兰州中考 )二次函数 y=ax2+bx+ c 的图象如图所示,对称轴是直线 x=- 1,有以下结论: ① abc>0;② 4ac<b2;③ 2a+ b= 0;④ a- b+ c> 2.其中正确的结论的个数是 ( )
0
解析:根据已知条件,画出函数图象,如图所示.由已知得
a< 0,
-1
解
- ≤- 1,
2a
得- 12≤ a< 0.
14. (1+ 2, 2)或 (1- 2, 2) 解析:∵△ PCD 是以 CD 为底的等腰三角形,∴点 P 在线段 CD 的垂直平分线上.过 P 作 PE⊥ y 轴于点 E,则 E 为线段 CD 的中点.∵抛物线 y=- x2+ 2x+3 与 y 轴交于点 C,∴ C 点坐标为 (0, 3).又∵ D 点坐标为 (0, 1),∴ E 点坐标为 (0 ,2) ,∴ P 点纵坐
第 11 题图
第 14 条图
12. (台州中考 )竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔
1 秒依次竖直向
上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后
1.1 秒时到达相同的最大离地
高度,第一个小球抛出后 t 秒时在空中与第二个小球的离地高度相同,则
t= ________.
时, y 随 x 的增大而减小;当 x> 2 时, y 随 x 的增大而增大;
(2)解方程 x2- 4x+ 3= 0 得 x1= 3,x2= 1,即 A 点的坐标是 (1,0) ,B 点的坐标是 (3, 0).如图,
九年级下册 二次函数(5)同步练习及答案
26.1 二次函数(5)◆基础扫描1. 函数223y x x=-+的图象顶点坐标是()A. (1,4)- B. (1,2)- C. (1,2) D. (0,3)2. 已知二次函数2y ax bx c=++的图象如图1所示,则下列关于a,b,c间的关系判断正确的是()A.ab<0 B. bc<0 C. 0a b c++> D.0a b c-+<图1 图2 图33.二次函数223y x x=-++,当x= 时,y有最值为 .4. 如图2所示的抛物线是二次函数2231y ax x a=-+-的图象,那么a的值是.5. 已知二次函数2y ax bx c=++(a b c,,是常数),x与y的部分对应值如下表,则当x 满足的条件是时,0y=;当x满足的条件是时,0y>.x2-1-0 1 2 3y16-6-0 2 0 6-◆能力拓展6. 如图3,二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值。
7.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y(件)是销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元? 此时每日的销售利润是多少元?◆创新学习8.如图,对称轴为直线x =27的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.参考答案1.C 2.D 3.1x 大 4 4.-1 5.0或2 0<x <2 6.(1)C(0,5)(2) 5(1)(4)4y x x =-+- 253125()4216x =--+7.(1)设此一次函数关系式为y kx b =+,则{15252020k b k b +=⎧⎨+=⎩,解得1,40k b =-=故一次函数的关系式为40y x =-+. (2)设所获利润为W 元,则22(10)(40)50400(25)225W x x x x x =--=-+-=--+ 所以产品的销售价应定为25元,此时每日的销售利润为225元. 8.(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+. 把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合.22725()326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离. ∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0), 所以,自变量x 的取值范围是1<x <6.①根据题意,当S = 24时,即274()25242x --+=. 化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4).点E1(3,-4)满足OE = AE,所以OEAF是菱形;点E2(4,-4)不满足OE = AE,所以OEAF不是菱形.②当OA⊥EF,且OA = EF时,OEAF是正方形,此时点E的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使OEAF为正方形.。
新人教版九年级下数学二次函数单元试题及答案
新人教版九年级下数学二次函数单元试题及答案内容:26.1 满分:100分一、选择题(本大题共10小题;每小题3分;共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2;-1)B.(-2;1)C.(-2;-1)D.(2; 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2;1)B .(-2;1)C .(2;-1)D .(-2;-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点;则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定6. 二次函数y =x 2的图象向右平移3个单位;得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中;当x>0时;y 随x 的增大而增大B .二次函数y=-6x 2中;当x=0时;y 有最大值0 C .a 越大图象开口越小;a 越小图象开口越大D .不论a 是正数还是负数;抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图;小芳在某次投篮中;球的运动路线是抛物线y =-错误!x 2+3.5的一部分;若命中篮 圈中心;则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示;下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题2.53.05m xyO二、填空题(本大题共4小题;每小题3分;共12分)11.一个正方形的面积为16cm 2;当把边长增加x cm 时;正方形面积为y cm 2;则y 关于x 的函数为 。
新人教版九年级数学下册26.1.2 二次函数=2的图象同步练习及答案
26.1.2 二次函数y =ax ²的图象
1. 关于函数y =2x 2
的图象的描述:(1)图象有最低点,(2)图象为轴对称图形,(3)图象与y 轴的交点为原点,(4)图象的开口向上,其中正确的有( )
A .1个
B .2个
C .3个
D .4个
2.(2013丽水)若二次函数y=ax 2的图象过点P (-2, 4),则该图象必经过点( )
A .(2, 4)
B .(-2, -4)
C .(2, -4)
D .(4, -2)
3. 在抛物线212
y x =,y =-3x 2,y =x 2中,开口最大的是( ) A .212
y x = B .y =-3x 2 C .y =x 2 D .无法确定
4. (1)若抛物线y =ax 2 与y =-2x 2 的形状相同,开口方向相同,则a = _____ .
