云南师大附中高考适应性月考卷(一)数学(理)试题

合集下载

云南师大附中2019届高考适应性月考卷(一)数学答案

云南师大附中2019届高考适应性月考卷(一)数学答案

理科数学参考答案·第1页(共9页)云南师大附中2019届高考适应性月考卷(一)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A A B D D C D D B C C B 【解析】1.由题意得{10}A =- ,Z ,故选A . 2.由题意得i(43i)i 33i z =+-=-+,故选A .3.由题意得(2264)OP m m =-+-,,又点P 在y 轴上,则1m =,故选B .4.由~(31)X N ,,可知该正态分布密度曲线的对称轴为3X =,所以(4)(2)P X P X <=>,故选D .5.设甜果、苦果的个数分别是x 和y ,则100011499997x y x y +=⎧⎪⎨+=⎪⎩,,解得657x =,故选D . 6.由题意,该几何体是一个以底面为正方形的四棱锥挖去了一个半圆锥而得,四棱锥的体积为643,半圆锥的体积为8π3,所以该几何体的体积为648π3-,故选C . 7.由题意得1154528210910362a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,,消去1a ,可得45d =-,故选D . 8.由程序框图知,第一次循环:123m =+=,341n =-=-,1S =-,1i =;第二次循环:312m =-=,224n =+=,3S =,2i =;第三次循环:246m =+=,682n =-=-,1S =,3i =;第四次循环:624m =-=,448n =+=,9S =,4i =,故选D .9.由于(2)(2)f x f x +=-,所以2x =是()f x 图象的对称轴;又e e2x x y -+=是偶函数,其图象关于y 轴对称,将e e 2x xy -+=的图象向右平移2个单位,可得()f x 的图象,则2a =-;所以22e e ()2x x f x --++=,则有2242e e e 12(20)e f -++==,故选B .理科数学参考答案·第2页(共9页)10.由题意得π()sin 222sin 23f x x x x ⎛⎫=-=- ⎪⎝⎭,将()y f x =的图象向左平移π6个单位长度得到函数ππ2sin 22sin 263y x x ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,再将函数2sin 2y x =向上平移1个单位长度得到函数()y g x =的图象,即()2sin 21g x x =+,所以当ππ()4x k k =+∈Z 时,max ()3g x =,故选C .11.如图1所示,设C 的准线为l ':12x =-,AB 的中点为N ,过点A作1AA l ⊥'于点1A ,过点B 作1BB l ⊥'于点1B ,则N l d '-= 11||||||||||222AA BB AF BF AB ++==,所以以N 为圆心,||AB 为直径的圆与l '相切.又点M 在l '上且90AMB ∠=︒,所以点M 在圆N 上且//MN x 轴.由于2222A B A B l A B A B y y y y k y y x x --==--22A By y ==+,所以1A B y y +=,N y = 122A B y y +=,则1122M ⎛⎫- ⎪⎝⎭,,所以||2FM ==,故选C . 12.如图2所示,在三棱锥A BCD -中,1AB CD ==,AC BC AD BD ===2=,取CD 的中点为E ,连接AE ,BE ,则有AE CD ⊥,BE CD ⊥;又AE BE E = ,所以CD ⊥平面ABE ;过点A 作AH BE ⊥于点H ,又AH CD ⊥,CD BE E = ,所以AH ⊥平面BCD ,即AH 为三棱锥的高.因为在等腰BCD △中,BE ==,同理得AE =等腰ABE △中,AH ==,所以1133A BCD BCD V AH S -==⨯ △112=,故①正确; 设三棱锥A BCD -的内切球半径为r ,三棱锥A BCD -的表面积为S ,由题,知4BCD S S ==△;又由于13A BCD V r S -=,所以3A BCD V r S -==,故②正确;图1图2理科数学参考答案·第3页(共9页)设三棱锥A BCD -的外接球半径为R ,将三棱锥A BCD -补形为如图3所示的长方体1111A CB D AC BD -,由对称性可知球O 为三棱锥A BCD -的外接球,则球O 也是长方体1111A CB D AC BD -的外接球.由此得222242AB AC AD R ++==92,29=4ππ2O S R =球,故③错误,故选B . 二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.如图4所示阴影部分为满足约束条件的可行域,当直线l:3122y x z =-过点(22),时,12z -最小,z 取得最 大值2.14.由双曲线的定义可知a =ce a==3c =, 则2226b c a =-=,所以双曲线C 的方程为22136x y -=. 15.由题意,1121221222n n n n n n a a a a a a -----⎧-=⎪-=⎪⎨⎪⎪-=⎩,,,累加得112(12)2212n n n a a ---==--,由25a =,得13a =,于是*21()n n a n =+∈N .16.当1a =时,1y x =+是ln 2y x =+在点(12),处的切线,1y x =+也是232y x x =++在点(10)-,处的切线,如图5所示.设过点(10)-,与点(02),的直线为l ':2(1)y x =+.数形结合可知,[12]a ∈,时,函数()y f x =的图象与直线l :(1)y a x =+有两个交点.图4图5图3理科数学参考答案·第4页(共9页)三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:(1)由题,得3sin 2sin()sin()A A B A B +-=+,可化得3sin cos sin cos A A B A =, ∵π2A ≠,∴cos 0A ≠,∴3sin sin A B =, 由正弦定理,得13a b =. …………………………………………………(6分)(2)由7c =,π3C =,及余弦定理得2249a b ab +-=, 又由(1)知3a b =,代入2249a b ab +-=中,解得a =,则b =∴1sin 24ABC S ab C ==△. ………………………………………(12分) 18.(本小题满分12分)解:(1)由甲种生产方式生产的100件零件的测试指标的频率分布直方图可知, 这100件样本零件中有一等品:(0.040.030.01)510040++⨯⨯=(件), 二等品:1004060-=(件), 所以按等级,利用分层抽样的方法抽取的10件零件中有一等品4件,二等品6件. 记事件A 为“这10件零件中随机抽取3件,至少有1件一等品”,则36310C 5()1C 6P A =-=. ……………………………………………………………(4分)(2)由乙种生产方式生产的100件零件的测试指标的频率分布直方图可知, 这100件样本零件中,一等品的频率为(0.040.060.040.02)50.8+++⨯=, 二等品的频率为0.2.将频率分布直方图中的频率视作概率,用样本估计总体,则从该厂采用乙种生产方式所生产的所有这种零件中随机抽取3件,其中所含一等品的件数4~35X B ⎛⎫⎪⎝⎭,,理科数学参考答案·第5页(共9页)所以3003141(0)C 55125P X ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,21131412(1)C 55125P X ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 12231448(2)C 55125P X ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,03331464(3)C 55125P X ⎛⎫⎛⎫==⨯⨯=⎪ ⎪⎝⎭⎝⎭. X 的分布列为:所以412()355E X =⨯=. ………………………………(12分) 19.(本小题满分12分)(1)证明:如图6,连接PO .在菱形ABCD 中,O 是AC 的中点,且AC BD ⊥, ∵PA PC AC ==, ∴在PAC △中,PO AC ⊥.又∵PO BD O = ,PO ,BD ⊂平面PBD ,∴AC ⊥平面PBD. 又∵AC ⊂平面PAC , ∴平面PAC ⊥平面PBD .…………………………………(4分)(2)解:∵在菱形ABCD 中,π3ABC ∠=,2AB=,则2AC =, 又AC BD ⊥,∴BD ==.∵在等边PAC △中,PO AC ⊥, ∴2PO AC ==∵O 是BD 的中点,PD =, ∴在POD △中,222PD PO OD =+, ∴PO BD ⊥.又∵AC BD O = ,AC ,BD ⊂平面ABCD , ∴PO ⊥平面ABCD .…………………………………(6分)图6理科数学参考答案·第6页(共9页)以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O xyz -.由题知,(010)A -,,,00)B ,,(010)C ,,,(00)D ,,(00P ,. …………………………………(8分)∵E 为线段PA的中点,∴102E ⎛- ⎝⎭,,∴122DE =-⎭,,(00)BD =-,,(10)CD =- ,. 设111()n x y z = ,,是平面BDE 的一个法向量,则00DE n BD n ⎧=⎪⎨=⎪⎩,,即111110220y z -+=⎪-=⎩,,∴(01)n =. 设222()m x y z =,,是平面CDE 的一个法向量,则00DE m CD m ⎧=⎪⎨=⎪⎩ ,,即222221020y z y -+=⎪-=⎩,,∴(13)m =-. …………………………………(10分)∴cos ||||n m nm n m =,<>=∴二面角B DE C --的余弦值为13. ………………………………(12分)20.(本小题满分12分)解:(1)方法一:设椭圆C 的右焦点为2F ,由题意知1||PF ==,2||PF ==由椭圆的定义,得12||||2PF PF a +==,所以a =,又设椭圆C 的半焦距为c ,由题知3c =,所以2221293b a c =-=-=,所以C 的方程为221123x y +=. ……………………………………………………(4分) 方法二:设椭圆C 的半焦距为c ,由题知3c =,由题意得222222921a b ab ⎧=+⎪⎨+=⎪⎩,,解方程组得22123a b ⎧=⎪⎨=⎪⎩,, 所以C 的方程为221123x y +=. ……………………………………………………(4分)理科数学参考答案·第7页(共9页)(2)方法一:由点P 关于x 轴的对称点为点Q ,则PQ x ⊥轴. 如图7所示,由MPQ NPQ ∠=∠,得0AP BP k k +=. 设直线PA的方程为1(2)y k x =-1(0)k ≠, 则直线PB的方程为1(2)y k x =--. 设11()A x y ,,22()B x y ,.由122(2)1123y k x x y ⎧=-⎪⎨+=⎪⎩,得222211111(14)16)1640k x k x k ++-+--=,且2222211111116)4(14)(164)1)0k k k ∆=--+--=+>,即14k ≠. 由于直线PA 与C 交于P ,A 两点,所以2111218214k x k --=+,211111214(2)14k y k x k --=-+=+;同理可得2112218214k x k +-=+,211221414k y k -++=+,所以21214y y k x x -===-. 综上,得直线l 的斜率k为4. …………………………………………………(12分) 方法二:设直线l 的方程为y kx t =+,11()A x y ,,22()B x y ,. 由直线l 不经过P点,所以2t k ≠-+. 由221123y kx t x y =+⎧⎪⎨+=⎪⎩,,得222(14)84120k x ktx t +++-=, 则222222644(14)(412)16(123)0k t k t k t ∆=-+-=-+>, 122814kt x x k +=-+,212241214t x x k -=+ .又点P 关于x 轴的对称点为点Q ,则PQ x ⊥轴. 如图7所示,由MPQ NPQ ∠=∠,得0AP BP k k +=,所以121222AP BP y y k k x x --+=+--121222kx t kx t x x ++-=+--121212122(2)4(02()4kx x k t x x t x x x x +-++-==-++,图7理科数学参考答案·第8页(共9页)即222(412)8(24(14)(0k t kt k t k t ---+-+=,则260k t -+-+=,所以1)(20t k -+=,得4k =. 综上,得直线l 的斜率k. …………………………………………………(12分) 21.(本小题满分12分)(1)解:函数()f x 的定义域为(0)+∞,,1()f x x '==当0a ≤时,()0f x '>,()f x 在(0)+∞,上单调递增,()f x 无极值;……………………………………………………………………(2分)当0a >时,由()0f x '=,得24x a =, 当240x a <<时,()0f x '>,得()f x 的单调递增区间是240a ⎛⎫ ⎪⎝⎭,; 当24x a >时,()0f x '<,得()f x 的单调递减区间是24a ⎛⎫+∞ ⎪⎝⎭,, 故()f x 的极大值为2244ln 2f a a ⎛⎫=- ⎪⎝⎭,()f x 无极小值.……………………………………………………………………(6分)(2)证明:当4a =时,()ln f x x =-,1()0)f x x x '=->.依题意,1211x x =-,则1211x x -=,2=12120)x x x x +=>≠,,.①>,所以<,则有121x x >. …………………………………(8分)而121212()()8ln ln 8ln 8f x f x x x x x ++=-+-=-++,将①代入上式得1212()()8ln 8f x f x x x ++=-+.令12(1)x x t t =>,则()ln 8g t t =-+,11()g t t t -'==. ∵1t >,∴10-<,即()0g t '<,∴()g t 在(1)+∞,上单调递减, 于是()(1)0880g t g <=-+=,即12()()80f x f x ++<,得证.……………………………………………………………………(12分)理科数学参考答案·第9页(共9页)22.(本小题满分10分)【选修4-4:坐标系与参数方程】解:(1)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的直角坐标方程为2y x =.…………………………………………………(5分) (2)射线l :θα=的倾斜角ππ43α⎡⎤∈⎢⎥⎣⎦,,由4sin ρθθα=⎧⎨=⎩,,得||4sin OA α=, 由2sin cos ρθθθα⎧=⎨=⎩,,得2cos ||sin OB αα=, 所以2cos 4||||4sin sin tan OA OB αααα==. 由ππ43α⎡⎤∈⎢⎥⎣⎦,,所以tan [1α∈, 故||||OA OB 的取值范围是43⎡⎤⎢⎥⎣⎦,. …………………………………(10分)23.(本小题满分10分)【选修4-5:不等式选讲】(1)解:由21x y +=,得12y x =-,所以不等式|21|2||3y x --<,即为|41|2||3x x --<,所以有01423x x x <⎧⎨-+<⎩,或1041423x x x ⎧⎪⎨⎪--<⎩,≤≤或144123x x x ⎧>⎪⎨⎪--<⎩,, 解得10x -<<或104x ≤≤或124x <<, 所以x 的取值范围为(12)x ∈-,. …………………………………………………………………………………(5分)(2)证明:∵0x >,0y >,21x y +=, 所以12124(2)4448y xx y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭≥,当且仅当4y x x y=,即122x y ==时取等号.又2122x y +-=-,当且仅当122x y ==时取等号,所以12152x y+,当且仅当122x y ==时取等号. ……………………(10分)(以上各题的解法仅供参考,若有其它解法,酌情给分.)。

云南省师范大学附属中学2021届高考数学适应性月考卷(一)理.doc

云南省师范大学附属中学2021届高考数学适应性月考卷(一)理.doc

云南省师范大学附属中学2021届高考数学适应性月考卷(一)理注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回,满分150分,考试用时120分钟.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}221,(,)1M x y x N x y y x ==+==-+, 则MN=A.{}1B. (0, 1)C. φD. {}(0,1) 2.在复平面内,复数21ii-+ (i 为复数单位)对应的点在 A.第一象限 B.第二象限 C.第三象限. D.第四象限 3.若随机变量x ~N(1, 4),P(x≤0)=0.2, 则P(0<x<2)=A.0.6B.0.4C.0.3D. 0.8 4.已知tan 2α=,则sin(2)2πα+=A.35 B. 45 C. 35- D. 45- 5.电影《达.芬奇密码》中,有这样一个情节:故事女主人公的祖父雅克.索尼埃为了告诉孙女一个惊天的秘密又不被他人所知,就留下了一串奇异的数字13-3-2-21-1-1-8-5,将这串数字从小到大排列,就成为1-1-2-3-5-8-13-21, 其特点是从第3个数字起,任何一个数字都是前面两个数字的和,它来自斐波那契数列,斐波那契数列与黄金分割有紧密的联系,苹果公司的logo(如图1乙和丙)就是利用半径成斐波那契数列(1, 1, 2, 3, 5, 8, 13)的圆切割而成,在图甲的矩形ABCD 中,任取一点,则该点落在阴影部分的概率是A.731092π B. 891092π C 1621092π. D. 161092π6.双曲线C: 22221(0,0)x y a b a b-=>>的右焦点为F(3, 0),且点F 到双曲线C 的一条渐近线的距离为1,则双曲线C 的离心率为 2 B.32423D. 37.如图2,在∆ABC 中, AC=3, AB=2, ∠CAB=60°, 点D 是BC 边上靠近B 的三等分点, 则AD =A.373 B. 979 C. 439 D. 4338.在正项等比数列{}n a 中, 11a =,前三项的和为7,若存在,m n N *∈使得14m n a a a =,则19m n+的最小值为 A. 23 B. 43 C. 83 D. 1149.如图3,某几何体的三视图均为边长为2的正方形,则该几何体的体积是 A.56 B. 83 C.1 D. 16310.已知函数2212cos ()2cos 2x x x x e x e f x x -+-+=+,则122019()()()202020202020f f f +++= A.2021 B.2020 C.4038 D.404011.设动直线x=t 与曲线xy e =以及曲线ln y x =分别交于P, Q 两点,min PQ 表示PQ 的最小值, 则下列描述正确的是A. min 2PQ =B.min 32522PQ << C. min 3222PQ <<D. min 3PQ > 12.过抛物线22(0)y px p =>的焦点F 作抛物线的弦,与抛物线交于A, B 两点,M 为AB 的中点,分别过A, B 两点作抛物线的切线l 1,l 2相交于点P.,∆PAB 又常被称作阿基米德三角形.下面关于∆PAB 的描述:①P 点必在抛物线的准线上; ②AP⊥PB;③设A(x 1,y 1), B(x 2, y 2),则∆PAB 的面积S 的最小值为22p④PF⊥AB; ⑤PM 平行于x 轴. 其中正确的个数是A. 2B.3C.4D.5 二、填空题(本大题共4小题,每小题5分,共20分)13.设实数x , y 满足0210210x y y x x y -≤⎧⎪--≤⎨⎪+-≥⎩,则z =x +y 的最小值为_________14.在9(x x+的展开式中,则x 2的系数为_____________ 15.已知P 是直线l : 260x y ++= 上一动点,过点P 作圆C: 22230x y x ++-=的两条切线,切点分别为A 、B.则四边形PACB 面积的最小值为___________。

