北师大版初一数学下讲义整式的乘除

合集下载

北师大版七年级数学下册《整式的乘法》整式的乘除PPT优质课件

北师大版七年级数学下册《整式的乘法》整式的乘除PPT优质课件
所以2n-2-n=1且3m+1+m-6=3.
已知 求 的值.
所以m、n的值分别是m=1,n=2.
解:
所以2m+2=4且3m+2n+2=9.
故 m=1, n=2
ZYT
例2 有一块长为xm,宽为ym的长方形空地,现在要在这块地中规划一块长 xm,宽 ym的长方形空地用于绿化,求绿化的面积和剩下的面积.
3a3 ·2a2=6a5
3x2 ·4x2=12x4
5y3·3y5=15y8
×
×
×
ZYT
计算:(1) 5x3·2x2y ; (2) -3ab·(-4b2) ;(3) 3ab·2a; (4) yz·2y2z2;
(1)5x3·2x2y=(5×2)·(x3·x2)·y=10x5y.(2)-3ab·(-4b2)=[(-3)×(-4)]·a·(b·b2)=12ab3.(3)3ab·2a=(3×2)·(a·a)·b=6a2b.(4)yz·2y2z2=2·(y·y2)·(z·z2)=2y3z3.
解:
ZYT
5.若长方形的宽是a2,长是宽的2倍,则长方形的面积为 _____.【解析】长方形的长是2a2,所以长方形的面积 为a2·2a2=2a4.
2a4
6.一个三角形的一边长为a,这条边上的高的长度是它的 那么这个三角形的面积是_____.【解析】因为三角形的高为 ,所以这个三角形的 面积是
=6a3-12a2+9a-6a3-8a2
=-20a2+9a.
原式=-20×4-9×2=-98.
方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.
ZYT
先化简再求值:
解:原式=x4-x3+x2-x4+x3-x2+5x

北师大版初一数学(下)讲义--整式的乘除

北师大版初一数学(下)讲义--整式的乘除

第一章:整式的乘除1.1同底数幂的乘法复习回顾:复习七年级上册数学课本中介绍的有关乘方运算知识:探索新知1.利用乘方的意义,计算103×102. 解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105. 2.建立幂的运算法则将上题中的底数改为a ,则有 a 3·a 2=(aaa)·(aa)=aaaaa =a 5, 即a 3·a 2=a 5=a 3+2. 用字母m ,n 表示正整数,则有即a m ·a n =a m+n .3.剖析法则思考以下问题:(1)等号左边是什么运算? (2)等号两边的底数有什么关系? (3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么? (5)当三个以上同底数幂相乘时,上述法则是否成立? 请大家试着叙述这个法则:应用提高探讨pn m a a a ⋅⋅等于什么? 课堂训练(1)-a 2·a 6 (2)(-x)·(-x)3 (3)y m ·y m+1 (4)()3877⨯-(5)()3766⨯- (6)()()435555-⨯⨯- (7)()()b a b a -⋅-2(8)()()b a a b -⋅-2(9)x 5·x 6·x 3 (10)-b 3·b (11)-a·(-a)3 (12)(-a)2·(-a)3·(-a)1.2 幂的乘方与积的乘方(一) 复习回顾复习已学过的幂的意义及幂运算的运算法则 1、幂的意义 2、.nm nmaa a +=⋅(m 、n 为正整数)同底数幂相乘,底数不变,指数相加。

探索新知根据已经学习过的知识,回忆并探讨以下实际问题:1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm 3 。