(2)把抛物线223
y x =绕原点旋转180°后的抛物线是____. 5.跳伞运动员在打开降落伞之前,下落的路程s (米)与所经过的时间t (秒)之间的关系为s =at 2.
(1)根据表中的数据,写出s 关于t 的函数解析式; (2)完成上面自变量t 与函数s 的对应值表;
(3)如果跳伞运动员从5100米的高空跳伞,为确保安全,必须在离地面600米之前打开降落伞.问运动员在空中不打开降落伞的时间至多有几秒?
参考答案1.D 2.A 3.A
4.(1)-2 (2)y =
2
3
x²
5.解:(1)s=5t2
(2)
(3)由题意得s=5t
∴运动员在空中不打开降落伞的时间至多有30秒.。
九年级数学下册26.1二次函数练习(含解析)(新版)华东师大版
26.1二次函数同步练习一、选择题 1.函数432-+=x xy ( )A .一次函数B .二次函数C .正比例函数D .反比例函数答案:B解析:解答:因为函数中二次项的系数03≠,函数形式符合二次函数. 故选:B .分析:根据二次函数的定义形如c bx axy ++=2,()0≠a 判断函数是否是二次函数.2.在下列y 关于x 的函数中,一定是二次函数的是( ) A .2x y =B .21xy =C .2kx y =D .x k y 2= 答案:A解析:解答:A.符合二次函数定义形式,是二次函数;B.是分式方程,故B 错误;C.当k =0时,不是函数,故C 错误;D.当k =0是常函数,故D 错误. 故选:A .分析:根据二次函数的定义形如c bx axy ++=2,()0≠a 是二次函数.3.对于任意实数m ,下列函数一定是二次函数的是( ) A .()221xm y -=B .()221xm y +=C .()221x m y +=D .()221x my -=答案:C解析:解答:A.当m =1时,二次项系数等于0,不是二次函数,故错误;B.当m =-1时,二次项系数等于0,不是二次函数,故错误;C.无论m 取何值,12+m 总大于或等于1,即无论m 取何值,12+m 都不等于0,符合二次函数概念,是二次函数,故正确. 故选:C .分析:根据二次函数的定义形如c bx ax y ++=2,()0≠a 是二次函数.4. 二次函数532+=x y的二次项系数是( )A.3B.2C.5D.0 答案:A解析:解:二次函数532+=x y 的二次项系数是3,一次项系数是0.故选:A .分析:本题考查二次函数的定义,是基础题,熟记概念是解题的关键. 5.下列各式中,y 是x 的二次函数的是( ) A .22=+x xy B .0222=+-y xC .21xy =D .02=-x y答案:B解析:解:A.整理为y=22x x x-+不是二次函数,故A 错误; B.0222=+-y x变形,得1212+=x y ,是二次函数,故B 正确;C.分母中含自变量,不是二次函数,故C 错误;D.y 的指数是2,y 不是x 的二次函数,故此选项错误. 故选:B .分析:整理成一般形式后,根据二次函数的定义判定即可. 6.下列函数中,属于二次函数的是( )A .x y 2=B .()()312-+=x x yC .23-=x yD .xx y 12+=答案:B 解析:解:A.xy 2=是反比例函数,故本选项错误; B.()()6423122--=-+=x xx x y ,是二次函数,故本选项正确;C.23-=x y 是一次函数,故本选项错误;D.xx x x y 112+=+=,不是二次函数,故本选项错误.故选:B .分析:根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解. 7.已知函数()5621--+=m m xm y 是二次函数,则m 等于( )A .7B .-2或7C .﹣1D .以上都不对答案:A解析:解:∵()5621--+=m m xm y 是二次函数,∴2562=--m m ,∴m =7或m =﹣1(舍去). 故选A .分析:根据二次函数的定义列出关于m 的方程,求出m 的值即可. 8.下列函数是二次函数的是( ) A .12+=x y B .12+-=x y C .22+=x y D .221-=x y 答案:C解析:解:A.12+=x y ,是一次函数,故此选项错误; B.12+-=x y ,也是一次函数,故此选项错误; C.22+=x y 是二次函数,故此选项正确;D.221-=x y ,是一次函数,故此选项错误. 故选:C .分析:直接根据二次函数的定义判定即可. 9.下列函数中,属于二次函数的是( ) A .32-=x y B .