云南师大附中2020届高考数学适应性月考试题(一)理(含解析)新人教A版

云南师大附中2020届高考数学适应性月考试题(一)理(含解析)新人教A版

云南师大附中2020届高考适应性月考卷(一)理科数学【试卷综析】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式、复数、向量、三视图、导数、简单的线性规划、直线与圆、圆锥曲线、立体几何、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、命题、程序框图、排列组合、概率与随机变量分布列与期望、不等式选讲、几何证明选讲、参数方程极坐标等;考查学生解决实际问题的综合能力,是份较好的试卷.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)【题文】1、已知全集U 和集合A 如图1所示,则()U C A B ⋂=A.{3}B.{5,6}C.{3,5,6}D.{0,4,5,6,7,8}【知识点】集合及其运算A1【答案解析】B 解析:由图易知()U A B =I ð{5,6}.则选B. 【思路点拨】本题主要考查的是利用韦恩图表示集合之间的关系,理解集合的补集与交集的含义是解题的关键. 【题文】2、设复数12,z z 在复平面内对应的点关于原点对称,11z i=+,则12z z =A.-2iB.2iC.-2D.2 【知识点】复数的概念与运算L4【答案解析】A 解析:11i z =+在复平面内的对应点为(1,1),它关于原点对称的点为(1,1)--,故21i z =--,所以212(1i)2i.z z =-+=-则选A.【思路点拨】通过复数的几何意义先得出2z ,再利用复数的代数运算法则进行计算.【题文】3、已知向量,a b r r 满足6a b -=r r 1a b •=r r,则a b +r r =6210【知识点】向量的数量积及其应用F3 【答案解析】C 解析:由已知得222222()226-=-=+-⋅=+-=a b a b a b a b a b ,即228+=a b ,所以2+=a b 222()210+=++⋅=a b a b a b ,即10.+=a b 则选C.【思路点拨】遇到求向量的模时,一般利用向量的模的平方等于向量的平方转化求解.【题文】4、曲线11ax y e x =++在点(0,2)处的切线与直线y=x+3平行,则a=A.1B.2C.3D.4 【知识点】导数的应用B12【答案解析】B 解析:21e (1)ax y a x '=-+,由题意得011x y a ='=-=,所以 2.a =则选B.【思路点拨】理解导数与其切线的关系是解题的关键.【题文】5、在△ABC 中,若sinC=2sinAcosB,则此三角形一定是A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 【知识点】解三角形C8【答案解析】C 解析:由已知及正、余弦定理得,22222a c b c a ac +-=,所以22a b =,即a b =.则选C.【思路点拨】判断三角形形状,可以用正弦定理及余弦定理把角的关系转化为边的关系,也可利用三角形内角和的关系进行转化求解.【题文】6、函数()2sin 3sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是 A.1 B.13+ C.32 D.13【知识点】函数sin()y A x ωϕ=+的图象与性质C4【答案解析】C 解析:函21cos 231π()sin 3cos 2sin 2226x f x x x x x x -⎛⎫=+==+- ⎪⎝⎭, ππππ5π,,2,42636x x ⎡⎤⎡⎤∈-∈⎢⎥⎢⎥⎣⎦⎣⎦∵∴, ()f x 的最大值是32.则选C. 【思路点拨】一般研究三角函数的性质,通常先化成一个角的三角函数再进行解答.【题文】7、已知实数x,y 满足约束条件0024030220x y x y x y x y ≥⎧⎪≥⎪⎪+-≤⎨⎪+-≤⎪⎪+-≥⎩,则z=x+3y 的取值范围是A.[1,9]B.[2,9]C.[3,7]D.[3,9]【知识点】简单的线性规划问题E5【答案解析】B 解析:根据线性约束条件作出可行域, 如图1所示阴影部分.作出直线l :30x y +=,将直线l 向上平移至过点(0,3)M和(2,0)N位置时,max 0339z=+⨯=,min 230 2.z=+⨯=则选B.【思路点拨】本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答.【题文】8、如图,网格纸上小方格的边长为1(表示1cm),图中粗线和虚线是某零件的三视图,该零件是由一个底面半径为4cm,高为3cm的圆锥毛坯切割得到,则毛坯表面积与切削得的零件表面积的比值为A.3 10B.510 C.710 D.910【知识点】三视图G2【答案解析】D解析:圆锥毛坯的底面半径为4cmr=,高为3cmh=,则母线长5cml=,所以圆锥毛坯的表面积2ππ36πS rl r=+=原表,切削得的零件表面积2π2140πS S=+⨯⨯=零件表原表,所以所求比值为910.则选D.【思路点拨】由三视图求几何体的表面积,关键是正确的分析原几何体的特征.【题文】9、若任取x,y∈[0,1],则点P(x,y)满足2y x>的概率为A.23 B.13 C.12 D.34【知识点】定积分几何概型K3 B13【答案解析】A解析:该题属几何概型,由积分知识易得点(,)P x y满足2y x>的面积为123112(1)33x dx x x⎛⎫-=-=⎪⎝⎭⎰,所以所求的概率为23.则选A.【思路点拨】当总体个数有无限多时的概率问题为几何概型,若事件与两个变量有关时,可归结为面积问题进行解答.【题文】10、已知椭圆()222210x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若2AP PB =u u u r u u u r,则椭圆的离心率是 A.3 B.22 C.13 D.12【知识点】椭圆的几何性质H5【答案解析】D 解析:因为2AP PB =u u u r u u u r ,则12,2,2OA OF a c e ===∴∴.则选D. 【思路点拨】求椭圆的离心率一般先结合条件寻求a,b,c 关系,再结合离心率的定义解答即可.【题文】11、把边长为2的正三角形ABC 沿BC 边上的高AD 折成直二面角,设折叠后BC 中点为M ,则AC 与DM 所成角的余弦值为A.23B.24C.3D.3【知识点】异面直线所成的角G11【答案解析】B 解析:建立如图2所示的空间直角坐标系D xyz -, 则(0,0,3),(1,0,0),(0,1,0),A B C11,,0,(0,0,0),2211(0,1,3),,,0,222cos ,M D AC DM AC DM AC DM AC DM⎛⎫⎪⎝⎭⎛⎫== ⎪⎝⎭⋅〈〉==u u u r u u u u r u u u r u u u u r u u u r u u u u ru u u r u u u u r ∴∴则AC 与DM 所成角的余弦值为24.所以选C. 本题也可用几何法:在△ABC 中过点M 作AC的平行线,再解三角形即得.【思路点拨】求异面直线所成角时,可先考虑用定义法作出其平面角,再利用三角形解答,若作其平面角不方便时,可采取向量法求解.【题文】12、函数()()3f x x x x R =+∈当02πθ<<时,()()sin 10f a f a θ+->恒成立,则实数a 的取值范围是A.(﹣∞,1]B.(﹣∞,1)C.(1, +∞)D.(1, +∞) 【知识点】奇函数 函数的单调性B3 B4【答案解析】A 解析:2()130f x x '=+>,故3()()f x x x x =+∈R 在R 上单调递增,且为奇函数,所以由(sin )(1)0f a f a θ+->得(sin )(1)f a f a θ>-,从而sin 1a a θ>-,即当π02θ<<时,1sin 1a θ<--恒成立,所以1a ≤.则选A. 【思路点拨】本题可先利用奇函数及函数的单调性进行转化,再把不等式恒成立问题转化为函数的最值问题进行解答.二、填空题(本大题共4小题,每小题5分,共20分)【题文】13、定义一种新运算“⊗”:S a b =⊗,其运算原理如图3的程序框图所示,则3654⊗-⊗=_______.【知识点】程序框图L1【答案解析】﹣3解析:由框图可知(1),,(1),.a b a b S b a a b ->⎧=⎨-⎩≤ 从而得36546(31)5(41)3⊗-⊗=---=-.【思路点拨】读懂程序框图,理解所定义的新运算,即可解答. 【题文】14、等比数列{}n a 的前n 项和为nS ,且1234,2,a a a 成等差数列,若11a =,则4S =_____.【知识点】等比数列与等差数列D2 D3 【答案解析】15解析:1234,2,a a a ∵成等差数列,2213211144,44,440,a a a a a q a q q q +=+=-+=∴即∴42,15q S ==∴.【思路点拨】遇到等差数列与等比数列,若无性质特征,则用其公式转化为首项与公比关系进行解答.【题文】15、关于sinx 的二项式()1sin nx +的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为52,当x ∈[0, π]时,x=___________.【知识点】二项式定理J3【答案解析】π6或5π6.解析:1C C 17n n nnn -+=+=,故6n =,所以第4项的系数最大,于是3365C sin 2x =,所以,31sin 8x =,即1sin 2x =,又[0,π]x ∈,所以π6x =或5π6.【思路点拨】一般遇到二项展开式某项或某项的系数问题,通常结合展开式的通项公式进行解答.【题文】16、已知函数()3232a b f x x x cx d =+++(a <b)在R 上单调递增,则a b c b a ++-的最小值为______.【知识点】导数的应用 基本不等式B12 E6【答案解析】3解析:由题意2()0f x ax bx c '=++≥在R 上恒成立,故0b a >>,24b c a ≥,于是a b c b a ++-≥2211441b b b a b a a a b b a a ⎛⎫++++ ⎪⎝⎭=--,设b ta =(1)t >,则问题等价于求函数244()4(1)t t g t t ++=-(1)t >的最小值,又()()244191()166634(1)414t t g t t t t ++⎡⎤==-++≥+=⎢⎥--⎣⎦,由此可得min ()(4)3g t g ==.【思路点拨】先由函数的单调性结合导数得到abc 的关系,再通过换元法转化为熟悉函数的最小值问题.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 【题文】17、(本小题满分12分)一个口袋内有5个大小相同的球,其中有3个红球和2个白球.(1)若有放回的从口袋中连续的取3次球(每次只取一个球),求在3次摸球中恰好取到两次红球的概率;(2)若不放回地从口袋中随机取出3个球,求取到白球的个数ξ的分布列和数学期望E(ξ). 【知识点】概率 离散随机变量的分布列和数学期望K6 K7【答案解析】(1) 54125(2)6()5E ξ=解析:(1)设在3次有放回的摸球中恰好取到两次红球的概率为P ,由题设知, 21233354C 155125P ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭.(2)白球的个数ξ可取0,1,2,3211233232333555C C C C C 133(0),(1),(2)C 10C 5C 10P P P ξξξ=========.所以ξ的分布列如下表:ξ 0 1 2P110 35 310()012105105E ξ=⨯+⨯+⨯=.【思路点拨】求离散随机变量的分布列一般先确定随机变量的所有取值,再计算各个取值的概率,最后得分布列并计算期望. 【题文】18、(本小题满分12分) 如图4,在斜三棱柱111ABC A B C -中,点O 、E 分别是111,A C AA 的中点,111AO A B C ⊥平面,已知∠BCA=90°,12AA AC BC ===.(1)证明:OE ∥平面11AB C ;(2)求直线11A C 与平面11AA B 所成角的正弦值.【知识点】直线与平面平行,线面所成的角G4 G11【答案解析】(1) 略(2) 21解析:方法一:(1)证明:∵点O 、E 分别是11A C 、1AA 的中点,∴1OE AC ∥,又∵OE ⊄平面11AB C ,1AC ⊂平面11AB C , ∴OE ∥平面11AB C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111111A ABC C AA B V V --=,即1111111323AC B C AO ⋅⋅⋅⋅=⋅11AA B S d ⋅△.又∵在11AA B △中,1112A B AB ==,∴11AA B S △7=217d =,∴11A C 与平面11AA B 所成角的正弦值为217.方法二:建立如图3所示的空间直角坐标系O xyz -,则(0,0,3)A ,113(0,1,0),0,,2A E ⎛-- ⎝⎭,1(0,1,0)C ,1(2,1,0)B ,(0,2,3)C .(1)证明:∵OE =u u u r 130,,2⎛- ⎝⎭, 1(0,1,3)AC =u u u u r,∴112OE AC =-u u u r u u u u r ,∴1OE AC ∥,又∵OE ⊄平面11AB C ,1AC ⊂平面11AB C ,∴OE ∥平面11AB C .(2)解:设11A C 与平面11AA B 所成角为θ,∵11(0,2,0)A C =u u u u r ,11(2,2,0)A B =u u u u r,1(0,1,3)A A =u u u r.设平面11AA B 的一个法向量为(,,)n x y z =r,111220,0,30,0,x y A B n y z A A n ⎧+=⎧⋅=⎪⎪⎨⎨+=⎪⋅=⎪⎩⎩u u u u r r u u u r r 则即 不妨令1x =,可得31,1,n ⎛=- ⎝⎭r , ∴1121sin cos ,723AC n θ=〈〉==⋅u u u u r r,∴11A C 与平面11AA B 所成角的正弦值为21.【思路点拨】证明直线与平面平行通常利用线面平行的判定定理,求线面所成角可以先作出其平面角,再利用三角形求解,若直接作角不方便时可考虑用向量的方法求解.【题文】19、设数列{}n a 满足10a =且*11.2n na n N a +=∈-.(1)求证数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设n nb S =为数列{}n b 的前n 项和,证明:n S <1.【知识点】等差数列 数列求和D2 D4【答案解析】(1)11n a n =-.(2)略 解析:(1)解:将112n na a +=-代入11111n na a +---可得111111n na a +-=--,即数列11n a ⎧⎫⎨⎬-⎩⎭是公差为1的等差数列.又1111,,11nn a a ==--故所以11n a n =-.(2)证明:由(Ⅰ)得n b ===1111nnn k k k S b ====-=-<∑∑.【思路点拨】证明数列为等差数列通常利用等差数列的定义证明,遇到与数列的和有关的不等式可先考虑能否求和再证明. 【题文】20、已知函数()()1ln f x ax x a R =--∈.(1)讨论函数f(x)在定义域内的极值点的个数; (2)若函数f(x)在x=1处取得极值,对()()0,,2x f x bx ∀∈+∞≥-恒成立,求实数b 的取值范围.【知识点】导数的应用B12【答案解析】(1) 当0a ≤时,没有极值点;当0a >时,有一个极值点. (2)211e b -≤解析:(1)11()ax f x a x x -'=-=, 当0a ≤时,()0f x '<在(0,)+∞上恒成立,函数()f x 在(0,)+∞上单调递减,∴()f x 在(0,)+∞上没有极值点; 当0a >时,由()0f x '<得10x a <<,由()0f x '>得1x a >,∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a⎛+∞⎫⎪⎝⎭上单调递增,即()f x 在1x a =处有极小值. ∴当0a ≤时,()f x 在(0,)+∞上没有极值点;当0a >时,()f x 在(0,)+∞上有一个极值点.(2)∵函数()f x 在1x =处取得极值,∴1a =,∴1ln ()21x f x bx b x x -⇔+-≥≥,令1ln ()1x g x x x =+-,可得()g x 在2(0,e ]上递减,在2[e ,)+∞上递增,∴2min 21()(e )1e g x g ==-,即211e b -≤. 【思路点拨】一般遇到不等式恒成立求参数范围问题,通常分离参数转化为函数的最值问题进行解答.【题文】21、如图5,已知抛物线C:()220y px p =>和圆M :()2241x y -+=,过抛物线C 上一点H()00,x y ()01y ≥作两条直线与圆M 相切于A,B 两点,圆心M 到抛物线准线的距离为174.(1)求抛物线C 的方程;(2)若直线AB 在y 轴上的截距为t ,求t 的最小值.【知识点】抛物线 直线与圆锥曲线H8 H7【答案解析】(1) 2y x = (2) min 11t =-解析:(1)∵点M 到抛物线准线的距离为42p +=174,∴12p =,即抛物线C 的方程为2y x =.(2)方法一:设1122(,),(,)A x y B x y ,∵114MA y k x =-,∴114HA x k y -=,可得,直线HA 的方程为111(4)4150x x y y x --+-=,同理,直线HB 的方程为222(4)4150x x y y x --+-=,∴210101(4)4150x y y y x --+-=,220202(4)4150x y y y x --+-=,∴直线AB 的方程为22000(4)4150y x y y y --+-=,令0x =,可得000154(1)t y y y =-≥,∵t 关于0y 的函数在[1,)+∞上单调递增,∴min 11t =-.方法二:设点2(,)(1)H m m m ≥,242716HM m m =-+,242715HA m m =-+.以H 为圆心,HA 为半径的圆方程为22242()()715x m y m m m -+-=-+,① ⊙M 方程为22(4)1x y -+=.② ①-②整理得直线AB 的方程为:2242(24)(4)(2)714x m m y m m m m -----=-+.当0x =时,直线AB 在y 轴上的截距154t m m =-(1)m ≥,∵t 关于m 的函数在[1,)+∞上单调递增,∴min 11t =-.【思路点拨】求抛物线的方程关键是利用圆心到其准线的距离求p ,求两切点所在直线方程,可利用两圆的公共弦所在直线方程的方法进行解答.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【题文】22、(本小题10分)[选修4-1:几何证明选讲]如图6,直线AB 经过圆O 上一点C ,且OA=OB,CA=CB,圆O 交直线OB 于E,D.(1)求证:直线AB 是圆O 的切线;(2)若1tan 2CED ∠=,圆O 的半径为3,求OA 的长.【知识点】几何证明选讲N1【答案解析】(1)略; (2)5解析:(1)证明:如图4,连接OC ,∵,,OA OB CA CB ==∴OC AB ⊥,∴AB 是⊙O 的切线.(2)解:∵ED 是直径,∴90ECD ∠=︒,在Rt△ECD 中,∵1tan 2CED ∠=, ∴12CD EC =.∵AB 是⊙O 的切线, ∴BCD E ∠=∠,又∵CBD EBC ∠=∠,∴ △BCD∽△BEC, ∴BD BC =CD EC =12,设,BD x =则2BC x =,又2BC BD BE =⋅,∴2(2)(6)x x x =⋅+, 解得:120,2x x ==, ∵0BD x =>, ∴2BD =,∴235OA OB BD OD ==+=+=.【思路点拨】证明直线是圆的切线,只需证明圆心到直线的距离等于圆的半径,若直线与圆有公共点,则公共点为切点;第二问利用三角形相似解答即可.【题文】23、(本小题10分)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 的参数方程为232252x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为5ρθ=.(1)求圆C 的圆心到直线l 的距离;(2)设圆C 与直线l 交于点A,B ,若点P 的坐标为(5,求PA PB +.【知识点】坐标系与参数方程N3【答案解析】(1)32(2)32解析:(1)由5ρθ=,可得22250x y +-=, 即圆C 的方程为22(5)5x y +-=. 由23,25,x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)可得直线l 的方程为530x y +=. 所以,圆C 的圆心到直线l 0553322+--.(2)将l 的参数方程代入圆C的直角坐标方程,得2235⎛⎫⎫+= ⎪⎪ ⎪⎪⎝⎭⎝⎭,即240t -+=.由于24420∆=-⨯=>.故可设12t t 、是上述方程的两个实根,所以12124t t t t ⎧+=⎪⎨⋅=⎪⎩.又直线l过点(3P , 故由上式及t的几何意义得1212||||||||PA PB t t t t +=+=+=.【思路点拨】一般由参数方程或极坐标方程研究曲线之间的位置关系不方便时,可转化为直角坐标方程进行解答;第二问可利用直线参数的几何意义进行解答.【题文】24、(本小题10分)[选修4-5:不等式选讲]已知一次函数f(x)=ax -2.(1)解关于x 的不等式()4f x <; (2)若不等式()3f x ≤对任意的x ∈[0,1]恒成立,求实数a 的范围.【知识点】不等式选讲N4【答案解析】(1) 当0a >时,不等式的解集为26x x a a ⎧⎫-<<⎨⎬⎩⎭;当0a <时,不等式的解集为62x x a a ⎧⎫<<-⎨⎬⎩⎭.(2) 15a -≤≤且a ≠0.解析:(1)()4f x <⇔24ax -<⇔424ax -<-<⇔26ax -<<,当0a >时,不等式的解集为26x x a a ⎧⎫-<<⎨⎬⎩⎭;当0a <时,不等式的解集为62x x a a ⎧⎫<<-⎨⎬⎩⎭.(2)()3f x ≤⇔23ax -≤⇔323ax --≤≤⇔15ax -≤≤⇔5,1,ax ax ⎧⎨-⎩≤≥∵[0,1]x ∈,∴当x =0时,不等式组恒成立;当x≠0时,不等式组转化为5,1, axax ⎧⎪⎪⎨⎪-⎪⎩≤≥又∵515,1x x--≥≤,所以15a-≤≤且a≠0.【思路点拨】解绝对值不等式的关键是去绝对值,可利用性质、分段讨论等方法,对于不等式恒成立求参数范围问题,通常分离参数转化为函数的最值问题进行解答.。

云南师大附中2020届高考适应性月考卷及其答案(理数)

云南师大附中2020届高考适应性月考卷及其答案(理数)
2
0
.
3 1 ,
17.(云南师大附中 2020 届高考适应性月考卷(一)理数)某调研机构,对本地 22,50 岁的人群随
机抽取 200 人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低 碳族”,否则称为“非低碳族”,结果显示,有100 人为“低碳族”,该100 人的年龄情况对应的频率 分布直方图如图. (1)根据频率分布直方图,估计这100 名“低碳族”年龄的平均值、中位数;
NO
2
所以 N 的轨迹是以底面 ABCD 的中心 O 为圆心,以 1 为半径的圆, 2
则 N 的轨迹围成的封闭图象的面积为 S π . 4
16.(云南师大附中
2020
届高考适应性月考卷(一)理数)设
F1
,
F2
为椭圆 C
:
x2 4
y2
1 的两个焦
点, M 为 C 上一点,且 △MF1F2 的内心 I 的纵坐标为 2 3 ,则 F1MF2 的余弦值为____________. 答案:0. 解析:(黑龙江七台河)
(2)若在“低碳族”且年龄在 30,34 ,34,38 的两组人群中,用分层抽样的方法抽取 30 人,试估
算每个年龄段应各抽取多少人?
答案:见解析. 解析:(黑龙江七台河)
第一套 - 3
(1)100 位“低碳族”的年龄平均值 x 为 x 24 0.04 28 0.08 32 0.16 36 0.44 40 0.16 44 0.1 48 0.0 2 35.92 36 ,
正切值为 2 ,则点 N 的轨迹围成的封闭图像的面积为
.
答案: π . 4
解析:(湖北十堰)
如图,由题意知,M 在底面 ABCD 内的投影为底面 ABCD 的中心 O ,连接 ON ,

云南省师大附中高考数学适应性月考卷 理(扫描版)

云南省师大附中高考数学适应性月考卷 理(扫描版)

