2020中考数学第一轮复习教案_Part121

合集下载

最新九年级数学一轮复习全部教案

最新九年级数学一轮复习全部教案

,最后一个数是
,第 n 行共有

数;
(3)求第 n 行各数之和.
第 3 课 代数式
【教学目标】 1.理解用字母表示数的意义. 2.会分析简单问题的数量关系,并用代数式表示. 3.会求代数式的值,并会根据特定问题,选择所需公式并会带入具体的值求解. 【知识梳理】 一.代数式:
(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。单独一个数或一个字母也是代数 式。
15、(2011 山东济宁)观察下面的变形规律:
1
1 1 11 1 11
=1- ;
= -;
= - ;……
1 2
2 23 2 3 34 3 4
解答下面的问题:
更多精品文档
学习-----好资料
1
(1)若 n 为正整数,请你猜想


n(n 1)
(2)证明你猜想的结论;
111
1
(3)求和:


+…+
.
1 2 23 3 4
16、(2011 常德)先找规律,再填数:
1 1 1 1 ,1 1 1 1 , 1 1 1 1 , 1 1 1 1 , 1 2 2 3 4 2 12 5 6 3 30 7 8 4 56
............
则 1 + 1 _______
1
.
2011 2012
2011 2012
6. 科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.
如:407000=4.07×105,0.000043=4.3×10-5.
7. 大小比较:正数大于 0,负数小于 0,两个负数,绝对值大的反而小。 8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

人教版中考数学第一轮总复习教案(135课时)

人教版中考数学第一轮总复习教案(135课时)

其中 a、 b、 c 表示任意实数.运用运算律有时可使运算简便
3.实数的运算顺序 : 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.同
一级运算按照从左到 右的顺序依次进行 .
4. 实数大小的比较
⑴ 数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大
.
⑵ 正数> 0,负数< 0,正数>负数;两个负数比较大小,绝对值大的
(6) 开方 如果 x 2= a 且 x ≥ 0,那么
a = x; 如果 x3=a,那么 3 a x
2.实数的运算律
(1) 加法交换律 a+b = b+a ; (2) 加法结合律 (a+b)+c=a+(b+c) ; (3) 乘法交换律 ab = ba.
(4) 乘法结合律 (ab)c=a(bc) ; (5) 分配律 a(b+c)=ab+ac
⑶十字相乘法 ,⑷ 分组分解法 .
3. 提公因式法 : ma mb mc m(a+b+c).
4. 公式法 : ⑴ a 2 b 2 ( a+ b)(a - b) ;⑵ a 2 2ab b 2 (a + b) 2; ⑶ a 2 5. 十字相乘法 : x2 a b x ab ( x a)( x b) .
6. 因式分解的一般步骤 : (1) 一 “提”(取公因式) ,二“用”(公式); (2)
3. 实数的分类 有理数和无理数统称实数 . 有理数 : 有限小数或无限循环小数 . 无理数 : 无限不循环小数 . 注 : 凡是分数都是有理数 .
4.易错知识辨析
实数
有理数 无理数
正整数
整数 0
负整数
有限小数或无限循环小数

备战九年级中考数学一轮复习第12课 反比例函数(全国通用)

备战九年级中考数学一轮复习第12课 反比例函数(全国通用)

y y
3x 2 12
3
,
解得
x1 y1
4 3
,
x2 2
y2
6
x
∴B点坐标为(-4,-3),
对于一次函数y= 3 x+3, 2
当x=0时,y=3,即OC=3,
∴S△AOB=S△ACO+S△BCO
= 1 ×3×2+ 1 ×3×4
2
2
=9.
(3)两个函数的图象交于点A(2,6),B(-4,-3),
x 5 2m

令y=0,则x=5m,故点F(5m,0),
故FG=8m-5m=3m,而BD=4m-m=3m=FG,
又FG∥BD,故四边形BDFG为平行四边形.
19.(202X·怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,
△An-1BnAn,都是一边在x轴上的等边三角形,点B1,B2, B3,…,Bn都在反比例函数y= 3 (x>0)的图象上,点A1,
A2,A3,…,An都在x轴上,则An的x 坐标为____2__n_,__0___.
20.(202X·温州)点P,Q,R在反比例函数y= k (常数k>0, x
x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的 平行线.图中所构成的阴影部分面积从左到右依次27为S1,S2, S3.若OE=ED=DC,S1+S3=27,则S2的值为____5____.
B.y2>y3>y1
C.y1>y3>y2
D.y3>
8.【例2】(202X·内江)如图,等边△OAB的边OA在x 轴上,反比例函数y= 6 的图象经过点B,则
x △OAB的面积为____6____.
9.(202X·抚顺)如图,在△ABC中,AB=AC,点A在反比例