()221xx y -+= C .x xy 722-= D .22xy -= 答案:C解析:解:A.函数32-=x y 是一次函数,故本选项错误; B.由原方程化简,得12+=x y ,属于一次函数,故本选项错误; C.函数x x y 722-=符合二次函数的定义;故本选项正确;D.22xy -=不是整式;故本选项错误. 故选:C .分析:二次函数是指未知数的最高次数为二次的多项式函数.二次函数可以表示为c bx axy ++=2,()0≠a .10.下列四个函数中,一定是二次函数的是( )A .x xy +=21 B .c bx ax y ++=2 C .()227+-=x x y D .()()121-+=x x y 答案:D解析:解答:解:A.x xy +=21中未知数的最高次数不是2,故本选项错误;B.c bx ax y ++=2二次项系数a =0时,c bx ax y ++=2不是二次函数,故本选项错误;C.∵()()4914121--=-+=x x x y ,即4914--=x y ,没有二次项,故本选项错误;D.由原方程得,122--=x x y ,符合二次函数的定义,故本选项正确.故选:D .分析:根据二次函数的定义解答. 11.已知函数①45-=x y ,②x x t 6322-=,③38223+-=x x y ,④1832-=x y ,⑤2132+-=xx y ,其中二次函数的个数为( )A .1B .2C .3D .4答案:B解析:解:①45-=x y ,③38223+-=x xy ,⑤2132+-=xx y 不符合二次函数解析式, ②x x t 6322-=,④1832-=x y 符合二次函数解析式,有两个.故选B .分析:首先去掉不是整式的函数,再利用二次函数的定义条件判定即可. 12.下列函数关系中,可以看做二次函数c bx ax y++=2,()0≠a 模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率1%,这样我国人口总数随年份的关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系 答案:C解析:解:A.距离一定,汽车行驶的速度与行驶的时间的积是常数,即距离,速度与时间成反比例关系;B.设原来的人口是a ,x 年后的人口数是y ,则()x a y%11+=,是正比例函数;C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)是二次函数.D.设半径是r ,则周长r C π2=,是一次函数关系.故选C .分析:根据实际问题中的数量关系及二次函数的模型,逐一判断. 13.若函数()1222--+=m m x m m y是二次函数,那么m 的值是( )A.2B.-1或3C.3D.1- 答案:C 解析:解:∵()1222--+=m m x m my 是二次函数,∴2122=--m m ,∴m =3或m =-1. 当m =-1时02=+m m ,所以m =3故选C .分析:根据二次函数的定义列出关于m 的方程,求出m 的值即可. 14.下列函数中,是二次函数的是( ) A.182+=x yB.18+=x yC.x y 8=D.28xy =答案:A解析:解答:A 符合二次函数定义形式,是二次函数;B 一次函数,故B 错误;C 是反比例函数,故C 错误;D 不符合二次函数定义形式,故D 错误. 故选:A .分析:根据二次函数的定义形如c bx ax y ++=2,()0≠a 是二次函数.15.若()222--=m xm y 是二次函数,则m 等于( ) A .2B .-2C .±2D .不能确定答案:B解析:解答:根据二次函数的定义,得222=-m ,解得m =2或m =-2,又2-m ≠0,即m ≠2,故当m =-2时,这个函数是二次函数. 故选:B .分析:根据二次函数的定义可得答案.二、填空题 16. 关于x 的函数()()m x m x m y +-++=112,当m =0时,它是________函数;当m =-1时,它是________函数. 答案:二次|一次解析:解答:当m =0时,函数关系式可化为x x y -=2,是一个二次函数;当m =-1时,函数关系式可化为12--=x y,是一次函数.分析:将m =0和m =1分别代入等式中再进行判断. 17.已知()ax x a y++=21是二次函数,那么a 的取值范围是_________答案:a ≠﹣1解析:解答:根据二次函数的定义可得a +1≠0, 即a ≠﹣1.