北京市2017-2018学年高中数学人教A版选修4-4学案:第一讲 一 平面直角坐标系

合集下载

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

北京市2017-2018学年高中数学人教A版选修4-4学案:模块综合检测

北京市2017-2018学年高中数学人教A版选修4-4学案:模块综合检测

模块综合检测 [对应学生用书P39](时间90分钟,满分120分)一、选择题(本大题共10个小题,每个小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在极坐标系中,点P (ρ,-θ)关于极点对称的点的一个坐标是( ) A .(-ρ,-θ) B .(ρ,-θ) C .(ρ,π-θ)D .(ρ,π+θ)解析:关于极点对称即为反向延长,故其坐标为(ρ,π-θ). 答案:C2.在极坐标系中,过点⎝ ⎛⎭⎪⎫2,π2且与极轴平行的直线方程是( )A .ρ=2B .θ=π2 C .ρcos θ=2D .ρsin θ=2解析:极坐标为⎝ ⎛⎭⎪⎫2,π2的点的直角坐标为(0,2),过该点且与极轴平行的直线的方程为y =2,其极坐标方程为ρsin θ=2.答案:D3.在同一坐标系中,将曲线y =2cos x 变为曲线y =sin 2x 的伸缩变换是( ) A.⎩⎪⎨⎪⎧ x =2x ′,y =12y ′B.⎩⎪⎨⎪⎧x ′=12x ,y ′=12yC.⎩⎪⎨⎪⎧x =12x ′,y =2y ′D.⎩⎨⎧x ′=2x ,y ′=2y解析:把y =2cos x 化为y 2=sin 2x ,则令y2=y ′,x =2x ′即可. 答案:B4.设点M 的柱坐标为⎝ ⎛⎭⎪⎫2,π6,7,则M 的直角坐标是( )A .(1,3,7)B .(3,1,7)C .(1,7,3)D .(3,7,1)解析:x =2cos π6=3,y =2sin π6=1,z =7. 答案:B5.椭圆的参数方程为⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),则椭圆的离心率为( )A.12 B.32 C.22D.34解析:椭圆的参数方程可化为x 24+y 23=1,∴a 2=4,b 2=3,c 2=1,∴e =12. 答案:A6.已知过曲线⎩⎨⎧x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点P 与原点O 的直线OP ,倾斜角为π4,则点P 的坐标为( )A .(3,4) B.⎝ ⎛⎭⎪⎫-125,-125 C .(-3,-4)D.⎝ ⎛⎭⎪⎫125,125 解析:将曲线参数方程化成普通方程为x 29+y 216=1(y ≥0),与直线PO :y =x 联立可得P 点坐标为⎝ ⎛⎭⎪⎫125,125.答案:D7.已知双曲线C 的参数方程为⎩⎨⎧x =3sec θ,y =4tan θ(θ为参数),在下列直线的参数方程中①⎩⎨⎧x =-3t ,y =4t ;②⎩⎪⎨⎪⎧x =1+32t ,y =1-12t ;③⎩⎪⎨⎪⎧x =35t ,y =-45t ;④⎩⎪⎨⎪⎧x =1-22t ,y =1+22t ;⑤⎩⎨⎧x =3+3t ,y =-4-4t .(以上方程中t 为参数),可以作为双曲线C 的渐近线方程的是( ) A .①③⑤ B .①⑤ C .①②④D .②④⑤解析:由双曲线的参数方程知,在双曲线中对应的a =3,b =4且双曲线的焦点在x 轴上,因此其渐近线方程是y =±43x .检验所给直线的参数方程可知只有①③⑤适合条件.答案:A8.在平面直角坐标系中,点集M =⎩⎨⎧⎪⎪(x ,y ) ⎩⎨⎧ x =sin α+cos β,y =cos α-sin β,⎭⎪⎬⎪⎫α,β∈R ,则点集M 所覆盖的平面图形的面积为( )A .4πB .3πC .2πD .与α,β有关解析:∵⎩⎪⎨⎪⎧x =sin α+cos β,y =cos α-sin β,两式平方相加得x 2+y 2=1+1+2sin αcos β-2cos αsin β, 即x 2+y 2=2+2sin(α-β). 由于-1≤sin(α-β)≤1, ∴0≤2+2sin(α-β)≤4,∴点集M 所覆盖的平面图形的面积为2×2×π=4π. 答案:A9.点(ρ,θ)满足3ρcos 2θ+2ρsin 2θ=6cos θ,则ρ2的最大值为( )A.72 B .4 C.92D .5解析:由3ρcos 2θ+2ρsin 2θ=6cos θ,两边乘ρ,化为3x 2+2y 2=6x ,得y 2=3x -32x 2,代入ρ2=x 2+y 2,得x 2+y 2=-12x 2+3x =-12(x 2-6x +9)+92=-12(x -3)2+92.因为y 2=3x -32x 2≥0,可得0≤x ≤2,故当x =2时,ρ2=x 2+y 2的最大值为4.答案:B10.过椭圆C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数)的右焦点F 作直线l :交C 于M ,N 两点,|MF |=m ,|NF |=n ,则1m +1n 的值为( )A.23B.43C.83D .不能确定解析:曲线C 为椭圆x 24+y 23=1,右焦点为F (1,0),设l :⎩⎪⎨⎪⎧x =1+t cos θ,y =t sin θ,(t为参数)代入椭圆方程得(3+sin 2θ)t 2+6cos θt -9=0,t 1t 2=-93+sin 2θ,t 1+t 2=-6cos θ3+sin 2θ, ∴1m +1n =1|t 1|+1|t 2|=|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2|t 1t 2|=43.答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.(湖南高考)在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.解析:直接化简,两式相减消去参数t 得,x -y =1,整理得普通方程为x -y -1=0.答案:x -y -1=012.在极坐标系中,若过点A (3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A ,B 两点,则|AB |=________.解析:∵ρ=4cos θ,∴ρ2=4ρcos θ,即x 2+y 2=4x ,∴(x -2)2+y 2=4为ρ=4cos θ的直角坐标方程. 当x =3时,y =±3,∴直线x =3与ρ=4cos θ的交点坐标为(3,3), (3,-3), ∴|AB |=2 3. 答案:2 313.直线⎩⎪⎨⎪⎧x =1+12t ,y =-33+32t(t 为参数)与圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为________.解析:把x =1+12t ,y =-33+32t 代入x 2+y 2=16,得t 2-8t +12=0.设A ,B 对应的参数分别为t 1,t 2,则AB 中点对应的参数为t 0=12(t 1+t 2)=12×8=4,将t 0=4代入直线的参数方程,可求得中点的坐标为(3,-3). 答案:(3,-3)14.点M (x ,y )在椭圆x 212+y 24=1上,则点M 到直线x +y -4=0的距离的最大值为________,此时点M 的坐标是________.解析:椭圆的参数方程为⎩⎪⎨⎪⎧x =23cos θ,y =2sin θ(θ为参数),则点M (23cos θ,2sin θ)到直线x +y -4=0的距离 d =|23cos θ+2sin θ-4|2=⎪⎪⎪⎪⎪⎪4sin ⎝ ⎛⎭⎪⎫θ+π3-42.当θ+π3=3π2时,d max =42, 此时M (-3,-1). 答案:42 (-3,-1)三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)在极坐标系中,直线l 的极坐标方程为θ=π3 (ρ∈R ),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =1+cos 2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.解:因为直线l 的极坐标方程为θ=π3(ρ∈R ), 所以直线l 的普通方程为y =3x , ① 又因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),所以曲线C 的直角坐标方程为y =12x 2(x ∈[-2,2]), ② 联立①②得⎩⎪⎨⎪⎧ x =0,y =0,或⎩⎪⎨⎪⎧x =23,y =6.(舍去)故P 点的直角坐标为(0,0).16.(本小题满分12分)在直角坐标系xOy 中,圆C 1:x 2+y 2=4, 圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示).(2)求出圆C 1与C 2的公共弦的参数方程. 解:(1)圆C 1的极坐标方程为ρ=2; 圆C 2的极坐标方程为ρ=4cos θ; 联立方程组⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ,解得ρ=2,θ=±π3.故圆C 1,C 2的交点极坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3. (2)由(1)知圆C 1,C 2的交点极坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3故圆C 1,C 2的交点直角坐标为 (1,3),(1,-3),故圆C 1,C 2的公共弦的参数方程为 ⎩⎪⎨⎪⎧x =1,y =t(-3≤t ≤3).17.(本小题满分12分)已知直线l :⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),曲线C 1:⎩⎨⎧x =cos θ,y =sin θ(θ为参数). (1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12,纵坐标压缩为原来的32,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离的最小值.解:(1)l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1. 联立方程⎩⎪⎨⎪⎧y =3(x -1),x 2+y 2=1,得2x 2-3x +1=0,解得l 与C 1的交点为 A (1,0),B ⎝ ⎛⎭⎪⎫12,-32,则|AB |=1.(2)C 2的参数方程为⎩⎪⎨⎪⎧x =12cos θ,y =32sin θ(θ为参数).故点P 的坐标是⎝ ⎛⎭⎪⎫12cos θ,32sin θ.从而点P 到直线l 的距离d =⎪⎪⎪⎪⎪⎪32cos θ-32sin θ-32=34⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫θ-π4+2, 当sin ⎝ ⎛⎭⎪⎫θ-π4=-1时,d 取得最小值,且最小值为32-64.18.(本小题满分14分)已知某圆的极坐标方程为 ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0,求:(1)圆的普通方程和参数方程;(2)圆上所有点(x ,y )中xy 的最大值和最小值. 解:(1)原方程可化为ρ2-42ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4+6=0,即ρ2-4ρcos θ-4ρsin θ+6=0.① 因为ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以①可化为x 2+y 2-4x -4y +6=0,即(x -2)2+(y -2)2=2,即为所求圆的普通方程.设⎩⎨⎧cos θ=2(x -2)2,sin θ=2(y -2)2,所以参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2+2sin θ(θ为参数).(2)由(1)可知xy =(2+2cos θ)·(2+2sin θ) =4+22(cos θ+sin θ)+2cos θ·sin θ =3+22(cos θ+sin θ)+(cos θ+sin θ)2.② 设t =cos θ+sin θ,则t =2sin ⎝ ⎛⎭⎪⎫θ+π4,t ∈[-2, 2 ].所以xy =3+22t +t 2=(t +2)2+1.当t =-2时,xy 有最小值为1;当t =2时,xy 有最大值为9.。