中考数学复习课件:第1轮第3章第12讲 二次函数

中考数学复习课件:第1轮第3章第12讲 二次函数

(1)求该二次函数的表达式; 解:由题意可设抛物线解析式为 y=a(x-4)2-3(a≠0), 把A(1,0)代入,可得0=a(1-4)2-3,解得a= 31, 故该二次函数解析式为y=31(x-4)2-3;
(2)求 tan ∠ABC.
解:令x=0,则y=13(0-4)2-3=37,则OC=73. ∵二次函数图象的顶点坐标为(4,-3),A(1, 0),则点B与点A关于直线x=4对称,可得B(7,0),
②当AB为平行四边形的边时,有AB∥PQ,AB =PQ,
当P点在Q点右边时,则P(4,n), 把P(4,n)代入y=-12x2+x+32, 可得n=-52,则P4,-52;
③当AB为平行四边形的对角线时,如图2所
示,AB与PQ交于点E,则E(1,0),
∵PE=QE,∴P(2,-n),
把P(2,-n)代入y=-12x2+x+32,
3.已知函数 y=-3x2-6x+1,此抛物线的开口向 ___下___,对称轴为直线__x_=__-__1___,顶点坐标为 __(_-__1_,__4_)_;当 x=__-__1__时,抛物线有最__大____ 值,最值为___4_____;当 x__<_-__1___时,y 随 x 的 增大而增大;当 x__>__-__1__时,y 随 x 的增大而减 小.
第一轮 考点突破
第三章 函 数
第12讲 二次函数
1.(2020·哈尔滨)抛物线 y=3(x-1)2+8 的顶点坐 标为_(_1_,__8_)__.
2.(2020·上海)如果将抛物线 y=x2 向上平移 3 个单位,那么所得新抛物线的表达式是_y_=__x_2+__3_.
3.(2020·淮安)二次函数 y=-x2-2x+3 的图象 的顶点坐标为_(-__1_,__4_)_.

中考数学一轮复习教学案完整版

中考数学一轮复习教学案完整版



5.2 的相反数与倒数的和的绝对值等于
8.数轴上点 A 表示数-1,若 AB=3,则点 B 所表示的数为
9.已知 x<0,y>0,且 y<|x|,用"<"连结 x,-x,-|y|,y。
10.最大负整数、最小的正整数、最小的自然数、绝对值最小的实数各是什么
11.绝对值、相反数、倒数、平方数、算术平方根、立方根是它本身的数各是什么
12.把下列语句译成式子:

(A)1
(B)-1
1 (C)2
1 (D)3
8.当 a 为实数时, a2 =-a 在数轴上对应的点在(

(C) 原点右侧(B)原点左侧(C)原点或原点的右侧(D)原点或原点左侧


ab
*9.代数式|a| +|b| +|ab| 的所有可能的值有(

(A)2 个
(Bห้องสมุดไป่ตู้3 个
(C)4 个
(D)无数个
10.已知实数 a、b 在数轴上对应点的位置如图
,整数有
,负数有

4. 若 a 的相反数是 27,则|a|=
;5.若|a|= 2 ,则 a=
5.若实数 x,y 满足等式(x+3)2+|4-y|=0,则 x+y 的值是
6.实数可分为(

(A)正数和零(B)有理数和无理数(C)负数和零 (D)正数和负数
7.若 2a 与 1-a 互为相反数,则 a 等于(
n个
(6)开方 如果 x2=a 且 x≥0,那么 a =x; 如果 x3=a,那么 3 a x
在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面. 3.实数的运算律

数学中考第一轮复习整套教案(完整版)

数学中考第一轮复习整套教案(完整版)
最后再向大家介绍一些考场技巧:要保持适度的紧张,先把选择题拿下来,让心里有个底,接下来按部就班地做。切记,不要挑着题做,遇到难题不要慌,想想平时学过的知识,一点一点做下去,实在做不出来也不要灰心,跳过去,千万不要因小失大,影响了大局。做到最后大题时,更要一步一步去推,能写几步写几步,即使拿不了全分,拿一半分,就很不错了。最后,做完了一定要检查,检查时要一道一道地查,一点也不要遗漏,切忌浮躁。
A.2.5B.2 C. D.
5.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )
A.15B.25C.55 D.1225
(1)正有理数集合:{…};
(2)有理数集合:{…};
(3)无理数集合:{…};
(4)实数集合:{…}.
2.(2011陕西)计算:| -2| =(结果保留根号).
3.设a为实数,则|a|-a的值( )
A.可以是负数 B.不可能是负数 C.必是正数 D.正数、负数均可
4.(2011贵阳)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
第八章 统计与概率
第1讲 统计
第2讲 概率
第八部分 中考专题突破
专题一 归纳与猜想
专题二 方案与设计
专题三 阅读理解型问题
专题四 开放探究题
专题五 数形结合思想
第九部分基础题强化提高测试
中考数学基础题强化提高测试
中考数学基础题强化提高测试