云南省师大附中2015届高考数学适应性月考卷理(扫描版)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDDCCBAABBAD【解析】1.易得{|41}M x x =-<<,{210}M N =--I ,,,故选C .2.221i 1iz =-+=-+-,故选D .3.(1)(24)x =-∵,,,,且,a =b a b P 420x --=∴,2x =-,(12)10-⋅∴,,a =a b =,故选D . 4.437C 2802a a ==由,得,故选C . 5.因为2311a a a ,,成等差数列,所以1233122a a a a +=⨯=,即2111a a q a q +=,所以210q q --=,解得15q +=或150q -=<(舍去),所以2256343434()a a a a q q a a a a ++==++ 35+=,故选C . 6.150=0+2=2=21+2=4i S i =>⨯不成立,,;45022424412i S i =>=+==⨯+=不成立,,;1250426212630i S i =>=+==⨯+=不成立,,; 3050628230868i S i =>=+==⨯+=不成立,,;68508i S =>=成立,,故选B .7.01ln ln (01)ln 102x x y a a y a x a y a =''==-+==,,切点为,,切线方程为,∴,故选A . 8.由三视图还原出几何图形如图1,其中正视图由SBC 面看入,SD ABCD AB ⊥平面,与DC 平行,2433AB DC AD SD ====,,,,11(24)33932V =⨯⨯+⨯⨯=,故选A .9.作出不等式组表示的区域如图2阴影部分所示,由图可知,(00)z ax by a b =+>>,过点(1,1)A 时取最大值, 所以4a b +=,242a b ab +⎛⎫= ⎪⎝⎭≤,00(04]a b ab >>∈∵,,∴,,故选B .10.由于P 为抛物线26y x =-上一个动点,Q 为圆221(6)4x y +-=上一个动点,那么点P 到点Q 的距离与点P 到y 轴距离之和的最小值可结合抛物线的定义,P 到y 轴距离为P 到焦点距离减去32,则最小值为抛物线的焦点到圆心的距离减去半径和323174-,故选B .11.取ABC △外接圆圆心F ,连接AD 的中点即球心O 与F ,由球的性质可知OF 与平面ABC 垂直,2AB BD =在Rt AOF △中,1AO =,6AF =,故26313OF ⎛⎫=- ⎪ ⎪⎝⎭,又2AD OA =,故D 到平面ABC 的距离232h OF ==,因此133A BCD D ABC V V --==2231(2)3=,故选A .12.()2e sin (222)()0()(222x f x x x k k f x f x x k k ''=∈π+ππ+π<∈π+ππ∵,∴,时,,递减,, 3)+π时,()0()f x f x '>,递增,故当22x k =π+π时,()f x 取极小值,其极小值为22(22)e k f k π+ππ+π=-,02015x π又≤≤,所以()f x 的各极小值之和242014e e eS πππ=----=L 2π2014π2πe (1e )1e ---,故选D . 二、填空题(本大题共4小题,每小题5分,共20分)图1图2题号 13 14 15 16 答案19- 15(31)-,(1e),【解析】13.2sin23α=∵,21cos(π)cos 12sin 29ααα⎛⎫-=-=--=- ⎪⎝⎭∴.14.23223255A A A 1A 5P ⋅⋅==. 15.()f x ∵是R 上的奇函数,()2cos 0f x x '=+>,则()f x 在定义域内为增函数,(3)()0f mx f x -+<∴可变形为(3)()f mx f x -<-,3mx x -<-∴,将其看作关于m 的一次函数()3[2,2]g m x m x m =⋅-+∈-,,可得当[2,2]m ∈-时,()0g m <恒成立,若0x ≥,(2)0g <,若0x <,(2)0g -<,解得31x -<<. 16.令1e 1b a =>,则ex x y a b ==,1eelog log log a b a y x x x ===,即这两个函数互为反函数且为增函数,故其有两个交点等价于log b y x =与y x =有两个交点,即函数()log b f x x x =-有两个零点.由max 1()(log e )()(log e)b b f x x f x f x'=-⇒=(log e)01e b f a ⇒>⇒<<.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分) 解:(Ⅰ)由正弦定理,得sin sin 3sin cos C A A C =,因为sin 0A ≠,解得tan 3(0),3C C C π∈π=,又,∴. ……………………(4分)(Ⅱ)由sin sin()3sin 2C B A A +-=,得sin()sin()3sin 2B A B A A ++-=,整理,得sin cos 3sin cos B A A A =. ……………………………………………(6分)若cos 0A =,则2A π=,21tan 3cb bπ==,,1732ABC S bc ==△; ………(7分)若cos 0A ≠,则sin 3sin B A =,3b a =.由余弦定理,得2222cos c a b ab C =+-,解得13a b ==,. …………………(9分)133sin 2ABC S ab C ==△ ……………………………………………(11分) 综上,ABC △7333. ……………………………………………(12分)18.(本小题满分12分)(Ⅰ)证明:由题条件知,PQ AD BQ AD ⊥⊥,, PQ BQ Q =I ,所以AD PQB ⊥平面,AD PAD ⊂∵平面,PQB PAD ⊥∴平面平面. …………………………………(4分) (Ⅱ)解:PA PD Q AD PQ AD =⊥∵,为中点,∴.PAD ABCD PAD ABCD AD PQ ABCD ⊥=⊥I ∵平面平面,平面平面,∴平面. 如图3所示,以Q 为坐标原点,分别以QA QB QP 、、为x y z 、、轴建立空间直角坐标系,…………………………………………………(5分)则(000)(100)(003)Q A P ,,,,,,,,, (030)(230)B C -,,,,,,(030)QB =u u u r,,, 设(01)PM PC λλ=u u u u r u u u r ≤≤,(233(1))QM QP PM QP PC λλλλ=+=+=--u u u u r u u u r u u u u r u u u r u u u r,,,……………………………………………………………………………………(6分) 设()n x y z =r,,是平面MBQ 的一个法向量,则00QM n QB n ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r ,,即3(1)0z x y λ⎧-⋅=⎪⎨⎪=⎩, 图3令1z =,得01n ⎫=⎪⎪⎝⎭r ,, ………………………………………(7分) 又(001)m =u r,,是平面BQC 的一个法向量,1cos 2m n m n m n ⋅〈〉===⋅u r ru r r u r r ∴,, 1013λλ=∵≤≤,∴,13PM PC =∴, …………………………………………(9分)PQ =∵∴M 到平面ABCD122BQC S =⨯=△1233M BCQ V -==. …………………………(12分) 19.(本小题满分12分)解:(Ⅰ)依题意,每场比赛获得的门票收入组成首项为40,公差为10的等差数列.设此数列为{}n a ,则易知1(1070)4010302202n n n n a a n S +==+==,,∴,解得11()n =-舍去或4n =,所以此决赛共比赛了4场.则前3场的比分必为1∶2,且第4场比赛为领先的球队获胜,其概率为31313C 28⎛⎫= ⎪⎝⎭. ……………………………………………………………(6分)(Ⅱ)随机变量X 可取的值为345S S S ,,,即150,220,300.又311(150)224P X ⎛⎫==⋅= ⎪⎝⎭,31313(220)C 28P X ⎛⎫==⋅= ⎪⎝⎭,42413(300)C 28P X ⎛⎫==⋅= ⎪⎝⎭.…………………………………………………………………………(9分)………………………………………………………………………(10分)所以X 的数学期望为133()=150+220+300232.5488E X ⨯⨯⨯=万元. ……………(12分)20.(本小题满分12分)解:(Ⅰ)设椭圆的焦距为2c ,234c a ⎛⎫= ⎪⎝⎭∴,所以2234a c =,又点0)是抛物线的焦点,23c =∴.所以椭圆C 的方程为2214x y +=. ……………………………………………(4分)(Ⅱ)因为ON OA OB =+u u u r u u u r u u u r,所以四边形OANB 为平行四边形, 当直线l 的斜率不存在时,显然不符合题意;当直线l 的斜率存在时,设直线l 的方程为3y kx =+,l 与椭圆交于11()A x y ,,22()B x y ,两点,由22223(14)2432014y kx k x kx x y =+⎧⎪⇒+++=⎨+=⎪⎩,. 由222(24)128(14)02k k k ∆=-+>⇒>. …………………………………………(6分)12122224321414k x x x x k k +=-=++,. …………………………………………(7分)12121322OAB S OD x x x x =-=-△∵,1223||OANB OABS S x x ==-=Y △∴== …………………………………………(9分)令22k t -=,则22k t =+(0)t >由上式知,2OANB S ===Y ∴,当且仅当9t =,即2174k =时取等号,k =∴当时,平行四边形OANB 的面积最大值为2. 此时直线l 的方程为3y =+. ……………………………………………(12分)21.(本小题满分12分)解:(Ⅰ)()ln 1f x x px =-+的定义域为(0)+∞,,1()pxf x x-'=,00p x >>∵,,10x p ⎛⎫∈ ⎪⎝⎭∴,时,()0()f x f x '>,单调递增,1x p ⎛⎫∈+∞ ⎪⎝⎭,时,()0()f x f x '<,单调递减, ()f x ∴在1x p=处取得极大值11ln f p p ⎛⎫= ⎪⎝⎭,此极大值也是最大值,所以要使()0f x ≤恒成立,只需11ln 0f p p ⎛⎫= ⎪⎝⎭≤,1p ∴≥,∴p 的取值范围为[1)+∞,. ………………………………………………………(5分) (Ⅱ)令1p =,由(Ⅰ)知,ln 10x x -+≤,ln 1x x -∴≤,()31ln (31)3(1)ln g x ax x a a x x '=----=--, ……………………………………(6分) 则()3(1)(1)(31)(1)g x a x x a x '---=--≥,当310a -≥即13a ≥时,由[1)x ∈+∞,得()0g x '≥恒成立,()g x 在[1)+∞,上单调递增,()(1)0g x g =≥符合题意,所以13a ≥;……………(7分)当0a ≤时,由[1)x ∈+∞,得()0g x '≤恒成立,()g x 在[1)+∞,上单调递减,()(1)0g x g =≤,显然不成立,0a ≤舍去; ……………………………………(8分)当103a <<时,由ln 1x x -≤,得11ln 1x x -≤,即1ln 1x x-≥,则11()3(1)1(31)x g x a x ax x x -⎛⎫⎛⎫'---=- ⎪ ⎪⎝⎭⎝⎭≤,因为103a <<,所以113a>. ……………………………………………(10分)113x a ⎡⎫∈⎪⎢⎣⎭,时,()0g x '≤恒成立, ()g x 在113a ⎡⎫⎪⎢⎣⎭,上单调递减,()(1)0g x g =≤,显然不成立,103a <<舍去.综上可得:13a ⎡⎫∈+∞⎪⎢⎣⎭,. ………………………………………………………(12分)22.(本小题满分10分)【选修4−1:几何证明选讲】 证明:(Ⅰ)如图4,连接BE ,则BE EC ⊥,又D 是BC 的中点,所以DE BD =.又OE OB OD OD ==,,所以ODE ODB △≌△, 所以90OBD OED ∠=∠=︒.故D E O B ,,,四点共圆. …………………………………………………………(5分)(Ⅱ)如图4,延长DO 交圆于点H ,2()DE DM DH DM DO OH DM DO =⋅=⋅+=⋅+∵DM OH ⋅, 21122DE DM AC DM AB ⎛⎫⎛⎫=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭∴,即22DE DM AC DM AB =⋅+⋅,,2BCDE DC ==∵ ∴22DC DM AC DM AB =⋅+⋅. ……………………………(10分)23.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)半圆C 的普通方程为22(1)1x y -+=(01)y ≤≤,又cos sin x y ρθρθ==,,所以半圆C 的极坐标方程是2cos 02ρθθπ⎡⎤=∈⎢⎥⎣⎦,,. …………………………(5分)(Ⅱ)设11()ρθ,为点P 的极坐标,则有1112cos ,,3ρθθ=⎧⎪⎨π=⎪⎩ 解得111,,3ρθ=⎧⎪π⎨=⎪⎩ 设22()ρθ,为点Q 的极坐标,则有2222(sin 3)53,,3ρθθθ⎧+=⎪⎨π=⎪⎩解得225,,3ρθ=⎧⎪π⎨=⎪⎩ 由于12θθ=,所以124PQ ρρ=-=,所以PQ 的长为4. …………………(10分)24.(本小题满分10分)【选修4−5:不等式选讲】证明:(Ⅰ)因为a b c ,,为正实数,由均值不等式可得33333331111113a b c a b c ++⋅⋅≥3331113a b c abc++≥,所以3331113abc abc a b ++++≥,而33223abc abc abc abc +⋅≥,所以33311123abc a b c+++≥ 当且仅当63a b c ===时,取等号. ……………………………………………(5分) (Ⅱ)3311113A B C ABCABC++≥39π3A B C =++≥,πππ9A B C++∴≥, 当且仅当π3A B C ===时,取等号. ……………………………………………(10分)图4。

2020届云南师大附中高考适应性月考数学(理)试题Word版含答案

2020届云南师大附中高考适应性月考数学(理)试题Word版含答案

2020届云南师大附中高考适应性月考数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,}A y y x x R ==+∈,集合2{1,}B y y x x R ==-+∈,则A B =( )A .{(0,1)}B .{1}C .φD .{0} 2. 已知复数11iz i+=-,则z =( ) A .2 BC .4 D3.已知平面向量,a b 的夹角为045,(1,1)a =,1b =,则a b +=( ) A .2 B .3 C .4 D 4.将函数()sin(2)3f x x π=+的图象向左平移6π个单位,所得的图象所对应的函数解析式是( )A .sin 2y x =B .cos 2y x = C. 2sin(2)3y x π=+D .sin(2)6y x π=- 5.等差数列{}n a 的前n 项和为n S ,且2813a a +=,735S =,则8a =( ) A .8 B .9 C.10 D .116.已知点(,)P x y 在不等式组20020x y x y y -≥⎧⎪-≤⎨⎪-≤⎩,表示的平面区域上运动,则z x y =+的最大值是( )A .4B .3 C.2 D .17.从某社区随机选取5名女士,其身高和体重的数据如下表所示:根据上表可得回归直线方程0.6y x a =+,据此得出a 的值为( ) A .43.6 B .-43.6 C.33.6 D .-33.68.若直线20ax by +-=(0,0a b >>)始终平分圆22222x y x y +--=的周长,则112a b+的最小值为( ) A .3224- B .3222- C. 3222+ D .3224+ 9.函数()sin lg f x x x =-的零点个数是( ) A .2 B .3 C.4 D .510.已知,,,,,a b c A B C 分别是ABC ∆的三条边及相对三个角,满足::cos :cos :cos a b c A B C =,则ABC ∆的形状是( )A .等腰三角形B .等边三角形 C.直角三角形 D .等腰直角三角形 11.已知正三棱锥S ABC -及其正视图如图 所示,则其外接球的半径为( )A .33 B .433 C. 536 D .73612.定义在R 上的偶函数()f x ,当0x ≥时,32()ln(1)xf x e x x =+++,且()()f x t f x +>在(1,)x ∈-+∞上恒成立,则关于x 的方程(21)f x t +=的根的个数叙述正确的是( ) A .有两个 B .有一个 C.没有 D .上述情况都有可能第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 121()x x+展开式中常数项是 .14.执行如图所示的程序框图后,输出的结果是 .(结果用分数表示)15.已知双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,过F 作x 轴的垂线,与双曲线在第一象限内的交点为M ,与双曲线的渐近线在第一象限的交点为N ,满足MN MF =,则双曲线离心率的值是 .16.设O 是ABC ∆的三边垂直平分线的交点,H 是ABC ∆的三边中线的交点,,,a b c 分别为角,,A B C 的对应的边,已知22240b b c -+=,则AH AO •的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,123n n a a +=+(*n N ∈). (1)求证:数列{3}n a +是等比数列;(2)若{}n b 满足(21)(3)n n b n a =-+,求数列{}n b 的前n 项和n S .18. 某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.甲 乙(1)分别求出甲乙两个小组成绩的平均数与方差,并判断哪一个小组的成绩更稳定:(2)从甲组成绩不低于60分的同学中,任意抽取3名同学,设ξ表示所抽取的3名同学中得分在[60,70)的学生个数,求ξ的分布列及其数学期望.19. 如图,在长方体1111ABCD A B C D -中,1AC 与平面11A ADD 及平面ABCD 所成角分别为030,045,,M N 分别为1AC 与1A D 的中点,且1MN =. (1)求证:MN ⊥平面11A ADD ;(2)求二面角1A AC D --的平面角的正弦值.20. 已知椭圆:C 22221x y a b+=(0,0a b >>)的两个顶点分别为(,0)A a -,(,0)B a ,点P 为椭圆上异于,A B 的点,设直线PA 的斜率为1k ,直线PB 的斜率为2k ,1212k k =-. (1)求椭圆C 的离心率;(2)若1b =,设直线l 与x 轴交于点(1,0)D -,与椭圆交于,M N 两点,求OMN ∆的面积的最大值.21. 设函数2()ln f x x x b x =++(1)若函数()f x 在1[,)2+∞上单调递增,求b 的取值范围; (2)求证:当1n ≥时,5ln ln(1)ln 24n n -+<-请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数),直线l 的参数方程为:13x ty t =+⎧⎪⎨=⎪⎩(t 为参数),点(1,0)P ,直线l 与曲线C 交于,A B 两点.(1)分别写出曲线C 在直角坐标系下的标准方程和直线l 在直角坐标系下的一般方程; (2)求11PA PB+的值. 23.选修4-5:不等式选讲 已知函数()12f x x x =++-.(1)请写出函数()f x 在每段区间上的解析式,并在图中的直角坐标系中作出函数()f x 的图象; (2)若不等式2122x x a a ++-≥+对任意的实数x 恒成立,求实数a 的取值范围.2020届云南师大附中高考适应性月考数学(理)试题答案一、选择题(本大题共12小题,每小题5分,共60分)11.由三视图知:三棱锥S ABC-是底面边长为的正三棱锥,设其外接球的半径为R,则有:22)4R R=-+,解得:R=,故选D.12.由题意知:32()e ln(1)xf x x x=+++在(0)+∞,上单调递增,()()f x t f x+>在(1)x∈-+∞,上恒成立,必有2t≥,则(21)f x t+=的根有2个,故选A.13.36122112121C Crrr r rrT xx--+⎛⎫==⎪⎝⎭,3602r-=,解得:4r=,代入得常数项为495.14.该程序执行的是11111111112913248102132481045S⎛⎫=+++=-+-++-=⎪⨯⨯⨯⎝⎭.15.由已知:22||||b bc bFM MNa a a==-,,由||||FM MN=知:22bc ba a=,2c b e==∴,∴.16.2211()3322b cAH AO AB AC AO⎛⎫=+=+⎪⎝⎭,又22240b b c-+=,代入得:AH AO=2221421(4)3226b b bb b⎛⎫-+=-⎪⎝⎭,又22240c b b=-+>,所以02b<<,代入得AH AO的取值范围为23⎛⎫⎪⎝⎭,.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(Ⅰ)证明:因为123n n a a +=+,所以132(3)n n a a ++=+, 而11a =,故数列{3}n a +是首项为4,公比为2的等比数列.(Ⅱ)解:由(Ⅰ)得数列{3}n a +是首项为4,公比为2的等比数列,即132n n a ++=,因此123n n a +=-. 所以1(21)2n n b n +=-,2311232(21)2n n S n +=⨯+⨯++-⨯,① 34221232(21)2n n S n +=⨯+⨯++-⨯,②①−②有231222(22)(21)2n n n S n ++-=+++--⨯,所以2(23)212n n S n +=-+.18.(本小题满分12分)解:(Ⅰ)5160626371748182688x +++++++==甲, 5862646669717381688x +++++++==乙,222222222(5168)(6068)(6268)(6368)(7168)(7468)(8168)(8268)8s -+-+-+-+-+-+-+-=甲103=,222222222(5868)(6268)(6468)(6668)(6968)(7168)(7368)(8168)8s -+-+-+-+-+-+-+-=乙45=,所以乙组的成绩更稳定.(Ⅱ)由题意知ξ服从参数为3,3,7的超几何分布,即(337)H ξ,,,ξ的取值可能为:0,1,2,3, 3437C 4(0)C 35P ξ===,214337C C 18(1)C 35P ξ===,124337C C 12(2)C 35P ξ===,3337C 1(3)C 35P ξ===,ξ的分布列为:ξ0 1 2 3 P43518351235135ξ的数学期望:339()77E ξ⨯==. 19.(本小题满分12分)(Ⅰ)证明:在长方体1111ABCD A B C D -中,因为11M N A C A D ,分别为,的中点,所以MN 为1A CD △的中位线, 所以MN ∥CD ,又因为CD ⊥平面11A ADD , 所以MN ⊥平面11A ADD .(Ⅱ)解:在长方体1111ABCD A B C D -中,因为CD ⊥平面11A ADD , 所以1CA D ∠为1A C 与平面11A ADD 所成的角, 即1CA D ∠=30︒,又因为1A A ⊥平面ABCD ,所以1A CA ∠为1A C 与平面ABCD 所成的角, 即145A CA ∠=︒,所以1MN =,2CD =,14A C =,1A A =AC =,如图2,分别以AB ,AD ,1AA 所在直线为x ,y ,z 轴建立空间直角坐标系A xyz -,∴A(0,0,0),D(0,2,0),1(22C ,,,1(00A ,,,C(2,2,0),B(2,0,0), 在正方形ABCD 中,BD ⊥AC ,∴BD 是平面1A AC 的法向量,(220)BD =-,,. 设平面1A CD 的法向量为()n x y z =,,,由(200)DC =,,,1(02DA =-,,,所以有202220x y z =⎧⎪⎨-+=⎪⎩,, ∴02x y z =⎧⎪⎨=⎪⎩,,取z=1,得平面1A CD 的一个法向量为(021)n =,,. 设二面角1A A C D --的大小为α,则223|cos |3223α==.∴36sin =α.20.解:(Ⅰ)00()P x y 设,,代入椭圆的方程有:2200221x y a b +=,整理得:2222002()b y x a a =--,又10y k x a=+,20y k x a=-,所以201222012y k k x a ==--,212212b k k a =-=-联立两个方程有,22c e a =解得:.(Ⅱ)由(Ⅰ)知222a b =,又1b =,所以椭圆C 的方程为22121x y +=.设直线l 的方程为:1x my =-,代入椭圆的方程有:22(2)210m y my +--=,设1122()()M x y N x y ,,,, 1212222122m y y y y m m -+==++由韦达定理:,,121||||2OMNS OD y y =-===△所以,(1)t t =≥,则有221m t =-,代入上式有1OMNS t ==△,当且仅当1t =,即0m =时等号成立, 所以OMN △.21.(Ⅰ)解:22()21b x x bf x x x x ++'=++=,当0b ≥时,在12⎡⎫+∞⎪⎢⎣⎭,上()0f x '≥恒成立,所以()f x 在12⎡⎫+∞⎪⎢⎣⎭,上单调递增成立, 当0b <时,由220x x b ++=,解得x =易知,()f x在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增,12≤,解得1b -≥. 综上所述,1b -≥.(Ⅱ)证明:由(Ⅰ)知,当1b =-时,()f x 在12⎡⎫+∞⎪⎢⎣⎭,上单调递增, 对任意1n ≥,有112n n +≥成立,所以112n f f n ⎛⎫⎛⎫⎪ ⎪+⎝⎭⎝⎭≥,代入()f x 有23ln ln 21114n n n n n n ⎛⎫⎛⎫+-+ ⎪ ⎪+++⎝⎭⎝⎭≥,整理得:2223ln 2ln (1)41n n n n n +⎛⎫-- ⎪++⎝⎭≥. 22.解:(Ⅰ)曲线C 的标准方程为:22143x y +=, 直线l0y -=.(Ⅱ)将直线l的参数方程化为标准方程:112()x t t y ⎧=+⎪⎪⎨⎪=⎪⎩,为参数,, 代入椭圆方程得:254120t t +-=,解得12625t t ==-,,所以12114||11||||||3PA PB t t +=+=.23.解:(Ⅰ)12(1)()3(12)21(2)x x f x x x x -<-⎧⎪=-⎨⎪->⎩,≤≤,,函数的图象如图所示.(Ⅱ)由(Ⅰ)知()f x 的最小值是min ()3f x =,所以要使不等式2|1||2|2x x a a ++-+≥恒 成立,有232a a +≥,解之得[31]a ∈-,.。

云南师大附中2024届高考适应性月考卷(一)数学(含解析版)

云南师大附中2024届高考适应性月考卷(一)数学(含解析版)