2019年北师大七年级(下)数学 第一章:整式的乘除运算讲义

2019年北师大七年级(下)数学 第一章:整式的乘除运算讲义

2019年北师大七年级(下) 第一章:整式的乘除运算讲义【解题方法与策略】整式的乘法(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式.如:23234233ab a b c a b c ⋅=,两个单项式的系数分别为1和3,乘积的系数是3,两个单项式中关于字母a 的幂分别是a 和2a ,乘积中a 的幂是3a ,同理,乘积中b 的幂是4b ,另外,单项式ab 中不含c 的幂,而2323a b c 中含2c ,故乘积中含2c .(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加.公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a b c ++为多项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加.公式为:()()m n a b ma mb na nb ++=+++整式的除法(1)单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.如:2322233a b c ab ab c ÷=,被除式为2323a b c ,除式为ab ,系数分别为3和1,故商中的系数为3,a 的幂分别为2a 和a ,故商中a 的幂为21a a -=,同理,b 的幂为2b ,另外,被除式中含2c ,而除式中不含关于c 的幂,故商中c 的幂为2c .(2)多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加.公式为:()a b c m a m b m c m ++÷=÷+÷+÷,其中m 为单项式,a b c ++为多项式.典例剖析【例1】 下列计算正确的是( )A .236326a a a ⋅=B .358248x x x ⋅=C .44339x x x ⋅=D .88165510y y y ⋅=【例2】 直接写出结果:(1)23232a b a b ⋅= (2)22558x y xyz ⋅=(3)3263b a b ⎛⎫⋅-= ⎪⎝⎭(4)()()2424a b b -⋅-=【例3】 计算:(1)3223152a bc ab ⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭(2)()()1323443m x yz x y z +⋅-(3))21).(43).(32(222z xy z yz x -- (4)33332543ab a b abc ⎛⎫⎛⎫⋅-⋅- ⎪ ⎪⎝⎭⎝⎭(4)()()1245m m a b b a -⎡⎤⎡⎤-⋅--⎣⎦⎣⎦ (6)()()()21536m n m x y x y y x +⎡⎤-⋅-⋅-⎣⎦【练习】计算2332536()()()()1245x y x y x y y x ⎡⎤+⋅--⋅--⋅-⎢⎥⎣⎦.【例4】 计算:(1)()()43322.a ab c (2)()()233222x x y -⋅-(3)()()23226.3xy x y ⎛⎫-⋅- ⎪⎝⎭(4)()32223334x x y xy ⎛⎫⎛⎫-⋅-⋅- ⎪⎪⎝⎭⎝⎭(5)()()2323m n x y x y -⋅ (6)()()()232223m n n x y x y xy -⋅-⋅-【例5】 若()18333m n m n a a b a b ++⋅=,则m = ,n = .【例6】 如果223a b x y --和35825a b a bx y ++是同类项,那么这两个单项式的积是 .【例7】 直接写出结果:(1)()62m n ---= (2)()222a a ab b --=(3)()()253a b ab -+⋅-= (4)()21684.2x x x ⎛⎫-+--= ⎪⎝⎭(5)()23413=3x x x ⎛⎫--+- ⎪⎝⎭ (6)()1=m m na a a --【例8】 计算:(1)()()22324a a b a a ab --- (2)()()222131a b ab ab ab -++-(3)()()2321322m n x x x x ⎡⎤---⎢⎥⎣⎦ (4)()()3213222m n ab b a b b a b ⎡⎤⎛⎫+--⋅- ⎪⎢⎥⎝⎭⎣⎦(5)()()()()534233515221x x y x x y ⎡⎤--⋅---⎣⎦ (6)12123111264226n n x y xy x y xy ++⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭【例9】 化简求值25365(21)4(3)24m m m n m m n --+-+---,其中12m n =-=,.【例10】 解方程()()()22614116x x x x x x ---=-+.【练习】若2(31)6(3)16x x x x --+-=,则______x =.【例11】 解不等式()()()222224253x x x x x x -+-+-≤.【例12】 对代数式进行恰当的变形求代数式的值 (1)若56x y +=,求2530x xy y ++;(2)若210m m +-=,求3222013m m ++;(3)若20x y +=,求()3342x xy x y y +++.【例13】 直接写出结果:(1)()()a b m n ++= (2)()()2a b m n +-= (3)()()23x x +-= (4)()()34y y --= (5)()()3x y x y -+= (6)()()22a b a b --=【例14】 下列计算正确的是:( )A .()()22222a b a b a b +-=-B .()()22a b a b a b --+=-C .()()22333103a b a b a ab b --=-+D .()()2233a b a ab b a b --+=-【例15】 下列计算正确的是:( )A .()2222a b a ab b --=-+ B .()222a b a b -=-C .()()()2244x y x y x y x y +--=-D .()()222244a b b a a ab b --=-+-【例16】 计算:(1)()()3123a a +- (2))214)(221(-+x x(3)()(2)x y x y ++ (4)()()43a b a b ---(5)(2)(2)(21)a a a -++; (6)233222()()x y x y x y -⋅-【例17】 计算:(1)(2)(3)a a a +- (2)()()0.10.20.30.4m n m n -+(3)2(23)(2)()x y x y x y -+-+ (4)2(2)(2)()a b a b a b +--+(5)22()()()x y x y y x -+--+ (6)()()22x xy y x y ++-【例18】 已知230a a --=,则(3)(2)a a -+的值是_________.【例19】 (1)若()()22345+x x ax bx c +-=+,则a = ,b = ,c = .(2)若2(2)()6x x n x mx --=-+,则___________m n ==,.【例20】 已知22()()26x my x ny x xy y ++=+-,求()m n mn +的值.【例21】 先化简再求值:()()()()3123454a a a a +----,其中2a =-.【例22】 直接写出结果:(1)52x x ÷= (2)94y y ÷= (3)88x x ÷= (4)()()106xy xy ÷= (5)()63c c -÷= (6)()1312x x -÷= (7)()323x x ⎛⎫÷-= ⎪⎝⎭(8)()5122ax x -÷=(9)()()7426=3a b b a -÷- (10)()0π 3.14-=【例23】 计算:(1)()42m m nx x x ÷⋅ (2)42m m n x x x ÷⋅(3)()()233223a b a÷ (4)211528n n a a -⎛⎫-÷ ⎪⎝⎭(5)()()2483pq m n n m ⎡⎤--÷-⎣⎦ (6)()()21212n n x y x y +⎡⎤⎡⎤+÷+⎢⎥⎣⎦⎣⎦【练习】计算:(1)222(4)8x y y ÷(2)2322393m n m n n m a b c a b ---÷(3)3232213()()34a b ab ÷ (4)2322(0.8)(4)n n x y x y ÷【例24】 若()28332233m n ax y x y x y ÷=,求a m n 、、的值.【例25】 化简求值:()()()43242322422a a a a a a ⎡⎤⎡⎤⋅-÷-÷-⋅⎢⎥⎢⎥⎣⎦⎣⎦,其中5a =-.【例26】 直接写出结果:(1)()269123x x -+÷= (2)()()32281477x x x x --÷-= (3)()()32121866x x x x -+÷-= (4)()()433226892x y x y x y xy -+÷-=【例27】 计算:(1)472632211()()393a b a b ab -÷-(2)()282342336( 1.8)0.655a b a b a b ab --÷(3)()323453360.90.645a x a x ax ax ⎡⎤-+-÷⎢⎥⎣⎦(4)()()2233735322728217m n m m n m n m n ⎡⎤+-÷-⎢⎥⎣⎦【例28】 先化简,再求值:()()()2232a b ab b b a b a b --÷-+- ,其中15a =-,1b =- .【练习】()()()()32322524a b a b a b a b a +--+--÷⎡⎤⎣⎦,其中23a b =-=,.【例29】 已知2610x x -+=,求221x x +的值.【练习】已知23530x x --=,求221x x +的值.【例30】 已知多项式322x x ax -+的除式为1bx -,商式为22x x -+,余式为2,求a b 、的值.【例31】 将一多项式()()221734x x ax bx c ⎡⎤-+-++⎣⎦,除以()56x +后,得商式为()21x +余式为1 求a b c --= .【例32】 (3)x +与(2)x m -的积中不含x 的一次项,则________m =.【例33】 如果2(1)(5)x x ax a +-+的乘积中不含2x 项,则a 为_________.【练习】已知23(536)(12)x mx x x -+--的计算结果中不含3x 的项,则m 的值为 .【例34】 计算322(25)(231)x x x x -+--+.【例35】 已知21ax bx ++与2231x x -+的积不含3x 的项,也不含x 的项,试求a 与b 的值.【练习】使22(8)(3)x px x x q ++-+的积中不含2x 和3x ,求p ,q 的值.【例36】 在()()22231x ax b x x ++--的积中,3x 项的系数是5-,2x 项的系数是6-,求a b 、的值.【练习】已知多项式432222(1)(2)x x x x mx x nx +++≡++++,求m 与n 的值.【例37】 已知实数a b x y 、、、满足35ax by ay bx +=-=,.求()()2222a b x y ++的值.【例38】 规定一种新运算“*”:a *()()()()2534b a b a b =++-++,试化简()1m -*()1n +.【练习】规定一种新运算“*”:对于任意实数()x y ,恒有()x y ,*()()211x y x y x y =++--,,.若实数a b ,满足()a b ,*()()=a b b a ,,,则a b ,的值为多少?【例39】 已知()5543221x ax bx cx dx ex f +=+++++,则a b c d e +++++的值为 ;a b c d e f -+-+-的值 .【练习】已知()66543232x ax bx cx dx ex fx g -=++++++,则a c e g +++的值为 ; b d f ++的值为 .知识回顾计算:(1)()()22x x +- (2)()()3131x x +- (3)()()a b a b +- (4)()()2323x x +-(5)()21x + (6)()221x - (7)()2a b + (8)()2a b -【解题方法及策略】平方差公式22()()a b a b a b +-=-平方差公式的特点:即两数和乘以它们的差等于这两数的平方差. ①左边是一个二项式相乘,这两项中有一项完全相同,另一项互为相反数. ②右边是乘方中两项的平方差(相同项的平方减去相反项的平方). 注意:①公式中的a 和b 可以是具体的数也可以是单项式或多项式. 如:2(2)(2)4a a a +-=-;22(3)(39x y x y x y +-=-); 22()()()a b c a b c a b c +++-=+-;3535610()()a b a b a b +-=-.②不能直接运用平方差公式的,要善于转化变形.如:97103(1003)(1003)9991⨯=-+=;22()()()()a b b a a b a b a b +-+=+-=-完全平方公式222()2a b a ab b +=++;222()2a b a ab b -=-+即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.完全平方公式的特点:左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中的每一项的平方,另一项是左边二项式中两项乘积的2倍,可简单概括为口诀:“首平方,尾平方,积2倍在中央”.注意:①公式中的a 和b 可以是单项式,也可以是多项式。

北师大版七年级数学下册第一章 整式的乘除1 同底数幂的乘法

北师大版七年级数学下册第一章  整式的乘除1 同底数幂的乘法
(4) b2m ·b2m+1 .
解:(1) 原式 = (-3)7 + 6 = (-3)13.
(2) 原式 = 1 3 1
1
4
.
111
111
(3) 原式 = -x3 + 5= -x8.
提醒:计算同底数 幂的乘法时,要注 意算式里面的负号 是属于幂的还是属 于底数的.
(4) 原式 = b2m + 2m + 1 = b4m + 1.
m 个 (-3) = (-3)m+n.
n 个 (-3)
猜一猜 am ·an = a (m + n ).
议一议 如果 m,n 都是正整数,那么 am ·an 等于什么? 为什么?
am·an = ( a ·a · … · a ) ·( a ·a · … · a ) (乘方的意义)
(m 个a) (n个a) = a ·a ·… ·a (乘法的结合律)
7
( m,n 都是正整数)
1
n
和 (-3)m×(-3)n 呢?
7
解:2m×2n=(2×2×···×2)× (2×2×···×2) =2m + n
m个2
1m 1n 1 1
1
11
7 7 77
7 77
n个2
1
1 mn
77
m

1 7
m

1 7
(-3)m×(-3)n
=[ (-3)×(-3)×···×(-3)]×[ (-3)×(-3)×···×(-3)]
( m+n个a)
= a( m+n ). (乘方的意义)
定义总结
同底数幂的乘法 运算法则:am ·an = am+n (m,n 都是正整数).