中考数学一轮复习教案全套

中考数学一轮复习教案全套

第一篇 数与式专题一 实数一、中考要求:1.在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力.2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题.三、考点扫描1、实数的分类:实数0⎧⎧⎪⎨⎨⎩⎪⎩正实数有理数或无理数负实数2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数. 若a 、b 互为相反数,则a+b=0, 1-=ab(a 、b ≠0)4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a 5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()mm mmnnm nm n m ba ab a aaa a ⋅===⋅+,, (a ≠0) 负整指数幂的性质:pp pa a a⎪⎭⎫ ⎝⎛==-11 零整指数幂的性质: (a ≠0)10=a 8、实数的开方运算:()aa a a a =≥=22;0)(9、实数的混合运算顺序*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2)带根号的3)两个无理数的和、是无理数,但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯轴上把它找出来,其他的无理数也是如此.*11、实数的大小比较: (1).数形结合法(2).作差法比较(3).作商法比较(4).倒数法: 如6756--与(5).平方法四、考点训练1、(2005、杭州,3分)有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-是17的平方根,其中17正确的有( ) A .0个B .1个C .2个D .3个2那么x 取值范围是() A 、x ≤2 B. x <2 C. x ≥2D. x>23、-8 )A .2B .0C .2或一4D .0或-44、若2m -4与3m -1是同一个数的平方根,则m 为( )A .-3B .1C .-3或1D .-15、若实数a 和 b 满足 b=+,则ab 的值a +5-a -5等于_______6、在-的相反数是________,绝对值是______.327、的平方根是( )81 A .9B .C .±9D .±398、若实数满足|x|+x=0, 则x 是( )A .零或负数B .非负数C .非零实数D.负数五、例题剖析1、设a=-,b=2-,c =-1,则a 、b 、c 的3235大小关系是()A .a >b >c B 、a >c >b C .c >b >a D .b >c >a 2、若化简|1-x|,则2x-5x 的取值范围是() A .X 为任意实数 B .1≤X ≤4C .x ≥1D .x <43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:其中a=9时”,得出了不同的答案 ,小明的解答:原式= a+(1-a)=1,小芳的解答:原式=a+(a -1)=2a-1=2×9-1=17⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质:________4、计算:200120025、我国1990年的人口出生数为23784659人。

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。

教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。

下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。

中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面特制定以下教学复习计划。

一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。

通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。

虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。

其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

中考数学第一轮复习教案(实数、整式、分式、根式)

中考数学第一轮复习教案(实数、整式、分式、根式)

中考总习1 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。

a 的算术平方根记作a ,读作“根号a ”,a 叫做被开方数。

即a x =。

规定:0的算术平方根是0。

定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

即如果x 2=a ,那么x 叫做a 的平方根。

即a x ±=。

定义3:求一个数a 的平方根的运算,叫做开平方。

因为一个非零实数的平分肯定是正数,所以,正数有两个平方根,它们互为相反数;例如:4的平分根为±2,是互为相反数的;0的平方根是0;负数没有平方根。

2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

即如果x 3=a ,那么x 叫做a 的立方根,记作3a 。

即3a x =。

求一个数的立方根的运算,叫做开立方。

正数的立方根是正数;负数的立方根是负数;0的立方根是0。

3、无理数无限不循环小数又叫做无理数。

初中常见的无理数有:带有根号开不出来的式子,例如:、、等等;带有的式子,例如: ,等等;无限不循环小数,例如:1.325…,-0.2587…等等4、实数有理数和无理数统称实数。

即实数包括有理数和无理数。

备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。

有理数关于相反数和绝对值的意义同样适合于实数。

例如:3-的相反数为3,倒数为3331-=-,3-的绝对值为。

5、实数的分类分法一:负有理数 0 无理数 实数有理数正有理数负无理数 正无理数 有限小数或 无限循环小数无限不循环小数 知识要点分法二:实数 0由上可知,一个数要是分数,前提必须是有理数,所以,不是所有的a/b 这样的数,都是分数。