2018版数学人教A版选修4-4学案:第一讲 坐标系 一 含答案 精品

2018版数学人教A版选修4-4学案:第一讲 坐标系 一 含答案 精品

学习目标 1.了解平面直角坐标系的组成,领会坐标法的应用.2.理解平面直角坐标系中的伸缩变换.3.能够建立适当的平面直角坐标系,运用解析法解决数学问题.知识点一平面直角坐标系思考1在平面中,你最常用的是哪种坐标系?坐标的符号有什么特点?答案直角坐标系;在平面直角坐标系中,第一象限内的点的横纵坐标均为正,第二象限内的点的横坐标为负,纵坐标为正,第三象限内的点的横纵坐标均为负,第四象限内的点的横坐标为正,纵坐标为负.思考2坐标法解问题的关键是什么?如何建立恰当的坐标系?答案建立平面直角坐标系;通常选图形的特殊点为坐标原点,边所在直线为坐标轴.比如,对称中心为图形的顶点,为原点,对称轴边所在直线为坐标轴.梳理(1)平面直角坐标系的概念①定义:在同一个平面上相互垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系.②相关概念:数轴的正方向:水平放置的数轴向右的方向、竖直放置的数轴向上的方向分别是数轴的正方向.x轴或横轴:坐标轴水平的数轴.y轴或纵轴:坐标轴竖直的数轴.坐标原点:坐标轴的公共点O.③对应关系:平面直角坐标系内的点与有序实数对(x,y)之间一一对应.(2)坐标法解决几何问题的“三部曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步,通过代数运算解决代数问题;第三步:把代数运算结果翻译成几何结论.知识点二平面直角坐标系中的伸缩变换思考1如何由y=sin x的图象得到y=3sin 2x的图象?答案 y =sin x 12−−−−−−→横坐标缩为原来的纵坐标不变y =sin 2x ―――――――――――→纵坐标伸长为原来的3倍横坐标不变y =3sin 2x . 思考2 伸缩变换一定会改变点的坐标和位置吗?答案 不一定,伸缩变换对原点的位置没有影响.但是会改变除原点外的点的坐标和位置,但是象限内的点伸缩变换后仍在原来的象限. 梳理 平面直角坐标系中伸缩变换的定义(1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归结为坐标的伸缩变换,这就是用代数方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换:设点P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称_φ_为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.类型一 坐标法的应用 命题角度1 研究几何问题例1 已知△ABC 中,AB =AC ,BD 、CE 分别为两腰上的高,求证:BD =CE . 证明 如图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系.设B (-a,0),C (a,0),A (0,h ). 则直线AC 的方程为 y =-ha x +h ,即hx +ay -ah =0.直线AB 的方程为y =ha x +h ,即hx -ay +ah =0.由点到直线的距离公式,得|BD |=|2ah |a 2+h 2,|CE |=|2ah |a 2+h 2. ∴|BD |=|CE |,即BD =CE .反思与感悟 根据图形的几何特点选择适当的直角坐标系的一些规则:①如果图形有对称中心,选对称中心为原点;②如果图形有对称轴,可以选对称轴为坐标轴;③使图形上的特殊点尽可能多地在坐标轴上.跟踪训练1 在▱ABCD 中,求证:|AC |2+|BD |2=2(|AB |2+|AD |2).证明 如图,以A 为坐标原点,AB 所在的直线为x 轴,建立平面直角坐标系.设B (a,0),C (b ,c ),则AC 的中心E ⎝⎛⎭⎫b 2,c 2,由对称性知D (b -a ,c ), 所以|AB |2=a 2,|AD |2=(b -a )2+c 2, |AC |2=b 2+c 2,|BD |2=(b -2a )2+c 2, |AC |2+|BD |2=4a 2+2b 2+2c 2-4ab =2(2a 2+b 2+c 2-2ab ), |AB |2+|AD |2=2a 2+b 2+c 2-2ab , 所以|AC |2+|BD |2=2(|AB |2+|AD |2). 命题角度2 求轨迹方程例2 如图,圆O 1与圆O 2的半径都是1,|O 1O 2|=4,过动点P 分别作圆O 1,圆O 2的切线PM ,PN (M ,N 分别为切点),使得|PM |=2|PN |,试建立适当的坐标系,并求动点P 的轨迹方程.解 如图,以直线O 1O 2为x 轴,线段O 1O 2的垂直平分线为y 轴,建立平面直角坐标系,则O 1(-2,0),O 2(2,0).设P (x ,y ),则|PM |2=|O 1P |2-|O 1M |2=(x +2)2+y 2-1,|PN |2=|O 2P |2-|O 2N |2=(x -2)2+y 2-1.∵|PM |=2|PN |,∴|PM |2=2|PN |2, ∴(x +2)2+y 2-1=2[(x -2)2+y 2-1], 即x 2-12x +y 2+3=0,即(x -6)2+y 2=33. ∴动点P 的轨迹方程为(x -6)2+y 2=33.反思与感悟 建立坐标系的几个基本原则:①尽量把点和线段放在坐标轴上;②对称中心一般放在原点;③对称轴一般作为坐标轴.跟踪训练2 △ABC 的顶点A 固定,角A 的对边BC 的长是2a ,边BC 上的高的长是b ,边BC 沿一条直线移动,求△ABC 外心的轨迹方程.解 以边BC 所在的定直线为x 轴,过A 作x 轴的垂线为y 轴,建立直角坐标系,则点A 的坐标为(0,b ).设△ABC 的外心为M (x ,y ).取BC 的中心N ,则MN ⊥BC ,即MN 是BC 的垂直平分线. 因为|BC |=2a ,所以|BN |=a ,|MN |=|y |. 又M 是△ABC 的外心, 所以|MA |=|MB |. 又|MA |=x 2+(y -b )2, |MB |=|MN |2+|BN |2=y 2+a 2,所以x 2+(y -b )2=y 2+a 2,化简,得所求的轨迹方程为x 2-2by +b 2-a 2=0(x ∈R ,y >0). 类型二 伸缩变换例3 求圆x 2+y 2=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,y ′=4y 变换后得到的新曲线的方程,并说明新曲线的形状. 解 ∵⎩⎪⎨⎪⎧x ′=3x ,y ′=4y ,∴⎩⎨⎧x =13x ′,y =14y ′,把x ,y 代入方程x 2+y 2=1,得x ′29+y ′216=1. 即所求新曲线的方程为x 29+y 216=1.∴新曲线是以长轴为8,短轴为6,焦点在y 轴上的椭圆. 引申探究1.若曲线C 经过⎩⎨⎧x ′=12x ,y ′=13y变换后得到圆x 2+y 2=1,求曲线C 的方程.解 ∵曲线C 经过⎩⎨⎧x ′=12x ,y ′=13y变换后得到的圆为x 2+y 2=1.∴(x ′,y ′)满足x 2+y 2=1,即x ′2+y ′2=1.∴(12x )2+(13y )2=1, ∴x 24+y 29=1即为曲线C 的方程. 2.若圆x 2+y 2=1经过变换φ后得到曲线C ′:x 225+y 216=1,求φ的坐标变换公式.解 设φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),∴⎩⎨⎧x =x ′λ,y =y ′μ,代入x 2+y 2=1,得x ′2λ2+y ′2μ2=1.∴曲线C ′的方程为x 22+y 22=1.又已知曲线C ′的方程为x 225+y 216=1,∴⎩⎪⎨⎪⎧ λ2=25,μ2=16,∴⎩⎪⎨⎪⎧λ=5,μ=4. ∴φ:⎩⎪⎨⎪⎧x ′=5x ,y ′=4y .反思与感悟 (1)平面直角坐标系中的方程表示图形,则平面图形的伸缩变换就可归结为坐标的伸缩变换,这就是用代数的方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换:设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.跟踪训练3 在同一直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足条件的伸缩变换.解 设满足条件的伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),将其代入方程2x ′-y ′=4,得2λx -μy =4,与x -2y =2比较,将其变成2x -4y =4.比较系数得λ=1,μ=4.所以⎩⎪⎨⎪⎧x ′=x ,y ′=4y .直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线2x ′-y ′=4.1.在同一平面直角坐标系中,将曲线y =3sin 2x 变为曲线y ′=sin x ′的伸缩变换是( ) A.⎩⎪⎨⎪⎧ x =2x ′,y =13y ′ B.⎩⎪⎨⎪⎧x ′=2x ,y ′=13y C.⎩⎪⎨⎪⎧ x =2x ′,y =3y ′ D.⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 答案 B2.曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=3y 后,对应曲线的方程为x 2+y 2=1,则曲线C 的方程为( ) A.x 24+9y 2=1 B .4x 2+y 29=1C.x 24+y 29=1 D .4x 2+9y 2=1答案 A3.已知▱ABCD 中三个顶点A ,B ,C 的坐标分别是(-1,2),(3,0),(5,1),则点D 的坐标是( ) A .(9,-1) B .(-3,1) C .(1,3) D .(2,2) 答案 C解析 由平行四边形对边互相平行,即斜率相等,可求出点D 的坐标.设D (x ,y ),则⎩⎪⎨⎪⎧k AB =k DC ,k AD =k BC ,即⎩⎪⎨⎪⎧2-0-1-3=y -1x -5,2-y -1-x =0-13-5.解得⎩⎪⎨⎪⎧x =1,y =3.故点D 的坐标为(1,3).4.在△ABC 中,B (-2,0),C (2,0),△ABC 的周长为10,则A 点的轨迹方程为________. 答案 x 29+y 25=1(y ≠0)解析 ∵△ABC 的周长为10,∴|AB |+|AC |+|BC |=10,而|BC |=4,∴|AB |+|AC |=6>4.∴A 点的轨迹为除去长轴两顶点的椭圆,且2a =6,2c =4.∴a =3,c =2,∴b 2=a 2-c 2=5. ∴A 点的轨迹方程为x 29+y 25=1(y ≠0).5.用解析法证明:若C 是以AB 为直径的圆上的任意一点(异于A ,B ),则AC ⊥BC . 证明 设AB =2r ,线段AB 的中心为O ,以线段AB 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系,则圆O 的方程为x 2+y 2=r 2.设A (-r,0),B (r,0),C (x ,y ), 则k AC =y x +r ,k BC =y x -r ,则k AC ·k BC =y x +r ·y x -r =y 2x 2-r 2,又x 2+y 2=r 2,所以y 2=r 2-x 2,所以k AC ·k BC =r 2-x 2x 2-r 2=-1,所以AC ⊥BC .1.平面直角坐标系的作用与建立平面直角坐标系是确定点的位置、刻画方程的曲线形状和位置的平台,建立平面直角坐标系,常常利用垂直直线为坐标轴,充分利用图形的对称性等特征. 2.伸缩变换的类型与特点伸缩变换包括点的伸缩变换,以及曲线的伸缩变换,曲线经过伸缩变换对应的曲线方程就会变化,通过伸缩变换可以领会曲线与方程之间的数形转化与联系.课时作业一、选择题1.点(1,2)经过伸缩变换⎩⎨⎧x ′=12x ,y ′=13y后的点的坐标是( )A .(4,-3)B .(-2,3)C .(2,-3)D .(12,23)答案 D2.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线2x ′2+8y ′2=0,则曲线C 的方程为( ) A .25x 2+36y 2=0 B .9x 2+100y 2=0 C .10x +24y =0 D.225x 2+89y 2=0答案 A3.在平面直角坐标系中,方程3x -2y +1=0所对应的直线经过伸缩变换⎩⎪⎨⎪⎧x ′=13x ,y ′=2y 后的直线方程为( ) A .3x ′-4y ′+1=0 B .3x ′+y ′-1=0 C .9x ′-y ′+1=0 D .x ′-4y ′+1=0答案 C4.在直角坐标系中,点A (2,-3)关于直线x -y -1=0对称的点是( ) A .(-2,1) B .(2,-1) C .(1,-2) D .(-2,-1)答案 A解析 设点A 关于直线x -y -1=0对称的点为B (m ,n ),则AB 的中心为M ⎝⎛⎭⎫m +22,n -32,因为点M 在直线x -y -1=0上,直线AB 与直线x -y -1=0垂直,所以⎩⎪⎨⎪⎧m +22-n -32-1=0,n +3m -2×1=-1,解得⎩⎪⎨⎪⎧m =-2,n =1,故点A 关于直线x -y -1=0对称的点为(-2,1),故选A.5.已知实数x ,y 满足方程x 2+y 2-4x +1=0,则x 2+y 2的最大值和最小值分别为( ) A .5+43,5-4 3 B .7,7C .73-4,73+4D .7+43,7-4 3答案 D解析 x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.6.已知四边形ABCD 的顶点分别为A (-1,0),B (1,0),C (1,1),D (-1,1),四边形ABCD 在伸缩变换⎩⎪⎨⎪⎧x ′=ax ,y ′=y (a >0)的作用下变成正方形,则a 的值为( )A .1B .2 C.12 D.23答案 C解析 如图,由矩形ABCD 变为正方形A ′B ′C ′D ′,已知y ′=y ,∴边长为1,∴AB 的长由2缩为原来的一半,∴x ′=12x ,∴a =12.二、填空题7.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=3x ,y ′=y 后,曲线C 变为曲线x ′2+9y ′2=9,则曲线C 的方程是________. 答案 x 2+y 2=1解析 将⎩⎪⎨⎪⎧x ′=3x ,y ′=y 代入x ′2+9y ′2=9,得x 2+y 2=1.∴曲线C 的方程为x 2+y 2=1.8.若点P (-2 016,2 017)经过伸缩变换⎩⎨⎧x ′=x 2 017,y ′=y2 016后的点在曲线x ′y ′=k 上,则k =________. 答案 -1解析 ∵P (-2 016,2 017)经过伸缩变换⎩⎨⎧x ′=x2 017,y ′=y2 016,得⎩⎨⎧x ′=-2 0162 017,y ′=2 0172 016,代入x ′y ′=k ,得k =x ′y ′=-1.9.可以将椭圆x 210+y 28=1变为圆x 2+y 2=4的伸缩变换为________.答案 ⎩⎪⎨⎪⎧x ′=25x ,y ′=12y解析 将椭圆方程x 210+y 28=1,化为2x 25+y 22=4,∴⎝⎛⎭⎪⎫2x 52+⎝⎛⎭⎫y 22=4.令⎩⎪⎨⎪⎧x ′=25 x ,y ′=12y ,得x ′2+y ′2=4,即x 2+y 2=4.∴伸缩变换⎩⎪⎨⎪⎧x ′=25x ,y ′=12y 为所求.10.已知平面内有一固定线段AB 且|AB |=4,动点P 满足|P A |-|PB |=3,O 为AB 中点,则|PO |的最小值为________. 答案 32解析 以AB 为x 轴,O 为坐标原点建立平面直角坐标系,则动点P 的轨迹是以AB 为实轴的双曲线的右支.其中a =32,故|PO |的最小值为32.三、解答题11.求证等腰梯形对角线相等.已知:等腰梯形ABCD ,求证:AC =BD .证明 取B 、C 所在直线为x 轴,线段BC 的中垂线为y 轴,建立如图所示的直角坐标系.设A (-a ,h ),B (-b,0),则D (a ,h ),C (b,0). ∴|AC |=(b +a )2+h 2, |BD |=(a +b )2+h 2.∴|AC |=|BD |,即等腰梯形ABCD 中,AC =BD .12.已知一条长为6的线段两端点A 、B 分别在x 轴、y 轴上滑动,点M 在线段AB 上,且AM ∶MB =1∶2,求动点M 的轨迹方程. 解 设A (a,0),B (0,b ),M (x ,y ), ∵|AB |=6,∴a 2+b 2=36. ①∵AM ∶MB =1∶2,∴2AM →=MB →. 又∵AM →=(x -a ,y ),MB →=(-x ,b -y ),∴⎩⎪⎨⎪⎧2(x -a )=-x ,2y =b -y ⇒ ⎩⎪⎨⎪⎧a =32x ,b =3y .②将②式代入①式,化简可得x 216+y 24=1. 13.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧ x ′=12x ,y ′=13y后的图形.(1)5x +2y =0;(2)x 2+y 2=2. 解 (1)由伸缩变换⎩⎨⎧ x ′=12x ,y ′=13y ,得⎩⎪⎨⎪⎧ x =2x ′,y =3y ′. 将其代入5x +2y =0,得到经过伸缩变换后的图形的方程是5x ′+3y ′=0. 所以经过伸缩变换⎩⎨⎧x ′=12x ,y ′=13y 后,直线5x +2y =0变成直线5x ′+3y ′=0. (2)将⎩⎪⎨⎪⎧ x =2x ′,y =3y ′代入x 2+y 2=2,得到经过伸缩变换后的图形的方程是x ′214+y ′219=2,即x ′212+y ′229=1. 所以经过伸缩变换⎩⎨⎧ x ′=12x ,y ′=13y后,圆x 2+y 2=2变成椭圆x ′212+y ′229=1. 四、探究与拓展 14.已知函数f (x )=(x -1)2+1+(x +1)2+1,则f (x )的最小值为________.答案 2 2解析 f (x )可看作是平面直角坐标系下x 轴上一点(x,0)到两定点(-1,1)和(1,1)的距离之和,结合图形可得,f (x )的最小值为2 2.15.已知椭圆C :x 216+y 24=1,P ,Q 为椭圆C 上的两点,O 为原点,直线OP ,OQ 的斜率的乘积为-14,求|OP |2+|OQ |2的值. 解 设P (x 1,y 1),Q (x 2,y 2),OP ,OQ 的斜率为k 1,k 2,则k 1k 2=y 1y 2x 1x 2=14(16-x 21)·14(16-x 22)x 1x 2=-14, ∴x 22=16-x 21.又|OP |2+|OQ |2=x 21+y 21+x 22+y 22=x 21+(4-14x 21)+x 22+(4-14x 22) =20,∴|OP |2+|OQ |2的值为20.。