分析:根据二次函数的定义条件列出不等式求解即可. 18.已知()322-++=x x a y是关于x 的二次函数,则常数a 应满足的条件是_________.答案:a ≠﹣2 解析:解答:由()322-++=x x a y 是关于x 的二次函数,得02≠+a .解得a ≠﹣2, 故答案为:a ≠﹣2. 分析:根据形如c bx ax y ++=2,()0≠a 是二次函数,可得答案.19.已知()kk xk y ++=22是二次函数,则k 的值为_________.答案:1解析:解答:∵()kk xk y ++=22是二次函数,∴22=+k k 且k +2≠0,解得k =1,故答案为:1.分析:利用二次函数的定义列方程求解即可. 20.已知方程02=++cy bx ax(0≠a ,b 、c 为常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式.则函数表达式为_________,成立的条件是_________,是 _________函数. 答案:x cbx c a y --=2|a ≠0,c ≠0|二次.解析:解答:整理得函数表达式为x cbx c a y --=2,成立的条件是a ≠0,c ≠0,是二次函数. 故答案为:x cbx c a y --=2;a ≠0,c ≠0;二次. 分析:函数通常情况下是用x 表示y .注意分母不为0,二次项的系数不为0. 三、解答题 21.已知函数()35112-+-=+x xm y m y 是二次函数,求m 的值. 答案:解答:()35112-+-=+x xm y m 是二次函数,得21012m m ì-?ïïíï+=ïî 解得m =﹣1.解析:本题考查了二次函数的定义,注意二次项的系数不等于零,二次项的次数是2. 分析:根据二次函数是c bx ax y ++=2的形式,可得答案.22. 已知函数()2222+-+=m m x m my .(1)当函数是二次函数时,求m 的值. 答案:解答:(1)依题意,得2222=+-m m ,解得m =2或m =0; 又02≠+m m ,解得m ≠0且m ≠-1;因此m =2.(2)当函数是一次函数时,求m 的值. 答案:解答:依题意,得1222=+-m m ,解得m =1; 当m =1时,02≠+m m ,因此m =1.解析:本题考查了二次函数和一次函数的定义,注意二次项的系数不等于零,二次项的次数是2,所以令2222=+-m m 且02≠+m m 即可.同理第二问令1222=+-m m 即可求解.分析:根据二次函数是c bx ax y ++=2,()0≠a 的形式,可得答案.23.己知()m xm y m ++=21是关于x 的二次函数,且当x >0时,y 随x 的增大而减小.求:(1)m 的值.答案:解答:(1)∵()m xm y m ++=21是关于x 的二次函数,∴22=m ,解得m =,∵当x >0时,y 随x 的增大而减小, ∴m+1<0,m =﹣,m =(不符合题意,舍);(2)求函数的最值.答案:解答:当x =0时,y 最大=m =﹣.解析:(1)根据()m xm y m ++=21是关于x 的二次函数,可得22=m ,再由当x >0时,y 随x 的增大而减小,可得m +1<0,从而得出m 的值; (2)根据顶点坐标即可得出函数的最值.分析:本题考查了二次函数的定义,利用了二次函数的定义,二次函数的性质. 24.已知()()212232m x m x m my m x +-+-=--是x 的二次函数,求出它的解析式.答案:解答:根据二次函数的定义可得:2122=--m m ,且02≠-m m ,解得 m =3或m =﹣1; 当m =3时,962+=xy ;当m =﹣1时,1422+-=x x y ;综上所述,该二次函数的解析式为:962+=x y 或1422+-=x x y .解析:本题考查二次函数的定义.一般地,形如c bx axy ++=2,()0≠a 的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.c bx ax y ++=2,()0≠a 也叫做二次函数的一般形式.分析:根据二次函数的定义列出不等式求解即可.25.函数()()31--=x kx y ,当k 为何值时,y 是x 的一次函数?当k 为何值时,y 是x 的二次函数? 答案:解答:∵()()()313333122++-=+--=--=x k kx x kx kx x kx y ,∴k =0时,y 是x 的一次函数,k ≠0时,y 是x 的二次函数.