例如:不是分数,是无理数。

6、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。

备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。

中考数学第一轮复习《方程与不等式的综合应用》教案

中考数学第一轮复习《方程与不等式的综合应用》教案

方程与不等式的综合运用学习目标:1.进一步加强方程(组)与不等式(组)的之间的联系;2.会运用方程(组)或不等式(组)模型解决实际问题, .在问题解决的过程中理解数学思想方法.学习重点:方程(组)或不等式(组)的综合运用学习难点:方程(组)或不等式(组)的综合运用课前准备:下列问题你能不能不用老师点拨就把别人讲懂?请先尝试看,看自己有无“漏洞”.问题1:若不等式组2x x a<⎧⎨≥⎩ 无解,那么a 的取值范围是 问题2:如果关于x 的方程3211ax x x =-++ 无解,则a 的值为判断方程ax bx c ++=0(a ≠0,a,b,c 为常数)一个解x 的范围是( )A 、 3<x<3.23B 、 3.23<x<3.24C 、 3.24<x<3.25D 、 3.25<x<3.26问题4:甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,A.9 B.10 C.11 D.12问题5:某商场计划拨款9万元从厂家购进50台电视机。

已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

(1)商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,你选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案。

教学过程(一)与大家交流你的“课前准备”是否有“漏洞”?你能以知识点或题型给它们分类吗?解决这些问题后,你发现了哪些解题规律或数学思想方法?(二)变一变,你还认识下列问题吗?请运用发现的规律或方法挑战下列问题,试试你的能力吧!问题1:若关于x 的不等式组3155x a x a≥-⎧⎨≤-⎩无解,则二次函数21(2)4y a x x =--+的图象与x 轴( )A. 没有交点 B. 相交于一点 C .相交于两点 D. 相交于一点或没有交点问题2:已知不等式组 111x x x k >-⎧⎪<⎨⎪<-⎩(1)当12k =时,不等式组的解集是 ; 当3=k 时,不等式组的解集是 ;当2-=k 时,不等式组的解集是 ;(2)由(1)知不等式组的解集随实数k的变化而变化,当k 为任意实数时,写出不等式组的解集。

2020届中考一轮复习讲义(Word版无解析)

2020届中考一轮复习讲义(Word版无解析)

李老师中考数学一轮过关讲12义目录第一关选择填空之解题技巧 (5)关卡1—1:特殊值法 (6)关卡1—2:分类讨论法 (11)关卡1—3:设而不求法 (17)关卡1—4:数形结合法 (22)第二关最值问题 (26)关卡2—1:函数的最值问题 (27)关卡2—2:两条线段的最值问题 (39)关卡2—3:一条线段的最值问题 (49)第三关相似三角形(上篇) (55)关卡3—1:平行线型相似 (57)关卡3—2:相交线型相似 (67)关卡3—3:位似图形 (79)第四关相似三角形(下篇) (87)关卡4—1:相似与圆 (88)关卡4—2:相似综合 (94)第五关角平分线专题 (102)关卡5—1:全等型 (103)关卡5—2:平行型 (108)关卡5—3:单垂型+双垂型 (112)第六关中点专题 (120)关卡6—1:中点+特殊三角形 (122)关卡6—2:中点构造8字型全等 (128)关卡6—3:中位线 (132)第七关几何变换 (138)关卡7—1:平移问题 (140)关卡7—2:折叠问题 (147)关卡7—3旋转问题 (157)31第八关分类讨论 (166)关卡8—1:代数类 (168)关卡8—2:位置的分类讨论 (173)关卡8—3:相似三角形的分类讨论 (182)第九关动态问题 (187)关卡9—1:动点问题 (189)关卡9—2:动线问题 (195)关卡9—3:动面问题 (200)第十关压轴题专题 (205)关卡10—1:压轴题——选择填空题 (207)关卡10—2:压轴题——大题 (214)4第一关选择填空之解题技巧【导入】So解题技巧赶紧get√起来!【进步目标】1.★★★★☆☆学会用特殊值法排除选项,选出正确答案,能够将【关卡1-1】的4道练习题全部解答正确,表明你对该知识点达到【初级运用】级别2.★★★★☆☆学会什么时候要分类讨论,并且知道要分几类讨论,能够将【关卡1-2】的5道练习题全部解答正确,表明你对该知识点达到【初级运用】级别513.★★★★☆☆熟知什么是“设而不求法”,并会利用设而不求法解题,能够将【关卡1-3】的3道练习题全部解答正确,表明你对该知识点达到【初级运用】级别4.★★★★☆☆会用数形结合法解题,会利用代数与几何结合思想解题,能够将【关卡1-4】的4道练习题全部解答正确,表明你对该知识点达到【初级运用】级别关卡1—1:特殊值法【过关指南】Tips内容简介:根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