云南师大附中2024届高考适应性月考卷(一)数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}2A x x =≤,(){}30B x x x =-≥,则A B = ()A.{2x x ≤或3}x ≥B.{}20x x -≤≤C.{}23x x -≤≤ D.{}02x x ≤≤2.1i2i ++的实部与虚部之和为()A.45B.45-C.25D.25-3.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则9a =()A.4B.24C.30D.324.已知向量()3,4a = ,()1,0b = ,c a tb =- ,若a c ⊥,则t =()A.73B.253C.3D.05.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水体积为盆体积的一半,则平地降雨量约是()寸.(结果四舍五入取整数)(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)A.3 B.4C.5D.66.设0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且tan cos 1sin αββ⋅=+,则()A.()sin 31αβ-=B.()sin 31αβ+=-C.()sin 21αβ-= D.()sin 21αβ+=-7.用五个5和两个2组成一个7位数,则组成的7位数中两个2不相邻的概率为()A.13B.25C.23D.578.设13a =,7ln 5b =,1sin 3c =,则()A.c<a<bB.b<c<aC.c b a<< D.a b c<<二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.若a b >,则()A.()ln 0a b ->B.33a b >C .330a b -> D.11a b<10.已知函数()()ππ2122f x x ϕϕ⎛⎫=++-<< ⎪⎝⎭的图象关于直线π3x =轴对称,则()A.函数()f x 的图象关于点π,012⎛⎫⎝⎭中心对称B.函数()f x 在区间ππ,63⎛⎫-⎪⎝⎭上是增函数C.函数()f x 的导函数为()π26f x x ⎛⎫=- ⎪⎝⎭'D.函数()f x 的图象可由函数1y x =+的图象向右平移π12个单位长度得到11.已知O 为坐标原点,抛物线C :()220y px p =>的准线方程为=1x -,过焦点F 的直线l 交抛物线C于A ,B 两点,则()A .若5AF =,则OA =B.若8AB =,则直线l 的斜率为1C.23AF BF +≥+D.OAB 面积的最小值为212.已知三棱锥A BCD -的棱长均为6,其内有n 个小球,球1O 与三棱锥A BCD -的四个面都相切,球2O 与三棱锥A BCD -的三个面和球1O 都相切,如此类推,L ,球n O 与三棱锥A BCD -的三个面和球1n O -都相切(2n ≥,且*n ∈N ),球n O 的表面积为n S ,体积为n V ,则()A.1π8V =B.33π8S =C.数列{}n V 是公比为18的等比数列D.数列{}n S 的前n 项和为18π14n ⎛⎫-⎪⎝⎭三、填空题(本大题共4小题,每小题5分,共20分)13.在522x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为____________.(用数字作答)14.若半径为3的圆经过点()6,8,则其圆心到原点的距离的最小值为______.15.若直线l 与曲线2y x =和2215x y +=都相切,则l 的方程为______.16.斜率为13的直线l 与椭圆C :221364x y +=交于A ,B 两点,且(P 在直线l 的左上方.若60APB ∠=︒,则PAB 的周长是______.四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.ABC 内角,,A B C 的对边分别为,,a b c ,且sin 2sin C C =.(1)求角C ;(2)若c =,ABC 的面积为,求ABC 的周长.18.某研究机构随机抽取了新近上映的某部影片的120名观众,对他们是否喜欢这部影片进行了调查,得到如下数据(单位:人):喜欢不喜欢合计男性403070女性351550合计7545120根据上述信息,解决下列问题:(1)根据小概率值0.10α=的独立性检验,分析观众喜欢该影片与观众的性别是否有关;(2)从不喜欢该影片的观众中采用分层抽样的方法,随机抽取6人.现从6人中随机抽取2人,若所选2名观众中女性人数为X ,求X 的分布列及数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.150.100.050.0100.001x α2.0722.7063.8416.63510.82819.各项均为正数的等比数列{}n a 中,11a =,534a a =.(1)求{}n a 的通项公式;(2)设m 为整数,且对任意的*n ∈N ,1212nnm a a a ≥+++ ,求m 的最小值.20.已知在四棱锥P ABCD -4AB =,3BC =,5AD =,90DAB ABC CBP ∠=∠=∠= ,PA CD ⊥,E 为CD 的中点.(1)证明:平面PCD ⊥平面PAE ;(2)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求二面角P CD A --的正弦值.21.已知双曲线E :()222210,0x y a b a b-=>>()2,2P 在双曲线E 上.(1)求E 的方程;(2)过点()1,0M 的直线l 与双曲线E 交于A ,B 两点(异于点P ).设直线BC 与x 轴垂直且交直线AP 于点C ,若线段BC 的中点为N ,判断:P ,M ,N 三点是否共线?并说明理由.22.已知函数()e a axf x x b =+(其中e 是自然对数的底数),曲线()y f x =在点()()22f ,处的切线方程是6636e 64e y x =-,()3ln g x mx x =+.(1)求a ,b ;(2)若()()22f x xg x x -≥在()0,∞+上恒成立,求m 的取值范围.云南师大附中2024届高考适应性月考卷(一)数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}2A x x =≤,(){}30B x x x =-≥,则A B = ()A.{2x x ≤或3}x ≥B.{}20x x -≤≤C.{}23x x -≤≤ D.{}02x x ≤≤【答案】B 【解析】【分析】解不等式求得集合,A B ,根据集合的交集运算即可求得答案.【详解】由题意可得{}2{|22}A x x x x =≤=-≤≤,(){}30{|0B x x x x x =-≥=≤或3}x ≥,故A B = {}20x x -≤≤,故选:B 2.1i2i ++的实部与虚部之和为()A.45B.45-C.25D.25-【答案】A 【解析】【分析】根据复数的除法运算化简1i2i++,确定实部和虚部,即可得答案.【详解】由题意得1i (1i)(2i)3i2i 55++-+==+,故1i2i ++的实部与虚部之和为314555+=,故选:A3.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则9a =()A.4 B.24C.30D.32【答案】C 【解析】【分析】由等差数列通项公式和前n 项和公式,列方程组解出数列首项和公差,可求9a 的值.【详解】设等差数列{}n a 公差为d ,则有45161272461548a a a d S a d +=+=⎧⎨=+=⎩,解得124a d =-⎧⎨=⎩,所以91824830a a d =+=-+⨯=.故选:C4.已知向量()3,4a = ,()1,0b = ,c a tb =- ,若a c ⊥,则t =()A.73B.253C.3D.0【答案】B 【解析】【分析】利用向量线性运算的坐标表示和向量垂直的坐标表示,列方程求t 的值.【详解】()()()3,43,41,0c a tb t t =-=-=-,a c⊥ ,则有()33440t -+⨯=,解得253t =.故选:B5.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水体积为盆体积的一半,则平地降雨量约是()寸.(结果四舍五入取整数)(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)A.3 B.4C.5D.6【答案】C 【解析】【分析】根据圆台的体积公式求得天池盆的体积,即可求得盆中积水的体积,根据平地降雨量的含义即可求得答案.【详解】由题意可知天池盆上底面半径为14寸,下底面半径为6寸,高为18寸,则天池盆体积为()221π186146141896π3⨯⨯++⨯=(立方寸)故盆中积水体积为11896π948π2⨯=(立方寸),故平地降雨量约为2948π5π14≈⨯(寸),故选:C 6.设0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且tan cos 1sin αββ⋅=+,则()A.()sin 31αβ-=B.()sin 31αβ+=-C.()sin 21αβ-=D.()sin 21αβ+=-【答案】C 【解析】【分析】对题中条件进行变化化简,可以得到π22αβ-=,进一步即可判断正确答案.【详解】tan cos 1sin ,αββ⋅=+ sin cos 1sin ,cos αββα∴⋅=+即sin cos cos sin cos ,αβαβα⋅=+⋅sin cos sin cos cos ,αββαα⋅-⋅=即πsin()cos sin(),2αβαα-==-又0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,则ππππ,0,2222αβα-<-<<-<所以π2,sin(2)1,2αβαβ-=∴-=,故C 正确.故选:C .7.用五个5和两个2组成一个7位数,则组成的7位数中两个2不相邻的概率为()A.13B.25C.23D.57【答案】D 【解析】【分析】先求出用五个5和两个2组成一个7位数,总的排法数,再求出组成的7位数中两个2不相邻的排法数,根据古典概型的概率公式即可得答案.【详解】由题意可知五个5和两个2组成一个7位数,可看作7个位置,先排2,有27C 21=种排法,其余位置排5,此时共有21121⨯=种排法;而组成的7位数中两个2不相邻,可采用插空法,即五个5先排,只有一种排法,在形成的6个空中选2个排2,有2615C =种排法,故用五个5和两个2组成一个7位数,则组成的7位数中两个2不相邻的概率为155217=,故选:D 8.设13a =,7ln 5b =,1sin 3c =,则()A.c<a<bB.b<c<aC.c b a <<D.a b c<<【答案】A 【解析】【分析】因为72(1)145731215-==+,所以构造函数2(1)()ln 1x f x x x -=-+(0)x >,利用导数判断单调性,可得b a >,令()sin g x x x =-,π[0,)2x ∈,利用导数判断单调性,可得a c >.【详解】因为72(1)145731215-==+,所以设2(1)()ln 1x f x x x -=-+(0)x >,21(1)(1)()2(1)x x f x x x +--'=-⨯+22(1)(1)x x x -=+0≥,所以()f x 在(0,)+∞上为增函数,所以7()(1)05f f >=,所以72(1)75ln 07515-->+,所以71ln 053->,即71ln 53>,所以b a >.令()sin g x x x =-,π[0,)2x ∈,()1cos 0g x x '=-≥,所以()sin g x x x =-在π[0,)2上为增函数,所以1((0)03g g >=,所以11sin 033->,即11sin 33>,所以a c >,综上所述:b a c >>.故选:A【点睛】关键点点睛:构造函数2(1)()ln 1x f x x x -=-+(0)x >,()sin g x x x =-,π[0,)2x ∈,利用导数判断单调性,根据单调性比较大小是解题关键.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.若a b >,则()A.()ln 0a b ->B.33a b >C.330a b ->D.11a b<【答案】BC 【解析】【分析】由不等式的性质,指数函数、对数函数和幂函数的性质,判断不等式是否成立.【详解】()ln 0a b ->需要1a b ->,a b >不能满足,A 选项错误;由指数函数3x y =的性质,当a b >时,有33a b >,B 选项正确;由幂函数3y x =的性质,当a b >时,有33a b >,即330a b ->,C 选项正确;当2,1a b ==-时,满足a b >,但11a b<不成立,D 选项错误.故选:BC10.已知函数()()ππ2122f x x ϕϕ⎛⎫=++-<< ⎪⎝⎭的图象关于直线π3x =轴对称,则()A.函数()f x 的图象关于点π,012⎛⎫⎪⎝⎭中心对称B.函数()f x 在区间ππ,63⎛⎫-⎪⎝⎭上是增函数C.函数()f x 的导函数为()π26f x x ⎛⎫=- ⎪⎝⎭'D.函数()f x 的图象可由函数1y x =+的图象向右平移π12个单位长度得到【答案】BD 【解析】【分析】根据函数()f x 的图象关于直线π3x =轴对称,可确定ϕ,即得()f x 的表达式,将π12x =代入()f x 中可判断A ;根据ππ,63x ⎛⎫∈-⎪⎝⎭,确定πππ2(26,2x -∈-,结合正弦函数的单调性可判断B ;根据正弦函数以及复合函数的求导法则可判断C ;根据三角函数图象的平移变换可判断D.【详解】由题意函数()()ππ21,22f x x ϕϕ⎛⎫=++-<< ⎪⎝⎭的图象关于直线π3x =轴对称,则ππππ,Z,π,Z 2326k k k k ϕϕ⨯+=+∈+=∴∈-,因为ππ22ϕ-<<,故π6ϕ=-,即()π216f x x ⎛⎫=-+ ⎪⎝⎭,对于A ,将π12x =代入()π216f x x ⎛⎫=-+ ⎪⎝⎭,得ππ211126⎛⎫⨯-+= ⎪⎝⎭,即ππsin 20126⎛⎫⨯-= ⎪⎝⎭,故函数()f x 的图象关于点π,112⎛⎫⎪⎝⎭中心对称,A 错误;对于B ,当ππ,63x ⎛⎫∈-⎪⎝⎭时,πππ2(26,2x -∈-,因为正弦函数sin y x =在ππ(,)22-上单调递增,故()f x 在区间ππ,63⎛⎫-⎪⎝⎭上是增函数,B 正确;对于C ,()π26f x x ⎛⎫'=- ⎪⎝⎭,C 错误;对于D ,函数1y x =+的图象向右平移π12个单位长度得到11ππ126y x x =-+=-+,即函数()f x 的图象,D 正确,故选:BD11.已知O 为坐标原点,抛物线C :()220y px p =>的准线方程为=1x -,过焦点F 的直线l 交抛物线C于A ,B 两点,则()A.若5AF =,则OA =B.若8AB =,则直线l 的斜率为1C.23AF BF +≥+D.OAB 面积的最小值为2【答案】ACD 【解析】【分析】由抛物线准线方程可求得抛物线方程,利用焦半径公式可求得A 点坐标,即可判断A ;设直线l 的方程,联立抛物线方程,可得根与系数的关系式,结合8AB =求得126x x +=,即可求得直线斜率,判断B ;利用焦半径公式结合基本不等式可判断C ;表示出OAB 面积,结合基本不等式求得其最小值,判断D.【详解】因为抛物线C :()220y px p =>的准线方程为=1x -,故1,22pp =∴=,故24y x =,焦点为(1,0)F ,设1122(,),(,)A x y B x y ,对于A ,1115,4AF x x =+=∴=,代入24y x =得216y =,即2116y =故OA ===A 正确;对于B ,8AB =,则121228,6x x x x ++=∴+=,当直线AB 为1x =时,AB 4=,由此可判断8AB =时,直线l 的斜率存在且不等于0,设直线l 的方程为(1)y k x =-,联立24y x =可得:2222(24)0,(0)k x k x k k -++=≠,故2122246k x x k++==,解得1k =±,满足0∆>,故B 错误;对于C ,由B 的分析可知121=x x ,当直线AB 为1x =时,也有121=x x 成立;故121222(331)123AF BF x x x x +=≥++=+=++++当且仅当122x x =即12,2x x ==C 正确;对于D ,不妨设A 点在第一象限,则12y y ==-故OAB 的面积1211||||||22OAB S OF y y =⨯-=+= ,则21224OABSx x =++≥= ,当且仅当121x x ==时等号成立,即OAB 面积的最小值为2,D 正确,故选:ACD12.已知三棱锥A BCD -的棱长均为6,其内有n 个小球,球1O 与三棱锥A BCD -的四个面都相切,球2O 与三棱锥A BCD -的三个面和球1O 都相切,如此类推,L ,球n O 与三棱锥A BCD -的三个面和球1n O -都相切(2n ≥,且*n ∈N ),球n O 的表面积为n S ,体积为n V ,则()A.1π8V =B.33π8S =C.数列{}n V 是公比为18的等比数列D.数列{}n S 的前n 项和为18π14n ⎛⎫- ⎪⎝⎭【答案】BCD 【解析】【分析】根据题意求出1r 2=,2112r r =,依此类推可得{}n r 是首项为2,公比为12的等比数列,再根据球的表面积和体积公式逐项判断可得答案.【详解】如图所示,AO 是三棱锥A BCD -的高,O 是三角形BCD 的中心,设三棱锥A BCD -的棱长均为a,所以2233OB a ==,3AO a ==.1O 是三棱锥A BCD -的内切球的球心,1O 在AO 上,设三棱锥A BCD -的外接球半径为R ,球n O 的半径为n r ,则由22211O B OO OB =+,得222()()33R a R a =-+,得4R a =.所以113412r AO AO =-=-=,又6a =,所以12r =,所以331144ππ332V r ⎛==⋅ ⎝⎭=.故A 不正确;在AO 上取点E,使得1112EO r a ==,则12366AE AO r a =-=-=,即E 为AO 的中点,则球2O 与球1O 切于E ,过E 作与底面BCD 平行的平面,分别与,,AB AC AD 交于111,,B C D ,则球2O 是三棱锥111A B C D -的内切球,因为E 为AO 的中点,所以三棱锥111A B C D -的棱长是三棱锥A BCD -的棱长的一半,所以球2O 的内切球的半径2112r r =,以此类推,所以{}n r是首项为2,公比为12的等比数列,所以11()222n n n r -=⨯=,38r =,22334π4π8S r ⎛⎫==⋅ ⎪ ⎪⎝⎭3π8=,故B 正确;所以34π3n n V r =,3311311(28n n n n V r V r ++===,即数列{}n V 是公比为18的等比数列,故C 正确;24πn n S r =166π4π44n n -=⋅=,12211116π(1+)444n n S S S -+++=+++ 1146114nπ⎛⎫- ⎪⎝⎭=⋅-18π(14n =-,故D 正确.故选:BCD【点睛】关键点睛:利用球与三棱锥内切求出球的半径以及相邻两个球的半径之间的关系是解题关键.三、填空题(本大题共4小题,每小题5分,共20分)13.在522x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为____________.(用数字作答)【答案】80【解析】【分析】由题设可得展开式通项为103152r r rr T C x -+=,进而确定含x 项的r 值,即可求其系数.【详解】由题设,展开式通项为251031552()(2rrr r r r r T C x C x x--+==,所以,令1031r -=有3r =,则x 的系数为335280C =.故答案为:8014.若半径为3的圆经过点()6,8,则其圆心到原点的距离的最小值为______.【答案】7【解析】【分析】确定半径为3且经过点()6,8的圆的圆心的轨迹是以()6,8为圆心,以3为半径的圆,即可求得答案【详解】设圆心坐标为(,)x y3=,即22(6)(8)9x y -+-=,即圆心轨迹是以()6,8为圆心,以3为半径的圆,()6,8到原点距离为10=,故圆22(6)(8)9x y -+-=上的点到原点距离的最小值为1037-=,即半径为3的圆经过点()6,8,则其圆心到原点的距离的最小值为7,故答案为:715.若直线l 与曲线2y x =和2215x y +=都相切,则l 的方程为______.【答案】210x y -+=或210x y ++=【解析】【分析】曲线2y x =转化为y =y =,利用导数几何意义表达出切线斜率,写出切线方程,再利用圆心到直线的距离等于半径,得出方程.【详解】由题意,2y x =,则y =y =设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =,则直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==,两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则当直线l与曲线y =和2215x y +=都相切,方程为210x y -+=;同理可求当直线l与曲线y =和2215x y +=都相切,方程为210x y ++=故答案为:210x y -+=或210x y ++=.【点睛】本题考查求出曲线切线方程,解题的关键是利用导数表示出斜率,进而得出切线的表达式.16.斜率为13的直线l 与椭圆C :221364x y +=交于A ,B两点,且(P 在直线l 的左上方.若60APB ∠=︒,则PAB 的周长是______.【答案】7+【解析】【分析】确定点P 在椭圆上,设()()11223,,,1,y x m A x y B x y =+,联立椭圆方程可得根与系数的关系,化简可得0PA PB k k +=,结合题意可求得PA PB k k ==,由此可求出A ,B 的横坐标,即可求得||,||,||PA PB AB ,即得答案.【详解】由题意知(P满足221634+=,即P 在椭圆C :221364x y +=上,设()()11223,,,1,y x m A x y B x y =+,联立22131364y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得22269360x mx m ++-=,需满足()()226429360m m ∆=-⨯⨯->,即m -<<又因为(P 在直线l的左上方,故103m ⨯-+<,即0m <,即0m -<<;若A 或B的横坐标为,则22269360m m ⨯+⨯+-=,则0m =或m =-,与0m -<<不符,故A 或B的横坐标不可能为为;则212129363,2m x x m x x -+=-=,PA PB k k ==,则1221PA PBy x y xk k-+--+==上式中,分子等于((12211133x m x x mx⎛⎛+--++--⎝⎝(()121223x x m x x m=+-+--(()22936332mm m m-=⋅+----223123120m m=--+-+=,即0PA PBk k+=,又60APB∠=︒,则,PA PB与x轴围成的三角形为正三角形,故PA PBk k==,故直线PA的方程yx-=-,联立221364x y+=,可得(214118130x x+-+-=,其两根为1x,则(1181314x-⋅=,即11314x-=,故()11|||PA x+=-=;同理求得21314x+=,)1||7PB-=,而12||||377AB xx=-=⨯=,故PAB的周长是))||||||771177PA PB AB+++++=+,故答案为:7【点睛】难点点睛:本题考查直线与椭圆的位置关系,求解三角形周长,即要求出直线和椭圆相交的弦长,难点在于计算的复杂以及计算量较大,因此要十分细心.四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.ABC内角,,A B C的对边分别为,,a b c,且sin2sinC C=.(1)求角C ;(2)若c =,ABC 的面积为,求ABC 的周长.【答案】(1)π3C =(2【解析】【分析】(1)由二倍角的正弦公式可求出结果;(2)由面积公式列式求出8ab =,再由余弦定理求出a b +=ABC 的周长.【小问1详解】由sin 2sin C C =,得2sin cos sin C C C =,因为0πC <<,sin 0C >,所以1cos 2C =,所以π3C =.【小问2详解】因为1sin 24ABC S ab C ab === ,所以8ab =,由22222cos ()3c a b ab C a b ab =+-=+-,得27()24a b =+-,得a b +=所以a b c ++=故ABC 18.某研究机构随机抽取了新近上映的某部影片的120名观众,对他们是否喜欢这部影片进行了调查,得到如下数据(单位:人):喜欢不喜欢合计男性403070女性351550合计7545120根据上述信息,解决下列问题:(1)根据小概率值0.10α=的独立性检验,分析观众喜欢该影片与观众的性别是否有关;(2)从不喜欢该影片的观众中采用分层抽样的方法,随机抽取6人.现从6人中随机抽取2人,若所选2名观众中女性人数为X ,求X 的分布列及数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.150.100.050.0100.001x α2.0722.7063.8416.63510.828【答案】(1)不能认为观众喜欢该影片与观众的性别有关(2)分布列见解析;23【解析】【分析】(1)计算2χ的值,与临界值表比较,可得结论;(2)确定随机抽取6人中男性和女性的人数,进而确定随机变量X 的可能取值,求得每个值对应的概率,可得分布列,根据期望公式可求得数学期望.【小问1详解】由题意得()220.1012040153530 2.057 2.70670507545x χ⨯⨯-⨯=≈<=⨯⨯⨯,故根据小概率值0.10α=的独立性检验,不能认为观众喜欢该影片与观众的性别有关;【小问2详解】由题意知从不喜欢该影片的观众中采用分层抽样的方法,随机抽取6人,由于不喜欢该影片的观众中男性与女性的比例为2:1,故随机抽取6人中有4名男性和2名女性,故X 的取值可能为0,1,2,则2110244242222666C C C C C 281(0),(1),(2)C 5C 15C 15P X P X P X =========,故X 的分布列为:X 012P25815115故2812()012515153E X =⨯+⨯+⨯=19.各项均为正数的等比数列{}n a 中,11a =,534a a =.(1)求{}n a 的通项公式;(2)设m 为整数,且对任意的*n ∈N ,1212nnm a a a ≥+++ ,求m 的最小值.【答案】(1)12n n a -=.(2)4.【解析】【分析】(1)根据等比数列的通项公式可求出结果;(2)根据错位相法求出不等式右边之和,由此可得结果.【小问1详解】设公比为q ,由534a a =,得2334a q a =,得24q =,又0n a >,0q >,所以2q =,1112n n n a a q --==.【小问2详解】由(1)知,12n n a -=,故12n n n na -=,设121231222n n n S -=++++ ,则23112322222n n n S =++++ ,所以231111*********n n n n nS S --=+++++- ,所以111212212n n n n S -=--2222n n n =--222n n +=-,所以1242n n n S -+=-.当n 趋近于无穷大时,122n n -+趋近于0,所以n S 趋近于4且4n S <,所以4m ≥,所以m 的最小值为4.20.已知在四棱锥P ABCD -中,4AB =,3BC =,5AD =,90DAB ABC CBP ∠=∠=∠= ,PA CD ⊥,E 为CD 的中点.(1)证明:平面PCD ⊥平面PAE ;(2)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求二面角P CD A --的正弦值.【答案】(1)见解析(2)41【解析】【分析】(1)连接,,AE AC PE ,由已知可得AC AD =,即有AE CD ⊥,再由线面垂直的判定证CD ⊥面PAE ,根据面面垂直的判定即可得结论;(2)首先根据条件作出直线PB 与平面PAE 所成的角,点B 作//BG CD ,分别与AE ,AD 相交于F ,G ,连接PF ,BPF ∠为直线PB 与平面PAE 所成的角,PBA ∠为直线PB 与平面ABCD 所成的角,根据这两个角相等,得到边的关系,最后得到二面角P CD A --的平面角为PEA ∠.【小问1详解】平面PCD 与平面PAE 在△ABC 中4,3,90AB BC ABC ==∠= ,故5AC =,即AC AD =,所以△ADC 为等腰三角形,又E 为CD 中点,故AE CD ⊥,因为PA CD ⊥,且PA AE A = ,,PA AE ⊂面PAE ,所以CD ⊥面PAE ,由CD ⊂面PCD ,故面PCD ⊥面PAE .【小问2详解】CD ⊥ 平面PAE ,PEA ∴∠是二面角P CD A --的平面角,过点B 作//BG CD ,分别与AE ,AD 相交于F ,G ,连接PF ,由(1)知BG ⊥平面PAE ,BPF ∴∠为直线PB 与平面PAE 所成的角,且BG AE ⊥,由90CBP ∠= ,则PB CB ⊥,由90ABC ∠= ,则AB CB ⊥,又PB AB B ⋂=,且,PB AB ⊂面PAB ,则CB ⊥面PAB ,而PA ⊂面PAB ,所以PA CB ⊥,结合PA CD ⊥,CB CD C = ,且,CB CD ⊂面ABCD ,所以PA ⊥面ABCD ,则PBA ∠为直线PB 与平面ABCD 所成的角,有题意知PBA BPF ∠=∠,Rt Rt PBA BPF PA BF ∴≅⇒=V V ,因为90DAB ABC ∠=∠=︒知,//AD BC ,又//BG CD ,BCDG ∴是平行四边形,3GD BC ==,2AG ∴=,因为4AB =,BG AF ⊥,BG ∴==于是25AB BF BG ==,所以5PA =,又CD BG ==CE =,AE =所以4tan 5PA PEA AE ∠==,因为AC AD =,PA ⊥面ABCD ,,AC AD ⊂面ABCD ,则,PA AC PA AD ⊥⊥=,即PC PD =,因为E 为CD 中点,则PE CD ⊥,又因为AE CD ⊥,且AE ⊂平面ACD ,PE ⊂平面PCD ,则二面角P CD A --的正切值即为4tan 5PEA ∠=,则sin 41PEA ∠==,二面角P CD A --的正弦值是41.21.已知双曲线E :()222210,0x y a b a b-=>>()2,2P 在双曲线E 上.(1)求E 的方程;(2)过点()1,0M 的直线l 与双曲线E 交于A ,B 两点(异于点P ).设直线BC 与x 轴垂直且交直线AP 于点C ,若线段BC 的中点为N ,判断:P ,M ,N 三点是否共线?并说明理由.【答案】(1)22124x y -=(2)共线,理由见解析【解析】【分析】(1)得222b a =,再将()2,2P 代入E 的方程可得22,a b ,从而得出E 的方程;(2)联立直线l 和双曲线方程结合韦达定理得出()1212324x x x x +-=,再由点C 坐标得出1221,2x x N x x ⎛⎫- ⎪-⎝⎭,最后由MN k 结合()1212324x x x x +-=可得直线MN 的斜率为定值2,而直线PM 的斜率也是2,从而可得出结论.【小问1详解】ca=223c a =,222b a =,将()2,2P 代入E 的方程可得22441a b-=,即224412a a -=,则222,4a b ==,故E 的方程为22124x y -=.【小问2详解】依题意,可设直线()():12l y k x k =-≠,()11,A x y ,()22,B x y .()1y k x =-与22124x y -=联立,整理得()22222240k x k x k --++=,所以22k ≠,()()()222224240k k k ∆=--+>,解得,24k <且22k ≠,212222k x x k +=-,212242k x x k +=-,所以()1212324x x x x +-=.(*)又()112:222y AP y x x -=-+-,所以C 的坐标为()12212,222y x x x ⎛⎫--+ ⎪-⎝⎭,由()111y k x =-可得,()()()()1212121112222222k x x x x y x x x --+---+=--,从而可得N 的纵坐标()()()()1212211221122N k x x x x y k x x --+-⎡⎤=+-⎢⎥-⎣⎦()()()1212121234222k x x x x x x x -+++-⎡⎤⎣⎦=-,将(*)式代入上式,得1212N x x y x -=-,即1221,2x x N x x ⎛⎫- ⎪-⎝⎭.所以,()()12121212212122MN x x x x k x x x x x x --==----+,将(*)式代入上式,得()()12122122342MN x x k x x x x -==+--,又20221PM MN k k -===-,直线MN 与直线PM 有公共点M ,所以P ,M ,N 三点是否共线.【点睛】关键点睛:在解决问题二时,关键在于利用韦达定理得出()1212324x x x x +-=,建立12,x x 的关系,从而得出点N 的坐标,由此得出2MN k =.22.已知函数()e a axf x x b =+(其中e 是自然对数的底数),曲线()y f x =在点()()22f ,处的切线方程是6636e 64e y x =-,()3ln g x mx x =+.(1)求a ,b ;(2)若()()22f x xg x x -≥在()0,∞+上恒成立,求m 的取值范围.【答案】(1)3,0a b ==(2)1m £【解析】【分析】(1)求出函数的导数,根据导数的几何意义列出方程组,即可求得答案;(2)将()()22f x xg x x -≥整理变形,参变分离,即3ln 13e xx m x+≤-在()0,∞+上恒成立,由此可构造函数3ln 1()e,(0)xx F x x x-+=>,将不等式恒成立转化为求函数最值问题,结合导数求解函数3ln 1()e ,(0)x x F x x x-+=>的最小值,即可求得答案.【小问1详解】由题意知()e a axf x x b =+,故()11e e +1e ()a axa ax a ax x f x axx a ax --=+⋅=',则()12232,)22e (e 2a aa a fb a f -==⋅'+,因为曲线()y f x =在点()()22f ,处的切线方程是6636e 64e y x =-,故12626632e 36e 2e 36e 264e a a a a a b -⎧⋅=⎨+=⨯-⎩,即126262e 12e 2e 8e a a a a a b -⎧⋅=⎨+=⎩,由1262120,0e e a a a a -⋅=>∴>,令12()2e t t h t a -=⋅,则12()2e t t h t a -=⋅为(0,)+∞上的增函数,而626e (3e )3212h =⋅=,即3a =为1261e 2e 2a a a -⋅=的唯一解,将3a =代入262e 8e a a b +=可得0b =,即3,0a b ==;【小问2详解】由(1)可知()()33e 3ln ,xf x xg x mx x ==+,故()()22f x xg x x -≥在()0,∞+上恒成立,即3322e 3ln )(0x x x mx x x -+-≥在()0,∞+上恒成立,即3e 3ln 10x x mx x ---≥在()0,∞+上恒成立,即3ln 13exx m x+≤-在()0,∞+上恒成立,令3ln 1()e ,(0)xx F x x x -+=>,则23322ln 3e ln ()3e x xx x x F x x x+=+'=,则min 3()m F x ≤;令23()3e ln ,(0)x x x x x ϕ+=>,32310()6ee 9xx x x x xϕ++=>',故23()3e ln x x x x ϕ+=在()0,∞+上单调递增,311()310,(1)3e 03333e e eln 3ln ϕϕ=+-<-==<>,故存在01(,1)3x ∈,使得0()0x ϕ=,且00x x <<时,0()()0x x ϕϕ<=,则()0F x '<,()F x 在0(0,)x 单调递减,0x x >时,0()()0x x ϕϕ>=,则()0F x '>,()F x 在0(,)x +∞单调递增,故0(0,),()()x F x F x ∀∈+∞≥,因为0()0x ϕ=,即033220000013eln 0,3e ln lnx x x x x x x +==-=∴,即001ln 300001113eln (ln )e x x x x x x =⋅=,令()e ,(0),()(1)e 0x x G x x x G x x '=>=+>,即()e x G x x =在()0,∞+上单调递增,而01ln 30013e(ln )e x x x x =⋅,即001(3)(ln G x G x =,且01(,1)3x ∈,01ln 0x >,故0300000113ln,e ,ln 3x x x x x x =∴==-,故03000000ln 1131()e3x x x F x x x x +-==-=-,即min ()3F x =,故33,1m m ≤∴≤【点睛】难点点睛:本题综合考查了导数的应用问题,解答时要熟练掌握导数的相关知识并能灵活应用,解答的难点在于解决不等式恒成立问题时,要根据不等式的变形分离参数,从而构造函数,转化为函数的最值问题,在求解函数的最值过程中,要注意隐零点的问题.。