解析:利用一次函数与二次函数的定义分别分析得出即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1 二次函数(5)●基础巩固1.二次函数y=3x 2-2x+1的图像是开口方向_______,顶点是________, 对称轴是__________. 2.二次函数y=2x 2+bx+c 的顶点坐标是(1,-2),则b=_____,c=_____. 3.二次函数y=ax 2+bx+c 中,a>0,b<0,c=0,则其图像的顶点是在第_____象限. 4.如果函数y=(k-3)232k k x -++kx+1是二次函数,则k 的值一定是_______.5.二次函数y=12x 2+3x+52的图像是由函数y=12x 2的图像先向_____平移____个单位,再向_____平移_____个单位得到的.6.已知二次函数y=mx 2+(m-1)x+m-1的图像有最低点,且最低点的纵坐标是零,则m=_______.7.已知二次函数y=x 2-2(m-1)x+m 2-2m-3的图像与函数y=-x 2+6x 的图像交于y 轴一点,则m=_______.8.如图所示,已知抛物线y=ax 2+bx+c 的图像, 试确定下列各式的符号:a____0,b____0,c_____0;a+b+c_____0,a-b+c_____0.9.函数y=(x+1)(x-2)的图像的对称轴是______,顶点为________.10.已知抛物线y=ax 2+bx+c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______.11.二次函数y=x 2+kx+1与y=x 2-x -k 的图象有一个公共点在x 轴上,则k=______. 12.已知抛物线y=ax 2+bx+c ,其中a<0,b>0,c>0,则抛物线的开口方向______;抛物线与x 轴的交点是在原点的______;抛物线的对称轴在y 轴的______. 13.如图1中的抛物线关于x 轴对称的抛物线的表达式为______. 14.函数y=mx 2+x -2m(m 是常数),图象与x 轴的交点有_____个.图1图215.当m=_____时,抛物线y=mx 2+2(m+2)x+m+3的对称轴是y 轴;当m=_____时,图象与y轴交点的纵坐标是1;当m=_____时,函数的最小值是-2.16.若二次函数y=ax 2+bx+c 的图象如图2所示,则直线y=abx+c 不经过_____象限. 17.二次函数y=mx 2+2x+m -4m 2的图象过原点,则此抛物线的顶点坐标是______. 18.二次函数y=x 2+px+q 中,若p+q=0,则它的图象必经过下列四点中( )A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1) 19.函数y=ax+b 的图象经过一、二、三象限,则二次函数y=ax 2+bx 的大致图象是( )图320.下列说法错误的是( )A.二次函数y=-2x 2中,当x=0时,y 有最大值是0 B.二次函数y=4x 2中,当x>0时,y 随x 的增大而增大C.在三条抛物线y=2x 2,y=-0.5x 2,y=-x 2中,y=2x 2的图象开口最大,y=-x 2的图象开口最小D.不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点 21.若二次函数y=ax 2+bx+c 的图象如图,则点(a+b ,ac)在( )A.第一象限;B.第二象限C.第三象限;D.第四象限 22.已知二次函数y=x 2+(2k+1)x+k 2-1的最小值是0,则k 的值是( ) A.43; B.-43; C.45; D.-45 23.若二次函数y=x 2-2x+c 图象的顶点在x 轴上,则c 等于( )A.-1B.1C.21D.224.小颖在二次函数y=2x 2+4x+5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为( )A.y 1>y 2>y 3B.y 2>y 3>y 1C.y 3>y 1>y 2D.y 3>y 2>y 125.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:s=21gt 2.其中s 表示自某一高度下落的距离,t 表示下落的时间,g 是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离s 和时间t 函数图象大致为( )ABCD●能力提升26.