2020中考数学第一轮复习教案_Part121

2020中考数学第一轮复习教案_Part121

如图 1,过点 A 作 AD⊥x 轴,垂足为 D,
∴∠ADO=90°,
∴点 A 的坐标为(-2,-2),点 D 的坐标为(-2,0),
∴OD=)四边形 ACOC′为菱形.
1
由题意可知抛物线 m 的二次项系数为 ,且过顶点 C 的坐标是(2,-4),
2
∴抛物线的解析式为:y= 1 (x-2)2-4,即 y= 1 x2-2x-2,
(3)如图 1,点 C′不在抛物线 y= 1 x2+2x 上. 2
理由如下: 过点 C′作 C′G⊥x 轴,垂足为 G, ∵OC 和 OC′关于 OA 对称,∠AOB=∠AOH=45°, ∴∠COH=∠C′OG, ∵CE∥OH, ∴∠OCE=∠C′OG, 又∵∠CEO=∠C′GO=90°,OC=OC′, ∴△CEO≌△C′GO, ∴OG=4,C′G=2, ∴点 C′的坐标为(-4,2),
平移 2 个单位,得到抛物线 m,其顶点为点 C.连接 OC 和 AC,把△AOC 沿 OA 翻折得到四边形 ACOC′.试
判断其形状,并说明理由;
(3)在(2)的情况下,判断点 C′是否在抛物线 y= 1 x2+2x 上,请说明理由; 2
(4)若点 P 为 x 轴上的一个动点,试探究在抛物线
m 上是否存在点 Q,使以点 O、P、C、Q 为顶点的四
2
2
过点 C 作 CE⊥x 轴,垂足为 E;过点 A 作 AF⊥CE,垂足为 F,与 y 轴交与点 H,
∴OE=2,CE=4,AF=4,CF=CE-EF=2,
∴OC= OE 2 EC 2 22 42 2 5 ,
同理,AC=2 5 ,OC=AC,
由反折不变性的性质可知,OC=AC=OC′=AC′, 故四边形 ACOC′为菱形.

2020年中考第一轮复习教案--实数

2020年中考第一轮复习教案--实数

教师集体备课教案实数 课时 2备课日期 2020年4月13日 1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数. 2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.一。

