2.3G天线知识
2.4g板载天线工作原理 -回复
2.4g板载天线工作原理-回复2.4G板载天线工作原理引言:随着无线通信技术的不断发展和普及,2.4G无线信号已经成为日常生活中最常见的无线信号之一。
在许多电子设备中,如智能手机、电脑、无线路由器等,都配备了2.4G板载天线。
本文将详细介绍2.4G板载天线的工作原理,从电磁波的产生到信号的传输,一步一步解释板载天线是如何实现无线通信的。
第一部分:电磁波的产生在理解2.4G板载天线的工作原理之前,首先需要了解电磁波的产生过程。
电磁波是由振荡的电荷产生的,并由电磁场组成。
当电子在导体中产生振荡时,会产生电场和磁场,即电磁波。
在2.4GHz的频段,天线通过快速振荡的电荷在导体中产生2.4GHz的电磁波信号。
第二部分:板载天线的结构2.4G板载天线通常由导体材料制成,如铜箔或铜丝。
这些导体散布在电子设备的主板上,并通过电路连接到无线模块。
板载天线可以有多种不同的形状和构造,包括贴片天线、螺旋天线和PCB天线。
这些天线的设计和排列方式会影响天线的性能和发射信号的范围。
第三部分:信号的接收和发射在接收方面,2.4G板载天线接收到外部的无线信号,并将其转换为电信号。
通过相应的电路处理和放大后,这些电信号可以被设备的其他部分识别和使用。
在发射方面,设备需要将要发送的信号转换为电信号,并通过电路传输到天线。
板载天线会将电信号转换为相应的电磁波信号,进而将信号发送到空中。
第四部分:天线性能与设计优化天线的性能和设计对无线通信的质量起着至关重要的作用。
一些主要的性能指标包括天线增益、方向性、辐射效率和频率响应等。
天线增益是指天线在某个方向上辐射或接收信号的能力。
增益越高,天线的传输范围和接收灵敏度越大。
方向性是指天线在不同方向上接收或辐射信号的能力。
一些天线设计可以实现更加定向的辐射,可以将信号更准确地发送或接收到特定的位置。
辐射效率是指天线将电信号转换为电磁波信号的能力。
辐射效率越高,天线发射或接收的信号质量越好。
移动通信基站天线基础知识
移动通信基站天线基础知识移动通信基站天线基础知识1. 天线的作用天线是基站中的关键元件,它起到了接收和发送无线信号的作用。
天线将无线信号转化为电信号,并将电信号转发到通信系统的其他部分。
2. 天线类型根据不同的应用需求和技术标准,移动通信基站天线可分为几种不同的类型。
2.1 基站天线基站天线是用来收发无线电信号的设备。
它们安装在基站上方,并通过天线馈线与其他设备连接。
基站天线可以分为定向天线和非定向天线。
定向天线:定向天线主要用于指定方向上的通信,其发射和接收角度相对较窄。
这种类型的天线在无线通信覆盖面积较小的场景中应用较多。
非定向天线:非定向天线主要用于覆盖较大面积的通信。
它们具有较大的发射和接收角度。
2.2 室内天线室内天线主要用于室内无线覆盖。
与基站天线不同,室内天线更小、更灵活,并且安装在建筑物内部。
它们可以提供室内覆盖,从而增强无线信号的传输质量。
2.3 手持设备天线手持设备天线是安装在移动设备上的一种小型天线。
它们通常用于方式、平板电脑等移动设备中。
手持设备天线能够接收和发送信号,使移动设备能够进行无线通信。
3. 天线参数在选择和使用天线时,需要考虑一些重要的参数。
3.1 增益增益是衡量天线性能的一个重要指标。
增益越高,天线能够发送和接收的信号强度就越大。
3.2 方向图方向图显示了天线在不同方向上的辐射模式。
通过分析方向图,可以了解天线在不同方向上的信号强度和覆盖范围。
3.3 频率范围天线的频率范围是指天线能够支持的频率范围。
不同的通信系统工作在不同的频段,天线需要根据通信系统的频段选择。
3.4 驻波比驻波比是衡量天线匹配性能的指标。
较低的驻波比意味着天线能够更有效地将信号发送到传输线上。
4. 天线安装与调试天线的正确安装和调试对于保证通信系统的正常工作至关重要。
在安装和调试天线时,需要考虑以下几个方面:天线的安装高度和方向应该合适,以实现最佳的通信性能。
天线应与其他设备正确连接,并进行必要的线缆调试。
天线基本知识及应用
天线基本知识及应用一.天线的基础知识表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。
1.1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。
天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。
天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。
匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。
在我们日常维护中,用的较多的是驻波比和回波损耗。
一般移动通信天线的输入阻抗为50Ω。
驻波比:它是行波系数的倒数,其值在1到无穷大之间。
驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。
在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。
过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。
回波损耗:它是反射系数绝对值的倒数,以分贝值表示。
回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。
0表示全反射,无穷大表示完全匹配。
在移动通信系统中,一般要求回波损耗大于14dB。
1.2 天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。
当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。
由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,一般均采用垂直极化的传播方式。
另外,随着新技术的发展,最近又出现了一种双极化天线。
就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。