人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结

人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结

在△OMB 中,同理 → |MB|= ρ2+36-12ρcosθ. → → 由|MA|· |MB|=36,得 (ρ2+36)2-(12ρcosθ)2=362. 即 ρ4+72ρ2-144ρ2cos2θ=0. 即 ρ2=72(2cos2θ-1)=72cos2θ. 所以,点 M 的轨迹的极坐标方程为 ρ2=72cos2θ.
3.柱坐标系与球坐标系 (1)柱坐标系
一般地,如图,建立空间直角坐标系 Oxyz,设 P 是空间任意 一点,它在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示 点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序数组(ρ, θ, z)(z∈R)表示,这样我们建立了空间的点与有序数组(ρ,θ,z)之间 的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有 序数组(ρ,θ,z),叫做 P 的柱坐标,空间点 P 的直角坐标与柱坐 x=ρcosθ, 标之间的变换公式为y=ρsinθ, z=z.
2ac (2)当 a≠c 时,方程可化为 x +y - x=0,其轨迹是以 a-c
2 2
ac ac 2ac ( ,0)为圆心, 为半径的圆,但不包括点(0,0)和( , a-c |a-c| a-c 0).
【例 2】
x′=2x, 在同一坐标系中, 经过伸缩变换 y′=2y
后,
曲线 C 变为曲线(x-5)2+(y+6)2=1,求曲线 C 的方程,并判 断是什么曲线.
高 考 真 题 【例 8】 在极坐标系中, 圆 ρ=2cosθ 的垂直于极轴的两条切 线方程分别为( )
A.θ=0(ρ∈R)和 ρcosθ=2 π B.θ=2(ρ∈R)和 ρcosθ=2 π C.θ=2(ρ∈R)和 ρcosθ= D.θ=0(ρ∈R)和 ρcosθ=1

人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系

【分析】
解决这一问题的关键,在于确定遗址 W 与地下管
线 m 的位置关系, 即求出 W 到直线 m 的距离 d 与 100 米进行比较.
【解】 依题意,以 A 点为原点,正东方向和正北方向分别为 x 轴和 y 轴的正方向,建立平面直角坐标系.如下图.
则 A(0,0),B(-1 000,0),由|AW|=400,得
∴水面与抛物线拱顶相距 3 5 3 |y|+ = + =2(m). 4 4 4 即水面上涨到与抛物线形拱顶相距 2 m 时,船开始不能通航.
【例 2】 用解析法证明:任意四边形两组对边中点连线及两 对角线中点连线三线共点,且互相平分.
【证明】 如下图所示,建立直角坐标系.设四边形各点的坐 标分别为 A(0,0),B(a,0),C(b,c),(d,e).
2 2 2 2 2
1 1 ∴λ=3,μ=2. 1 x′=3x, ∴ y′=1y, 2 1 即将椭圆 4x +9y =36 上的所有点的横坐标变为原来的 ,纵 3
2 2
1 坐标变为原来的 ,即可得到圆 x′2+y′2=1. 2
规律技巧
求满足图象变换的伸缩变换, 实际上是让我们求出
变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数 可得.
2.坐标法的应用 (1)坐标法的基本思想就是在平面上引进“坐标”的概念,建 立平面上的点和坐标之间的一一对应,从而建立曲线的方程,并通 过方程研究曲线的性质. (2)坐标法解决几何问题的“五步骤”: ①建立适当的平面直角坐标系,设动点 M(x,y); ②根据题设条件,找出动点 M 满足的等量关系式;
第一讲 坐标系
一 平面直角坐标系
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础

高中数学选修4-4知识点(坐标系与参数方程)

高中数学选修4-4知识点(坐标系与参数方程)
个变量的值;参数方程中自变量也只有一个,而且给定参数 t 的一个值,就可以求出唯一对 应的 x,y 的值.
这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引 入参数,也可把普通方程化为参数方程. 2.圆的参数方程
1.圆心在坐标原点,半径为 r 的圆的参数方程 如图圆 O 与 x 轴正半轴交点 M0(r,0).
α α (t
为参数)
称为直线参数方程的标准形式,此时的参数 t 有明确的几何意义.
一般地,过点 M0(x0,y0),斜率 k=ba(a,b 为常数)的直线,参数方程为xy= =xy00+ +abtt(t 为参
数),称为直线参数方程的一般形式,此时的参数 t 不具有标准式中参数的几何意义. 四 渐开线与摆线(了解)
x=rsin φcos θ (2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsin φsin θ .
z=rcos φ
第二讲:
第4页
一 曲线的参数方程
1.参数方程的概念 1.参数方程的概念
(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变
2.参数方程与普通方程的区别与联系 (1)区别:普通方程 F(x,y)=0,直接给出了曲线上点的坐标 x,y 之间的关系,它含有
x,y 两个变量;参数方程xy= =fg((tt))(t 为参数)间接给出了曲线上点的坐标 x,y 之间的关系,
它含有三个变量 t,x,y,其中 x 和 y 都是参数 t 的函数. (2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一
就可得到普通方程. (3)普通方程化参数方程,首先确定变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),