云南师大附中2017-2018学年高考适应性月考卷(一)理科数学_Word版含答案

云南师大附中2017-2018学年高考适应性月考卷(一)理科数学_Word版含答案

理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|log 4}A x x =<,集合{|||2}B x x =≤,则A B =I ( ) A .(0,2] B .[0,2] C .[2,2]- D .(2,2)-2.已知复数z 在复平面内对应的点为(1,1)-,则复数32z z ++的模为( ) A .10 B .102C .2D .2 3.已知||4cos 8a π=r ,||2sin 8b π=r ,2a b •=-r r,则a r 与b r 的夹角为( )A .3πB .4πC .34πD .23π4.圆22420x y x y a ++-+=截直线50x y ++=所得弦的长度为2,则实数a =( ) A .4 B .-2 C .-4 D .25.某程序框图如图1所示,该程序运行后输出的S 的值是( ) A .3024 B .1007 C .2018 D .20166.给出下列四个结论:①已知直线1:10l ax y ++=,22:0l x ay a ++=,则12//l l 的充要条件为1a=±;②函数()3sin cos f x x x ωω=+满足()()2f x f x π+=-,则函数()f x 的一个对称中心为(,0)6π; ③已知平面α和两条不同的直线,a b ,满足b α⊂,//a b ,则//a α; ④函数1()ln f x x x=+的单调区间为(0,1)(1,)+∞U . 其中正确命题的个数为( ) A .4 B .3 C .2 D .0 7.已知22sin 3α=,1cos()3αβ+=-,且,(0,)2παβ∈,则sin()αβ-的值等于( ) A .12-B .12C .13- D .102278.四面体ABCD 的四个顶点都在球O 的球面上,2AB AD CD ===,22BD =,BD CD ⊥,平面ABD ⊥平面BCD ,则球O 的体积为( )A .43πB .3π C .823π D .2π 9.若,x y 满足条件3560231500x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,当且仅当3x y ==时,z ax y =+取得最大值,则实数a 的取值范围为( )A .23(,)35-B .32(,)(,)53-∞-+∞UC .32(,)53-D .23(,)(,)35-∞-+∞U 10.某三棱锥的三视图如图2所示,则该三棱锥的表面积为( )A .438219++B .438419++C .838419++D .838219++11.椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[,]124ππα∈,则该椭圆离心率的最大值为( )A .3.2 C .2D .1 12.已知曲线x ay e +=与2(1)y x =-恰好存在两条公切线,则实数a 的取值范围为( )A .(,2ln 23)-∞+B .(,2ln 23)-∞-C .(2ln 23,)-+∞D .(2ln 23,)++∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设24cos n xdx π=⎰,则二项式1()n x x-的展开式的常数项是 .14. ()f x 是定义在R 上的函数,且满足1(2)()f x f x +=-,当23x ≤≤时,()f x x =,则11()2f -= . 15.已知曲线221y x b a -=(0a b •≠且a b ≠)与直线20x y +-=相交于,P Q 两点,且0OP OQ •=u u u r u u u r (O 为原点),则11b a-的值为 .16.已知n S 为数列{}n a 的前n 项和,12,2(1)n n a S n a ==+,若存在唯一的正整数n 使得不等式2220n n a ta t --≤成立,则实数t 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)已知ABC ∆是斜三角形,内角,,A B C 所对的边分别为,,a b c ,且sin cos c A C =. (1)求角C ;(2)若c =sin sin()5sin 2C B A A +-=,求ABC ∆的面积.18. (本小题满分12分)2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.(1)先求出,,,x y p q的值,再将如图3所示的频率分布直方图绘制完整;(2)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?参考数据:参考公式:22()()()()()n ad bcka b c d a c b d-=++++,其中n a b c d=+++.(3)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在(2000,2500]和(2500,3000]两组所抽出的8人中再随机抽取2人各奖励1000元现金,求(2000,2500]组获得现金将的数学期望.19. (本小题满分12分)如图4,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=o,,E F 分别是,BC PC 的中点.(1)证明:AE ⊥平面PAD ;(2)取2AB =,若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为6,求二面角E AF C --的余弦值.20. (本小题满分12分)已知O 为坐标原点,抛物线2:(0)C y nx n =>在第一象限内的点(2,)P t 到焦点的距离为52,C 在点P 处的切线交x 轴于点Q ,直线1l 经过点Q 且垂直于x 轴.(1)求线段OQ 的长;(2)设不经过点P 和Q 的动直线2:l x my b =+交C 交点A 和B ,交1l 于点E ,若直线,PA PB 的斜率依次成等差数列,试问:2l 是否过定点?请说明理由.21. (本小题满分12分)函数32()f x mx x n =++,()ln g x a x =.(1)若()f x 在点(1,(1))f 处的切线方程为10x y +-=,求()f x 的表达式; (2)若对任意[1,]x e ∈,都有2()(2)g x x a x ≥-++恒成立,求实数a 的取值范围;(3)在(1)的条件下,设(),1()(),1f x x F x g x x <⎧=⎨≥⎩,对任意给定的正实数a ,曲线()y F x =上是否存在两点,P Q ,使得POQ ∆是以O (O 为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,圆O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交圆O于点N,过点N的切线交CA的延长线于点P,连接,BC CN.(1)求证:BCN PMN∠=∠;(2)若60BCN∠=o,1PM=,求OM的长.23. (本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,已知曲线:2cosCρθ=,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线1C,又已知直线cos3:3sin3x tly tππ⎧=⎪⎪⎨⎪=⎪⎩(t是参数),且直线l与曲线1C交于A,B两点.(1)求曲线1C的直角坐标方程,并说明它是什么曲线;(2)设定点3)P,求11||||PA PB+.24. (本小题满分10分)选修4-5:不等式选讲已知函数()|1|f x x=+.(1)求不等式()1(2)f x f x+<的解集M;(2)设,a b M∈,证明:()()()f ab f a f b>--.云南师大附中2017-2018学年高考适应性月考卷(一)理科数学参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.,,,故选A.2.,则,模为,故选B.3.设与的夹角为,则,,又,∴,故选D.4.圆的标准方程为(x+2)2+(y−1)2=5−a,r2=5−a,则圆心(−2,1)到直线x+y+5=0的距离为,由12+(2)2=5−a,得a=−4,故选C.5.该程序框图表示的是通项为的数列前2016项和,2+2016=3024,故选A.6.对于①,由l1∥l2得∴,①错;对于②,由得,∴的周期为,,∴,时,②错;对于③,当时,结论不成立,③错;对于④,,的定义域为(0,),,由得,由得,∴的单调区间为(0,1),(1,),④错.故选D.7.∈,∴∈(0,π).∵sin=,∴cos2α=1−2=−,∴sin2α==,而α,β∈,∴α+β∈(0,π),∴sin(α+β)==,∴=sin=sin2αcos(α+β)−cos2αsin(α+β)=×−×=,故选D.8.根据题意,AB=AD=2,BD=2,则∠BAD=.在Rt△BCD中,BD=2,CD=2,则BC=2,又因为平面ABD⊥平面BCD,所以球心就是BC的中点,半径为r=,所以球的体积为:,故选A.9.作出约束条件表示的平面区域如图1所示.由z=ax+y得y=−ax+z,∵z=ax+y仅在(3,3)处取得最大值,∴−<−a<,解得−<a<,故选C.10.由三视图可知该三棱锥底面是边长为4的正三角形,面积为,两个侧面是全等的三角形,三边分别为,,4,面积之和为,另一个侧面为等腰三角形,面积是×4×4=8,故选B.11.由题知AF⊥BF,根据椭圆的对称性,AF′⊥BF′(其中F′是椭圆的左焦点),因此四边形AFBF′是矩形,于是,|AB|=|FF′|=2c,|AF|=2c sin,|AF′|=2c cos,根据椭圆的定义,|AF|+|AF′|=2a,∴2c sin+2c cos=2a,∴椭圆离心率e===,而∈,∴+,∴sin,故e的最大值为,故选A.12.的导数为的导数为设与曲线相切的切点为与曲线相切的切点为(s,t),则有公共切线斜率为又,即有,即为,即有则有即为令则,当时,递减,当时,递增,即有处取得极大值,也为最大值,且为由恰好存在两条公切线,即s有两解,可得a的取值范围是,故选B.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.∵,设第r项为常数项,则,令,可得,∴。

2019届云南师范大学附属中学高考适应性月考卷一理科数学试卷【含答案及解析】

2019届云南师范大学附属中学高考适应性月考卷一理科数学试卷【含答案及解析】

2019届云南师范大学附属中学高考适应性月考卷一理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 设集合A={0 , 1 , 2 , 4} , B=,则=()A .{1 , 2 , 3 , 4}___________B .{2 , 3 , 4}_________C .{2 ,4}_________D .{}2. 若复数的共轭复数是,其中 i 为虚数单位,则点( a , b )为()A .(一1 . 2 )B .(-2 , 1 )C .( 1 ,-2 )D .( 2 ,一1 )3. 已知函数,若=-1 ,则实数 a 的值为()A、2___________B、±1___________ C . 1___________ D、一14. “0≤m≤l”是“函数有零点”的()A.充分不必要条件 B.必要不充分条件C .充分必要条件____________________D .既不充分也不必要条件5. 将某正方体工件进行切削,把它加工成一个体积尽可能大的新工件,新工件的三视图如图1所示,则原工件材料的利用率为〔材料的利用率 = 〕()A、___________B、___________C、___________D、6. 在△ABC中,, AB =2 , AC=1 , E , F为BC的三等分点,则()A、___________B、___________C、___________D、7. 已知,则()A、________B、C、________D、8. 设实数 x , y 满足则的取值范围是()A、___________B、___________C、___________D、9. 定义 min{a , b}= ,在区域任意取一点P ( x ,y ),则 x , y 满足 min | x+y+4 , x 2 +x+2y | = x 2 +x+2y 的概率为()A、___________B、___________ C 、___________ D、10. 《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图2 ,在鳖臑 PABC中,PA ⊥平面ABC ,AB⊥BC ,且AP=AC=1 ,过A点分别作AE 1⊥ PB于E、AF⊥PC于F ,连接EF当△AEF的面积最大时,t an ∠BPC的值是()A .___________B .___________C .___________D .11. 设定义在( 0 ,)上的函数f ( x ),其导数函数为,若恒成立,则()A._________B.C._________D .12. 设直线与抛物线 x 2 =4y相交于A , B两点,与圆C:( r>0 )相切于点M ,且M为线段AB的中点,若这样的直线恰有4条,则r 的取值范围是()A .( 1 , 3 )B .( 1 , 4 )___________C .( 2 , 3 ) _________D .( 2 , 4 )二、填空题13. 如图,这是一个把k进掉数a (共有n位)化为十进制数b的程序框图,执行该程序框图,若输人的 k , a , n 分别为2 , 110011 , 6 ,则抢出的b=________________________ .14. 若函数在上存在单调递增区间,则 a 的取值范围是___________ .15. 设椭圆 E :的右顶点为 A 、右焦点为F , B为椭圆E在第二象限上的点,直线BO交椭圆E于点C ,若直线BF平分线段AC ,则椭圆E的离心率是______________ .16. 设则不大于S的最大整数[S]等于___________三、解答题17. (本小题满分12分)已知数列{a n }的首项al=1 ,.(1)证明:数列是等比数列;(2)设,求数列的前 n 项和.18. (本小题满分12分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙公司和丙公司面试的概率均为 p ,,且三个公司是否让其面试是相互独立的.记为该毕业生得到面试的公司个数,若P (=0 )=.(1)求 p 的值:(2)求随机变量的分布列及数学期望.19. (本小题满分12分)如图,在三棱锥S -ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC , SA=SC=, M为AB的中点.(1)证明:AC⊥SB;(2)求二面角S一CM-A的余弦值.20. (本小题满分12分)已知椭圆C:的离心率为,连接椭圆四个顶点形成的四边形面积为4 .(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M,N,设P为椭圆上一点,且O为坐标原点,当时,求 t 的取值范围.21. (本小题满分12分)已知f ( x )=,曲线在点( 1 , f ( 1 ))处的切线斜率为2 .(1)求f(x)的单调区间;( 2 )若2 f(x)一(k+1) x +k>0(k Z)对任意 x >1都成立,求k的最大值22. (本小题满分10分)【选修4一1:几何证明选讲】如图,已知圆的两条弦AB , CD ,延长AB , CD交于圆外一点E ,过E作AD的平行线交CB的延长线于F ,过点F作圆的切线FG , G为切点.求证:(1)△EFC∽△BFE;(2) FG=FE .23. (本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系 xO y中,已知曲线C:为参数),以平面直角坐标系 x O y 的原点O为极点, x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线 l : =6 .(1)在曲线C上求一点P,使点 P 到直线 l 的距离最大,并求出此最大值;(2)过点M(一1,0)且与直线 l 平行的直线 l 1 交C于A,B两点,求点M到A,B 两点的距离之积.24. (本小题满分10分)【选修4-5:不等式选讲】设f ( x )=| x +2|+|2 x -1|- m .(1)当 m =5时.解不等式f(x)≥0;(2 )若f ( x )≥ ,对任意恒成立,求 m 的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