2.4g天线效率范围
2.4g天线效率范围
2.4GHz 天线的效率通常取决于多个因素,包括天线设计、制造质量、安装环境等。
一般来说,2.4GHz是用于Wi-Fi、蓝牙等通信标准的频段,而天线的效率对通信性能至关重要。
以下是一些关于2.4GHz 天线效率的一般性信息:
1.内置设备天线:一些设备(如无线路由器、蓝牙设备)内置了
小型PCB(Printed Circuit Board)天线。
这类天线的效率通常
在50%到70%之间,但具体取决于设计和制造质量。
2.外置天线:外置天线的效率可以更高,通常在70%到90%之间。
这种类型的天线常用于无线路由器、Wi-Fi适配器、蓝牙设备等。
3.定向天线:一些特定应用需要定向天线,例如用于点对点通信
的定向天线或用于无线网络的方向性天线。
这些天线的效率可
以更高,达到90%以上。
4.安装环境:天线效率还受到安装环境的影响。
例如,天线在受
阻碍或有多径效应的环境中可能表现不佳,导致效率下降。
5.设计技术:使用不同的天线设计技术(例如贴片天线、螺旋天
线、定向天线等)也会影响天线的效率。
要准确评估特定天线的效率,通常需要进行天线测试或查阅制造商提供的技术规格。
在实际应用中,保持天线的正确安装和定期检查可以确保天线效率的最佳性能。
g、gprs、天线基础知识
3G、GPRS、天线等基础知识3G是英文3rd Generation的缩写,指第三代移动通信技术。
相对第一代模拟制式手机(1G)和第二代GSM、TDMA等数字手机(2G),第三代手机一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统。
它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。
为了提供这种服务,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2Mbps(兆字节/每秒)、384kbps(千字节/每秒)以及144kbps的传输速度。
3G的技术标准国际电信联盟(ITU)在2000年5月确定W-CDMA、CDMA2000和TDS-CDMA三大主流无线接口标准,写入3G技术指导性文件《2000年国际移动通讯计划》(简称IMT-2000)。
W-CDMA即WidebandCDMA,也称为CDMADirectSpread,意为宽频分码多重存取,其支持者主要是以GSM系统为主的欧洲厂商,日本公司也或多或少参与其中,包括欧美的爱立信、阿尔卡特、诺基亚、朗讯、北电,以及日本的NTT、富士通、夏普等厂商。
这套系统能够架设在现有的GSM网络上,对于系统提供商而言可以较轻易地过渡,而GSM系统相当普及的亚洲对这套新技术的接受度预料会相当高。
因此W-CDMA 具有先天的市场优势。
CDMA2000CDMA2000也称为CDMA Multi-Carrier,由美国高通北美公司为主导提出,摩托罗拉、Lucent和后来加入的韩国三星都有参与,韩国现在成为该标准的主导者。
这套系统是从窄频CDMA One数字标准衍生出来的,可以从原有的CDMA One结构直接升级到3G,建设成本低廉。
但目前使用CDMA的地区只有日、韩和北美,所以CDMA2000的支持者不如W-CDMA多。
不过CDMA2000的研发技术却是目前各标准中进度最快的,许多3G手机已经率先面世。
移动通信基站天线基础知识
移动通信基站天线基础知识移动通信基站天线基础知识1.介绍移动通信基站天线是实现无线信号覆盖和通信的关键元件之一,它能够向各个方向辐射或接收电磁波。
本文档将介绍移动通信基站天线的基础知识,包括天线的类型、性能指标、安装调试及维护等。
2.移动通信基站天线的类型2.1 方向性天线方向性天线具有明确的主辐射方向,能够实现定向发射和接收信号。
常见的方向性天线包括定向天线和扇形天线。
2.2 全向天线全向天线能够在水平方向上均匀辐射和接收信号,适用于提供大范围覆盖的场景。
常见的全向天线有全向螺旋极化天线和全向波束天线。
3.移动通信基站天线的性能指标3.1 增益增益是衡量天线辐射或接收信号能力的重要指标,通常以dBi (dB与dBd之间的转换关系是:dBd = dBi ●2.15)表示。
增益越高,天线传输距离越远。
3.2 波束宽度波束宽度衡量天线在水平或垂直方向上的辐射或接收范围。
辐射方向越集中,波束宽度越小。
3.3 调谐频率调谐频率是天线能够工作的频率范围,常用单位为MHz。
天线应能够适应所在通信系统的频率需求。
4.移动通信基站天线的安装调试4.1 天线安装天线的安装应符合相关的安全规范,确保其稳固性和机械强度。
天线安装位置的选择应充分考虑信号覆盖效果,并避免与其他设备干扰。
4.2 天线调试天线调试包括方向调整和天线倾角调整。
方向调整保证天线辐射或接收信号的主辐射方向正确。
天线倾角调整保证天线的覆盖范围和干扰控制达到最佳效果。
5.移动通信基站天线的维护天线的维护包括定期巡视和清洁,及时检查连接器和电缆接头的情况,并做好防水、防锈等工作。
如有问题应及时进行维修或更换。
附件:1.移动通信基站天线安装示意图2.天线维护记录表格法律名词及注释:1.电信法:指规范和管理电信行业各项活动的法律文件。
2.电磁波:指在电磁场中传播的波动现象,具有能量和频率特性。
3.增益:指天线传输和接收信号能力的提高程度。
4.波束宽度:指天线在特定方向上能够覆盖的角度范围。
移动通信基站天线原理及基本知识讲座
* 电磁波的辐射
* 电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如 图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如 图1.1 b 所示,电场就散播在周围空间,因而辐射增强。 必须指出,当导线的长度 L 远小于波长 λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。
水平极化
1.4.1 双极化天线
垂直极化