2018-2019学年高中数学 第一讲 坐标系 二 第二课时 极坐标和直角坐标的互化学案 新人教A版选修4-4

2018-2019学年高中数学 第一讲 坐标系 二 第二课时 极坐标和直角坐标的互化学案 新人教A版选修4-4

第2课时 极坐标和直角坐标的互化学习目标 1.了解极坐标和直角坐标互化的条件.2.掌握极坐标与直角坐标互化的公式,能进行极坐标和直角坐标间的互化.3.掌握极坐标系的简单应用.知识点 极坐标和直角坐标的互化思考1 平面内的一个点M 的坐标既可以用直角坐标表示也可以用极坐标表示,那么这两个坐标之间能否转化? 答案 可以.思考2 要进行极坐标和直角坐标的互化,两个坐标系有什么联系? 答案 ①直角坐标的原点为极点;②x 轴的正半轴为极轴;③单位长度相同. 梳理 互化的条件及互化公式(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位. (2)互化公式①极坐标化直角坐标:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ.②直角坐标化极坐标:⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).类型一 点的极坐标化直角坐标 例1 把下列点的极坐标化为直角坐标. (1)A ⎝ ⎛⎭⎪⎫2,7π6;(2)B ⎝ ⎛⎭⎪⎫3,-π4;(3)M ⎝⎛⎭⎪⎫6,5π6.解 由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得(1)x =2cos 7π6=-3,y =2sin 7π6=-1,∴点A 的直角坐标为(-3,-1).(2)x =3cos ⎝ ⎛⎭⎪⎫-π4=322,y =3sin ⎝ ⎛⎭⎪⎫-π4=-322,∴点B 的直角坐标为⎝⎛⎭⎪⎫322,-322.(3)x =6cos 5π6=-33,y =6sin 5π6=3,∴点M 的直角坐标为(-33,3).反思与感悟 由极坐标化直角坐标是惟一的.由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ惟一确定.跟踪训练1 已知点的极坐标分别为A ⎝ ⎛⎭⎪⎫2,2π3,B ⎝ ⎛⎭⎪⎫32,π,C ⎝ ⎛⎭⎪⎫-4,π2,求它们的直角坐标.解 根据x =ρcos θ,y =ρsin θ, 得A (-1,3),B ⎝ ⎛⎭⎪⎫-32,0,C (0,-4). 类型二 点的直角坐标化极坐标例2 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π). (1)(-2,23);(2)(6,-2);(3)⎝⎛⎭⎪⎫3π2,3π2.解 (1)∵ρ=x 2+y 2=(-2)2+(23)2=4, tan θ=y x=-3,θ∈[0,2π). 由于点(-2,23)在第二象限,∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标为⎝⎛⎭⎪⎫4,2π3.(2)∵ρ=x 2+y 2=(6)2+(-2)2=22,tan θ=y x =-33,θ∈[0,2π),由于点(6,-2)在第四象限, ∴θ=11π6.∴点的直角坐标(6,-2)化为极坐标为⎝ ⎛⎭⎪⎫22,11π6.(3)∵ρ=x 2+y 2=⎝ ⎛⎭⎪⎫3π22+⎝ ⎛⎭⎪⎫3π22=32π2,tan θ=y x =1,θ∈[0,2π). 由于点⎝⎛⎭⎪⎫3π2,3π2在第一象限,所以θ=π4. ∴点的直角坐标⎝ ⎛⎭⎪⎫3π2,3π2化为极坐标为⎝ ⎛⎭⎪⎫32π2,π4.引申探究1.若规定θ∈R ,上述点的极坐标还惟一吗?解 (1)⎝ ⎛⎭⎪⎫4,2π3+2k π(k ∈Z ).(2)⎝ ⎛⎭⎪⎫22,11π6+2k π(k ∈Z ). (3)⎝⎛⎭⎪⎫32π2,π4+2k π(k ∈Z ). 极坐标不惟一.2.若点的直角坐标为(1)(0,23),(2)(0,-2),(3)⎝⎛⎭⎪⎫3π2,0化为极坐标(ρ≥0,0≤θ<2π).解 结合坐标系及直角坐标的特点知, (1)⎝ ⎛⎭⎪⎫23,π2.(2)⎝ ⎛⎭⎪⎫2,3π2.(3)⎝ ⎛⎭⎪⎫3π2,0.反思与感悟 (1)将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=y x (x ≠0)进行求解,先求极径,再求极角.(2)在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.跟踪训练2 在直角坐标系中,求与点M ⎝ ⎛⎭⎪⎫52,-532的距离为1且与原点距离最近的点N 的极坐标.解 把点M 的直角坐标⎝ ⎛⎭⎪⎫52,-532化为极坐标,得ρ=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫-5322=5,tan θ=-53252=- 3. 因为点M 在第四象限,所以θ=5π3+2k π,k ∈Z ,则点M 的极坐标为⎝ ⎛⎭⎪⎫5,5π3+2k π,k ∈Z .依题意知,M ,N ,O 三点共线,则点N 的极坐标为⎝ ⎛⎭⎪⎫4,5π3+2k π,k ∈Z .类型三 极坐标与直角坐标互化的应用例3 已知A ,B 两点的极坐标为⎝ ⎛⎭⎪⎫6,π3和⎝ ⎛⎭⎪⎫8,4π3,求线段AB 中点的直角坐标.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33),同理可得B (-4,-43).设线段AB 的中点为M (m ,n ),由线段中点的坐标公式可得⎩⎪⎨⎪⎧m =-4+32=-12,n =-43+332=-32,所以线段AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32.引申探究1.若本例条件不变,求线段AB 中点的极坐标. 解 由例3知,AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32,∴ρ2=x 2+y 2=1,∴ρ=1.又tan θ=y x =3,∴θ=4π3,∴极坐标为⎝⎛⎭⎪⎫1,4π3. 2.若本例条件不变,求AB 的直线方程.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33).又因为直线AB 的倾斜角为π3,故斜率k =3,故直线AB 的方程为y -33=3(x -3),即3x -y =0. 反思与感悟 应用点的极坐标与直角坐标互化的策略在解决极坐标平面内较为复杂的图形问题时,若不方便利用极坐标直接解决,可先将极坐标化为直角坐标,利用直角坐标系中的公式、性质解决,再转化为极坐标系中的问题即可.跟踪训练3 在极坐标系中,如果A ⎝⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π). 解 对于点A ⎝ ⎛⎭⎪⎫2,π4有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B ⎝⎛⎭⎪⎫2,5π4有ρ=2,θ=5π4,∴x =2cos 5π4=-2,y =2sin 5π4=-2.∴B (-2,-2).设点C 的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解得⎩⎨⎧x =6,y =-6或⎩⎨⎧x =-6,y = 6.∴点C 的坐标为(6,-6)或(-6,6).∴ρ=6+6=23,tan θ=-66=-1或tan θ=6-6=-1,∴θ=7π4或θ=3π4.故点C 的极坐标为⎝⎛⎭⎪⎫23,7π4或⎝ ⎛⎭⎪⎫23,3π4.1.将点M 的极坐标⎝ ⎛⎭⎪⎫10,π3化成直角坐标是( ) A .(5,53)B .(53,5)C .(5,5)D .(-5,-5)答案 A2.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( )A.⎝⎛⎭⎪⎫2,π4 B.⎝ ⎛⎭⎪⎫2,3π4 C.⎝ ⎛⎭⎪⎫2,5π4D.⎝⎛⎭⎪⎫2,7π4答案 B解析 设点P 的极坐标为(ρ,θ), ∵ρ2=x 2+y 2=4,∴ρ=2,又tan θ=y x =-1,且点P 在第二象限,∴θ=3π4.3.