2019届云南师大附中高三高考适应性月考数学(理)试题Word版含解析

2019届云南师大附中高三高考适应性月考数学(理)试题Word版含解析

2019届云南师大附中高三高考适应性月考数学(理)试题第I卷(共60分)、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.f x —4 |1.设集合A= {0,1, 2, 4} , B= x R| 0,则A] B =( )I X—2 JA. {1, 2, 3 , 4}B. {2, 3, 4}C. {2, 4}D. { x|1:::X ^4}【答案】C【解析】试题分析:AflB ={0, 1 2, 4}P]{x1 :::xW4} ={2 , 4},故选 C.考点:集合的交集运算1 _2i -2. 若复数z 的共轭复数是z = a • bi(a,b R),其中i为虚数单位,则点(a , 3为()iA. (一1.2 )B. (- 2, 1)C. (1 , —2)D. (2, 一1)【答案】B【解析】试题分析:•/ z = 1― = _2 —i z = -2 • i ,故选 B.i考点:复数的计算•—e x ° x 兰03. 已知函数f(x),若f (a)=—1,则实数a的值为()[x-2,x >0A、2 B± 1 C. 1 D 一1【答案】C【解析】试题分析: a< 0, —|a<0 ,I e a»二-1 a =1=a =1 ,故选C.4.“ 0< m< l ”是“函数f (x) = cosx • m -1 有零点”的( )考点:函数值4.“ 0< m< l ”是“函数f (x) = cosx • m -1 有零点”的( )C. 充分必要条件D.既不充分也不必要条件【答案】A 【解析】试题分析:T f(x) =0= cosx =1-m ,由 o w m W 1,得 C K 1-m W 1,且-1<cosx w i ,所以函数f (x) =cosx m -1 有零点.反之,函数 f (x) =cosx m 一1 有零点,只需 |m 一1|<1 二 0X m <2,故选 A. 考点:充分必要条件•5.将某正方体工件进行切削,把它加工成一个体积尽可能大的新工件,新工件的三视图如图 1所示,则原【答案】C 【解析】试题分析:如图1,不妨设正方体的棱长为1,则切削部分为三棱锥A-AB 1D 1,其体积为-,又正方体的体积6为1,则剩余部分(新工件)的体积为 5,故选C.6考点:三视图A.充分不必要条件B. 必要不充分条件工件材料的利用率为〔材料的利用率新工件的体积 原工件的体积7 4A»圉I|AB A C ^|A B - AC| ,知 _ AC ,以 AB , AC 所在直线分别为 x 轴、y 轴建立平面直角坐标系,则 A(0, 0), B(2, 0), C(0, 1),于是 E -考点:诱导公式•x - y -2 _ 08.设实数x,y 满足<x +2y —5兰0则 ky —2 兰0A r 1 ©A 、[―,]3 3【答案】D 【解析】=1, k OB =2, k O c 二丄,可见—-,2,结合双勾函数的图象,得 3 2 x _3°2, 130,故选D6.在厶ABC 中,| AB AC|=|AB | , AB =2, AC = 1 , E, F 为BC 的三等分点,则 忑前=()8 9 【答案】B A 、 10~9 C、 25 "9D 269【解析】盛孔 4,l=8 考点:向量的运算• 2 10 9肓,故选B.•.兀 3 .兀 7.已知 sin( ) ,则 sin(— ■ 2-:匚) 6 5 小 7 25 【答案】 【解析】 JI 6 9 25 C、 试题分析:由sin 卜2町 1625+2町巧一寺-町卜。

云南师范大学附属中学2019届高考适应性月考(理)数学试题 Word版含答案

云南师范大学附属中学2019届高考适应性月考(理)数学试题 Word版含答案

云南师范大学附属中学2019届高考适应性月考(理)数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|4}M x x =≤,2{|log 1}N x x =≤,则M N =( )A .[2,2]-B .{2}C .(0,2]D .(,2]-∞2.设i 是虚数单位,复数2a ii +-是纯虚数,则实数a=( ) A .-2 B .2 C .12- D .124.已知ABC ∆中,||6BC =,16AB AC ∙=,D 为边BC 的中点,则||AD =( ) A .3 B .4 C .5 D .65.若函数()sin f x x x ωω=,0ω>,x R ∈,又1()2f x =,2()0f x =,且12||x x -的最小值为32π,则ω的值为( ) A .13 B .23 C .43D .26.已知变量x ,y 满足约束条件1330x y x y x +≥⎧⎪+≤⎨⎪≥⎩,则目标函数2z x y =+的最小值是( )A .4B .3C .2D .17.执行如图所示的程序框图,则输出的s 的值为( ) A .2 B .3 C .4 D .58.一几何体的三视图如图所示,则该几何体的表面积为( ) A .20 B .24 C .16 D.16+9.数列{}n a 是等差数列,若981a a <-,且它的前n 项和n S 有最大值,那么当n S 取得最小正值时,n 等于( ) A .17 B .16 C .15 D .1410.已知圆C :22210x y x +--=,直线:34120l x y -+=,圆C 上任意一点P 到直线l 的距离小于2的概率为( )A .16B .13C .12D .1411.过双曲线2213y x -=的右焦点作直线l 交双曲线于A ,B 两点,则满足||6AB =的直线l 有( )条A .4B .3C .2D .112.已知函数11,2()2ln ,2x x f x x x ⎧+≤⎪=⎨⎪>⎩,方程()0f x ax -=恰有3个不同实根,则实数a 的取值范围是( ) A .ln 21(,)2e B .1(0,)2 C .1(0,)e D .11(,)2e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数()f x 是定义在R 上的周期为3的偶函数,当3[0,]2x ∈时,()1f x x =+,则5()2f = . 14.正方体1111ABCD A BC D -的棱长为3,点P 是CD 上一点,且1DP =,过点11,,A C P 三点的平面角底面ABCD 于PQ ,点Q 在直线BC 上,则PQ= .15. ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积22()S b c a =+-,则sin A =.16.点P 为双曲线22221(0,0)x y a b a b-=>>右支上的一点,其右焦点为2F ,若直线2PF 的斜率为M 为线段2PF 的中点,且22||||OF F M =,则该双曲线的离心率为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知向量(2cos2xa ω=,(3cos,sin )2xb x ωω=,0ω>,设函数()3f x a b =∙-的部分图象如图所示,A 为图象的最低点,B ,C 为图象与x 轴的交点,且ABC∆为等边三角形,其高为(1)求ω的值及函数()f x 的值域;(2)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.18. (本小题满分12分)某学生参加3个项目的体能测试,若该生第一个项目测试过关的概率为45,第二个项目、第三个项目测试过关的概率分别为x ,y (x y >),且不同项目是否能够测试过关相互独立,记ξ为该生测试过关的项目数,其分布列如下表所示:(1)求该生至少有2个项目测试过关的概率; (2)求ξ的数学期望()E ξ.19. (本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 是菱形,060BAD ∠=,侧面SAB ⊥底面ABCD ,并且2SA SB AB ===,F 为SD 的中点. (1)求三棱锥S FAC -的体积;(2)求直线BD 与平面FAC 所成角的正弦值.20.(本小题满分12分)如图,过椭圆2222:1(0)x y a b a bΓ+=>>内一点(0,1)A 的动直线l 与椭圆相交于M ,N 两点,当l 平行于x 轴和垂直于x 轴时,l 被椭圆Γ所截得的线段长均为(1)求椭圆Γ的方程;(2)在平面直角坐标系中,是否存在与点A 不同的定点B ,使得对任意过点(0,1)A 的动直线l 都满足||||||||BM AN AM BN ∙=∙?若存在,求出定点B 的坐标,若不存在,请说明理由.21. (本小题满分12分) 设函数ln ()12x af x x x=++,()()g x f x =1x =是函数()g x 的极值点. (1)求实数a 的值; (2)当0x >且1x ≠时,ln ()1x nf x x x>+-恒成立,求整数n 的最大值.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,圆C的参数方程为53x t y t⎧=-+⎪⎨=⎪⎩,(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为cos()4πρθ+=A ,B 两点的极坐标分别为(2,),(2,)2A B ππ.(1)求圆C 的普通方程和直线l 的直角坐标方程; (2)点P 是圆C 上任一点,求PAB ∆面积的最小值.23. (本小题满分10分)【选修4-5:不等式选讲】 已知函数()|2|f x x =-.(1)解不等式:(1)(2)4f x f x +++<;(2)已知2a >,求证:,()()2x R f ax af x ∀∈+>恒成立.云南师范大学附属中学2019届高考适应性月考(理)数学试题参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.[22](02](02]M N M N =-==,,,,∴,,故选C .2.i (i)(2i)(21)(2)i 2i 55a a a a +++-++==-是纯虚数,210a -=∴,12a =∴,故选D .4.222,()4AB AC AD AB AC AD +=+=∵∴,即22242AD AB AC AB AC =++=2()4AB AC AB AC -+=24100CB AB AC +=,||5AD =∴,故选C .5.因为12π()2sin ||3f x x x x ω⎛⎫=-- ⎪⎝⎭,的最小值为3π42T =,所以6πT =,所以13ω=,故选A . 6.作出可行域如图1中阴影部分,目标函数过点(01),时,最小值为1,故选D .7.由程序框图知,输出的结果为23log 3log 4log (1)k s k =⨯⨯⨯+…2log (1)k =+,当7k =时,3s =,故选B .8.该几何体为一个正方体截去三棱台111AEF A B D -,如图2所示,截面图形为等腰梯形11B D FE ,111EF B D B E ==,梯形的高h =,所以111922B D FE S =⨯=梯形, 所以该几何体的表面积为20,故选A .9.∵数列{}n a 的前n 项和有最大值,∴数列{}n a 为递减数列,又981a a <-, 8900a a ><∴,且890a a +<,又115116158168915()16()1508()022a a a a S a S a a++==>==+<,,故当15n =时,n S 取得最小正值,故选C .10.圆C :22(1)2x y -+=,圆心(10),,半径r =3,所以圆上到直线距离小于2的点构成的弧所对弦的弦心距是1,设此弧所对圆心角为α,则cos2α==,所以π24α=,即π2α=,α所对的弧长为π2=,所以所求概率为14=,故选D .11.当直线l 的倾斜角为90︒时,||6AB =;当直线l 的倾斜角为0︒时,||26AB =<.故当直线l适当倾斜时,还可作出两条直线使得||6AB =,故选B .12.当直线y ax =与曲线ln y x =相切时,设切点为00(ln )x x ,,切线斜率为01k x =,则切线方程为0001ln ()y x x x x -=-,切线过点(00),,00ln 1e >2x x -=-=∴,,此时1ea =;当直线y ax =过点(2ln 2),时,ln 22a =.结合图象知ln 212e a ⎛⎫∈⎪⎝⎭,,故选A . 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.55111331222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 14.如图3,设PQ 与AD 交于点M ,则△DPM ∽△CPQ ,12DP PM CP PQ ==,2PQ PM =∴,又△DPM∽△DCA ,1133DP PM PM CA DC CA ===∴,∴PQ =∴.15.由余弦定理222222cos 2cos 2b c a A b c a bc A bc+-=+-=,∴,22222()22(cos 1)S b c a b c a bc bc A =+-=+-+=+∵,又1sin 2S bc A =,12(cos 1)sin 2bc A bc A +=∴,1cos 1sin 4A A +=∴,即22118cos sin 1sin sin 11sin 4417A A A A A ⎛⎫=-+-== ⎪⎝⎭,∴,∴.16.由题意得:222||||120||OF F M c OF M OM ==∠=︒,,∴,设左焦点为1F ,连接1PF ,则OM 为12PF F △的中位线,1||3P F c =∴,又2||2P F c=,由双曲线定义,得12||||21)c PF PF a c a e a -=====,,∴ 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)解:(Ⅰ)由已知可得2π()36cos 33cos 23xf x a b x x x x ωωωωω⎛⎫=-=+-=+=+ ⎪⎝⎭,由正三角形ABC 的高为,可得4BC =,所以函数()f x 的最小正周期428T =⨯=,即2π8ω=,得π4ω=,…………………………………………………………………………(4分)故ππ()43x f x ⎛⎫=+⎪⎝⎭, 所以函数()f x的值域为[-.…………………………………………(6分)(Ⅱ)因为0()f x =,由(Ⅰ)有00ππ()43x f x ⎛⎫=+ ⎪⎝⎭,即0ππ4sin 435x⎛⎫+= ⎪⎝⎭,由010233x ⎛⎫∈- ⎪⎝⎭,,得0ππππ4322x ⎛⎫+∈- ⎪⎝⎭,,所以0ππ3cos 435x ⎛⎫+== ⎪⎝⎭,故000ππππππ(1)443434x x f x ⎡⎤⎛⎫⎛⎫+=++=++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦00ππππsin cos 4343x x ⎤⎛⎫⎛⎫=+++⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦4355⎛⎫=+= ⎪⎝⎭. …………………………………………………………(12分)18.(本小题满分12分)解:(Ⅰ)设事件i A 表示“该生第i 个项目测试过关”,123i =,,, 依题意,1234()()()5P A P A x P A y ===,,,因为1(0)(1)(1)54(3)5P x y P xy ξξ⎧==--⎪⎪⎨⎪==⎪⎩,,所以16(1)(1)51254245125x y xy ⎧--=⎪⎪⎨⎪=⎪⎩,,即1,625x y xy +=⎧⎪⎨=⎪⎩且x y >, 解得3525x y ⎧=⎪⎪⎨⎪=⎪⎩,, ……………………………………………………………………(4分)于是,123123123(1)()()()a P P A A A P A A A P A A A ξ===++423133122555555555=⨯⨯+⨯⨯+⨯⨯37125=,63724581(0)(1)(3)1125125125125b P P P ξξξ=-=-=-==---=, 故该生至少有2个项目测试过关的概率:582482(23)125125125P ξξ===+=或. ……………………………………………(8分) (Ⅱ)9()0(0)1(1)2(2)3(3)5E P P P P ξξξξξ=⨯=+⨯=+⨯=+⨯==.…………………………………………………………………………(12分)19.(本小题满分12分)解:(Ⅰ)如图4,取AB 的中点E ,连接SE ,ED ,过F 作FG SE ∥交ED 于G , 因为平面SAB ABCD ⊥平面,并且2SA SB AB ===,SE ABCD ⊥∴平面,FG ACD ⊥∴平面,又ABCD 是菱形,60BAD ∠=︒,SE且12FG SE ==122sin1202ACD S =︒=△ ∴三棱锥S −FAC 的体积S FAC S ACD F ACD V V V ---=-三棱锥三棱锥三棱锥1111332232S ACD V -===三棱锥. …………………………………………(6分)(Ⅱ)连接AC ,BD 交于点O ,取AB 的中点E ,连接SE ,则BD AC ⊥,SE AB ⊥,以O 为原点,AC ,BD 为轴建系如图5所示,设直线BD 与平面FAC 所成角为α,则(00)A ,,00)C ,,(010)B -,,,(010)D ,,,12S ⎛- ⎝,14F ⎛ ⎝⎭,,所以,314AF ⎛= ⎝⎭,,00)AC =,, 设平面FAC 的法向量为(1)n x y =,,,33104AF n x y =+=,230AC n x ==,得(01)n =-,, ……………………………………………………………(8分) 又(020)BD =,,,………………………………………………………………(10分)所以4sin |cos ,|n BD α=〈〉=,故直线BD 与平面FAC …………………………(12分) (说明:以E 点为原点,AB ,ED ,ES 为x ,y ,z 轴建系,可参照给分.)20.(本小题满分12分)解:(Ⅰ)由已知得b =1)在椭圆上, 所以22211a b +=,解得2a =, 所以椭圆Γ的方程为22142x y +=. …………………………………………(4分) (Ⅱ)当直线l 平行于x 轴时,则存在y 轴上的点B ,使||||||||BM AN AM BN =,设0(0)B y ,;当直线l 垂直于x轴时,(0(0M N ,,若使||||||||BM AN AM BN =,则||||||||BM AM BN AN=,=,解得01y =或02y =.所以,若存在与点A 不同的定点B 满足条件,则点B 的坐标只可能是(02),.………………………………………………………………………………(6分)下面证明:对任意直线l ,都有||||||||BM AN AM BN =,即||||||||BM AM BN AN =. 当直线l 的斜率不存在时,由上可知,结论成立;当直线l 的斜率存在时,可设直线l 的方程为1y kx =+.设M ,N 的坐标分别为1122()()x y x y ,,,,由221421x y y kx ⎧+=⎪⎨⎪=+⎩,得22(21)420k x kx ++-=, 其判别式22(4)8(21)0k k ∆=++>,所以,121222422121k x x x x k k +=-=-++,, 因此,121212112x x k x x x x ++==. 易知点N 关于y 轴对称的点N '的坐标为22()x y -,,又11111211BM y kx k k x x x --===-, 2222212111BN y kx k k k x x x x '--===-+=---, 所以BM BN k k '=,即B M N ',,三点共线,所以12||||||||||||||||x BM BM AM x BN BN AN ==='. 故存在与点A 不同的定点(02)B ,,使得||||||||BM AN AM BN =.…………………………………………………………………………(12分)21.(本小题满分12分)解:(Ⅰ)221(1)ln ()()(1)2x x a x g x f x x x +-''=+=-+, 依题意,(1)0g '=,据此,221(11)ln110(11)21a ⨯+--+=+⨯,解得2a =. …………………………(4分) (Ⅱ)由(Ⅰ)可知ln 1()1x f x x x =++, 由ln ()1x n f x x x >+-,得ln 1ln 11x x n x x x x +>++-, 于是22ln ln 11(2ln 1)111x x x x n x x x x x x<+-=-++--对0x >且1x ≠恒成立, 令2()2ln 1h x x x x =-+,则()2ln 22h x x x '=+-,再次求导2()20h x x ''=-<,①若1x >,可知()h x '在区间(1)+∞,上递减,有()(1)0h x h ''<=,可知()h x 在区间(1)+∞,上递减,有()(1)0h x h <=, 而2101x <-, 则21()01h x x >-, 即221(2ln 1)01x x x x-+>-; ②若01x <<,可知()h x '在区间(01),上递增,有()(1)0h x h ''<=, 可知()h x 在区间(01),上递减,有()(1)0h x h >=,而2101x >-, 则21()01h x x >-,即221(2ln 1)01x x x x-+>-. 故当221(2ln 1)1n x x x x <-+-恒成立时,只需(0]n ∈-∞,,又n 为整数, 所以,n 的最大值是0.………………………………………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)由53x t y t ⎧=-⎪⎨=⎪⎩,,得53x t y t ⎧+=⎪⎨-⎪⎩,,消去参数t ,得22(5)(3)2x y ++-=,所以圆C 的普通方程为22(5)(3)2x y ++-=.由πcos 4ρθ⎛⎫+= ⎪⎝⎭,cos sin θθ=, 即cos sin 2ρθρθ-=-,换成直角坐标系为20x y -+=,所以直线l 的直角坐标方程为20x y -+=.……………………………………(5分) (Ⅱ)π2(2π)2A B ⎛⎫ ⎪⎝⎭∵,,,化为直角坐标为(02)(20)A B -,,,在直线l 上,并且||AB =设P点的坐标为(53)t t -,,则P 点到直线l的距离为d=,min d =∴, 所以PAB △面积的最小值是1222242S ==. …………………………(10分)(说明:用几何法和点到直线的距离公式求d =) 23.(本小题满分10分)【选修4−5:不等式选讲】 (Ⅰ)解:(1)(2)4f x f x +++<,即|1|||4x x -+<, ①当0x ≤时,不等式为14x x --<,即32x >-,302x -<∴≤是不等式的解; ②当01x <≤时,不等式为14x x -+<,即14<恒成立, 01x <∴≤是不等式的解;③当1x >时,不等式为14x x -+<,即52x <,512x <<∴是不等式的解.综上所述,不等式的解集为3522⎛⎫- ⎪⎝⎭,.…………………………………………(5分) (Ⅱ)证明:2a >∵,()()|2||2|f ax af x ax a x +=-+-∴|2||2|ax ax a =-+-|2||2|ax a ax =-+-≥|22||22|2ax a ax a -+-=->, ()()2x f ax af x ∀∈+>R ∴,恒成立. …………………………………………(10分)。

云南省师范大学附属中学高三数学上学期适应性考试试题(一)理(扫描版)

云南省师范大学附属中学高三数学上学期适应性考试试题(一)理(扫描版)