1.4.1 双极化天线 下图示出了另两种单极化的情况:+45° 极化 与 -45° 极化,它们仅仅在特殊场合下使用。 这样,共有四种单极化了,见下图。 把垂直极化和水平极化两种极化的天线组合在一起,或者, 把 +45° 极化和 -45° 极化两种极化的天线组合在一起,就构成了一种新的天线---双极化天线。
1.4 天线的极化
垂直极化
1.4 天线的极化 天线向周围空间辐射电磁波。电磁波由电场和磁场构成。人们规定:电场的方向就是天线极化方向。一般使用的天线为单极化的。下图示出了两种基本的单极化的情况:垂直极化---是最常用的;水平极化---也是要被用到的。
天线的基本知识
天 线 基 本 知 识
CLICK TO ADD TITLE
移动通信基站天线原理及基本知识讲座
汇报人姓名
1.1 天线的作用与地位
天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等; 按工作频段分类,可分为短波天线、超短波天线、微波天线等; 按方向性分类,可分为全向天线、定向天线等; 按外形分类,可分为线状天线、面状天线等; 等等分类。
2.4GHz5.8GHz WiFi 天线基础知识
2.4GHz5.8GHz WiFi 天线基础知识若你发现新购买的2.4GHz 或5.8GHz 设备没有提供你心目中预料的无线覆盖能力,这不一定表示设备有问题,或你放置的设备位置不对,超过九成的原因是你没有为设备配上合适的天线;即使你的WiFi 客户端能通过你家中的无线路由器上网,你有没有检查过实际的无线信号强度,如果信噪比(SNR) 过低,无线传输速度便不能达到54Mbps 或更高速度,当然无线干扰等亦会影响传输速度,但连基本的无线信号也搞不好,便不要期望能高速上网。
那么我们应选购那一类型的天线? 这不是三言两语可以解释清楚,选用合适天线其实是一门学问,我们必须从了解天线的基础常识开始,下面的文章会介绍天线的原理及一些天线参数,相信能协助你选择及安装合适的天线,从而加强无线系统的有效覆盖面及表现。
天线是一个无源体,即不需要提供电力或其它能源,它亦非功率放大器,不会把输入的无线信号放大,相反由于馈线及接头带来的信号衰减,发放的无线能量会比输入到天线接点的能量为少,其实天线只是担当一个方向性放大器的角色,使收发能量集中于空间的某个特定区域,改变能量的发放区域到需要的地方是天线的唯一目的,若把能量发放到一些没有无线设备的地方,或者把能量过度发放到某一个区域都是浪费,根据能量不变定律,把发放到一个方向能量加强即把其它区域的能量减少。
增益增益是一个通用的天线特性表示方法,它是指相对于以下两种理想标准收发模式在某一个区域的强度增益,理想标准收发模式一是以辐射体的能量从一个isotropic 天线发出( 如下图),它是一个等方性辐射体,在空间中的任何方向放射出,所有方向都是0dB,根据此标准作为参考计算出来的增益单位为dBi,另一种理想标准收发模是基于一个自由空间半波长双极子放射出来的能量作为参考,计算出来的益单位为dBd,很明显后者的辐射体相对于前者的辐射体已存在增益,计算所得为2.16,即1 dBd = 2.16 dBi ,现时大多天线都采用dBi 为计算单位,2.4GHz 或5.8GHz 的典型增益由2 dBi 到26 dBi。
移动通信天线基本知识
移动通信天线基本知识移动通信天线基本知识⒈引言●移动通信天线是移动通信系统中的重要组成部分,用于发送和接收无线信号。
●本文将详细介绍移动通信天线的基本知识,包括分类、结构、工作原理等。
⒉移动通信天线分类⑴基于使用频段的分类●GSM天线: 用于GSM通信系统的天线,工作频段分别是上行频段(890MHz-915MHz)和下行频段(935MHz-960MHz)。
●CDMA天线: 用于CDMA通信系统的天线,具有不同的频段划分,如800MHz、900MHz等。
●LTE天线: 用于LTE通信系统的天线,工作频段根据不同的频段规划。
⑵基于天线结构的分类●定向天线: 用于指向特定方向的信号传输和接收,具有较高的增益。
●非定向天线: 用于在各个方向上均匀辐射和接收信号。
⑶基于应用场景的分类●室内天线: 用于室内环境,覆盖范围较小,一般用于大楼、办公室等场所。
●室外天线: 用于室外环境,覆盖范围较大,一般用于基站、塔楼等场所。
●基站天线: 用于无线基站,将基站与用户终端之间的信号传输和接收。
⒊移动通信天线结构●天线辐射元件: 负责信号的传输和接收,可以是金属杆、线圈等。
●带载元件: 对天线进行调整和匹配,以便获得良好的天线性能。
●驱动及调整单元: 负责控制天线的辐射特性和频率特性。
⒋移动通信天线工作原理●天线接收信号: 当无线信号通过天线辐射元件进入天线时,天线会将这些信号转换为电信号。
●天线发送信号: 当电信号通过天线发送时,天线会将其转换为无线信号并通过辐射元件进行发送。
⒌附件●本文档附带移动通信天线的示意图以及相关技术规格表格,详见附件。
⒍法律名词及注释●本文中涉及的法律名词及其注释详见法律术语表格,详见附件。
移动通信基站天线基础知识
移动通信基站天线基础知识移动通信基站天线是移动通信系统中的重要组成部分,其作用是将电信号转化为电磁波,并进行无线传输。
本文将介绍移动通信基站天线的基础知识,包括天线的类型、工作原理、性能指标等内容。
一、天线的类型移动通信基站天线可以根据不同的分类方式进行分类。
根据天线的工作频段,可以分为以下几类:1. 宽频段天线:适用于多频段的通信系统,能够覆盖不同频段的通信需求。
2. 扇形覆盖天线:用于小区域通信,形状呈扇形,信号覆盖范围有限。
3. 定向天线:用于长距离通信,信号传输更远且更稳定,但只能在特定方向进行通信。
4. 等向天线:信号传输范围广且均匀,适用于城市通信等环境。
根据天线的形状和结构,还可以分为以下几类:1. 竖直天线:天线的辐射方向主要朝向地面,适用于城市通信等场景。
2. 水平天线:天线的辐射方向主要朝向水平方向,适用于山区等场景。
3. 室内天线:适用于室内信号覆盖,可提供稳定的室内信号传输环境。
4. 中心天线:用于高速列车、高速公路等移动环境下的通信需求。
二、天线的工作原理移动通信基站天线的工作原理是将电信号转化为电磁波,并进行无线传输。
具体工作原理如下:1. 输入信号处理:接收来自基站设备的电信号,并进行处理,使其符合天线的输入要求。