北师大版七年级下册 第一章 整式的乘除 复习巩固 讲义(全)

北师大版七年级下册 第一章 整式的乘除 复习巩固 讲义(全)

.

6、已知 a+b=3, a2+b2=5,求 ab 的值
7、若 m n 10 , mn 24 ,则 m2 n2
.
8、若 x y 8, xy 10 ,则 x 2 y 2 =
.
8、已知: x y 3, x 2 y 2 3xy 4 , 求: x3 y xy 3 的值

考点 5:不含项
【例 7】
1、要使 6x a2x 1 的结果中不含 x 的一次项,则 a 等于( )
A.0
B.1
C.2
D.3
2、使 x2 px 8 x2 3x q 的积中不含 x2 和 x3 ,求 p,q 的值。
变式训练
1、如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为

2、若
x
m
考点 4:乘法公式的灵活运用与拓展
【例 6】
1、已知 x y 6, xy 8 ;则 x2 y2 =
.
2、已知 m2 9m 1 0 ,则 m2 m2 =
.
3、若 x2 8x 18 2k 是一个完全平方式,则 k
.

变式训练
1、已知 x 2 5x 1 0 ,则 x 2 x 2 =
x
1 3
的乘积中不含
x
的一次项,则
m
等于______.
3、当 k =
时,多项式 x 2 3kxy 3y 2 1 xy 8 中不含 xy 项. 3
4、已知 ax2 bx 1 与 2x2 3x 1 的积不含 x3 的项,也不含 x 的项,试求 a 与 b 的值。
4、如(x+m)与(x+3)的乘积中不含 x 的一次项,则 m 的值。

北师版初一下第一章整式的乘除复习课件

北师版初一下第一章整式的乘除复习课件

(x)3 (x)2 (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p amnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4)4 a44 a8,[(b2)3]4 b234 b24
A 1,2; B 2,1 C 1,1, D 1,3
2、下列运算正确的是:( C )
A x3·x2=x6
B x3-x2=x
C(-x)2·(-x)=-x3 D x6÷x2=x3
3、已知代数式3y2-2y+6的值为8,则代数式 1.5y2-y+1的值为(B )
A1 B2
C 3 D4
4请你观察图形,依据图形面积间的关系,不需要添加辅助线,便 可得到两个你非常熟悉的公式,这两个公式分别是
1 c= 20 x+21
,则代
数式 a2+b2+c2-ab-bc-ca 的值是( B )
A. 4
B.3
C.2
D.1
12、若a,b都是有理数且满足 2a2 -2ab+b 2 +4a+4=0 ,
则2ab的值等于( B )
A. -8
B. 8
C.32
D.2004
13、下列算式正确的是( D )
A、—30=1
9、完全平方公式 法则:两数和(或差)的平方,等于这两数 的平方和再加上(或减去)这两数积的2倍。
数学符号表示:
(a b)2 a2 2ab b2; (a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.

(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习 姓名一.〈知识点〉回顾1、幂的运算法则:(1)同底数幂相乘:n m a a ∙= (m 、n 为正整数)=⋅⋅32a a a __ ; 108a a ∙= ;421010⋅=____ ;25()()()x x x ---=(2)幂的乘方:()n m a = (m 、n 为正整数) 22(10)= 22()a = ___)(32=a 25()x ⎡⎤-⎣⎦= (3)积的乘方:()nab = (n 为正整数) _____)(3=xy ; 32)2(mn -=_______ ; 23)102(⨯=_________ (4)同底数幂相除:m n a a ÷= (m 、n 为正整数,a ≠0) 87 a a ÷= ; 22b b ÷= ;(5)零指数0a = (a ≠ ) (-2)0= 负指数=-p a (a ≠ )(-1)-2= 2)21(-= 5-2= (6)科学记数法:0.00000058=2.整式的乘除① 单项式×单项式: _____5=⋅x x ; 2a ·2a= ; ______=⋅ab ab ; -4xy • 3x 2y=_______5343=⋅x x ; _______)2)((=--x x ;_________)2(32=-∙a b a② 单项式×多项式: ()m a b c ++=a (2a 2-4a +3)= ; -2a 2(3a 2+4a -2)= 。

③多项式×多项式相乘:=++))((b a n m __________________(x -2)(x -6)= =(2x -1)(3x +2)= = ________________)75)(4(=-+y x y x =④单项式÷单项式:27x 3x ÷= 12mn 4mn ÷=-⑤多项式÷单项式:(4x 3y +6x 2y 2-xy 3)÷2xy=(6a 4-4a 3-2a 2)÷(-2a 2)=3.乘法公式: 平方差公式:___________________))((=-+b a b a完全平方和公式:______________________)(2=+b a 完全平方差公式:______________________)(2=-b a (1)(x +2)(x -2) (2)(x -8y )(x +8y ) (3)(2x -3)(-2x -3)解:原式= 解:原式= 解:原式=(4)2(3)a b -= (5)21(4)2x + (6)2(2)a b -+=解:原式= 解:原式= 解:原式=综合练习:1.x m =3,x n =5,则x m+n = ,x 3m+2n = , x m-n = , x 3m-2n = 。

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。

该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。

为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。

这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

北师大版七年级(下)数学第一章整式的乘除教案:整式乘法讲义(含解析)

北师大版七年级(下)数学第一章整式的乘除教案:整式乘法讲义(含解析)

北师大版七年級(下)数学第一章整式的乘除教案:1把握单项式与单项式相乘的算理。

把握积的乘方、幂的乘方等单项式乘法公式。

灵活运用公式,简化运算。

1、单项式乘以单项式法则:单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式. 注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。

2、单项式乘以多项式的运算法则单项式与多项式相乘,确实是依照乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.3、多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行运算,那个地点再一次说明了整体性思想在数学中的应用。

4、幂的运算法则:①同底数的幂相乘,底数不变,指数相加。

即:n m n m a a a +=⋅ (m 、n 为正整数)②幂的乘方,底数不变,指数相乘。

即:n m n m a a ⋅=)( (m 、n 为正整数)③积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

即:n n n b a )b a (⋅=⋅ (n 为正整数)④同底数的幂相除,底数不变,指数相减。

n -m n m a a a =÷(m>n ,m 、n 为正整数)5、乘法的运算律:①乘法的结合律:(a ×b )×c=a ×(b ×c )②乘法的分配律:a (b+c )=ab+ac1、单项式乘以单项式单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。