知识梳理·自主构建【结合课本预习自主构建知识体系,完成下列完型填空在课堂展示】 (一)实数的分类实数⎩⎪⎪⎨⎪⎪⎧⎭⎪⎬⎪⎫有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧零负整数分数⎩⎪⎨⎪⎧ 正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ 负无理数无限不循环小数(二)实数的有关概念及性质1.数轴(1)规定了______、________、____________的直线叫做数轴; (2)实数与数轴上的点是一一对应的. 2.相反数(1)实数a 的相反数是____,零的相反数是零; (2)a 与b 互为相反数⇔a +b =____. 3.倒数(1)实数a (a ≠0)的倒数是____; (2)a 与b 互为倒数⇔______. 4.绝对值(1)数轴上表示数a 的点与原点的______,叫做数a 的绝对值,记作|a |.(2)|a |=⎩⎨⎧a >0,a =0,a <0.或 5.平方根、算术平方根、立方根 (1)平方根a (a ≥0) ∣a ∣=a (a ≤0)①定义:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根(也叫二次方根),数a 的平方根记作______.②一个正数有两个平方根,它们互为________;0的平方根是0;负数没有平方根. (2)算术平方根①如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,a 的算术平方根记作____.零的算术平方根是零,即0=0. ②算术平方根都是非负数,即a ≥0(a ≥0).③(a )2=a (a ≥0),a 2=|a |=⎩⎪⎨⎪⎧a a ≥0,-a a <0.(3)立方根①定义:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),数a 的立方根记作______. ②任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同.6.科学记数法、近似数、有效数字 (1)科学记数法:把一个数N 表示成______(1≤a <10,n 是整数)的形式叫做科学记数法.当N ≥1时,n 等于原数N 的整数位数减1;当N <1时,n 是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).(2)近似数与有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从______第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字. (三)非负数的性质1.常见的三种非负数|a |≥0,a 2≥0,a ≥0(a ≥0). 2.非负数的性质(1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3)几个非负数的和为0,则每个非负数都等于0. (四)实数的运算 1.运算律 2.运算顺序 (1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从____至____的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.3.零指数幂和负整数指数幂(1)零指数幂的意义:a 0=__(a ≠0);(2)负整数指数幂的意义为:a -p=__(a ≠0,p 为正整数). (五)实数的大小比较 1.实数的大小关系在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数____.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小. 2.作差比较法(1)a -b >0⇔a >b ;(2)a -b =0⇔a =b ;(3)a -b <0⇔a <b .3.倒数比较法:若1a >1b,a >0,b >0,则a <b .4.平方法由a >b >0,可得a >b ,所以a 与b 的大小问题转化成比较a 和b 的大小问题.二、预习测评【根据知识体系的构建过程,自主完成下列测评题,每题3分合计18分】1.-2的倒数是( )A .-12 B ..12C .-2D .22.-2的绝对值等于( )A .2 B .-2 C .12D .-123.下列运算正确的是( )A .-|-3|=3B .⎝ ⎛⎭⎪⎫13-1=-3 C .9=±3 D .3-27=-34.2012年世界水日主题是“水与粮食安全”.若每人每天浪费水0.32 L ,那么100万人每天浪费的水,用科学记数法表示为( )A .3.2×107 LB .3.2×106 LC .3.2×105 LD .3.2×104L5.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >06.计算:|-5|+16-32= 三、考点训练·合作学习【合作完成些列问题班内展示,重点交流思路和方法】考点1、实数的分类【例1】四个数-5,-0.1,12,3中为无理数的是( )A .-5B .-0.1C .12D . 3变式练习:在实数5,37,2,4中,无理数是( )A .5 B .37 C .2D . 4考点2、相反数、倒数、绝对值与数轴【例2】(1)-15的倒数是__________;(2)(-3)2的相反数是( )(3)实数a ,b 在数轴上的位置如图所示,化简|a +b |+b -a2=__________.方法总结1.求一个数的相反数,直接在这个数的前面加上负号,有时需要化简得出.2.解有关绝对值和数轴的问题时常用到字母表示数的、分类讨论思想和数形结合思想.3.相反数是它本身的数只有0;绝对值是它本身的数是0和正数(即非负数);倒数是它本身的数是±1. 变式练习:下列各数中,相反数等于5的数是( )A .-5 B .5 C .-15 D .15考点3、平方根、算术平方根与立方根【例3】(1)(-2)2的算术平方根是( )A .2 B .±2 C .-2 D . 2(2)实数27的立方根是__________.变式练习: 4的平方根是( )A .2 B .±2 C .16 D .±16考点4、科学记数法、近似数、有效数字【例4】2012年安徽省有682 000名初中毕业生参加中考,按四舍五入保留两位有效数字,682 000用科学记数法表示为( )A .0.69×106B .6.82×105C .0.68×106D .6.8×105变式练习:某种细胞的直径是5×10-4毫米,这个数是( )A .0.05毫米B .0.005毫米C .0.000 5毫米D .0.000 05毫米考点5、非负数性质的应用【例5】若实数x ,y 满足x -2+(3-y )2=0,则代数式xy -x 2的值为__________.方法总结 常见的非负数的形式有三种:|a |,a (a ≥0),a 2,若它们的和为零,则每一个式子都为0.【讲解6种加项为零的形式】变式练习: 若|m -3|+(n +2)2=0,则m +2n 的值为( )A .-4 B .- C .0 D .4 考点6、实数的运算 【例6】计算:(1)2-1+3cos 30°+|-5|-(π-2 011)0.(2)(-1)2 011-⎝ ⎛⎭⎪⎫12-3+⎝⎛⎭⎪⎫cos 68°+5π0+|33-8sin 60°|.考点7、实数的大小比较【例7】比较2.5,-3,7的大小,正确的是( ) A .-3<2.5<7 B .2.5<-3<7C .-3<7<2.5 D .7<2.5<-3四、自主测试【1-12题每题3分,13-14每题5分,合计46分】1.-13的倒数是( )A .13 B .3 C .-3 D .-132.下列四个数中,负数是( )A .|-2|B .(-2)2C .- 2D .-227.若|a |=3,则a 的值是( )A .-3 B .3 C .13 D .±39.如图,数轴上A ,B 两点对应的实数分别为1和3,若点A 关于点B 的对称点为C ,则点C 所表示的实数是( )A .23-1B .1+ 3C .2+ 3D .23+111.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.12.定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是__________.。