若M 点的极坐标为⎝⎛⎭⎪⎫2,5π6,则M 点的直角坐标是( )A .(-3,1)B .(-3,-1)C .(3,-1)D .(3,1) 答案 A解析 由公式可知⎩⎪⎨⎪⎧x =ρcos θ=2cos 5π6=-3,y =ρsin θ=2sin 5π6=1,∴M 点的直角坐标为(-3,1).4.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点P 的极坐标可以是( ) A.⎝ ⎛⎭⎪⎫1,-π3B.⎝⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 答案 C解析 以原点为极点,x 轴的正半轴为极轴建立极坐标系,则由极坐标与直角坐标的互化公式,得ρ=x 2+y 2=12+(-3)2=2,tan θ=y x =-31=- 3.∵点P 在第四象限,结合选项知,θ可以是-π3,∴点P 的极坐标可以是⎝⎛⎭⎪⎫2,-π3. 5.已知点M 的直角坐标为(-3,-33),若ρ>0,0≤θ<2π,则点M 的极坐标是________.答案 ⎝⎛⎭⎪⎫6,4π3解析 ρ=(-3)2+(-33)2=6, 由6cos θ=-3,得cos θ=-12,又0≤θ<2π,且M (-3,-33)在第三象限, ∴θ=4π3,故点M 的极坐标为⎝⎛⎭⎪⎫6,4π3.极坐标与直角坐标的互化任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带,事实上,若ρ>0,sin θ=y ρ,cos θ=x ρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0).一、选择题1.已知点M 的极坐标为⎝ ⎛⎭⎪⎫-5,π3,下列所给出的四个坐标中不能表示点M 的坐标的是( ) A.⎝ ⎛⎭⎪⎫5,π3 B.⎝ ⎛⎭⎪⎫5,4π3 C.⎝ ⎛⎭⎪⎫5,-2π3 D.⎝ ⎛⎭⎪⎫-5,-5π3答案 A2.直角坐标为(-2,2)的点M 的极坐标可以为( ) A.⎝⎛⎭⎪⎫22,π4 B.⎝⎛⎭⎪⎫-22,π4C.⎝ ⎛⎭⎪⎫22,3π4D.⎝⎛⎭⎪⎫22,-π4 答案 C解析 易知ρ=(-2)2+22=22,tan θ=2-2=-1,因为点M 在第二象限,所以可取θ=3π4,则点M 的极坐标可以为⎝⎛⎭⎪⎫22,3π4.3.若点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为( )A .(3,4)B .(4,3)C .(-4,3)D .(-3,4) 答案 D4.点M 的直角坐标是(3,3),则点M 的极坐标可能为( ) A.⎝⎛⎭⎪⎫23,5π6 B.⎝⎛⎭⎪⎫23,π6C.⎝ ⎛⎭⎪⎫23,-π6D.⎝⎛⎭⎪⎫23,-5π6 答案 B解析 ρ=x 2+y 2=23,tan θ=yx =33, 又θ的终边过点(3,3),所以θ=π6+2k π,k ∈Z ,所以M 的极坐标可能为⎝⎛⎭⎪⎫23,π6. 5.在极坐标系中,已知△OAB 的顶点A 的极坐标为(2,π),AB 边的中点D 的极坐标为⎝⎛⎭⎪⎫4,5π4.若以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,则顶点B 的直角坐标为( ) A .(32,42) B .(-32,42) C .(-32,-42) D .(32,-42)答案 C解析 设顶点B 的直角坐标为(x 0,y 0).把A ,D 两点的极坐标化为直角坐标,得A (-2,0),D (-22,-22),则由中点坐标公式得-2+x 02=-22,0+y 02=-22,解得x 0=-32,y 0=-42,故顶点B 的直角坐标为(-32,-42). 二、填空题6.把点M 的极坐标⎝ ⎛⎭⎪⎫-10,π6化为直角坐标为________.答案 (-53,-5)7.已知两点的极坐标A ⎝⎛⎭⎪⎫3,π2,B ⎝ ⎛⎭⎪⎫3,π6,则直线AB 的倾斜角为________. 答案5π6解析 点A ,B 的直角坐标分别为(0,3),⎝⎛⎭⎪⎫332,32,故k AB =32-3332-0=-33,故直线AB 的倾斜角为5π6.8.将向量OM →=(-1,3)绕原点逆时针旋转120°得到向量的直角坐标为________. 答案 (-1,-3)解析 由于M (-1,3)的极坐标为⎝ ⎛⎭⎪⎫2,2π3,绕极点(即原点)逆时针旋转120°得到的点的极坐标为⎝⎛⎭⎪⎫2,4π3,化为直角坐标为(-1,-3).9.在极坐标系中,O 是极点,点A ⎝ ⎛⎭⎪⎫4,π6,B ⎝ ⎛⎭⎪⎫3,2π3,则点O 到AB 所在直线的距离是________.答案125解析 点A ,B 的直角坐标分别为(23,2),⎝ ⎛⎭⎪⎫-32,332,则直线AB 的方程为y -2332-2=x -23-32-23,即(4-33)x -(43+3)y +24=0,则点O 到直线AB 的距离为24(4-33)2+[-(43+3)]2=125.10.在极轴上与点A ⎝ ⎛⎭⎪⎫42,π4的距离为5的点M 的坐标为________. 答案 (1,0)或(7,0)解析 设M (r,0),因为A ⎝ ⎛⎭⎪⎫42,π4,所以(42)2+r 2-82r ·cos π4=5,即r 2-8r +7=0,解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0). 三、解答题11.若以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)解 (1)∵x =ρcos θ=4cos 5π3=2,y =ρsin θ=4sin5π3=-23, ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1,且点B 位于第四象限内,∴θ=7π4,∴点B 的极坐标为⎝ ⎛⎭⎪⎫22,7π4. 又∵x =0,y <0,∴ρ=15,θ=3π2.∴点C 的极坐标为⎝⎛⎭⎪⎫15,3π2. 12.在极坐标系中,已知点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝ ⎛⎭⎪⎫43,7π6.(1)求|AB |的值;(2)求△AOB 的面积(O 为极点). 解 如图所示,(1)∠AOB =7π6-π3=5π6,所以|AB |2=32+(43)2-2×3×43cos 5π6=93,所以|AB |=93.(2)S △AOB =12OA ·OB sin∠AOB =12×3×43×12=3 3.13.在极坐标系中,已知三点M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝ ⎛⎭⎪⎫23,π6.判断M ,N ,P 三点是否共线?说明理由.解 将极坐标M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝⎛⎭⎪⎫23,π6分别化为直角坐标,得M (1,-3),N (2,0),P (3,3).方法一 因为k MN =k PN =3,所以M ,N ,P 三点共线. 方法二 因为MN →=NP →=(1,3),所以MN →∥NP →, 所以M ,N ,P 三点共线.四、探究与拓展14.已知点P 在第三象限的角平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P 的极坐标为________.答案 ⎝ ⎛⎭⎪⎫22,54π 解析 ∵点P (x ,y )在第三象限的角平分线上,且到横轴的距离为2,∴x =-2,y =-2,∴ρ=x 2+y 2=2 2. 又tan θ=y x =1,且θ∈[0,2π),∴θ=54π. 因此,点P 的极坐标为⎝⎛⎭⎪⎫22,54π. 15.已知点M 的极坐标为⎝ ⎛⎭⎪⎫4,π6,极点O ′在直角坐标系xOy 中的直角坐标为(2,3),极轴平行于x 轴,极轴的方向与x 轴的正方向相同,两坐标系的长度单位相同,求点M 的直角坐标.解 如图所示.设M 在直角坐标系x ′O ′y ′中的坐标为(x ′,y ′),则x ′=ρcos θ=4cos π6=23,y ′=ρsin θ=4sin π6=2, 又M 在原坐标系中的坐标为(x ,y ),则x =x ′+2=23+2,y =y ′+3=5,∴点M 的直角坐标是(23+2,5).。