【例1】运算:(1)(2xy2)·(13xy ); (2)(-2a2b3)·(-3a ); (3)(4×105)·(5×104);解:(1)(2xy2)·(13xy ) = (2×13)·(x ·x )(y2·y ) = 23x2 y3;(2)(-2a2b3)·(-3a ) =[(-2)·(-3)](a2a )·b3=6a3b3;(3)(4×105)·(5×104) = (4×5)·(105×104)=20×109=2×1010;注意:①积的系数等于各因式系数的积,先确定符号,再运算绝对值.这时容易显现的错误是,将系数相乘与指数相加混淆,如2a3·3a2=6a5,而不要认为是6a6或5a5.②相同字母的幂相乘,运用同底数幂的乘法运算性质.③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式. ④单项式乘法法则关于三个以上的单项式相乘同样适用.⑤单项式乘以单项式,结果仍是一个单项式.练1、(-3a2b3)2·(-a3b2)5;答案:(-3a2b3)2·(-a3b2)5=[(-3)2 · (a2)2 ·(b3)2]·[(-1)5 · (a3)5 ·(b2)5]= (9a4b6)·(-a15b10)= -9·(a4·a15)·(b6·b10)= -9a19b16;练2、(-23a2bc3)·(-34c5)·(13ab2c ).答案:(-23 a2bc3)·(-34c5)·(13ab2c )=[(-23)×(-34)×(34)]·(a2·a )(b ·b2)(c3·c5·c )=16a3b3c9【例2】一种电子运算机每秒可做4×109次运算,它工作5×102秒,可做多少次运算?解: (4×109)×(5×102)= (4×5)×(109×102)= 20×1011 = 2×1012(次)答:工作5×102秒,可做2×1012次运算.练4、下列运算正确的是( )A .3a2·2a2=5a2B .2a2·3a2=6a2C .3a2·4b2=12a2b2D .3a3·4a4=12a12 练5、下列运算正确的是( ) A .5y ·4yx2=9x3y3B .(-2x3ynz )(-4xn+1yn-3)=8xn+4y2n-3C .(-xn-2y2)(-xym )2=-xny2m+2D .(-7a2b3)(5ab2c )=-2a2b6c练6、若(anbabm )5=a10b15则3m (n+1)的值为( )A .15B .8C .12D .10答案: C D C2、单项式乘以多项式【例3】运算:(1) 2ab (5ab2+3a2b ); (2) (32ab2-2ab )·21a b;(3) -6x (x -3y ); (4)-2a2(21ab+b2). 解:(1) 2ab (5ab2+3a2b )= 2ab ·(5ab2)+2ab ·(3a2b )——乘法分配律= 10a2b3+6a3b2——单项式与单项式相乘(2) (23ab2-2ab )·12ab= (23ab2)·12ab+(-2ab )·12ab ——乘法分配律=13a2b3-a2b2——单项式与单项式相乘(3) -6x (x -3y )= (-6x )·x+(-6x )·(-3y )——乘法分配律= -6x2+18xy ——单项式与单项式相乘(4) -2a2(12ab+b2)= -2a2·(12ab )+(-2a2)·b2——乘法分配律= -a3b -2a2b2——单项式与单项式相乘练7、运算:()2213266x x xy ⎛⎫-+-- ⎪⎝⎭. 练8、运算:()223412a b ab ab -⨯ 答案:322221123x y x y xy -+ 32233648a b a b -【例4】运算:6mn2(2-31mn4)+(-21mn3)2. 分析:在混合运算中,要注意运算顺序,结果有同类项的要合并同类项. 解:原式=6mn2×2+6mn2·(-31mn4)+41m2n6=12mn2-2m2n6+41m2n6 =12mn2-47m2n6 练9、运算()222++3m m m a a a a -+⋅练10、运算()()3225+-x x x x ⋅答案: 2+4m m a a + 3x【例5】已知ab2=-6,求-ab (a2b5-ab3-b )的值.分析:求-ab (a2b5-ab3-b )的值,依照题的已知条件需将ab2的值整体代入.因此需灵活运用幂的运算性质及单项式与多项式的乘法.解:-ab (a2b5-ab3-b )= (-ab )·(a2b5)+(-ab )(-ab3)+(-ab )(-b )= -a3b6+a2b4+ab2= (-ab2)3+(ab2)2+ab2当ab2=-6时原式=(-ab2)3+(ab2)2+ab2=[-(-6)]3+(-6)2+(-6)=216+36-6=246练11、若(am+1bn+2)·(a2n-1·b2m )=a5·b3则m+n 的值为( )A .1B .2C .3D .-3分析:先算等式的左边,再依照题意得m ,n 的方程组,将方程组整理后相加得出m+n 的值.解:由(am+1bn+2)·(a2n-1·b2m )=a5·b3得am+2nb2m+n+2=a5b3 因此⎩⎨⎧=++=+ ② ①32252n m n m ①+②得3m+3n=6即m+n=2故选B3、多项式乘以多项式【例6】运算:(1)(1-x )(0.6-x ) (2)(2x+y )(x -y ) (3)(x -y )2(4)(-2x+3)2 (5)(x+2)(y+3)-(x+1)(y -2). 分析:在做题的过程中,要明白每一步算理.因此,不要求直截了当利用法则进行运算,而要利用乘法分配律将多项式与多项式相乘转化为单项式与多项式相乘.解:(1)(1-x )(0.6-x ) (2)(2x+y )(x -y ) =(0.6-x )-x (0.6-x ) = 2x (x -y )+y (x -y ) =0.6-x -0.6x+x2 = 2x2-2xy+xy -y2=0.6-1.6x+x2 = 2x2-xy -y2或 (1-x )(0.6-x ) 或 (2x+y )(x -y )=1×0.6-1×x -0.6x+x ·x = 2x ·x -2x ·y+x y -y2=0.6-x-0.6x+x2 = 2x2-xy-y2=0.6-1.6x+x2(3)(x-y)2=(x-y)(x-y)或(x-y)2=(x-y)(x-y)=x(x-y)-y(x-y)=x·x-x·y-x·y+y·y =x2-xy-xy+y2=x2-2xy+y2=x2-2xy+y2(4)(-2x+3)2 (5)(x+2)(y +3)-(x+1)(y-2)= (-2x+3)(-2x+3)= (xy+3x+2y+6)-(x y-2x+y-2)= -2x(-2x+3)+3(-2x+3)= xy+3x+2y+6-xy+2x -y+2= 4x2-6x-6x+9 = 5x+y+8= 4x2-12x+9评注:(3)(4)题利用乘方运算的意义化成多项式与多项式的乘法运算.(5)整式的混合运算,一定要注意运算顺序.练12、运算:(1)(m+2n)(m-2n); (2)(2n+5)(n-3);(3)(x+2y)2 (4)(ax+b)(cx+d).解:(1)(m+2n)(m-2n)(2)(2n+5)(n-3)=m·m-m·2n+2n·m-2n·2n = 2n·n-3·2n+5n-5×3=m2-2mn+2mn-4n2 = 2n2-6n+5n-15=m2-4n2 = 2n2-n-15(3)(x+2y)2 (4)(ax+b)(cx+d)= (x+2y)(x+2y)= ax·cx+ax·d+b·cx+bd= x2+2xy+2xy+4y2 = acx2+adx+bcx+b d= x2+4xy+4y2想一想:由运算得到27×23=621,发觉积的末两位上的数21=7×3,前面的数6=2×(2+1).