云南省师范大学附属中学2017届高三数学上学期适应性考试月考试题(一)理(扫描版)云南师大附中2017届高考适应性月考卷(一)理科数学参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B D C A D D A C B A B 【解析】1.,,,故选A.2.,则,模为,故选B.3.设与的夹角为,则,,又,∴,故选D.4.圆的标准方程为(x+2)2+(y−1)2=5−a,r2=5−a,则圆心(−2,1)到直线x+y+5=0的距离为,由12+(2)2=5−a,得a=−4,故选C.5.该程序框图表示的是通项为的数列前2016项和,2+2016=3024,故选A.6.对于①,由l1∥l2得∴,①错;对于②,由得,∴的周期为,,∴,时,②错;对于③,当时,结论不成立,③错;对于④,,的定义域为(0,),,由得,由得,∴的单调区间为(0,1),(1,),④错.故选D.7.∈,∴∈(0,π).∵sin=,∴cos2α=1−2=−,∴sin2α==,而α,β∈,∴α+β∈(0,π),∴sin(α+β)= =,∴=sin[2α−(α+β)]=sin2αcos(α+β)−cos2αsin(α+β)=×−×=,故选D.8.根据题意,AB=AD=2,BD=2,则∠BAD=.在Rt△BCD中,BD=2,CD=2,则BC=2,又因为平面ABD⊥平面BCD,所以球心就是BC的中点,半径为r=,所以球的体积为:,故选A.9.作出约束条件表示的平面区域如图1所示.由z=ax+y得y=−ax+z,∵z=ax+y 仅在(3,3)处取得最大值,∴−<−a<,解得−<a<,故选C.10.由三视图可知该三棱锥底面是边长为4的正三角形,面积为,两个侧面是全等的三角形,三边分别为,,4,面积之和为,另一个侧面为等腰三角形,面积是×4×4=8,故选B.11.由题知AF⊥BF,根据椭圆的对称性,AF′⊥BF′(其中F′是椭圆的左焦点),因此四边形AFBF′是矩形,于是,|AB|=|FF′|=2c,|AF|=2c sin,|AF′|=2c cos,根据椭圆的定义,|AF|+|AF′|=2a,∴2c sin+2c cos=2a,∴椭圆离心率e= ==,而∈,∴+,∴sin ,故e的最大值为,故选A.12.的导数为的导数为设与曲线相切的切点为与曲线相切的切点为(s,t),则有公共切线斜率为又,即有,即为,即有则有即为令则,当时,递减,当时,递增,即有处取得极大值,也为最大值,且为由恰好存在两条公切线,即s有两解,可得a的取值范围是,故选B.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)题号13 14 15 16答案 6 (−4,−2][1,2) 【解析】13.∵,设第r项为常数项,则,令,可得,∴.14.由f(x+2)=可得,f(x+4)==f(x),所以函数f(x)是以4为周期的周期函数,.15.将y=2−x代入,得设P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=.=x1x2+y1y2=x1x2+(2−x1)(2−x2)=2x1x2−2(x1+x2)+4,所以+4=0,即2a−2b=ab,即a−b=ab,所以.16.时,,整理得,又,故.不等式可化为:,设,由于,由题意可得解得或.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:(Ⅰ)根据正弦定理,可得c sin A=a sin C,因为c sin A=a cos C,所以a sin C=a cos C,可得sin C=cos C,得tan C=,因为C(0,),所以C=.……………………………………………………………(6分)(Ⅱ)因为sin C+sin(B−A)=5sin2A,C=,sin C=sin(A+B),所以sin(A+B)+sin(B−A)=5sin2A,所以2sin B cos A=2×5sin A cos A.因为△ABC为斜三角形,所以cos A≠0,所以sin B=5sin A,由正弦定理可知b=5a,①由余弦定理c2=a2+b2−2ab cos C,所以21=a2+b2−2ab×,②由①②解得a=1,b=5,所以S△ABC=ab sin C=×1×5×……………………………………(12分)18.(本小题满分12分)解:(Ⅰ)因为网购金额在2000元以上(不含2000元)的频率为0.4,所以网购金额在(2500,3000]的频率为0.4−0.3=0.1,即q=0.1,且y=100×0.1=10,从而x=15,p=0.15,相应的频率分布直方图如图2所示.………………………………………………………………(4分)(Ⅱ)相应的2×2列联表为:由公式K2=,因为5.56>5.024,所以据此列联表判断,在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关.……………………………………………(8分)(Ⅲ)在(2000,2500]和(2500,3000]两组所抽出的8人中再抽取2人各奖励1000元现金,则(2000,2500]组获奖人数X为0,1,2,且,故(2000,2500]组获得现金奖的数学期望+1000+2000=1500.…………………………………………………(12分)19.(本小题满分12分)(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形,因为E为BC的中点,所以AE⊥BC. ……………………………………………(1分)又BC∥AD,因此AE⊥AD.……………………………………………(2分)因为PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.………………………………………………………(3分)而PA平面PAD,AD平面PAD,PA AD=A,所以AE⊥平面PAD.…………………………………………(5分)(Ⅱ)解法一:为上任意一点,连接,.由(Ⅰ)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角.…………………………………………(6分)在中,,所以当AH最短时,即当时,EHA最大,此时,因此.……………………………………………(7分)又AD=2,所以∠ADH=45°,所以PA=2.…………………………………(8分)因为PA⊥平面ABCD, PA平面PAC,所以平面PAC⊥平面ABCD.过E作EO⊥AC于O,则EO⊥平面PAC.过O作OS⊥AF于S,连接ES,则∠ESO为二面角E−AF−C的平面角.……………………………………………(9分)在Rt△AOE中,,.又F是PC的中点,在Rt△ASO中,.又,………………………………………………(10分)在Rt△ESO中,,…………………………………(11分)即所求二面角的余弦值为.…………………………………………(12分)解法二:由(Ⅰ)可知AE,AD,AP两两垂直,以A为坐标原点,以AE,AD,AP分别为x,y,z轴,建立如图3所示的空间直角坐标系.设AP=a,………………(6分)则A(0,0,0),B(,−1,0),C(,1,0),D(0,2,0),P(0,0,a),E(,0,0),F,,,H(0,2−2,a)(其中[0,1]),∴,,,平面PAD的法向量为=(1,0,0),设为EH与平面PAD所成的角,.EH与平面PAD所成最大角的正切值为,∴的最大值为,即在[0,1]的最小值为5,函数对称轴(0,1),所以,计算可得a=2,…………………(8分)所以,0,0),,.设平面AEF的一个法向量为=(x1,y1,z1),则因此取,则= (0,2,−1),…………………………………………(9分)= (,3,0)为平面AFC的一个法向量,………………………(10分)所以cos,=,………………………(11分)所以,所求二面角的余弦值为.…………………………………………(12分)20.(本小题满分12分)解:(Ⅰ)由抛物线在第一象限内的点P到焦点的距离为,得,,抛物线C的方程为y2=2x,P(2,2).………………………………(2分)C在第一象限的图象对应的函数解析式为,则y′=,故C在点P处的切线斜率为,切线的方程为.令y=0得x=−2,所以点Q的坐标为(−2,0).故线段OQ的长为2.……………………………………………(5分)(Ⅱ)l2恒过定点(2,0),理由如下:由题意可知l1的方程为x=−2,因为l2与l1相交,故.由l2:,令x=−2,得,故.设A(x1,y1),B(x2,y2),由消去x得:,则,.………………………………………………(7分)直线PA的斜率为,同理直线PB的斜率为,直线PE的斜率为.因为直线PA,PE,PB的斜率依次成等差数列,所以,即.………………………(10分)整理得:,因为l2不经过点Q,所以,所以2m−b+2=2m,即b=2.故l2的方程为,即l2恒过定点(2,0). ………………………(12分)21.(本小题满分12分)解:(Ⅰ)由,得,. 又点(1,f(1))在直线上,∴,,∴. ………………………(3分)(Ⅱ)由,得.∵[1,e],,且等号不能同时取得,∴,即.∴恒成立,即.令,[1,e],则,当[1,e]时,,,,从而.∴在区间[1,e]上为增函数,∴,∴. …………(7分)(Ⅲ)由条件假设曲线上存在两点P,Q满足题意,则P,Q只能在y轴的两侧,不妨设(),则().∵是以O(O为坐标原点)为直角顶点的直角三角形,∴,∴,是否存在P,Q等价于该方程且是否有根.当时,方程可化为,化简得,此时方程无解;当时,方程可化为,即.设,则(),显然,当时,,即在区间上是增函数,的值域是,即.∴当时方程总有解,即对于任意正实数a,曲线上总存在两点P,Q,使得是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上.…………………………………………………(12分)22.(本小题满分10分)【选修4−1:几何证明选讲】(Ⅰ)证明:连接ON,∵PN为的切线,∴90°.在中,∵,∴,又∵,∴,根据弦切角定理,得,∴.………………………(4分)(Ⅱ)解法一:∵,∴为等边三角形,∴.设的半径为,则在直角三角形中,,,,根据相交弦定理,,可得,即可得,,∴.…………………………………………………(10分)解法二:∵60°,∴△PMN为等边三角形,∴,设的半径为r,则在直角三角形中,,OM=,,又为的外接圆,由正弦定理可知,,又,∴,∴.………………………………………………(10分)解法三:,设的半径为r,则在直角三角形中,,,,在中,,∴.又∵,MN=PM=1,∴,∴,∴.……………………………………………(10分)23.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)曲线C的直角坐标方程为:,即,∴曲线的直角坐标方程为,∴曲线表示焦点坐标为,长轴长为4的椭圆.……………(4分)(Ⅱ)直线:(t是参数),将直线的方程代入曲线的方程中,得.设对应的参数分别为,则,,结合t的几何意义可知,.……………………………(10分)24.(本小题满分10分)【选修4−5:不等式选讲】(Ⅰ)解:,即.当时,原不等式可化为,解得,此时原不等式的解集为;当时,原不等式可化为,解得,此时原不等式无解;当时,原不等式可化为,解得,此时原不等式的解集为.综上,.…………………………………………………(5分)(Ⅱ)证明:因为,所以,要证,只需证,即证,即证,即证,即证.∵a,b M,∴a2>1,b2>1,∴(a2−1)(b2−1)>0成立,所以原不等式成立.………………………………………(10分)。

2023云南师范大学附属中学高考适应性月考卷(一)数学试题

2023云南师范大学附属中学高考适应性月考卷(一)数学试题

秘密*启用前数学试卷7.我国首先研制成功的“双曲线新闻灯”,如图1'利用了双曲线的光学性质:F i , 凡是双曲线的左、右焦点,从凡发出的光线m 射在双曲线右支上一点P,经点P反射后,反射光线n 的反向延长线过凡;当P异于双曲线顶点时,双曲线在点P处的切线平分LF 1PF 2.若双曲线C 的方程为X y �--=1 9 16' 则下列结论不正确的是y注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答元效.3. 考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A =jx 1-2::s;x::s;l l, 集合B =jx I log 2x<l \ , 则AnB =A .0B .(0, 1]C.[-2, 1]D . (O , 2)2i 2.复数一了=l -1 A.-1 +i C.l +i B -1-i D.1-i1T 3.将函数f(x)= s i nx的图象向右平移-个单位,得到2A.y =s i nx 的图象B.y=cos x的图象C.y =-s i nx 的图象D.y=-co sx的图象4.已知a>O ,b>O , 则"a+b:::;4"是"ab :::; 4"的A.充分不必要条件 B.必要不充分条件C .充要条件D.既不充分也不必要条件21r5.已知函数J (x )= 2 I I , a =J(log 。

53),b =J(log 45), c =f (cos 了),则A.a >c>b C.b>a>cB.a>b>c D.c>a >b6.一道有4个选项但只有一个选项正确的选择题,命题者估计某类考生会答该题的概率是0.5,并且会答时一定能答对;不会答时考生在4个答案中任选1个已知该类考生中某一个考生回答正确,则他确实会答(不是蒙对)的概率等于A.0.25B.0. 5C.0. 75 数学·第1页(共4页)D.0. 8____,。

云南师范大学附属中学2021届高考适应性月考(一)数学(理)试题

云南师范大学附属中学2021届高考适应性月考(一)数学(理)试题

云南师大附中2021届高考适应性月考卷〔一〕理科数学【试卷综析】本试卷是高三理科试卷,以根底知识和根本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的根本能力,重视学生科学素养的考查.知识考查注重根底、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式、复数、向量、三视图、导数、简单的线性规划、直线与圆、圆锥曲线、立体几何、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、命题、程序框图、排列组合、概率与随机变量分布列与期望、不等式选讲、几何证明选讲、参数方程极坐标等;考查学生解决实际问题的综合能力,是份较好的试卷.一、选择题(本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的) 【题文】1、全集U 和集合A 如图1所示,那么()U C A B ⋂= A.{3} B.{5,6} C.{3,5,6} D.{0,4,5,6,7,8} 【知识点】集合及其运算A1 【答案解析】B 解析:由图易知()U A B ={5,6}.那么选B.【思路点拨】此题主要考查的是利用韦恩图表示集合之间的关系,理解集合的补集与交集的含义是解题的关键.【题文】2、设复数12,z z 在复平面内对应的点关于原点对称,11z i =+,那么12z z = A .-2i B.2i C .-2 D.2 【知识点】复数的概念与运算L4【答案解析】A 解析:11i z =+在复平面内的对应点为(1,1),它关于原点对称的点为(1,1)--,故21i z =--,所以212(1i)2i.z z =-+=-那么选A.【思路点拨】通过复数的几何意义先得出2z ,再利用复数的代数运算法那么进行计算.A .6 B.22 C .10 D.10 【知识点】向量的数量积及其应用F3【思路点拨】遇到求向量的模时,一般利用向量的模的平方等于向量的平方转化求解.A .1 B.2 C .3 D.4 【知识点】导数的应用B12【答案解析】B 解析:21e (1)ax y a x '=-+,由题意得011x y a ='=-=,所以 2.a =那么选B.【思路点拨】理解导数与其切线的关系是解题的关键.【题文】5、在△ABC 中,假设sinC=2sinAcosB,那么此三角形一定是 A .等腰直角三角形 B.直角三角形 C .等腰三角形 D.等边三角形 【知识点】解三角形C8【答案解析】C 解析:由及正、余弦定理得,22222a c b c a ac +-=,所以22a b =,即a b =.那么选C.【思路点拨】判断三角形形状,可以用正弦定理及余弦定理把角的关系转化为边的关系,也可利用三角形内角和的关系进行转化求解.【题文】6、函数()2sin 3sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是 A .1 B.132 C .32D.13+【知识点】函数sin()y A x ωϕ=+的图象与性质C4【答案解析】C 解析:函21cos 231π()sin 3cos 2sin 2226x f x x x x x x -⎛⎫=+=+=+- ⎪⎝⎭, ππππ5π,,2,42636x x ⎡⎤⎡⎤∈-∈⎢⎥⎢⎥⎣⎦⎣⎦∵∴, ()f x 的最大值是32.那么选C. 【思路点拨】一般研究三角函数的性质,通常先化成一个角的三角函数再进行解答.【题文】7、实数x,y 满足约束条件0024030220x y x y x y x y ≥⎧⎪≥⎪⎪+-≤⎨⎪+-≤⎪⎪+-≥⎩,那么z=x+3y 的取值范围是A .[1,9] B.[2,9] C .[3,7] D.[3,9]【知识点】简单的线性规划问题E5【答案解析】B 解析:根据线性约束条件作出可行域, 如图1所示阴影局部.作出直线l :30x y +=,将直线l 向上平移至过点 (0,3)M 和(2,0)N 位置时,max 0339z =+⨯=, min 230 2.z =+⨯=那么选B.【思路点拨】此题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答.【题文】8、如图,网格纸上小方格的边长为1(表示1cm),图中粗线和虚线是某零件的三视图,该零件是由一个底面半径为4cm ,高为3cm 的圆锥毛坯切割得到,那么毛坯外表积与切削得的零件外表积的比值为 A .310 B.510 C .710 D.910【知识点】三视图G2【答案解析】D 解析:圆锥毛坯的底面半径为4cm r =,高为3cm h =,那么母线长5cm l =,所以圆锥毛坯的外表积2ππ36πS rl r =+=原表,切削得的零件外表积2π2140πS S =+⨯⨯=零件表原表,所以所求比值为910.那么选D. 【思路点拨】由三视图求几何体的外表积,关键是正确的分析原几何体的特征.【题文】9、假设任取x,y ∈[0,1],那么点P(x,y)满足2y x >的概率为 A .23 B.13 C .12 D.34【知识点】定积分 几何概型K3 B13【答案解析】A 解析:该题属几何概型,由积分知识易得点(,)P x y 满足2y x >的面积为12310012(1)33x dx x x ⎛⎫-=-= ⎪⎝⎭⎰,所以所求的概率为23.那么选A. 【思路点拨】当总体个数有无限多时的概率问题为几何概型,假设事件与两个变量有关时,可归结为面积问题进行解答.【题文】10、椭圆()222210x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,假设2AP PB =,那么椭圆的离心率是A .32 B.22 C .13 D.12【知识点】椭圆的几何性质H5【答案解析】D 解析:因为2AP PB =,那么12,2,2OA OF a c e ===∴∴.那么选D.【思路点拨】求椭圆的离心率一般先结合条件寻求a,b,c 关系,再结合离心率的定义解答即可.【题文】11、把边长为2的正三角形ABC 沿BC 边上的高AD 折成直二面角,设折叠后BC 中点为M ,那么AC 与DM 所成角的余弦值为 A .23 B.24 C .32 D.33【答案解析】B 解析:建立如图2所示的空间直角坐标系D xyz -,那么(0,0,3),(1,0,0),(0,1,0),A B C那么AC 与DM 所成角的余弦值为24.所以选C. 此题也可用几何法:在△ABC 中过点M 作AC 的平行线,再解三角形即得.【思路点拨】求异面直线所成角时,可先考虑用定义法作出其平面角,再利用三角形解答,假设作其平面角不方便时,可采取向量法求解. 【题文】12、函数()()3f x x x x R =+∈当02πθ<<时,()()sin 10f a f a θ+->恒成立,那么实数a 的取值范围是A .(﹣∞,1] B.(﹣∞,1) C .(1, +∞) D.(1, +∞) 【知识点】奇函数 函数的单调性B3 B4【答案解析】A 解析:2()130f x x '=+>,故3()()f x x x x =+∈R 在R 上单调递增,且为奇函数,所以由(sin )(1)0f a f a θ+->得(sin )(1)f a f a θ>-,从而sin 1a a θ>-,即当π02θ<<时,1sin 1a θ<--恒成立,所以1a ≤.那么选A. 【思路点拨】此题可先利用奇函数及函数的单调性进行转化,再把不等式恒成立问题转化为函数的最值问题进行解答.二、填空题(本大题共4小题,每题5分,共20分)【题文】13、定义一种新运算“⊗〞:S a b =⊗,其运算原理如图3的程序框图所示,那么3654⊗-⊗=_______. 【知识点】程序框图L1【答案解析】﹣3解析:由框图可知(1),,(1),.a b a b S b a a b ->⎧=⎨-⎩≤ 从而得36546(31)5(41)3⊗-⊗=---=-.【思路点拨】读懂程序框图,理解所定义的新运算,即可解答.【题文】14、等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,假设11a =,那么4S =_____.【知识点】等比数列与等差数列D2 D3【答案解析】15解析:1234,2,a a a ∵成等差数列,2213211144,44,440,a a a a a q a q q q +=+=-+=∴即∴42,15q S ==∴.【思路点拨】遇到等差数列与等比数列,假设无性质特征,那么用其公式转化为首项与公比关系进行解答.【题文】15、关于sinx 的二项式()1sin nx +的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为52,当x ∈[0, π]时,x=___________. 【知识点】二项式定理J3【答案解析】π6或5π6. 解析:1C C 17n n n n n -+=+=,故6n =,所以第4项的系数最大,于是3365C sin 2x =,所以,31sin 8x =,即1sin 2x =,又[0,π]x ∈,所以π6x =或5π6. 【思路点拨】一般遇到二项展开式某项或某项的系数问题,通常结合展开式的通项公式进行解答.【题文】16、函数()3232a b f x x x cx d =+++(a <b)在R 上单调递增,那么a b cb a++-的最小值为______.【知识点】导数的应用 根本不等式B12 E6【答案解析】3解析:由题意2()0f x ax bx c '=++≥在R 上恒成立,故0b a >>,24b c a≥,于是a b c b a ++-≥2211441b b b a b a a a b b a a⎛⎫++++ ⎪⎝⎭=--,设b t a =(1)t >,那么问题等价于求函数244()4(1)t t g t t ++=-(1)t >的最小值,又()()244191()166634(1)414t t g t t t t ++⎡⎤==-++≥+=⎢⎥--⎣⎦,由此可得min ()(4)3g t g ==.【思路点拨】先由函数的单调性结合导数得到abc 的关系,再通过换元法转化为熟悉函数的最小值问题.三、解答题(共70分,解容许写出文字说明,证明过程或演算步骤) 【题文】17、(本小题总分值12分)一个口袋内有5个大小相同的球,其中有3个红球和2个白球. (1)假设有放回的从口袋中连续的取3次球(每次只取一个球),求在3次摸球中恰好取到两次红球的概率;(2)假设不放回地从口袋中随机取出3个球,求取到白球的个数ξ的分布列和数学期望E(ξ). 【知识点】概率 离散随机变量的分布列和数学期望K6 K7【答案解析】(1)54125(2)6()5E ξ=解析:(1)设在3次有放回的摸球中恰好取到两次红球的概率为P ,由题设知, 21233354C 155125P ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭. (2)白球的个数ξ可取0,1,2,3211233232333555C C C C C 133(0),(1),(2)C 10C 5C 10P P P ξξξ=========. 所以ξ的分布列如下表:ξ 0 1 2P110 35 3101336()012105105E ξ=⨯+⨯+⨯=. 【思路点拨】求离散随机变量的分布列一般先确定随机变量的所有取值,再计算各个取值的概率,最后得分布列并计算期望. 【题文】18、(本小题总分值12分)如图4,在斜三棱柱111ABC A B C -中,点O 、E 分别是111,A C AA 的中点,111AO A B C ⊥平面,∠BCA=90°,12AA AC BC ===. (1)证明:OE ∥平面11AB C ;(2)求直线11A C 与平面11AA B 所成角的正弦值. 【知识点】直线与平面平行,线面所成的角G4 G11【答案解析】(1) 略(2) 21解析:方法一:〔1〕证明:∵点O 、E 分别是11A C 、1AA 的中点,∴1OE AC ∥,又∵OE ⊄平面11AB C ,1AC ⊂平面11AB C , ∴OE ∥平面11AB C .〔2〕解:设点1C 到平面11AA B 的距离为d ,∵111111A A B C C AA B V V --=, 即1111111323AC B C AO ⋅⋅⋅⋅=⋅11AA B S d ⋅△.又∵在11AA B △中,11122A B AB ==, ∴11AA B S △7=221d 11A C 与平面11AA B 21. 方法二:建立如图3所示的空间直角坐标系O xyz -, 那么(0,0,3)A ,113(0,1,0),0,,2A E ⎛-- ⎝⎭, 1(0,1,0)C ,1(2,1,0)B ,(0,2,3)C .〔1〕证明:∵OE =130,,2⎛- ⎝⎭, 1(0,1,3)AC =-,∴112OE AC =-,∴1OE AC ∥,又∵OE ⊄平面11AB C ,1AC ⊂平面11AB C ,∴OE ∥平面11AB C . 〔2〕解:设11A C 与平面11AA B 所成角为θ,∵11(0,2,0)A C =,11(2,2,0)A B =,1(0,1,3)A A =.设平面11AA B 的一个法向量为(,,)n x y z =,111220,0,30,0,x y A B n y z A A n ⎧+=⎧⋅=⎪⎪⎨⎨+=⎪⋅=⎪⎩⎩则即 不妨令1x =,可得31,1,3n ⎛⎫=- ⎪ ⎪⎝⎭, ∴11221sin cos ,7723AC n θ=〈〉==⋅, ∴11A C 与平面11AA B 所成角的正弦值为217. 【思路点拨】证明直线与平面平行通常利用线面平行的判定定理,求线面所成角可以先作出其平面角,再利用三角形求解,假设直接作角不方便时可考虑用向量的方法求解.【题文】19、设数列{}n a 满足10a =且*11.2n na n N a +=∈-. (1)求证数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设11,n n n a b S n+-=为数列{}n b 的前n 项和,证明:n S <1.【知识点】等差数列 数列求和D2 D4【答案解析】(1) 11n a n =-. (2)略解析:〔1〕解:将112n n a a +=-代入11111n n a a +---可得111111n n a a +-=--,即数列11n a ⎧⎫⎨⎬-⎩⎭是公差为1的等差数列.又1111,,11nn a a ==--故 所以11n a n=-.〔2〕证明:由〔Ⅰ〕得11111n n a n n b nn nnn +-+-===-+⋅+111111nnn k k k S b k k n =====<++∑∑.【思路点拨】证明数列为等差数列通常利用等差数列的定义证明,遇到与数列的和有关的不等式可先考虑能否求和再证明. 【题文】20、函数()()1ln f x ax x a R =--∈. (1)讨论函数f(x)在定义域内的极值点的个数;(2)假设函数f(x)在x=1处取得极值,对()()0,,2x f x bx ∀∈+∞≥-恒成立,求实数b 的取值范围.【知识点】导数的应用B12【答案解析】(1) 当0a ≤时,没有极值点;当0a >时,有一个极值点. (2) 211e b -≤ 解析:〔1〕11()ax f x a x x-'=-=, 当0a ≤时,()0f x '<在(0,)+∞上恒成立,函数()f x 在(0,)+∞上单调递减, ∴()f x 在(0,)+∞上没有极值点;当0a >时,由()0f x '<得10x a <<,由()0f x '>得1x a>, ∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛+∞⎫⎪⎝⎭上单调递增,即()f x 在1x a =处有极小值.∴当0a ≤时,()f x 在(0,)+∞上没有极值点;当0a >时,()f x 在(0,)+∞上有一个极值点.〔2〕∵函数()f x 在1x =处取得极值,∴1a =, ∴1ln ()21x f x bx b x x -⇔+-≥≥,令1ln ()1xg x x x=+-,可得()g x 在2(0,e ]上递减,在2[e ,)+∞上递增,∴2min 21()(e )1e g x g ==-,即211eb -≤. 【思路点拨】一般遇到不等式恒成立求参数范围问题,通常别离参数转化为函数的最值问题进行解答.【题文】21、如图5,抛物线C:()220y px p =>和圆M :()2241x y -+=,过抛物线C上一点H ()00,x y ()01y ≥作两条直线与圆M 相切于A,B 两点,圆心M 到抛物线准线的距离为174. (1)求抛物线C 的方程;(2)假设直线AB 在y 轴上的截距为t ,求t 的最小值. 【知识点】抛物线 直线与圆锥曲线H8 H7【答案解析】(1) 2y x = (2) min 11t =-解析:〔1〕∵点M 到抛物线准线的距离为42p +=174,∴12p =,即抛物线C 的方程为2y x =.〔2〕方法一:设1122(,),(,)A x y B x y ,∵114MA y k x =-,∴114HA x k y -=, 可得,直线HA 的方程为111(4)4150x x y y x --+-=,同理,直线HB 的方程为222(4)4150x x y y x --+-=,∴210101(4)4150x y y y x --+-=,220202(4)4150x y y y x --+-=,∴直线AB 的方程为22000(4)4150y x y y y --+-=,令0x =,可得000154(1)t y y y =-≥,∵t 关于0y 的函数在[1,)+∞上单调递增, ∴min 11t =-.方法二:设点2(,)(1)H m m m ≥,242716HM m m =-+,242715HA m m =-+. 以H 为圆心,HA 为半径的圆方程为22242()()715x m y m m m -+-=-+,① ⊙M 方程为22(4)1x y -+=.②①-②整理得直线AB 的方程为:2242(24)(4)(2)714x m m y m m m m -----=-+. 当0x =时,直线AB 在y 轴上的截距154t m m=-(1)m ≥, ∵t 关于m 的函数在[1,)+∞上单调递增, ∴min 11t =-.【思路点拨】求抛物线的方程关键是利用圆心到其准线的距离求p ,求两切点所在直线方程,可利用两圆的公共弦所在直线方程的方法进行解答.请考生在第22、23、24三题中任选一题作答,如果多做,那么按所做的第一题计分,作答时请写清题号.【题文】22、(本小题10分)[选修4-1:几何证明选讲]如图6,直线AB 经过圆O 上一点C ,且OA=OB,CA=CB,圆O 交直线OB 于E,D. (1)求证:直线AB 是圆O 的切线; (2)假设1tan 2CED ∠=,圆O 的半径为3,求OA 的长. 【知识点】几何证明选讲N1 【答案解析】(1)略; (2)5解析:〔1〕证明:如图4,连接OC ,∵,,OA OB CA CB == ∴OC AB ⊥,∴AB 是⊙O 的切线.〔2〕解:∵ED 是直径,∴90ECD ∠=︒, 在Rt △ECD 中,∵1tan 2CED ∠=, ∴12CD EC =. ∵AB 是⊙O 的切线, ∴BCD E ∠=∠, 又∵CBD EBC ∠=∠,∴ △BCD ∽△BEC , ∴BD BC =CD EC =12,设,BD x =那么2BC x =, 又2BC BD BE =⋅,∴2(2)(6)x x x =⋅+,∴235OA OB BD OD ==+=+=.【思路点拨】证明直线是圆的切线,只需证明圆心到直线的距离等于圆的半径,假设直线与圆有公共点,那么公共点为切点;第二问利用三角形相似解答即可. 【题文】23、(本小题10分)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 的参数方程为23252x y ⎧=⎪⎪⎨⎪=⎪⎩ (t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为5ρθ=.(1)求圆C 的圆心到直线l 的距离;(2)设圆C 与直线l 交于点A,B ,假设点P 的坐标为(5,求PA PB +. 【知识点】坐标系与参数方程N3【答案解析】3232解析:〔1〕由25ρθ=,可得22250x y y +-=, 即圆C 的方程为22(5)5x y +=.由23,25,x y ⎧=-⎪⎪⎨⎪=⎪⎩ 〔t 为参数〕可得直线l 的方程为530x y +=. 所以,圆C 的圆心到直线l 05533222+--=.〔2〕将l 的参数方程代入圆C 的直角坐标方程,得22223522t t ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 即23240t t -+=.由于2(32)4420∆=-⨯=>.故可设12t t 、是上述方程的两个实根,所以1212324t t t t ⎧+=⎪⎨⋅=⎪⎩,.又直线l 过点(35)P ,, 故由上式及t 的几何意义得1212||||||||32PA PB t t t t +=+=+=.【思路点拨】一般由参数方程或极坐标方程研究曲线之间的位置关系不方便时,可转化为直角坐标方程进行解答;第二问可利用直线参数的几何意义进行解答.【题文】24、(本小题10分)[选修4-5:不等式选讲]一次函数f(x)=ax -2.(1)解关于x 的不等式()4f x <;(2)假设不等式()3f x ≤对任意的x ∈[0,1]恒成立,求实数a 的范围.【知识点】不等式选讲N4【答案解析】(1) 当0a >时,不等式的解集为26x x a a ⎧⎫-<<⎨⎬⎩⎭; 当0a <时,不等式的解集为62x x a a ⎧⎫<<-⎨⎬⎩⎭. (2) 15a -≤≤且a ≠0.解析:〔1〕()4f x <⇔24ax -<⇔424ax -<-<⇔26ax -<<,当0a >时,不等式的解集为26x x a a ⎧⎫-<<⎨⎬⎩⎭; 当0a <时,不等式的解集为62x x aa ⎧⎫<<-⎨⎬⎩⎭. 〔2〕()3f x ≤⇔23ax -≤⇔323ax --≤≤⇔15ax -≤≤⇔5,1,ax ax ⎧⎨-⎩≤≥ ∵[0,1]x ∈,∴当x =0时,不等式组恒成立;当x≠0时,不等式组转化为5,1, axax ⎧⎪⎪⎨⎪-⎪⎩≤≥又∵515,1x x--≥≤,所以15a-≤≤且a≠0.【思路点拨】解绝对值不等式的关键是去绝对值,可利用性质、分段讨论等方法,对于不等式恒成立求参数范围问题,通常别离参数转化为函数的最值问题进行解答.。