2017-2018学年高中数学人教A版选修4-4第一讲坐标系一平面直角坐标系互动课堂学案

2017-2018学年高中数学人教A版选修4-4第一讲坐标系一平面直角坐标系互动课堂学案

一平面直角坐标系互动讲堂重难打破本课时的要点是坐标法思想与坐标伸缩变换, 难点是如何成立合适的坐标系及注意问题, 对坐标伸缩变换的理解与应用一、坐标法思想1.坐标法是在座标系的基础上,把几何问题转变为代数问题,经过代数运算研究几何图形性质的方法 . 它是分析几何中最基本的研究方法. 比如在平面直角坐标系中,依据确立直线地点的几何因素,我们能够研究并掌握直线方程的几种形式(点斜式、两点式及一般式),领会斜截式与一次函数的关系. 在空间坐标系中,经过高次方程的计算,令人们对一些星体的轨迹运动和变化规律有所认识和掌握.2. 坐标法解决几何问题的“三部曲”:第一步:成立合适的坐标系,用坐标和方程表示问题中波及的几何元素,将几何问题转变为代数问题;第二步:经过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论坐标系包含平面直角坐标系、极坐标系、柱坐标系、球坐标系等 . 关于不一样种类的几何图形,采用相应的坐标系能够使成立的方程更为简单. 如要确立体育馆内一个地点,成立柱坐标系就比较合适,经过柱坐标我们能够比较精准地找到这个地点的所在地.3. “坐标法”应贯串分析几何教课的一直,帮助同学们不停地领会“数形联合”的思想方法在教课中应从头至尾加强这一思想方法,这是分析几何的特色. 在经过代数方法研究几何对.象的地点此后,还能够画出其图形,考证代数结果;同时,经过察看几何图形获得数学结论,对结论进行代数证明,即用分析方法解决某些代数问题,不该切断它们之间的联系.4. 平面直角坐标系是分析几何的基础, 同学们应在已有知识的基础上做好自我完美, 从解决问题中提升学习兴趣, 激发学习的踊跃性和主动性, 养成不停研究知识、完美自我的优秀个性质量 . 进一步理解平面直角坐标系在对本质问题的解决中的重要作用, 会用平面直角坐标系解决本质问题 .二、用数学知识和方法解决本质问题1. 教材中从本质问题引入数学方法,逐渐把本质问题归纳为数学模型,而后运用数学方法加以解决 . 如:利用两个不一样的观察点测得同一炮弹爆炸声的时间差,能够确立爆炸点所在的双曲线的方程,此时还不可以确立爆炸点的正确地点 . 再增设一个观察点 C,利用 B、C两处测得的爆炸声的时间同样,能够求出一条直线的方程,解这两个方程构成的方程组,就能确立爆炸点的正确地点 .2.存在的问题 : 把本质问题归纳为数学模型是需要必定功底的,而我们广泛存在着一些问题:不喜爱应用性问题中烦杂的文字表达,不肯读下去,牵强读完也弄不清题意 ;(2) 学过的 (1)看法、公式、方法到解题时用不上,找不到数学关系式,思路不清,简单混杂;(3)平常学习中对应用性问题接触太少,所以学习感觉困难,不知如何下手,也不肯多做,致使心理上不愿学等等我们应注意运用数学方法、思想、看法去察看和剖析各样本质问题,从中抽象出数学知识和数学规律,成立数学模型,并运用数学知识进行正确的运算和推理.3.要擅长在一般语言中找寻数目关系,找出哪些是已知量,哪些是未知量,哪些是直接未知量,哪些是间接未知量,用数学语言把这些数目关系表示出来.4. 化本质问题为数学模型,一方面要深入剖析本质问题中的空间形式和各样数目关系,方面在学习数学理论的过程中,要认真领会和追求这些理论对解决本质问题的指导作用,力把它应用于现实世界,以解决人们急迫需要解决的本质问题另一努三、平面直角坐标系中的坐标伸缩变换1. 设点 P( x , y ) 是平面直角坐标系中的随意一点x x, 0, , 在变换 φ:y,的作用下 , 点yP ( x , y ) 对应到点 P '( x ' , y '), 称 φ 为平面直角坐标系中的坐标伸缩变换, 简称伸缩变换 .2. 在座标伸缩变换的作用下 , 能够实现平面图形的伸缩 . 所以 , 平面图形的伸缩变换能够用坐标伸缩变换来表示 .3. 坐标伸缩变换与我们前方学的坐标变换之间的关系二者都是将平面图形进行伸缩平移的变换. 本质是同样的 . 比方正弦曲线经过这两种变换后,所得图形的形状是没有改变的 . 在必定的变换规律下椭圆能够变为椭圆,也能够变为圆.不过说法上和认识上的一点不一样我们联合函数 y =A sin( ω x +φ) 的图象的形成过程 ( 与 y =A cos( ω x +φ ) 相近似 ) ,看看在 平面直角坐标系伸缩变换作用下平面图形的变化状况吧.函数 y =sin ω x , x ∈R (此中 ω >0, ω≠1)的图象, 能够看作把正弦曲线上全部点的横坐标缩 短(当 ω >1 时)或伸长(当 0<ω <1 时)到本来的1倍(纵坐标不变)而获得 . 平面直角坐标系伸缩变换以为是一个坐标伸缩过程:保持纵坐标不变,将 x 轴进行压缩或伸长函数 y =A sin x , x ∈ R (此中 A >0, ω≠1)的图象, 能够看作把正弦曲线上全部点的纵坐标 伸长(当 A > 1 时)或缩短(当 0<A <1 时)到本来的 A 倍(横坐标不变)而获得 . 平面直角 坐标系伸缩变换以为是一个坐标伸缩过程:保持横坐标不变,将y 轴进行压缩或伸长由此看出,二者不过说法上的不一样,本质上是同样的此外, 我们应当注意到: 经过一个表达式, 平面直角坐标系中坐标伸缩变换将 x 与 y 的伸缩变换一致成一个式子了, 即x x, 0,yy,我们在使用时,要注意点的对应性,即分清爽0.旧. '( x ',y ' ) 是变换图形后的点的坐标,( , y ) 是变换前图形的点的坐标 .PP x活学巧用【例 1】 终究以什么样的方法成立平面直角坐标系,才能够使方程最为简单呢?在成立坐 标系的过程中我们应当注意什么呢?研究 : 一般状况下我们有这样一个成立坐标系的规律: ( 1)当题目中有两条相互垂直的直线,以这两直线为坐标轴 ; ( 2)当题目中有对称图形,以对称图形的对称轴为坐标轴; ( 3)当题目中有已知长度的线段, 以线段所在直线为对称轴,以端点或中点为原点直角坐标系成立完后, 需认真剖析曲线的特色, 注意揭露隐含条件, 抓住曲线上随意点有关 的等量关系、所知足的几何条件,列出方程 . 在将几何条件转变为代数方程的过程中,要注 意圆锥曲线定义和初中平面几何知识的应用, 还会用到一些基本公式, 如两点间的距离公式、点到直线的距离公式、直线斜率公式等此外,在化简过程中, 我们要注意运算和变形的合理性与正确性,防止“失解”和“增解” . 这一步内容中学阶段不作要求 (从理论上讲则是必需的) ,多半状况下不会有什么问题,但若遇特别状况则应当合适予以说明.【例 2】 (2005 江苏高考 ) 如图 , 圆 O 1 与圆 O 2 的半径都是 1, | O 1O 2|=4 ,过动点P 分别作圆O 1、圆 O 2 的切线 PM 、PN ( M 、 N 分别为切点),使得 PM = 2 PN , 试成立合适的坐标系,并求动点 P 的轨迹方程分析 : 此题是分析几何中求轨迹方程问题,由题意成立合适坐标系,写出有关点的坐标,由几何关系式: PM = 2 2PN ) 2,联合图形 , 由勾股定理转变为 22, PN ,即 ( PM ) =2( PO 1 -1=2( PO 2 -1) 设 P ( x , y ), 由距离公式写出代数关系式,化简整理可得解: 如图 , 以直线 O 1O 2 为 x 轴,线段 O 1O 2 的垂直均分线为 y 轴,成立平面直角坐标系,则两圆 心的坐标分别为 O (-2,0), O (2,0).1 2设 P ( x , y ) ,则2同理 , PN =( x -2)PM 22222-1.=PO 1 - MO 1=( x +2) +y 2+y 2-∵PM = 2 PN ,即 ( x +2) 2+y 2-1=2 [ ( x -2) 2+y 2-1 ],即 x 2-12 x +y 2+3=0,即 ( x -6) 2+y 2=33.这就是动点 P 的轨迹方程评论 : 这道高考题是考察分析几何中求点的轨迹方程的方法应用,考察成立坐标系、数形联合思想、勾股定理、两点间距离公式等有关知识点,及剖析推理、计算化简技术、技巧等,是一道很综合的题目 .1【例 3】 (1) 在同一平面直角坐标系中, 求以下方程所对应的图形经过伸缩变换x2 x,后y 4y的图形 .① y 2=2 ; ② y =3sin2x .x(2) 将曲线 C 按伸缩变换公式x2x,变换后的曲线方程为 x '2+y '2=1, 则曲线 C 的方程为y3y(A. x 2 y 2 149B. x 2y 2 1 94C.4 x 2+9y 2=36D.4 x 2+9y 2=1x 1x,x 2x , 解: (1) 由伸缩变换2得(*)y4 y, y1y .4①将 (*) 代入 y 2=2x , 得 ( 1y ' ) 2=2·(2 x ' ).4∴ y ' 2=64x '.∴经过伸缩变换后抛物线y 2=2x 变为了抛物线 y ' 2=64x ' .②将 (*) 代入 y =3sin2 x , 得 1y '=3sin2 ·(2x '∴y ' =12sin4 x ' .4∴经过伸缩变换后 , 曲线 y =3sin2 x 变为了曲线 y ' =12sin4 x '(2) 将x2x,代入方程x '2+ '2=1, 得 4 2+9 2y3 yyxy应选 D.【例 4】 在同一平面直角坐标系中,将直线 x -2 y =2 变为直线 2x '- y '=4,求知足图象变换的伸缩变换 .x x,0,代入方程 2x ' - y ' =4, 得 2λ x - μ y =4, 与 x -2 y =2 比较系数得解: 设变换为y,y0.λ=1, μ =4.x x,y =2 上全部点的横坐标不变 , 纵坐标伸长为本来的4 倍可获得直线∴即直线 x -2y4y,2 ' -y 'x评论 : (1) 求知足图象变换的伸缩变换, 其实是让我们求出其变换公式,我们将新旧坐标分清,代入对应的直线方程,而后比较系数便可得了.(2) 原 曲 线 的 方 程f( x , y )=0, 新 曲 线 的 方 程 g( x ' , y ' )=0, 以 及 坐 标伸 缩 变 换 公 式x x, 0,yy,中, “知二可求一”.【例 5】 已知 f 1( x )=cos x , f 2( x )=cos ω x ( ω>0), f 2( x ) 的图象能够看作是把 f 1( x ) 的图象在其所在的坐标系中的横坐标压缩到本来的 1倍(纵坐标不变)而获得的,则ω 为 (31 A.2B.2C.31D.3分析一 : f1( x)=cos x→f2( x)=cos3 x分析二 : x1x, x 3x ,3y y . y y,将其代入 y=cos x,获得 y'=cos3x',即 f 2( x)=cos3 x.答案:C评论 : 此题直接考察变换规律:函数y=cosωx, x∈R(此中ω>0,ω≠1)的图象,能够看作把余弦曲线上全部点的横坐标缩短(当ω >1 时)或伸长(当 0<ω <1 时)到本来的1倍(纵坐标不变)而获得. 应用时提防犯错.。