换两个数84×86=7224同样具有这一特点,因此我们猜想:十位数字相同,个位数字之和为10的两位数的积是否也有如此的规律?分析:依照题意,能够发觉如此的两位数除了十位数字相同外,个位数字是补数,即个位数字的和是10.因此,我们设如此的两位数分别为10a +b和10a+c(a,b,c差不多上正整数,同时b+c=10).依照多项式与多项式的乘法,通过对结果变形,就可说明.解:设如此的两位数分别为10a+b和10a+c(a、b、c差不多上正整数,同时b+c=10).依照多项式与多项式相乘的运算法则可知,这两个数的乘积为(10a+b)(10a+c)=100a2+10a(b+c)+bc=100a2+100a+bc=100a(a+1)+bc结论:那个式子告诉我们:求十位数相同,个位数字之和等于10的两个两位数的积,能够用十位上的数a去乘比它大1的数(a+1),然后在乘积的后面添上两位数,在这两个数位上写上个位数字的乘积,所得的结果确实是原先这两位数的乘积.【例7】运算:(1)32×38 (2)54×56 (3)73×77解:(1)3×(3+1)=12,2×8=16 (2)5×(5+1)=30,4×6=24∴32×38=1216 ∴54×56=3024(3)7×(7+1)=56,3×7=21∴73×77=56214、综合应用【例8】规律探究题(1)研究下列等式:①1×3+1=4=22;②2×4+1=9=32;③3×5+1=16=42;④4×6+1=25=52…你发觉有什么规律?依照你的发觉,找出表示第n 个等式的公式并证明.(2)运算下列各式,你能发觉什么规律吗?(x -1)(x+1)= .(x -1)(x2+x+1)= .(x -1)(x3+x2+x+1)= .(x -1)(x4+x3+x2+x+1)= .(x -1)(xn+xn -1+…+x+1)= .答案:(1)n (n+2)+1=(n+1)2,证明略(2)x2-1,x3-1,x4-1,x5-1,…xn+1-1(3)已知A=987654321×123456789, B=987654322×123456788.试比较A 、B 的大小.分析:这么复杂的数字通过运算比较它们的大小,专门纷杂.我们观看就可发觉A 和B 的因数是有关系的,假如借助于这种关系,用字母表示数的方法,会给解决问题带来方便.解:设a=987654321,则a+1=987654322; b=123456788, b+1=123456789,则A=a (b+1)=ab+a; B=(a+1)b=ab+b.而依照假设可知a>b 因此A>B.1. 下列各式运算正确的是( )(A )()()2322623b a ab b a =-- (B )()()5321021106102⨯-=⨯⨯⨯-. (C )223222212b a b a b ab a --=⎪⎭⎫ ⎝⎛-- (D )()6332b a ab -=-2. 若992213y x y x y x n n m m =⋅++-,则n m 43-的值为( ) (A )3 (B )4 (C )5 (D )63. 若()()1532-+=++kx x m x x ,则m k +的值为( ) (A )7- (B )5 (C )2-(D )2 4. 化简()()()233232+---x x x 的结果是( ) (A )x 11 (B )x 11- (C )12862+-x x (D )12-x5.如图是长10cm ,宽6cm 的长方形,在四个角剪去4个边长为x cm 的小正方形,按折痕做一个有底无盖的长方体盒子,那个盒子的容积是( )(A )()()x x 21026-- (B )()()x x x --106(C )()()x x x 21026-- (D )()()x x x --10266. 若72)43)((2++=+-cx bx x b ax ,则()c b a -⨯+)(的值为( ) (A )36 (B )72 (C )108 (D )720 7. 已知032=-+a a ,那么()42+a a 的值是( )(A )9 (B )12- (C )15- (D )18-8. 将(1)中的梯形沿虚线剪开,拼成一个缺角的正方形,如图(2)所示.依照这两个图形的面积关系,下列式子成立的是( )(A )()()22b a b a b a -=-+ (B )()2222b a b ab a +=++(C )()2222b a b ab a -=+- (D )()222b a b a -=- 9. 若单项式my x 26-与3131y x n -是同类项,那么这两个单项式的积是 .10. 已知32-=ab ,则()=---b ab b a ab 352 . 11. 若212=++a a ,则()()=+-a a 65 . 12.观看下列等式:()1212112⨯+=+⨯,()2222222⨯+=+⨯,()3232332⨯+=+⨯,…… ,则第n 个等式能够表示为 .13. 一个多项式除以122-x ,商式为2-x ,余式为1-x 则那个多项式是.14. 已知()()q x x px x +-++3822展开后不含2x 与3x 的项,则=p ,=q .15. 数学家发明了一个魔术盒,当任意数对()b a ,进入其中时,会得到一个新的数:()()21--b a .现将数对()1,m 放入其中得到数n ,再将数对()m n ,放入其中后,得到的数是 .16. 已知1km2的土地上,一年内从太阳得到的能量相当于燃烧1.3×108 km2煤所产生的能量,那么我国9.6×106km2的土地上,一年内从太阳得到的能量相当于燃烧煤 千克. 17. 运算:(1)3423332435⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-⋅c ab b a ab (2)()()()131312-++-+-x x x x x x 18. 先化简下面的代数式,再求值: )4()2)(2(a a a a -+-+,其中1+=πa . 19. 解方程组:⎩⎨⎧-=-=-+123)4)(5(y x xy y x20. 下面是小明和小红的一段对话:小明说:“我发觉,关于代数式()()()x x x x x 1033231++-+-,当2008=x 和2009=x 时,值难道是相等的.”小红说:“不可能,关于不同的值,应该有不同的结果.”在此问题中,你认为谁说的对呢?说明你的理由.21. 已知()()()y x x x A 31112---+=,12-+-=xy x B ,且B A 63+的值与x 无关,求y 的值.参考答案当堂检测1. D2. B3. A4. B5. C6. D7. A8. A家庭作业9. 642y x - 10. 21-11. 29 12. ()n n n n 222+=+ 13. 14223+-x x 14. 3=p ,1=q 15. 22m m -+ 16.1510248.1⨯17. (1)3177910c b a (2)12-x 18. 44a -,π4 19. ⎩⎨⎧==85y x 20. 原式化简的结果是2-,因此小明说的对.21. 96363--=+x xy B A 9)615(--=x y 当15y-6=0,即52=y 时,其值与x 无关.。