2. 电信号转换:将输入信号转换为高频电磁波,以便进行无线传输。
3. 辐射和传输:将转换后的电磁波通过天线辐射出去,在空间中传输到指定的接收器。
4. 接收器接收:接收器接收到天线辐射出的电磁波,并将其转换为电信号。
三、天线的性能指标移动通信基站天线的性能指标直接影响着通信系统的性能。
常见的天线性能指标包括:1. 增益:衡量天线的辐射效率,增益越高,传输距离越远。
2. 驻波比:衡量天线的匹配程度,驻波比越小,能量传输效率越高。
3. 方向性:衡量天线在不同方向上的辐射效果,方向性越强,信号传输精度越高。
4. 波瓣宽度:衡量天线在空间中的覆盖范围,波瓣宽度越大,覆盖范围越广。
2.4g天线
2.4g天线简介2.4G天线是一种用于无线通信的天线,广泛应用于各种设备中,如无线路由器、无线网络适配器、无线摄像头等。
本文将会介绍2.4G天线的工作原理、特性和常见应用。
工作原理2.4G天线是一种微带天线,采用共面垂直波导(CPW)结构。
它通过射频信号的辐射和接收来实现信号的传输。
2.4G天线的工作频率范围是2.4GHz到2.4835GHz,属于无线局域网(WLAN)应用的标准频率范围。
2.4G天线的辐射器通常由导电材料构成,如铜,通过与地板之间的介电基片保持一定的距离,以实现天线的工作。
天线的尺寸会根据工作频率进行调整,以保证天线与信号的匹配。
在2.4G天线的寄生负载矩形辐射器上,有一根连接到射频接口的铜柱。
这根铜柱被称为同轴馈线(Coaxial Feeder),它负责将无线信号引入到天线内部,并从天线外部引出射频信号。
通过这种方式,2.4G天线实现了无线通信信号的直接传输和接收。
特性2.4G天线具有以下特性:1.工作频率范围广泛:2.4G天线适用于2.4GHz到2.4835GHz的工作频率范围,可以满足无线通信领域的需求。
2.小巧轻便:2.4G天线通常采用微带天线的设计,尺寸小巧,重量轻,非常适合集成在各种设备中。
3.辐射效果好:2.4G天线采用CPW结构设计,通过调整天线尺寸以匹配信号频率,保证辐射效果优良。
4.易于安装:2.4G天线通常具有标准尺寸和接口,因此很容易安装在各种设备上。
5.成本低廉:由于2.4G天线采用常规的制造工艺和材料,因此具有成本低廉的优势。
常见应用2.4G天线在无线通信领域有着广泛的应用,下面是几个常见的应用场景:1.无线路由器:2.4G天线常用于无线路由器中,用于接收和发送无线信号,提供无线网络覆盖。
2.无线网络适配器:2.4G天线也被用于无线网络适配器中,将有线网络信号转化为无线信号,实现无线网络连接。
3.无线摄像头:2.4G天线可以用于无线摄像头中,将视频信号通过无线方式传输到接收设备,实现无线监控。
移动通信基站天线基础知识
移动通信基站天线基础知识目录1.简介1.1 移动通信基站天线的定义1.2 移动通信基站天线的分类1.3 移动通信基站天线的应用2.移动通信基站天线类型2.1 定向天线2.2 扇形天线2.3 环形天线2.4 通用天线2.5 室内天线2.6 室外天线3.移动通信基站天线结构3.1 天线辐射元件3.2 天线射频部分3.3 天线机械部分4.移动通信基站天线的性能指标 4.1 增益4.2 波束宽度4.3 驻波比4.4 前后比4.5 频率带宽4.6 天线效率4.7 电辐射中心5.移动通信基站天线的安装与调试 5.1 天线安装位置选择5.2 天线安装注意事项5.3 天线调试步骤6.移动通信基站天线的维护与保养 6.1 定期巡视6.2 清洁保养6.3 防雷防腐7.移动通信基站天线的常见问题及处理方法7.1 信号覆盖不到位7.2 杂散泄露问题7.3 天线照射安全问题7.4 天线故障排查附件:移动通信基站天线安装示意图法律名词及注释:1.移动通信基站:在移动通信网络中,用于无线通信的设备,包括天线、基站设备等。
2.天线辐射元件:组成天线辐射系统的基本单元,负责接收和发送无线信号。
3.增益:衡量天线辐射信号强度的指标,增益越高,辐射范围越大。
4.波束宽度:指天线在水平和垂直方向上的辐射范围。
5.驻波比:衡量天线匹配性能的指标,数值越小表示天线与传输线的匹配越好。
6.前后比:衡量天线辐射信号与背景噪声的关系,前后比越大,天线接收信号的性能越好。
7.电辐射中心:天线在空间中辐射信号的中心位置。
本文档涉及附件,详见附件部分。
本文所涉及的法律名词及注释供参考,具体解释请参考相关法律文件。
附件:移动通信基站天线安装示意图法律名词及注释:1.移动通信基站:在移动通信网络中,用于无线通信的设备,包括天线、基站设备等。
2.天线辐射元件:组成天线辐射系统的基本单元,负责接收和发送无线信号。
3.增益:衡量天线辐射信号强度的指标,增益越高,辐射范围越大。
移动通信基站天线基础知识
移动通信基站天线基础知识移动通信基站天线基础知识移动通信基站天线是无线通信系统中的重要组成部分,其作用是将无线信号从基站传输到用户终端,或将用户终端发送的信号传输到基站。
在移动通信系统中,合理选择和配置天线,对于保证无线信号覆盖范围、提高通信质量和增强系统容量至关重要。
本文将介绍移动通信基站天线的基础知识。
1. 移动通信基站天线的分类移动通信基站天线根据其发射和接收的信号频段可分为以下几类:- 全向天线:全向天线也称为接收天线,用于接收用户终端发送的信号。
它能够从360度方向接收信号,常用于基站的覆盖区域边缘。
全向天线具有较大的接收范围,但其增益相对较低。
- 扇形天线:扇形天线是指发射或接收范围为扇形的天线,用于覆盖基站某一特定区域。
扇形天线可以通过调节天线的电子下倾角来控制其覆盖范围,从而提高通信质量和系统容量。
- 定向天线:定向天线也称为高增益天线,用于提供长距离的通信服务。
定向天线的发射和接收范围较为有限,主要用于连接不同基站或进行无线链路的覆盖。
定向天线具有较高的增益,可以提供更远的传输距离和更强的信号质量。
2. 移动通信基站天线的参数移动通信基站天线的性能与一些重要参数密切相关,包括:- 频率范围:天线的频率范围应与无线通信系统的工作频段相匹配,以确保信号的传输和接收。
- 增益:天线的增益是指其将无线信号从基站传输到用户终端的能力。
增益越高,信号传输的距离也就越远。
- 下倾角:天线的下倾角是指天线主轴与地平面的夹角。