请写出一个二次函数,此二次函数具备顶点在x 轴上,且过点(0,1)两个条件,并说明你的理由.27.当一枚火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用h= -5t 2+150t+10表示,经过多长时间,火箭到达它的最高点?最高点的高度是多少?28.抛物线y=x 22的顶点在直线y=2上,求a 的值.29.如图所示,公园要造圆形的喷水池, 在水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m,由柱子顶端A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面距离最大,高度2.25m.若不计其他因素, 那么水池的半径至少要多少米才能使喷出的水流不致落到池外?30.某农场种植一种蔬菜,销售员根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图像,你能得到关于这种蔬菜的哪些信息?31.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.OA●综合探究32.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(分钟)之间满足函数关系:y=-0.1x2+2.6x+43(0≤x≤30),y值越大表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增加?x在什么范围内,学生的接受能力逐步降低?(2)第10 分钟时,学生的接受能力是多少?几分钟时,学生的接受能力最强?(3)结合本题针对自己的学习情况有何感受?33.有这样一道题:“已知二次函数y=ax2+bx+c图象过P(1,-4),且有c=-3a,……求证这个二次函数的图象必过定点A(-1,0).”题中“……”部分是一段被墨水污染了无法辨认的文字.(1)你能根据题中信息求这个二次函数表达式吗?若能,请求出;若不能,请说明理由.(2)请你根据已有信息,在原题“……”处添上一个适当的条件,把原题补充完整.26.1.4答案:1.上, 13,33⎛⎫⎪⎝⎭,13x = 2.-4 0 3.四 4.0 5.左 3 下 2 6.1 7.-1或38.< > > > < 9. 12x =,19,24⎛⎫- ⎪⎝⎭一、1.y=2x 2+8x+11 2. 2 3.向下 两侧 右侧4.y=-45x 25.26.-2 -2 47.第四8.(-4,-4)9.D 10.B 11.C 12.D 13.D 14.B 15.D 16.B17.y=x 2+2x+1(不唯一).∵1421144422⨯-⨯⨯=-a b ac =0, ∴抛物线顶点的纵坐标为0. 当x=0,y=1时符合要求.10.∵2215044(5)1015015,113522(5)44(5)b ac b a a -⨯-⨯--=-===⨯-⨯-. 故经过15秒时,火箭到达它的最高点, 最高点的高度是1135米11.由已知得2444a a -=2.即a 2-a-2=0,得a 1=-1,a 2=2,a≥0,故a=2.12.以地面上任一条直线为x 轴,OA 为y 轴建立直角坐标系, 设y=a(x-1)2+2.25, 则当x=0时,y=1.25,故a+2.25=1,a=-1. 由y=0,得-(x-1)2+2.25=0,得(x-1)2=2.25,x 1=2.5,x 2=-0.5(舍去), 故水池的半径至少要2.5米.13.如:7月份售价最低,每千克售0.5元;1-7月份, 该蔬菜的销售价随着月份的增加而降低,7-12月份的销售价随月份的增加而上升;2月份的销售价为每千克3.5元;3月份与11月份的销售价相同等.、19.解:正确.抛物线依坐标系所建不同而各异,如下图.(仅举两例)22003x y =620032+-=x y 20.解:(1)y=-0.1x 2+2.6x+43=-0.1(x -13)2+59.9.∴当0≤x ≤13时,学生的接受能力逐步增强. 当13<x ≤30时,学生的接受能力逐步下降. (2)当x=10时,y=59,x=13时,y 取最大值. ∴第13分钟时,学生的接受能力最强.(3)前13分钟尽快进入状态,集中注意力,提高学习效率,13分钟后要注意调解. 五、21.解:(1)依题意,能求出.∴⎪⎩⎪⎨⎧-=-==⎪⎩⎪⎨⎧+-=-=++=-.3,2,1,0,3,4c b a c b a a c c b a 解得 y=x 2-2x -3.(2)添加条件:对称轴x=1(不唯一).。