北师大数学七下第一章整式的乘除

北师大数学七下第一章整式的乘除

整 式 的 乘 除知识点归纳:一、同底数幂的乘法 n m n m a a a +=∙(n m ,都是正整数)结论:同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+∙+思考:和是同底数幂么?如何计算?二、幂的乘方法则mn n m a a =)((n m ,都是正整数) m n n m m n a a a )()(==幂的乘方,底数不变,指数相乘。

如:10253)3(=- 23326)4()4(4== 已知:,,求的值三、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

例:(523)2z y x -=四、同底数幂的除法法则n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷五、零指数和负指数10=a 任何不等于零的数的零次方等于1。

pp a a 1=-(p a ,0≠是正整数) 一个不等于零的数的p -次方等于这个数的p 次方的倒数。

如:81)21(233==- 六、科学记数法把一个大于10的数表示成a ⨯10n 的形式叫科学计数法。

23a =326b =3102a b+练: 678000000= 0.00000721=八、整式乘法mc mb ma c b a m ++=++)((注意合并同类项)练:1、)(3)32(2y x y y x x +-- 2、 =∙-xy z y x 3232九、平方差公式22))((b a b a b a -=-+练:(a+b -1)(a -b+1)= 。

计算(2x+y-z+5)(2x-y+z+5)十、完全平方公式2222)(b ab a b a +±=±ab b a ab b a b 2)(2)(2222+-=-+=+222)()]([)(b a b a b a -=--=+-练:(1)(3x +5y )(5y -3x )= (-2m -7n )(2m -7n )=(2)、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除章末复习

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除章末复习

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除章末复习一. 教材分析北师大版七年级数学下册第一章整式的乘除,主要内容包括整式的乘法、平方差公式、完全平方公式、多项式乘以多项式、整式的除法等。

这一章是代数学习的重要基础,通过本章的学习,使学生掌握整式的乘除运算,培养学生逻辑思维能力和解决问题的能力。

二. 学情分析七年级的学生已经掌握了整数、分数、有理数等基础知识,具备一定的数学运算能力。

但学生在学习整式乘除时,可能会遇到因式分解不彻底、运算顺序混乱等问题。

因此,在教学过程中,需要关注学生的学习情况,引导学生理清运算思路,提高运算速度和准确性。

三. 说教学目标1.知识与技能:使学生掌握整式的乘除运算方法,能够熟练运用平方差公式、完全平方公式等进行计算。

2.过程与方法:培养学生逻辑思维能力和解决问题的能力,学会运用整式乘除解决实际问题。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:整式的乘法、平方差公式、完全平方公式的运用,以及整式的除法。

2.教学难点:整式乘除的运算顺序和运算规律,以及如何灵活运用公式解决实际问题。

五. 说教学方法与手段1.采用情境教学法,通过生活实例引入整式乘除的概念,激发学生的学习兴趣。

2.运用分组合作学习法,让学生在小组内讨论、交流,共同解决问题,培养学生的团队合作精神。

3.采用讲解法、示范法,引导学生理清运算思路,突破教学难点。

4.利用多媒体课件辅助教学,直观展示整式乘除的运算过程,提高学生的理解能力。

六. 说教学过程1.导入:通过生活实例,如计算一块矩形土地的面积,引入整式乘除的概念。

2.新课讲解:讲解整式的乘法、平方差公式、完全平方公式,以及整式的除法。

在讲解过程中,注意引导学生理清运算思路,突破教学难点。

3.课堂练习:布置一些具有代表性的题目,让学生独立完成,检验学生对知识点的掌握情况。

北师大版数学七年级下册第一章 整式的乘除(共14课时)

北师大版数学七年级下册第一章 整式的乘除(共14课时)

1.1 同底数幂的乘法
北师大版数学七年级下册
一种电子计算机每秒可进行1千万亿(1015 )次运算,它工作103 s 可进行多少次运算?
列式:1015×103
1. 理解同底数幂的乘法运算法则的推导过程.
2. 能运用同底数幂的乘法运算法则来进行有关计算.
3. 能运用同底数幂的乘法运算法则来解决一些实际问题.
做一做:
想一想:请根据乘方的意义及同底数幂的乘法填空,观察计算的结果,你能发现什么规律?证明你的猜想.
(32)3= ___ ×___ ×___ =3( )+( )+( ) =3( )×( ) =3( )
方法总结:此类题的关键是逆用幂的乘方及同底数幂的乘法公式,将所求代数式正确变形,然后代入已知条件求值即可.
×
b5 · b5= b10
×
b5 + b5 = 2b5
×
x5 · x5 = x10
×
y5 · y5 =y10
×
c · c3 = c4
×
m + m3 = m + m3
了不起!
解: 3×108× 5×102= 15×1010= 1.5×1011(m)答:地球距离太阳大约有 1.5×1011m.
幂的乘方的法则(较简单的)
计算下列各式,并说明理由.(1)(62) 4 ; (2)(a2)3 ;(3)(am)2 .
解:(1)(62) 4 = 62× 62 ×62 ×62 = 62 +2+2+2+2 = 68 ; (2)(a2)3 = a2×a2×a2 = a2+2+2 = a6 ;(3)(am)2 = am×am = am+m = a2m .

北师大版七年级下册数学总复习一整式的乘除

北师大版七年级下册数学总复习一整式的乘除

知识要点一、概念 1、代数式:2、单项式:由数字与字母的乘积的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

3、多项式:几个单项式的和叫做多项式。

多项式含加减运算。

4、整式:单项式和多项式统称为整式。

二、公式、法则:(1)同底数幂的乘法:a m﹒a n=a m+n(同底,幂乘,指加)逆用: a m+n=a m﹒a n(指加,幂乘,同底)(2)同底数幂的除法:a m÷a n=a m-n(a ≠0)。

(同底,幂除,指减)逆用:a m-n= a m÷a n(a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m)n=a mn(底数不变,指数相乘)逆用:a mn=(a m)n(4)积的乘方:(ab )n=a n b n推广:逆用, a n b n=(ab )n(当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。

(6)负指数幂:11()(0)ppp a a a a-==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b2公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同 推广(项数变化):连用变化:(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):222()2a b a b ab+=-+222()2a b a b ab+=+-222212[()()]a b a b a b +=++-22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-22()()4a b a b ab +=-+ 2214[()()]ab a b a b =+-- 完全平方和公式中间项= 完全平方差公式中间项= 完全平方公式中间项= 例如:229x+mxy+4y 是一个完全平方和公式,则m = ;是一个完全平方差公式,则m = ;是一个完全平方公式,则m = ;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷ (12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)练习。

北师大版七年级数学下册第一章 整式的乘除 小结与复习

北师大版七年级数学下册第一章  整式的乘除 小结与复习

方法总结
在本章中应用幂的运算法则、乘法公式时,可以 将一个代数式看做一个字母,这就是整体思想,应用 这种思想方法解题,可以简化计算过程,且不易出错.
针对训练
8. 若 xn = 5,则 (x3n)2-5(x2)2n = 12500 .
9. 若 x + y = 2,则 1 x2 xy 1 y2 = 2 .
方法总结
幂的乘法运算包括同底数幂的乘法、幂的乘方、 积的乘方.这三种运算性质贯穿全章,是整式乘法的基 础.其逆向运用可将问题化繁为简,负数乘方结果的符 号,奇次方得负,偶次方得正.
针对训练
1. 下列计算不正确的是 ( D )
A. 2a3 ·a = 2a4
B. (-a3)2 = a6
C. a4 ·a3 = a7
针对训练
5. 求方程 (x-1)2-(x-1)(x + 1) + 3(1-x) = 0 的解.
解:原方程可化为-5x + 5 = 0,解得 x = 1.
6. 已知 x2 + 9y2 + 4x-6y + 5 = 0,求 xy 的值. 解:∵ x2 + 9y2 + 4x-6y + 5 = 0,
∴ (x2 + 4x + 4) + (9y2-6y + 1)=0. ∴(x + 2)2 + (3y-1)2 = 0.
(ab)n= anbn (n 为正整数)
[注意] (1) 其中的 a、b 可以是单独的数、单独
的字母,还可以是一个任意的代数式; (2) 这几个法则容易混淆,计算时必须先搞清楚
该不该用法则、该用哪个法则.
2.同底数幂的除法法则 (1) 任何不等于零的数的零次幂都等于 1.