通过调整下倾角,可以实现天线信号的覆盖范围控制。
- 方向性:天线的方向性表征了其在接收或发射信号时的范围。
全向天线具有较低的方向性,而定向天线具有较高的方向性。
- 驻波比:驻波比是指天线输入阻抗和传输线的阻抗之比。
驻波比越小,表示匹配度越好,系统效率越高。
3. 移动通信基站天线的安装和调整移动通信基站天线的安装和调整是保证系统正常运行的关键步骤。
以下是一些需要注意的要点:- 天线高度:基站天线的高度应根据实际情况选择,以保证信号的覆盖范围和传输距离。
天线的主要性能指标和相关知识
天线的主要性能指标和相关知识天线的主要性能指标1、方向图:天线方向图是表征天线辐射特性空间角度关系的图形。
以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。
一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。
平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。
描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707 倍, 3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。
一般地,GSM H向基站水平面半功率波瓣宽度为65。
,在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。
2、方向性参数不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。
理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。
我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02。
3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。
增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。
由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。
一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。
另外,表征天线增益的参数有dBd和dBi。
DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。
相同的条件下,增益越高,电波传播的距离越远。
基于2G 3G 无线通信模块的天线设计流程与指南说明书
应用_基于 2G/3G 无线通信模块的天线设计流程与指南_V1.00
4
基于 2G/3G 无线通信模块的天线设计流程与指南
版本历史
日期
版本
2012-05-21 1.00
修改点描述 初稿
作者 周建梅
应用_基于 2G/3G 无线通信模块的天线设计流程与指南_V1.00
5
基于 2G/3G 无线通信模块的天线设计流程与指南
6
基于 2G/3G 无线通信模块的天线设计流程与指南
导致后期的天线设计与调试难度增大,甚至天线功能无法实现。因此,在产品的 设计过程中,尽早考虑天线的设计是至关重要的。在产品设计早期,天线设计公 司介入评估就非常必要,为天线的实现及性能保证提供基础。
2、天线设计注意事项
2.1 工作频段的确定
天线调试前,首先要确定工作频段,对于不同的频段,天线的形式及判定标准等都有所
区别。不同频段的频率范围如表 2.1:
频段
接收
发射
GSM850
869 ~ 894 MHz
824 ~ 849 MHz
EGSM900
925 ~ 960 MHz
880 ~ 915 MHz
DCS1800
1805 ~ 1880 MHz 1710 ~ 1785 MHz
PCS1900
1930 ~ 1990 MHz 1850 ~ 1910 MHz
线的工作频率范围相同,但其形状却大相径庭。这就意味着天线是一个与结构紧 密相关的部件。多数情况下,产品结构发生变化,往往会影响到天线的性能,从 而需要重新调试天线。 2. 在现实情况中,许多产品在设计之初,并没有充分考虑结构对天线设计的影响,
应用_基于 2G/3G 无线通信模块的天线设计流程与指南_V1.00
移动通信基站天线原理及基本知识讲座
移动通信基站天线原理及基本知识讲座移动通信基站天线是移动通信系统中不可缺少的组成部分,它承担着信号的发射和接收任务。
在移动通信系统中,基站天线起着连接用户终端和移动通信网的桥梁作用,它负责将来自用户终端的信号进行调制,并通过无线电波形式传输到移动通信网中。
同时,基站天线还负责接收来自移动通信网的信号,并将其解调成用户终端能够识别的形式传递给用户。
下面我们将从基站天线的工作原理、基本知识以及未来发展趋势等方面进行讲解。
首先,基站天线的工作原理是基于电磁辐射的原理。
在移动通信系统中,天线通过发射和接收无线电波来实现通信。
当天线收到来自用户终端的信号时,它会将信号进行放大、调制等处理,然后通过天线辐射出去。
当其他基站收到信号时,他们会进行处理,并将信号传递到目标用户终端。
同时,基站天线也可以接收其他基站发出的信号,并通过解调等处理将其传递给用户终端。
基站天线的工作频段通常在800MHz至2600MHz之间,根据不同的通信制式和频段有不同的天线类型。
例如,对于CDMA制式的通信,通常采用的是宽带天线,而对于LTE制式的通信,通常采用的是多天线技术,以提高通信质量和速率。
此外,天线的天线增益也是衡量天线性能的重要指标之一、天线增益越高,天线的辐射效果越好,信号的覆盖范围也越广。
在移动通信系统中,天线的布局和排列也是非常重要的。
通常情况下,基站天线会根据信号的覆盖范围和干扰情况进行合理的布置。
例如,在城市中,由于建筑物的高度和密集度较高,通常采用分布式布局的方式,即将天线分布在建筑物的各个角落,以实现全方位的覆盖。
而在农村地区,由于建筑物较少,通常采用集中布局的方式,即将天线集中在一起,以实现较大的覆盖范围。