[实用参考]中考数学第一轮总复习教案.doc

[实用参考]中考数学第一轮总复习教案.doc

步步为赢中考数学第一轮复习资料目录第一章实数课时1.实数的有关概念…………………………………………( 1 )课时2.实数的运算与大小比较……………………………( 4 )第二章代数式课时3.整式及运算……………………………………………( 7 )课时4.因式分解…………………………………………………( 10 )课时5.分式……………………………………………………( 13 )课时6.二次根式…………………………………………………( 16 )第三章方程(组)与不等式课时7.一元一次方程及其应用……………………………( 19 ) 课时8.二元一次方程及其应用……………………………( 22 ) 课时9.一元二次方程及其应用………………………………( 25 )课时10.一元二次方程根的判别式及根与系数的关系…( 28 ) 课时11.分式方程及其应用……………………………………( 31 ) 课时12.一元一次不等式(组)………………………………( 34 ) 课时13.一元一次不等式(组)及其应用……………………( 37 ) 第四章函数课时14.平面直角坐标系与函数的概念……………………( 40 ) 课时15.一次函数…………………………………………………( 43 ) 课时16.一次函数的应用………………………………………( 46 ) 课时17.反比例函数……………………………………………( 49 ) 课时18.二次函数及其图像…………………………………( 52 )课时19.二次函数的应用……………………………………( 55 ) 课时20.函数的综合应用(1)………………………………( 58 ) 课时21.函数的综合应用(2)………………………………( 61 ) 第五章统计与概率课时22.数据的收集与整理(统计1)……………………( 64 ) 课时23.数据的分析(统计2)………………………………( 67 ) 课时24.概率的简要计算(概率1)…………………………( 70 ) 课时25.频率与概率(概率2)…………………………………( 73 ) 第六章三角形课时26.几何初步及平行线、相交线………………………( 76 ) 课时27.三角形的有关概念…………………………………( 79 ) 课时28.等腰三角形与直角三角形…………………………( 82 ) 课时29.全等三角形……………………………………………( 85 ) 课时30.相似三角形……………………………………………( 88 ) 课时31.锐角三角函数…………………………………………( 91 ) 课时32.解直角三角形及其应用……………………………( 94 ) 第七章四边形课时33.多边形与平面图形的镶嵌..............................( 97 ) 课时34.平行四边形...................................................( 100 ) 课时35.矩形、菱形、正方形 (103)课时36.梯形 (106)第八章圆课时37.圆的有关概念与性质 (109)课时38.与圆有关的位置关系 (112)课时39.与圆有关的计算 (115)第九章 图形与变换课时40.视图与投影 (118)课时41.轴对称与中心对称..........................................(121) 课时42.平移与旋转 (124)第一章 实数课时1.实数的有关概念【课前热身】1.(08重庆)2的倒数是 .2.(08白银)若向南走2m 记作2m -,则向北走3m 记作 m .3.(08的相反数是 .4.(08南京)3-的绝对值是( )A .3-B .3C .13-D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应.⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += .⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = . ⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______.⑵ 任何一个实数a 都有立方根,记为 .⑶=2a ⎩⎨⎧<≥=)0( )0( a a a . 3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.(3)在已知中,以非负数a 2、|a|、a (a ≥0)之和为零作为条件,解决有关问题. 【典例精析】例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450 ”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个例2 ⑴(06成都)2--的倒数是( )A .2 B.12 C.12- D.-2⑵(08芜湖)若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4⑶(07扬州)如图,数轴上点P 表示的数可能是( )B. C. 3.2-D.例3 下列说法正确的是( ) A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.001【中考演练】1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”)3. 下列各数中:-30,2,0.31,227,2π,2.161 161 161…, (-2 005)0是无理数的是___________________________.4.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.(06北京)若0)1(32=++-n m ,则m n +的值为 .6. 2.40万精确到__________位,有效数字有__________个.7.(06泸州)51-的倒数是 ( ) A .51- B .51 C .5- D .58.(06荆门)点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或39.(08扬州)如果□+2=0,那么“□”内应填的实数是( )A .21B .21-C .21± D .2 10.(08梅州)下列各组数中,互为相反数的是( )A .2和21 B .-2和-21 C .-2和|-2| D .2和21 11.(08无锡)16的算术平方根是( ) A.4 B.-4 C.±4 D.1612.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若G 的相反数是3,│P│=5,则G +P 的值为( )A .-8B .2C .8或-2D .-8或214.(08湘潭) 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数 课时2. 实数的运算与大小比较【课前热身】1.(08大连)某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C .2.(07晋江)计算:=-13_______.3.(07贵阳)比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.65.(08巴中)下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A. 5049 B. 99! C. 9900 D. 2!【考点链接】1. 数的乘方 =n a ,其中a 叫做 ,n 叫做 .2. =0a (其中a 0 且a 是 )=-p a (其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的绝对值小的.5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误.如5÷51×5. 【典例精析】例1 计算:⑴(08龙岩)20GG 0+|-1|-3cos30°+ (21)3;⑵ 22(2)2sin 60--+. 例2 计算:1301()20.1252009|1|2--⨯++-. ﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值. 【中考演练】 1. (07盐城)根据如图所示的程序计算, 若输入G 的值为1,则输出P 2. 比较大小:73_____1010--. 3.(08江西)计算(-2)2-(-2) 3A. -4 B. 2 C. 4 D. 124. (08宁夏)下列各式运算正确的是( ) A .2-1=-21 B .23=6 C .22·23=26 D .(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( )A. 10 B .20 C .-30 D .186. 计算:⑴(08南宁)4245tan 21)1(10+-︒+--; ⑵(08年郴州)201()2sin 3032--+︒+-; ⑶ (08东莞) 01)2008(260cos π-++- .﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)20GG 是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24,(1)_______________________,(2)_______________________,(3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式课时3.整式及其运算【课前热身】 1. 31-G 2P 的系数是 ,次数是 .2.(08遵义)计算:2(2)a a -÷= .3.(08双柏)下列计算正确的是( )A .5510x x x +=B .5510·x x x =C .5510()x x =D .20210x x x ÷= 4. (08湖州)计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b +B.2()a b +C.2a b +D.2a b +6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值.3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = .6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ;(3) (a +b)2= ;(4)(a -b)2= .7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1 (08乌鲁木齐)若0a >且2x a =,3y a =,则x y a -的值为( )A .1-B .1C .23D .32例2 (06 广东)按下列程序计算,把答案写在表格内:⑴ 填写表格:⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) (08江西)G (G +2)-(G +1)(G -1),其中G =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-. 【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.(06泉州)下列运算中,结果正确的是( )A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ ﹡3.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为() A .18 B .12 C .9 D .74. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:G ,-2G ,4G 3,-8G 4,…….根据你发现的规律,写出第7个式子是 .6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.(08巴中)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . 课时4.因式分解 【课前热身】 1.(06 温州)若G -P =3,则2G -2P = .2.(08茂名)分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则.4. 简便计算:2200820092008-⨯ = .5. (08东莞) 下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a【考点链接】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a ,⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 .1 1 1 12 11 3 3 1 1 4 6 4 1 ....................................... ⅠⅡ 1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式).7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】例1 分解因式:⑴(08聊城)33222ax y axy ax y +-=__________________.⑵(08宜宾)3P 2-27=___________________.⑶(08福州)244x x ++=_________________.⑷ (08宁波) 221218x x -+= .例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________.3.分解因式:=-942x ____________________.4.分解因式:=+-442x x ____________________.5.(08凉山)分解因式2232ab a b a -+= .6.(08泰安)将3214x x x +-分解因式的结果是 . 7.(08中山)分解因式am an bm bn +++=_____ _____;8.(08安徽) 下列多项式中,能用公式法分解因式的是( )A .G 2-GPB .G 2+GPC .G 2-P 2D .G 2+P 29.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.b11.计算:(1)299;(2)2222211111(1)(1)(1)(1)(1)234910-----. ﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得:222244c b c a b a -=- ①()()()2222222b a c b a b a -=-+ ②即222c b a =+ ③∴△ABC 为Rt △。