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法一. 教材分析北师大版七年级数学下册第一章整式的乘除4整式的乘法,这部分内容是学生在学习了整式的加减法之后,进一步深化对整式的运算法则的理解。

本节内容主要包括整式乘法的基本概念、运算法则以及具体的运算方法。

通过这部分的学习,使学生能够熟练掌握整式的乘法运算,为后续学习分式的乘除法和函数的初步概念打下基础。

二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,例如整式的加减法、有理数的乘除法等。

但是,对于整式的乘法,学生可能还存在着一定的困惑,例如整式乘法的运算法则、如何快速准确地进行计算等。

因此,在教学过程中,需要结合学生的实际情况,用学生熟悉的生活实例引入整式的乘法,让学生在理解的基础上掌握整式的乘法运算。

三. 说教学目标1.知识与技能目标:使学生理解整式乘法的概念,掌握整式乘法的运算法则,能够熟练地进行整式的乘法运算。

2.过程与方法目标:通过合作交流、自主探究的学习过程,培养学生解决问题的能力,提高学生的数学思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:整式乘法的概念、运算法则以及运算方法。

2.教学难点:整式乘法的运算方法,尤其是如何正确地合并同类项。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、自主探究法等,引导学生主动参与学习,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、教学卡片等辅助教学,使学生更直观地理解整式的乘法运算。

六. 说教学过程1.引入新课:通过生活实例,引导学生思考如何计算两个多项式的乘积,激发学生的学习兴趣。

2.讲解整式乘法的概念和运算法则:引导学生通过合作交流、自主探究的方式,总结整式乘法的运算法则。

3.演示整式乘法的运算方法:通过多媒体课件或教学卡片,展示整式乘法的具体运算过程,让学生更直观地理解。

最新北师大版七年级下册数学 第一章 整式的乘除 全章课件

最新北师大版七年级下册数学 第一章  整式的乘除 全章课件

(1)怎样列式? 3.386×1016 ×103
(2)观察这个算式,两个乘数1016与103有何特点? 我们观察可以发现,1016 和103这两个
幂的底数相同,是同底的幂的形式.
所以我们把1016 ×103这种运算叫作同 底数幂的乘法.
讲授新课
一 同底数幂相乘
忆一忆
(1)103表示的意义是什么? 其中10,3,103分别叫什么?
(4) x2·x2=2x4 ( × )
(5)(-x)2 ·(-x)3 = (-x)5 ( √ ) (6)a2·a3- a3·a2 = 0 ( √ )
(7)x3·y5=(xy)8 ( × )
(8) x7+x7=x14 ( × )
对于计算出错的题目,你能分 析出错的原因吗?试试看!
比一比
类比同底数幂的乘法公式am ·an = am+n (当m、n都是
(1) xn+1·x2n =x3n+1
(2)

1 10
m


1 10
n


1 10
m+n
(3) a·a2+a3=a3+a3=2a6
注意 公式中的底数和指数可以是一个数、字母 或一个式子.
4.创新应用. (1)已知an-3·a2n+1=a10,求n的值;
公式运用:am·an=am+n 解:n-3+2n+1=10,
证一证 如果m,n都是正整数,那么am·an等于什么? 为什么?
am·an =(a·a·…·a) ·(a·a·…·a) (乘方的意义)ຫໍສະໝຸດ ( m 个a) ( n 个a)
=(a·a·…·a)

北师大版七年级数学下册教学课件1.7 整式的乘除(共18张PPT)

北师大版七年级数学下册教学课件1.7 整式的乘除(共18张PPT)

(3) (14a3b2x)(4ab2)
144•a31•b22•x运用类比思想,你能
7 a2x
归纳单项式除以单 项式的法则吗?
2
例1 计算: (1) a7x4y3(4ax4y2)
3
(2 ) 2 a 2 b( 3 b 2 c) (4 a b 3)
(3) (2a+b)4÷(2a+b)2
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/42021/9/4Saturday, September 04, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/42021/9/42021/9/49/4/2021 9:55:37 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/42021/9/42021/9/4Sep-214-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/42021/9/42021/9/4Saturday, September 04, 2021
1.7 整式的除法
同底数幂相除法则:
am÷an=am-n(a≠0)
零指数幂的性质:
a0 1a0
负整数指数幂性质 ap a1p (a0,p为正整 ) 数
合作学习:
“阿波罗-11”号 宇航员在月球上
月球是距离地球最近的天体,它与地球的平均距 离约为 3.8108 米。如果宇宙飞船以 1.12104 米/秒的速度飞行,到达月球大约需要多少时间?
2
运用类比思想,你能归纳多 项式除以单项式的法则吗?
单多项项式式与除多以项单式项相式乘的:法则:多项式除以单项式, 就是用单项式去乘多项式的每一项,再把所得 的先积把相这加个。多项式的每一项分别除以单项式,再 把所得的商相m(加a。+b+c)= ma+mb+mc

第一章整式的乘除最新北师大版七年级下册

第一章整式的乘除最新北师大版七年级下册
北师大版七年级下册
第一章 整式的乘除
1、同底数幂的乘法
CONTEN T 目 录
幂的乘方与积的乘方 2、 同底数幂的除法 3、 4、整式的乘法 5、平方差公式 6、完全平方公式 7、整式的除法
1.1 同底数幂的乘法
名师导学
新知 同底数幂的乘法
(1)正整数指数幂的意义.
几个相同因数a相乘,即 a· a· …· a,记作an,读作a的
(2)原式=-a3· a4=-a3+4=-a7;
(3)原式=32· 3m· 32n=32+m+2n.
【例2】已知:2x=4, 2y=8,求2x+y. 解析 将2x+y转化为2x· 2y进行解答.
解 ∵2x=4, 2y=8, ∴2x+y=2x· 2y=4×8=32.
举一反三 1. 计算: (1)35×(-3)3×(-3)2;
【例1】计算(a3)2的结果a5
C. -a6
D. a6
解析 此题考查幂的乘方问题,关键是根据幂的乘方 法则进行计算. (a3)2=a3×2=a6.
答案
D
举一反三 1. 计算:
(1)(-b2)5· (-b3)2;
答案 -b16 (2)(-x3)2· (-x2)3; 答案 -x12 (3)(y3)2· (y2)3. 答案 y12 2. 当a=-1时, - = .
n个(ab) n个 a n个 b
(2)积的乘方法则.
一般地,我们有(ab)n=anbn(n为正整数). 即积的乘方 等于把积的每一个因式分别乘方,再把所得的幂相乘.
拓展:①三个或三个以上因式的积的乘方,也具有
这一性质. 如(abc)n=anbncn; ②此性质可以逆用:anbn=(ab)n(n为正整数).
解得n=3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:整式的乘除1.1同底数幂的乘法➢ 复习回顾:复习七年级上册数学课本中介绍的有关乘方运算知识:➢ 探索新知1.利用乘方的意义,计算103×102. 解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105. 2.建立幂的运算法则将上题中的底数改为a ,则有 a 3·a 2=(aaa)·(aa)=aaaaa =a 5, 即a 3·a 2=a 5=a 3+2. 用字母m ,n 表示正整数,则有即a m ·a n =a m+n .3.剖析法则思考以下问题:(1)等号左边是什么运算? (2)等号两边的底数有什么关系? (3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么? (5)当三个以上同底数幂相乘时,上述法则是否成立? 请大家试着叙述这个法则:➢ 应用提高探讨pn m a a a ⋅⋅等于什么? ➢ 课堂训练(1)-a 2·a 6 (2)(-x)·(-x)3 (3)y m ·y m+1 (4)()3877⨯-(5)()3766⨯- (6)()()435555-⨯⨯- (7)()()b a b a -⋅-2 (8)()()b a a b -⋅-2(9)x 5·x 6·x 3 (10)-b 3·b (11)-a·(-a)3 (12)(-a)2·(-a)3·(-a)1.2 幂的乘方与积的乘方(一) ➢ 复习回顾复习已学过的幂的意义及幂运算的运算法则 1、幂的意义 2、.nm nmaa a +=⋅(m 、n 为正整数)同底数幂相乘,底数不变,指数相加。