除了基本的工作原理和布局以外,基站天线的发展也面临着许多挑战和机遇。
随着移动通信技术的不断发展,对于天线性能的要求也越来越高。
例如,在5G时代,由于更高的频段和更大的数据传输量,天线需要具备更宽的工作频段和更高的天线增益。
移动通信基站天线基础知识-无删减范文
移动通信基站天线基础知识移动通信基站天线基础知识简介在移动通信领域,基站是通信网络的核心组成部分,它负责接收和发送信号,实现移动用户间的通信。
而在基站中的重要组成部分就是天线。
天线作为基站的“眼睛和耳朵”,起到接收和发射无线信号的作用。
本文将介绍移动通信基站天线的基础知识。
天线类型移动通信基站天线按照不同的分类标准可以分为多种类型,其中常见的有以下几种:1. 方向性天线:这种天线主要用于提高信号的传输距离和覆盖范围。
它将信号聚焦在一个特定方向上,减少信号的散射和干扰。
2. 扇形天线:这种天线主要用于扇面覆盖区域内的通信。
它将信号均匀地辐射到扇形区域内,以满足移动用户的需求。
3. 定向天线:这种天线主要用于长距离通信,如城市间的通信。
它将信号集中在一个狭窄的方向上,提高信号的传输距离和质量。
4. 室内天线:这种天线主要用于室内覆盖,如商场、办公楼等场景。
它可以增强信号在室内的传输强度,提高信号覆盖的质量。
天线性能参数了解天线的性能参数对于实现高质量的移动通信至关重要,下面是一些常见的天线性能参数:1. 增益:天线的增益是指天线辐射或接收信号的能力。
增益值越高,天线的辐射、接收和传输的功率就越大,覆盖范围也就越广。
2. 波束宽度:波束宽度是指天线辐射信号的主要方向范围。
波束宽度越窄,天线的覆盖范围也就越小,但传输距离和质量会更好。
3. 前后比:前后比描述了天线在主波束方向上辐射信号的强度与背向波束方向上辐射信号强度之间的比值。
前后比越大,天线的方向性就越明显。
4. 横向波束宽度:横向波束宽度是指天线辐射信号的水平范围。
横向波束宽度越大,天线的覆盖范围也就越广。
5. 竖向波束宽度:竖向波束宽度是指天线辐射信号的垂直范围。
竖向波束宽度越大,天线的覆盖范围也就越广。
天线安装和调整天线的安装和调整是保证通信质量的关键步骤。
以下是一些常见的注意事项:1. 安装位置:天线的安装位置应尽量避免遮挡,以确保信号的传输效果。
移动通信天线基本知识
移动通信天线基本知识移动通信天线是移动通信系统中的重要组成部分,它负责将信号从移动设备传输到基站或者将信号从基站传输到移动设备。
在移动通信技术的发展过程中,天线的设计成为了一个关键性的问题。
1. 天线的分类根据用途和特点,移动通信天线可以分为以下几种类型:1.1 手持终端天线手持终端天线是移动设备中的内置天线,用于接收和发送信号。
这种天线一般采用小型化设计,以适应手持设备的外形和尺寸。
常见的手持终端天线有贴片天线、PIFA天线等。
1.2 基站天线基站天线是用于在基站和移动设备之间进行信号传输的天线。
由于基站天线的高度和安装位置通常比较高,所以其设计要考虑到信号覆盖范围和天线方向性等因素。
常见的基站天线有定向天线、扇形天线等。
1.3 室内分布系统天线室内分布系统天线是用于在室内环境中传输无线信号的天线。
由于室内环境中存在多种干扰因素,这种天线一般具有较强的抗干扰能力和覆盖范围。
常见的室内分布系统天线有墙壁天线、天花板天线等。
2. 天线的性能指标移动通信天线的性能指标对于天线性能的评估和选型非常重要。
常见的天线性能指标包括以下几个方面:2.1 增益天线的增益是指在天线辐射方向上的能量密度相对于随机辐射方向上的能量密度的比值。
增益越高,天线在辐射方向上的信号能量也就越强。
2.2 方向性天线的方向性是指天线在不同方向上的信号辐射强度的差异。
方向性越窄,天线辐射的信号范围也就越窄。
方向性适中的天线可以在提高通信质量的,保证较大的覆盖范围。
2.3 阻抗匹配天线的阻抗匹配是指天线的输入端和输出端的特性阻抗与连接设备之间的匹配情况。
当天线的阻抗与设备之间的阻抗匹配不好时,会导致信号反射和损耗,降低通信质量。
3. 天线的设计原则在进行移动通信天线的设计时,需要考虑以下几个原则:3.1 天线尺寸天线的尺寸应当与移动设备或基站的外形尺寸相匹配,以便于天线的安装和布局。
尺寸的小型化设计也有助于提高设备的便携性和美观性。
移动通信天线基本知识
移动通信天线基本知识第一章:引言1.1 本章概述1.2 天线的作用和重要性1.3 文档目的和范围第二章:天线基础知识2.1 天线的定义2.2 天线的分类2.2.1 按传播方式分类2.2.2 按天线结构分类2.2.3 按频率分类2.3 天线的基本特性2.3.1 增益2.3.2 方向性2.3.3 阻抗2.4 天线参数的测量方法2.4.1 增益的测量方法2.4.2 方向性的测量方法2.4.3 阻抗的测量方法第三章:移动通信天线的应用3.1 无线通信系统中的天线3.1.1 移动通信基站天线3.1.2 移动终端设备天线3.2 移动通信天线的选型原则3.2.1 频段覆盖需求3.2.2 天线增益需求3.2.3 天线方向性需求3.3 移动通信天线的安装及调试3.3.1 天线安装位置选择3.3.2 天线的定向姿态调整3.3.3 天线与传输线的连接第四章:移动通信天线的维护与故障排除4.1 天线的日常维护4.1.1 天线的清洁4.1.2 天线的检查与保养4.2 天线故障的分类4.2.1 外在因素引起的故障4.2.2 内在因素引起的故障4.3 天线故障的排除方法4.3.1 外在因素引起的故障排除4.3.2 内在因素引起的故障排除第五章:天线安装与维护的法律规定与注意事项5.1 法律名词及注释5.2 天线安装的法律规定5.3 天线维护的法律要求5.4 天线辐射的环境保护要求附件:1. 天线测量报告范本2. 天线安装调试记录表本文档涉及附件:1. 天线测量报告范本(附件1)2. 天线安装调试记录表(附件2)本文所涉及的法律名词及注释:1. 频段:指特定的频率范围。
2. 增益:指天线在某一特定方向上辐射功率相对于参考天线的倍数。
3. 方向性:指天线在一个或多个特定方向上具有较高的辐射能力。
4. 阻抗:指天线输入端的特性阻抗,通常以电阻和电感值表示。
g2与g3计算方法