云南师范大学附属中学2021届高考适应性月考卷(一)数学【理】试题

云南师范大学附属中学2021届高考适应性月考卷(一)数学【理】试题

云南师范大学附属中学2021届高考适应性月考卷(一)数学【理】试题云南师大附中2021届高考适应性月考卷(一)理科数学第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分.共60分) 1、设集合A={0,1,2,4},B=?x?R|??x?4??0?,则AB= x?2? A.{1,2,3,4} B. {2,3,4} C. {2,4} D. {x|1?x?4} 2、若复数z?1?2i的共轭复数是z?a?bi(a,b?R),其中i为虚数单位,则点(a,b)为 i A.(一 1. 2) B.(-2,1) C.(1,-2) D.(2,一1)??ex?1,x?03. 已知函数f(x)??,若f(a)=-1,则实数a的值为?x?2,x?0 A、2 B、±1 C. 1 D、一1 4.“0≤m≤l”是“函数f(x)?cosx?m?1有零点”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.将某正方体工件进行切削,把它加工成一个体积尽可能大的新工件,新工件的三视图如图1所示,则原工件材料的利用率为〔材料的利用率7 86 B、75 C、64 D、5 A、6. 在△ABC中,|AB?AC|?|AB?AC|,AB =2, AC=1,E, F为BC的三等分点,则AEAF=8102526 B、 C、 D、 9999?3?7・已知sin(??)?,则sin(?2?)?656 A、A、47916 B、 C、 D、 5252525的取值范围是8、设实数x,y满足A、[,11015510]B、[,]C、[2,]D、[2,] 333223,在区域任意取一点P(x, y),则x,y满足min|x+y+4,9、定义min{a,b}=x2+x+2y|= x2+x+2y的概率为 A、4512 B、 C、 D、 993310、《九章算术》中,将四个面都为直角三角形的四面体称之为鳖��,如图2,在鳖��PABC中,PA ⊥平面ABC,AB⊥BC,且AP=AC=1,过A 点分别作AE 1⊥ PB于E、AF⊥PC于F,连接EF当△AEF的面积最大时,tan∠BPC的值是11.设定义在(0,?)上的函数f(x), 其导数函数为f'(x),若f(x)?f'(x)tanx恒成立,则 222212.设直线l与抛物线x2=4y相交于A, B两点,与圆C:x?(y?5)?r (r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)第II卷(非选择题,共90分)二、坟空班(本大题共4小题,每小鹿5分,共20分)13.如图3.这是一个把k进掉数a(共有n位)化为十进制数b的程序框图,执行该程序框图,若输人的k,a,n分别为2,110011,6,则抢出的b=_.14若函数f(x)??13122x?x?2ax在[,??)上存在单调递增区间,则a的 323 取值范围是 x2y215.设椭圆E:2?2?1(a?b?0)的右顶点为A、右焦点为F,B为椭圆E在ab 第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是 16.设S=则不大于S的最大整数[S]等于三、解答.(共70分.解答应写出文字说明,证明过程或演算步吸) 17.(本小题满分12分)已知数列{an}的首项al=1,(I)证明:数列(II)设,求数列是等比数列;的前n项和Sn。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南师大附中2018届高考适应性月考(一)理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,}A y y x x R ==+∈,集合2{1,}B y y x x R ==-+∈,则A B =( )A .{(0,1)}B .{1}C .φD .{0} 2. 已知复数11iz i+=-,则z =( ) A .2 BC .4 D3.已知平面向量,a b 的夹角为045,(1,1)a =,1b =,则a b +=( ) A .2 B .3 C .4 D 4.将函数()sin(2)3f x x π=+的图象向左平移6π个单位,所得的图象所对应的函数解析式是( )A .sin 2y x =B .cos 2y x = C. 2sin(2)3y x π=+ D .sin(2)6y x π=-5.等差数列{}n a 的前n 项和为n S ,且2813a a +=,735S =,则8a =( ) A .8 B .9 C.10 D .116.已知点(,)P x y 在不等式组20020x y x y y -≥⎧⎪-≤⎨⎪-≤⎩,表示的平面区域上运动,则z x y =+的最大值是( )A .4B .3 C.2 D .17.从某社区随机选取5名女士,其身高和体重的数据如下表所示:根据上表可得回归直线方程0.6y x a =+,据此得出a 的值为( ) A .43.6 B .-43.6 C.33.6 D .-33.68.若直线20ax by +-=(0,0a b >>)始终平分圆22222x y x y +--=的周长,则112a b+的最小值为( )A B C. D 9.函数()sin lg f x x x =-的零点个数是( ) A .2 B .3 C.4 D .510.已知,,,,,a b c A B C 分别是ABC ∆的三条边及相对三个角,满足::cos :cos :cos a b c A B C =,则ABC ∆的形状是( )A .等腰三角形B .等边三角形 C.直角三角形 D .等腰直角三角形 11.已知正三棱锥S ABC -及其正视图如图 所示,则其外接球的半径为( )A B D 12.定义在R 上的偶函数()f x ,当0x ≥时,32()ln(1)xf x e x x =+++,且()()f x t f x +>在(1,)x ∈-+∞上恒成立,则关于x 的方程(21)f x t +=的根的个数叙述正确的是( ) A .有两个 B .有一个 C.没有 D .上述情况都有可能第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 121)x+展开式中常数项是 .14.执行如图所示的程序框图后,输出的结果是 .(结果用分数表示)15.已知双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,过F 作x 轴的垂线,与双曲线在第一象限内的交点为M ,与双曲线的渐近线在第一象限的交点为N ,满足MN MF =,则双曲线离心率的值是 .16.设O 是ABC ∆的三边垂直平分线的交点,H 是ABC ∆的三边中线的交点,,,a b c 分别为角,,A B C 的对应的边,已知22240b b c -+=,则AH AO ∙的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,123n n a a +=+(*n N ∈). (1)求证:数列{3}n a +是等比数列;(2)若{}n b 满足(21)(3)n n b n a =-+,求数列{}n b 的前n 项和n S .18. 某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.甲 乙(1)分别求出甲乙两个小组成绩的平均数与方差,并判断哪一个小组的成绩更稳定: (2)从甲组成绩不低于60分的同学中,任意抽取3名同学,设ξ表示所抽取的3名同学中得分在[60,70)的学生个数,求ξ的分布列及其数学期望.19. 如图,在长方体1111ABCD A B C D -中,1AC 与平面11A ADD 及平面ABCD 所成角分别为030,045,,M N 分别为1AC 与1A D 的中点,且1MN =.(1)求证:MN ⊥平面11A ADD ;(2)求二面角1A AC D --的平面角的正弦值.20. 已知椭圆:C 22221x y a b+=(0,0a b >>)的两个顶点分别为(,0)A a -,(,0)B a ,点P为椭圆上异于,A B 的点,设直线PA 的斜率为1k ,直线PB 的斜率为2k ,1212k k =-. (1)求椭圆C 的离心率;(2)若1b =,设直线l 与x 轴交于点(1,0)D -,与椭圆交于,M N 两点,求OMN ∆的面积的最大值.21. 设函数2()ln f x x x b x =++(1)若函数()f x 在1[,)2+∞上单调递增,求b 的取值范围; (2)求证:当1n ≥时,5ln ln(1)ln 24n n -+<- 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线C的参数方程为:2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),直线l的参数方程为:1x ty =+⎧⎪⎨=⎪⎩(t为参数),点(1,0)P ,直线l 与曲线C 交于,A B 两点.(1)分别写出曲线C 在直角坐标系下的标准方程和直线l 在直角坐标系下的一般方程;(2)求11PA PB+的值. 23.选修4-5:不等式选讲 已知函数()12f x x x =++-.(1)请写出函数()f x 在每段区间上的解析式,并在图中的直角坐标系中作出函数()f x 的图象;(2)若不等式2122x x a a ++-≥+对任意的实数x 恒成立,求实数a 的取值范围.云南师大附中2018届高考适应性月考卷(一)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.[1)A =+∞,,(1]B =-∞,,故选B . 2.1ii ||11i z z +===-,故,故选D .3.222()25+=++=a b a ab b ,所以||+=a b ,故选D . 4.π6πππ2πsin 2sin 2sin 23633y x y x x ⎛⎫⎛⎫⎛⎫⎛⎫=+−−−−−−−→=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭向左平移个单位,故选C .5.285213a a a +==,所以5132a =,又17747()7352aa S a +===,所以45a =,32d =, 8a =11,故选D .6.当22x y ==,时,z 取得最大值4,故选A .7.由表中数据可得16555.4x y ==,,因为回归直线必过()x y ,,代入回归方程得ˆ43.6a=-,故选B .8.直线平分圆周,则直线过圆心(11),,所以有2a b +=,11111()222a b a b a b ⎛⎫+=++ ⎪⎝⎭≥2112⎫=⎪⎪⎭b =时取“=”),故选D .9.作出sin y x =,|lg |y x =的图象如图,由图象知有4个零点,故选C .10.由正弦定理得:::sin :sin :sin a b c A B C =,又::cos :cos :cos a b c A B C =,所以有tan tan tan A B C ==,即A B C ==,所以ABC △是等边三角形,故选B .11.由三视图知:三棱锥S ABC -是底面边长为半径为R,则有:22)4R R =+,解得:R =,故选D .12.由题意知:32()e ln(1)x f x x x =+++在(0)+∞,上单调递增,()()f x t f x +>在(1)x ∈-+∞,上恒成立,必有2t ≥,则(21)f x t +=的根有2个,故选A .13.36122112121C C rr r rr r T x x --+⎛⎫== ⎪⎝⎭,3602r -=,解得:4r =,代入得常数项为495.14.该程序执行的是11111111112913248102132481045S ⎛⎫=+++=-+-++-=⎪⨯⨯⨯⎝⎭.15.由已知:22||||b bc b FM MN a a a ==-,,由||||FM MN =知:22bc b a a =,2c b e ==∴,∴. 16.2211()3322b c AH AO AB AC AO ⎛⎫=+=+ ⎪⎝⎭uuu r uuu r uu u r uuu r uuu r g ,又22240b b c -+=,代入得:AH AO =uuu r uuu r g 2221421(4)3226b b b b b ⎛⎫-+=- ⎪⎝⎭,又22240c b b =-+>,所以02b <<,代入得AH AO uuu r uuu r g 的取值范围为203⎛⎫ ⎪⎝⎭,.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分) (Ⅰ)证明:因为123n n a a +=+,所以132(3)n n a a ++=+, 而11a =,故数列{3}n a +是首项为4,公比为2的等比数列.(Ⅱ)解:由(Ⅰ)得数列{3}n a +是首项为4,公比为2的等比数列,即132n n a ++=,因此123n n a +=-. 所以1(21)2n n b n +=-,2311232(21)2n n S n +=⨯+⨯++-⨯,① 34221232(21)2n n S n +=⨯+⨯++-⨯,②①−②有231222(22)(21)2n n n S n ++-=+++--⨯,所以2(23)212n n S n +=-+.18.(本小题满分12分)解:(Ⅰ)5160626371748182688x +++++++==甲, 5862646669717381688x +++++++==乙,222222222(5168)(6068)(6268)(6368)(7168)(7468)(8168)(8268)8s -+-+-+-+-+-+-+-=甲103=,222222222(5868)(6268)(6468)(6668)(6968)(7168)(7368)(8168)8s -+-+-+-+-+-+-+-=乙45=,所以乙组的成绩更稳定.(Ⅱ)由题意知ξ服从参数为3,3,7的超几何分布,即(337)H ξ,,,ξ的取值可能为:0,1,2,3, 3437C 4(0)C 35P ξ===,214337C C 18(1)C 35P ξ===,124337C C 12(2)C 35P ξ===,3337C 1(3)C 35P ξ===,ξ的分布列为:ξ0 1 2 3 P43518351235135ξ的数学期望:339()77E ξ⨯==. 19.(本小题满分12分)(Ⅰ)证明:在长方体1111ABCD A B C D -中,因为11M N A C A D ,分别为,的中点,所以MN 为1A CD △的中位线, 所以MN ∥CD , 又因为CD ⊥平面11A ADD , 所以MN ⊥平面11A ADD .(Ⅱ)解:在长方体1111ABCD A B C D -中,因为CD ⊥平面11A ADD , 所以1CA D ∠为1A C 与平面11A ADD 所成的角, 即1CA D ∠=30︒,又因为1A A ⊥平面ABCD ,所以1A CA ∠为1A C 与平面ABCD 所成的角, 即145A CA ∠=︒,所以1MN =,2CD =,14A C =,1A A=AC =,如图2,分别以AB ,AD ,1AA 所在直线为x ,y ,z 轴建立空间直角坐标系A xyz -, ∴A(0,0,0),D(0,2,0),1(22C ,,,1(00A ,,,C(2,2,0),B(2,0,0), 在正方形ABCD 中,BD ⊥AC ,∴BD uu u r是平面1A AC 的法向量,(220)BD =-,,uu u r . 设平面1A CD 的法向量为()n x y z =,,r ,由(200)DC =,,,1(02DA =-,,,所以有2020x y =⎧⎪⎨-+=⎪⎩,,∴0x y =⎧⎪⎨=⎪⎩,,取z=1,得平面1A CD 的一个法向量为(021)n =,,.设二面角1A A C D --的大小为α,则|cos |323α==.∴36sin =α.20.解:(Ⅰ)00()P x y 设,,代入椭圆的方程有:2200221x y a b +=,整理得:2222002()b y x a a =--,又10y k x a=+,20y k x a=-,所以201222012y k k x a ==--,212212b k ka =-=-联立两个方程有,c e a =解得:.(Ⅱ)由(Ⅰ)知222a b =,又1b =,所以椭圆C 的方程为22121x y +=.设直线l 的方程为:1x my =-,代入椭圆的方程有:22(2)210m y my +--=, 设1122()()M x y N x y ,,,, 1212222122m y y y y m m -+==++由韦达定理:,,121||||2OMNS OD y y =-===△所以,(1)t t =≥,则有221m t =-,代入上式有OMNS t ==△,当且仅当1t =,即0m =时等号成立,所以OMN △.21.(Ⅰ)解:22()21b x x b f x x x x ++'=++=,当0b ≥时,在12⎡⎫+∞⎪⎢⎣⎭,上()0f x '≥恒成立,所以()f x 在12⎡⎫+∞⎪⎢⎣⎭,上单调递增成立, 当0b <时,由220x x b ++=,解得x =易知,()f x在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增,12≤,解得1b -≥. 综上所述,1b -≥.(Ⅱ)证明:由(Ⅰ)知,当1b =-时,()f x 在12⎡⎫+∞⎪⎢⎣⎭,上单调递增, 对任意1n ≥,有112n n +≥成立, 所以112n f f n ⎛⎫⎛⎫ ⎪ ⎪+⎝⎭⎝⎭≥,代入()f x 有23ln ln 21114n n n n n n ⎛⎫⎛⎫+-+ ⎪ ⎪+++⎝⎭⎝⎭≥, 整理得:2223ln 2ln (1)41n n n n n +⎛⎫-- ⎪++⎝⎭≥. 22.解:(Ⅰ)曲线C 的标准方程为:22143x y +=,直线l0y -=.(Ⅱ)将直线l的参数方程化为标准方程:112()x t t y ⎧=+⎪⎪⎨⎪=⎪⎩,为参数,,代入椭圆方程得:254120t t +-=,解得12625t t ==-,, 所以12114||11||||||3PA PB t t +=+=.23.解:(Ⅰ)12(1)()3(12)21(2)x x f x x x x -<-⎧⎪=-⎨⎪->⎩,≤≤,,函数的图象如图所示.(Ⅱ)由(Ⅰ)知()f x 的最小值是min ()3f x =,所以要使不等式2|1||2|2x x a a ++-+≥恒成立,有232a a +≥,解之得[31]a ∈-,.。

相关文档
最新文档