➢ 探索新知根据已经学习过的知识,回忆并探讨以下实际问题:1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm 3 。

甲正方体的棱长是乙正方体的 5 倍,则甲正方体的体积 V 甲 = cm 3 。

2. 乙球的半径为 3 cm, 则乙球的体积V 乙 = cm 3甲球的半径是乙球的10倍,则甲球的体积V 甲 = cm 3 . 如果甲球的半径是乙球的n 倍,那么甲球体积是乙球体积的 倍。

地球、木星、太阳可以近似地看作球体。

木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的 倍和 倍.探究:为什么()6321010=?将式中的10换为a 又会得到什么结果?计算下列各式,并说明理由(1) (62)4 ; (2) (a 2)3 ; (3) (a m )2 ; (4) (a m )n .通过上面的探索活动,发现了什么?幂的乘方,底数__________,指数__________。

➢ 课堂训练1、计算:(1) (102)3 (2) (b 5)5 (3) (a n )3 (4) -(x 2)m (5) (y 2)3 · y (6) 2(a 2)6 - (a 3)42.计算:(1) (103)3 (2) -(a 2)5 (3) (x 3)4 · x 2 (4) [(-x )2 ]3 (5) (-a )2(a 2)2 (6) x ·x 4 – x 2 · x 33.判断下面计算是否正确?如果有错误请改正:(1) (x 3)3 = x 6 (2)a 6 · a 4 = a 244.完成下列各题⑴ a 12 =(a 3)( ) =(a 2)( )=a 3 a ( )=( )3 =( )4⑵ 32﹒9m =3( ) ⑶ y 3n =3, y 9n = .⑷ (a 2)m +1 = . ⑸ [(a -b )3]2 =(b -a )( )(6)若4﹒8m ﹒16m =29 ,则m = .(7)如果 2a =3 ,2b =6 ,2c=12, 那么 a 、b 、c 的关系是 .1.3 幂的乘方与积的乘方(二)➢ 复习回顾:复习前几节课学习的有关幂的三个知识点: 1.幂的意义2.同底数幂的乘法运算法则.nm nma a a +=⋅(m 、n 为正整数)3.幂的乘方运算法则(a m )n =a m n(m 、n 都是正整数)➢ 探索新知(1)根据幂的意义,(ab)3表示什么?(2)为了计算(化简)算式ab·ab·ab ,可以应用乘法的交换律和结合律。

又可以把它写成什么形式? (3)由特殊的 (ab)3=a 3b 3 出发, 你能想到一般的公式吗?此环节的三个连贯性问题用到了刚刚复习到的幂的意义及根据其建立的数学模型。

1.借助刚刚探讨的结果,完成下面三个问题。

①(3×5)7=3( )×5( ) ②(3×5)m =3( )×5( ) ③(ab)n =a ( )b ( )2.学会复述积的乘方的运算法则:(ab )n =a n b n积的乘方等于把各个因式分别乘方,再把所得的幂相乘。

3.进一步探讨:(abc)n =4.公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质? 怎样用公式表示?➢ 课堂训练1. 下面的计算是否正确?如有错误请改正. (1)844)(ab ab =;(2)2226)3(q p pq -=- 2.计算下列各题:(1)(3x )2 ; (2)(-2b )5 ; (3)(-2x y )4 ; (4)(3a 2)n.3.地球可以近似地看做是球体,如果用V , r 分别代表球的体积和半径,那么334r V π=。

地球的半径约为6×103 千米,它的体积大约是多少立方千米? 4.公式逆用训练(1)23×53 ;(2) 28×58(3) (-5)16 × (-2)15 (4) 24 × 44 ×(-0.125)4(5) a 3·a 4·a+(a 2)4 +(-2a 4)2 (6) 2(x 3)2·x 3 –(3x 3)3+(5x )2·x 7(7)0.25100×4100 (8) 812×0.125135.提高练习 ①计算:21)1(5.022*********--⨯⨯- ②已知32=m,42=n 求n m 232+的值。

③已知5=nx 3=ny 求ny x 22)(的值。

④已知552=a ,443=b ,335=c ,试比较a 、b 、c 的大小。

1.4 同底数幂的除法一、情境引入活动内容:一种液体每升含有 1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死 109 个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?二、了解同底数幂除法的运算及应用计算下列各式,并说明理由(m>n );1010)1(58÷ ;1010)2(n m ÷ ;)3()3)(3(n m -÷-从中归纳出同底数幂除法的运算性质。

从上面的练习中你发现了什么规律? 。

猜一猜:()n m n m a a a n m >都是正整数,且,,0≠=÷。

三、同底数幂除法运算的应用【例1】计算:;)1(47a a ÷ ;)())(2(36x x -÷- );())(3(4xy xy ÷;)4(222b b m ÷+ ;)())(5(38m n n m -÷- .)())(6(24m m -÷-【例2】地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。

例如用里克特震级表示地震是8级,说明地震的强度是710。

1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。

加利福尼亚地震强度是荷兰地震强度的多少倍?x四、探索零指数幂和负整数指数幂的意义想一想:10000=104 , 16=24 1000=10(), 8=2() 100=10() , 4=2() 10=10(), 2=2() 猜一猜:1=10() 1=2()0.1=10()21=2() 0.01=10() 41=2()0.001=10() 81=2()通过以上的计算,你得到的规律是什么?【例3】 计算:用小数或分数分别表示下列各数:➢ 课堂训练1.下列计算中错误的有( )5210)1(a a a =÷ 55)2(a a a a =÷ 235)())(3(a a a -=-÷- 33)4(0=A.1个B.2个C.3个D.4个 2.计算()()2232a a -÷的结果正确的是( )A.2a - B.2a C.-a D.a 3.用科学记数法表示下列各数: (1)0.000876 (2)-0.00000014.计算:(1)()())2(2224y x x y y x -÷-÷- (2)()()[]()()989y x x y y x y x --÷-÷-+5.计算=÷÷3927m m 6.若b a y x ==3,3,求的yx -23的值1.5 整式的乘法(一)➢ 复习回顾问题1:前面学习了哪三种幂的运算?运算方法分别是什么? 请分别用语言和字母表示幂的三种运算性质。

问题2:运用幂的运算性质计算下列各题:(1)(-a 5)5 、 (2) (-a 2b)3 、(3) (-2a)2(-3a 2)3 (4) (-y n )2 y n-1➢ 探索新知一七年级三班举办新年才艺展示,小明的作品是用同样大小的纸精心制作的两幅剪贴画,如右图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x 81米的空白,你能表示出两幅画的面积吗? 问题1:以上求矩形的面积时,会遇到 mx x ⋅,)43()(x mx ⋅,这是什么运算呢 ? 问题2:什么是单项式?(表示数与字母的积的代数式叫做单项式)4203106.1)3(;87)2(10)1(---⨯⨯我们知道,整式包括单项式和多项式,从这节课起我们就来研究整式的乘法,先学习单项式乘以单项式。

➢ 探索新知二思考以下三个问题:问题1:对于实际问题的结果mx x ⋅,)43()(mx mx ⋅可以表达得更简单些吗?说说你的理由? 问题2:类似地,3a 2b·2ab 3和(xyz )·y 2z 可以表达的更简单一些吗?问题3:如何进行单项式与单项式相乘的运算?单项式乘法的法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

相关文档
最新文档