g2与g3计算方法G2与G3是两个用于衡量移动通信网络性能的指标,它们分别代表了网络的下行速率和上行速率。
在移动通信领域,G2和G3是两个非常重要的概念,本文将介绍它们的计算方法和应用。
我们来了解一下G2和G3的定义。
G2是指下行速率,也就是从网络到用户设备的数据传输速率,一般用Mbps(兆比特每秒)来表示。
G3是指上行速率,也就是从用户设备到网络的数据传输速率,同样也用Mbps来表示。
G2和G3的数值越高,代表网络速度越快,用户可以更快地下载和上传数据。
接下来,我们来介绍一下G2的计算方法。
G2的计算主要涉及到两个指标:载波带宽和调制解调器技术。
载波带宽是指网络中可用的频谱范围,一般以赫兹(Hz)为单位表示。
调制解调器技术是指将数字信号转换为模拟信号和将模拟信号转换为数字信号的技术,常用的调制解调器技术有QAM、OFDM等。
G2的计算公式为:G2 = 载波带宽× 调制解调器技术。
在实际应用中,G2的数值可以通过网络测试工具进行测量和计算。
然后,我们来介绍一下G3的计算方法。
G3的计算与G2类似,也需要考虑载波带宽和调制解调器技术两个指标。
不同的是,G3的计算还需要考虑到天线技术。
天线技术是指网络中用于无线信号传输的天线类型,常见的天线技术有MIMO、Beamforming等。
G3的计算公式为:G3 = 载波带宽× 调制解调器技术× 天线技术。
同样地,G3的数值可以通过网络测试工具进行测量和计算。
G2和G3的计算方法虽然相似,但由于考虑到的指标不同,所以结果也会有所区别。
一般来说,对于同一种网络,G3的数值会比G2更高,因为G3不仅考虑到了下行速率,还考虑到了上行速率。
所以,在选择移动通信网络时,我们可以根据自己的需求来决定是更看重下行速率还是上行速率。
除了计算方法,G2和G3在实际应用中还有一些其他的注意事项。
首先,G2和G3的数值可以作为衡量网络性能的重要参考指标,但并不是唯一的评判标准,还需要考虑到其他因素,如网络覆盖范围、信号质量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天线综述6.1 天线6.1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。
6.1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。
另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。
6.1.3 天线方向性的讨论1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。
垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图1.3.1 a)。
立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。
从图1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。
2 天线方向性增强若干个对称振子组阵,能够控制辐射,产生“扁平的面包圈”,把信号进一步集中到在水平面方向上。
下图是4个半波对称振子沿垂线上下排列成一个垂直四元阵时的立体方向图和垂直面方向图。
也可以利用反射板可把辐射能控制到单侧方向平面反射板放在阵列的一边构成扇形区覆盖天线。
下面的水平面方向图说明了反射面的作用--反射面把功率反射到单侧方向,提高了增益。
天线的基本知识全向阵(垂直阵列不带平面反射板)。
抛物反射面的使用,更能使天线的辐射,像光学中的探照灯那样,把能量集中到一个小立体角内,从而获得很高的增益。
不言而喻,抛物面天线的构成包括两个基本要素:抛物反射面和放置在抛物面焦点上的辐射源。
3 增益增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
它定量地描述一个天线把输入功率集中辐射的程度。
增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号。
如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G = 13 dB = 20的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W . 换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为G = 2.15 dBi ; 4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G = 8.15 dBi ( dBi这个单位表示比较对象是各向均匀辐射的理想点源) 。
如果以半波对称振子作比较对象,则增益的单位是dBd 。
半波对称振子的增益为G = 0 dBd (因为是自己跟自己比,比值为1,取对数得零值。
);垂直四元阵,其增益约为G = 8.15 – 2.15 = 6 dB。
.4 波瓣宽度方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。
参见图1.3.4 a , 在主瓣最大辐射方向两侧,辐射强度降低 3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。
波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。
还有一种波瓣宽度,即10dB波瓣宽度,顾名思义它是方向图中辐射强度降低10dB (功率密度降至十分之一)的两个点间的夹角,见图1.3.4 b .5 前后比方向图中,前后瓣最大值之比称为前后比,记为 F / B 。
前后比越大,天线的后向辐射(或接收)越小。
前后比F / B 的计算十分简单--- F / B = 10 Lg {(前向功率密度)/(后向功率密度)}对天线的前后比F / B 有要求时,其典型值为(18 --- 30)dB,特殊情况下则要求达(35 --- 40)dB 。
6 天线增益的若干近似计算式1)天线主瓣宽度越窄,增益越高。