2020中考数学第一轮复习教案_Part152

2020中考数学第一轮复习教案_Part152
(1)求 BC 的长;
(2)求 tan∠DAE 的值.
∴21.(2019•南京)已知不等臂跷跷板 AB 长 4m.如图①,当 AB 的一端 A 碰到地面上时,AB 与地面的夹 角为α;如图②,当 AB 的另一端 B 碰到地面时,AB 与地面的夹角为β.求跷跷板 AB 的支撑点 O 到地面的 高度 OH.(用含α,β的式子表示)
伞架 DE DF AE AF AB AC
长度 36 36 36 36 86 86 (1)求 (精确到 1cm). 备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.
152
21.解:依题意有:AO=OH÷sinα,BO=OH÷sinβ, AO+BO=OH÷sinα+OH÷sinβ,即 OH÷4+OH÷sinβ=4m,
则 OH= 4sin gsin m. sin sin
4sin gsin
故跷跷板 AB 的支撑点 O 到地面的高度 OH 是
(m).
22.解:如图,过点 A 作 BC 的平行线 AG,过点 E 作 EH⊥AG 于 H,则∠BAG=90°,∠EHA=90°.
∵∠EAB=143°,∠BAG=90°, ∴∠EAH=∠EAB-∠BAG=53°. 在△EAH 中,∠EHA=90°,∠AEH=90°-∠EAH=37°,AE=1.2 米, ∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米), ∵AB=1.2 米, ∴栏杆 EF 段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米). 故栏杆 EF 段距离地面的高度为 2.2 米. 23.(2019•绍兴)如图,伞不论张开还是收紧,伞柄 AP 始终平分同一平面内两条伞架所成的角∠BAC,当 伞收紧时,结点 D 与点 M 重合,且点 A、E、D 在同一条直线上,已知部分伞架的长度如下:单位:cm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对应训练
落在边AC的中点处,直线l与边BC交于点
考点七:简单的图形变换的应用
例12(2019•眉山)如图,在11 11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)
(2)作出△ABC绕点C顺时针方向旋转90 后得到的△A2B2C;
(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)
对应训练
(2)求线段B1C1旋转到B1C2的过程中,点
例13(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF 45 ,连接EF,则EF BE+DF,。

相关文档
最新文档