对于一般天线,可用下式估算其增益:G(dBi )= 10 Lg { 32000 / (2θ3dB,E ×2θ3dB,H )}式中,2θ3dB,E 与2θ3dB,H 分别为天线在两个主平面上的波瓣宽度;32000 是统计出来的经验数据。
2)对于抛物面天线,可用下式近似计算其增益:G(dB i )= 10 Lg { 4.5 ×(D / λ0 )2}式中, D 为抛物面直径;λ0 为中心工作波长;4.5 是统计出来的经验数据。
3)对于直立全向天线,有近似计算式G(dBi )= 10 Lg { 2 L / λ0 }式中,L 为天线长度;λ0 为中心工作波长;7 上旁瓣抑制对于基站天线,人们常常要求它的垂直面(即俯仰面)方向图中,主瓣上方第一旁瓣尽可能弱一些。
这就是所谓的上旁瓣抑制。
基站的服务对象是地面上的移动电话用户,指向天空的辐射是毫无意义的。
8 天线的下倾为使主波瓣指向地面,安置时需要将天线适度下倾。
6.1.4 天线的极化天线向周围空间辐射电磁波。
电磁波由电场和磁场构成。
人们规定:电场的方向就是天线极化方向。
一般使用的天线为单极化的。
下图示出了两种基本的单极化的情况:垂直极化---是最常用的;水平极化---也是要被用到的。
1 双极化天线下图示出了另两种单极化的情况:+45°极化与-45°极化,它们仅仅在特殊场合下使用。
这样,共有四种单极化了,见下图。
把垂直极化和水平极化两种极化的天线组合在一起,或者,把+45°极化和-45°极化两种极化的天线组合在一起,就构成了一种新的天线---双极化天线。
下图示出了两个单极化天线安装在一起组成一付双极化天线,注意,双极化天线有两个接头. 双极化天线辐射(或接收)两个极化在空间相互正交(垂直)的波。
2 极化损失垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。
右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。
当来波的极化方向与接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。
例如:当用+ 45°极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收+45°极化或-45°极化波时,等等情况下,都要产生极化损失。
用圆极化天线接收任一线极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失------只能接收到来波的一半能量。
当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量,这种情况下极化损失为最大,称极化完全隔离。
3 极化隔离理想的极化完全隔离是没有的。
馈送到一种极化的天线中去的信号多少总会有那么一点点在另外一种极化的天线中出现。
例如下图所示的双极化天线中,设输入垂直极化天线的功率为10W,结果在水平极化天线的输出端测得的输出功率为10mW。
6.1.5 天线的输入阻抗Zin定义:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。
输入阻抗具有电阻分量Rin 和电抗分量Xin ,即Zin = Rin + j Xin 。
电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。
事实上,即使是设计、调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。
输入阻抗与天线的结构、尺寸以及工作波长有关,半波对称振子是最重要的基本天线,其输入阻抗为Zin = 73.1+j42.5 (欧) 。
当把其长度缩短(3~5)%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为Zin = 73.1 (欧) ,(标称75 欧)。
注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。
顺便指出,半波折合振子的输入阻抗为半波对称振子的四倍,即Zin = 280 (欧) ,(标称300欧)。
有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近50 欧,从而使得天线的输入阻抗为Zin = Rin = 50 欧------这是天线能与馈线处于良好的阻抗匹配所必须的。
6.1.6 天线的工作频率范围(频带宽度)无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义------一种是指:在驻波比SWR ≤ 1.5 条件下,天线的工作频带宽度;一种是指:天线增益下降 3 分贝范围内的频带宽度。
在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR 不超过1.5 时,天线的工作频率范围。
一般说来,在工作频带宽度内的各个频率点上, 天线性能是有差异的,但这种差异造成的性能下降是可以接受的。
6.1.7 移动通信常用的基站天线、直放站天线与室内天线1 板状天线天线的基本知识无论是GSM 还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。
这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。
板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。
a 基站板状天线基本技术指标示例b 板状天线高增益的形成B. 在直线阵的一侧加一块反射板(以带反射板的二半波振子垂直阵为例)C. 为提高板状天线的增益,还可以进一步采用八个半波振子排阵前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为8 dB;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为14 --- 17 dB 。