2017-2018学年北师大版高中数学选修4-4全册同步配套教学案

2017-2018学年北师大版高中数学选修4-4全册同步配套教学案

2017-2018学年高中数学北师大版选修4-4全册同步配套教学案目录第一章§1 平面直角坐标系第一章§2 2.1、2.2 极坐标系的概念点的极坐标与直角坐标的互化第一章§2 2.3 直线和圆的极坐标方程第一章§2 2.4、2.5曲线的极坐标方程与直角坐标方程的互化圆锥曲线统一的极坐标方程第一章§3 柱坐标系和球坐标系第一章章末复习课第二章§1 参数方程的概念第二章§2 2.1 直线的参数方程第二章§2 2.2、2.3、2.4 圆的参数方程椭圆的参数方程双曲线的参数方程第二章§3 参数方程化成普通方程第二章§4 平摆线和渐开线第二章章末复习课§1平面直角坐标系[对应学生用书P1][自主学习]1.平面直角坐标系与曲线方程(1)平面直角坐标系中点和有序实数对的关系:在平面直角坐标系中,点和有序实数对是一一对应的. (2)平面直角坐标系中曲线与方程的关系:曲线可看作是满足某些条件的点的集合或轨迹,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:①曲线C 上的点的坐标都是方程f (x ,y )=0的解; ②以方程f (x ,y )=0的解为坐标的点都在曲线C 上.那么,方程f (x ,y )=0叫作曲线C 的方程,曲线C 叫作方程f (x ,y )=0的曲线. (3)一些常见曲线的方程: ①直线的方程:ax +by +c =0;②圆的方程:圆心为(a ,b ),半径为r 的圆的方程为(x -a )2+(y -b )2=r 2;③椭圆的方程:中心在原点,焦点在x 轴上,长轴长为2a ,短轴长为2b 的椭圆方程为x 2a 2+y 2b 2=1;④双曲线的方程:中心在原点,焦点在x 轴上,实轴长为2a ,虚轴长为2b 的双曲线方程为x 2a 2-y 2b 2=1;⑤抛物线的方程:顶点在原点,以x 轴为对称轴,开口向右,焦点到顶点距离为p2的抛物线方程为y 2=2px .2.平面直角坐标系中的伸缩变换1.如何根据题设条件建立适当的平面直角坐标系? 提示:①如果图形有对称中心,选对称中心为坐标原点; ②如果图形有对称轴,选对称轴为坐标轴; ③使图形上的特殊点尽可能多的在坐标轴上;④如果是圆锥曲线,所建立的平面直角坐标系应使曲线方程为标准方程. 2.平面直角坐标系中的伸缩变换可以改变图形的形状,那平移变换呢? 提示:平移变换仅改变图形的位置,不改变它的形状、大小.[对应学生用书P1]的距离之和为12,求椭圆G 的方程.(2)在边长为2的正△ABC 中,若P 为△ABC 内一点,且|P A |2=|PB |2+|PC |2,求点P 的轨迹方程,并画出方程所表示的曲线.[思路点拨] 本题是曲线方程的确定与应用问题,考查建立平面直角坐标系、数形结合思想、曲线方程的求法及分析推理、计算化简技能、技巧等.解答此题中(1)需要根据已知条件用待定系数法求解;(2)需要先建立平面直角坐标系,写出各点的坐标,用直接法求解,再根据方程判定曲线类型画出其表示的曲线.[精解详析] (1)由已知设椭圆方程为 x 2a 2+y 2b 2=1(a >b >0), 则2a =12,知a =6.又离心率e =c a =32,故c =3 3.∴b 2=a 2-c 2=36-27=9. ∴椭圆的标准方程为x 236+y 29=1.(2)以BC 所在直线为x 轴,BC 的中点为原点,BC 的中垂线为y 轴建立平面直角坐标系,设P (x ,y )是轨迹上任意一点,又|BC |=2,∴B (-1,0),C (1,0),则A (0,3);∵|P A |2=|PB |2+|PC |2,∴x 2+(y -3)2=(x +1)2+y 2+(x -1)2+y 2. 化简得x 2+(y +3)2=4. 又∵P 在△ABC 内,∴y >0.∴P 点的轨迹方程为x 2+(y +3)2=4(y >0).其曲线如上图所示为以(0,-3)为圆心,半径为2的圆在x 轴上半部分圆孤.1.求曲线方程的方法:(1)已知曲线类型求方程一般用待定系数法; (2)求动点轨迹方程常用的方法有:①直接法:如果题目中的条件有明显的等量关系或者可以推出某个等量关系,即可直接求曲线的方程,步骤如下:a .建立适当的平面直角坐标系,并用(x ,y )表示曲线上任意一点M 的坐标;b .写出适合条件P 的点M 的集合P ={M |P (M )};c .用坐标表示条件P (M ),写出方程f (x ,y )=0;d .化简方程f (x ,y )=0;e .检验或证明d 中以方程的解为坐标的点都在曲线上,若方程的变形过程是等价的,则e 可以省略. ②定义法:如果动点的轨迹满足某种已知曲线的定义,则可依定义写出轨迹方程.③代入法(相关点法):如果动点P (x ,y )依赖于另一动点Q (x 1,y 1),而Q (x 1,y 1)又在某已知曲线上,则可先列出关于x ,y ,x 1,y 1的方程组,利用x ,y 表示x 1,y 1,把x 1,y 1代入已知曲线方程即为所求.④参数法:动点P (x ,y )的横坐标、纵坐标用一个或几个参数来表示,消去参数即得其轨迹方程. 2.根据曲线的方程画曲线时,关键根据方程判定曲线的类型,是我们熟知的哪种曲线,但要注意是曲线的全部还是局部.1.在△ABC 中,底边BC =12,其他两边AB 和AC 上中线CE 和BD 的和为30,建立适当的坐标系,求此三角形重心G 的轨迹方程.解:以BC 所在直线为x 轴,BC 边中点为原点,过原点且与BC 垂直的直线为y 轴建立平面直角坐标系,则B (6,0),C (-6,0),|BD |+|CE |=30, 可知|GB |+|GC |=23(|BD |+|CE |)=20,∴重心G 的轨迹是以(-6,0),(6,0)为焦点,2a =20的椭圆,且y ≠0,其轨迹方程为:x 2100+y 264=1(x ≠±10).[例2] 如图,以Rt △ABC 的两条直角边AB ,和正方形BCFG ,连接EC ,AF ,且EC ,AF 交于点M ,连接BM .求证:BM ⊥AC .[思路点拨] 本题考查坐标法在解决平面几何中垂直、平行、线段相等、平分等问题中的应用,解答此题需要先建立适当的平面直角坐标系,设出相关点的坐标,求出相关线的方程,求出k BM ,k AC ,证明k BM ·k AC =-1,即可.形BCFG 的边长分别为a ,b ,则A (0,a ),B (0,0),C (b,0),E (-a ,a ),F (b ,-b ).直线AF :y +b a +b =x -b0-b ,即(a +b )x +by -ab =0; 直线EC :y -0a -0=x -b-a -b ,即ax +(a +b )y -ab =0.解方程组⎩⎪⎨⎪⎧(a +b )x +by -ab =0,ax +(a +b )y -ab =0,得⎩⎨⎧x =a 2ba 2+ab +b 2,y =ab2a 2+ab +b 2.即M 点的坐标为⎝⎛⎭⎫a 2b a 2+ab +b 2,ab2a 2+ab +b 2.故k BM =b a .又k AC =0-a b -0=-ab ,∴k BM ·k AC =-1, ∴BM ⊥AC .坐标法解决几何问题的“三部曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步,通过代数运算解决代数问题;第三步,把代数运算结果翻译成几何结论.2.已知正△ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值. 解:以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,则A ⎝⎛⎭⎫0,32a ,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a 2,0. 设P (x ,y ), 则|P A |2+|PB |2+|PC |2 =x 2+⎝⎛⎭⎫y -32a 2+⎝⎛⎭⎫x +a 22+y 2+⎝⎛⎭⎫x -a 22+y 2=3x 2+3y 2-3ay +5a 24=3x 2+3⎝⎛⎭⎫y -36a 2+a 2≥a 2, 当且仅当x =0,y =36a 时,等号成立, ∴所求最小值为a 2,此时P 点坐标为P ⎝⎛⎭⎫0,36a ,它是正△ABC 的中心.[例3] 在下列平面直角坐标系中,分别作出x 25+y 9=1的图形.(1)x 轴与y 轴具有相同的单位长度;(2)x 轴上的单位长度为y 轴上单位长度的2倍; (3)x 轴上的单位长度为y 轴上单位长度的12倍.[思路点拨] 本题考查平面直角坐标系中的伸缩变换对图形的影响及数形结合思想,解决此题只需根据坐标轴的伸缩变换找出变换后x 轴、y 轴单位长度的变化情况,再作出图形即可.[精解详析] (1)建立平面直角坐标系使x 轴与y 轴具有相同的单位长度,则x 225+y 29=1的图形如图①.(2)如果x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的12,则x 225+y 29=1的图形如图②.(3)如果y 轴上的单位长度不变,x 轴上的单位长度缩小为原来的12,则x 225+y 29=1的图形如图③.一般地,在平面直角坐标系xOy 中:(1)使x 轴上的单位长度为y 轴上单位长度的k 倍(k >0),则当k =1时,x 轴与y 轴具有相同的单位长度;即为⎩⎪⎨⎪⎧x ′=x ,y ′=y 的伸缩变换,当k >1时,相当于x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的1k ,即为⎩⎪⎨⎪⎧x ′=x ,y ′=1k y 的伸缩变换,当0<k <1时,相当于y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的k 倍,即为⎩⎪⎨⎪⎧x ′=kx ,y ′=y 的伸缩变换.(2)在平面经过伸缩变换,直线伸缩后仍为直线;圆伸缩后可能是圆或椭圆;椭圆伸缩后可能是椭圆或圆;双曲线伸缩后仍为双曲线;抛物线伸缩后仍为抛物线.本例中若x 轴的单位长度为y 轴上单位长度的35,则椭圆x 225+y 29=1的图形如何?解:如果y 轴上的单位长度不变,x 轴的单位长度缩小为原来的35,即⎩⎪⎨⎪⎧x ′=35x ,y ′=y ,则x 225+y 29=1的图形变为圆.本课时主要考查平面直角坐标系中曲线的求解,常与平面几何知识结合.[考题印证]满足BQ=设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q λQA ,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM =λMP ,求点P 的轨迹方程.[命题立意] 本题考查直线和抛物线的方程、平面向量的概念、性质与运算、动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力,全面考核综合数学素养.[自主尝试] 由QM =λMP知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2), 则x 2-y 0=λ(y -x 2),即 y 0=(1+λ)x 2-λy .①再设B (x 1,y 1),由BQ =λQA, 即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0,得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③ 又点B 在抛物线y =x 2上,所以y 1=x 21, 再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2, (1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2, 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0.因λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1.[对应学生用书P4]一、选择题1.方程x 2+xy =0的曲线是( ) A .一个点 B .一条直线C .两条直线D .一个点和一条直线解析:选C 方程变形为x (x +y )=0,∴x =0或x +y =0,而方程x =0,x +y =0表示的是直线,∴C 正确.2.已知△ABC 的底边BC 长为12,且底边固定,顶点A 是动点,且sin B -sin C =12sin A ,若以底边BC 为x 轴、底边BC 的中点为原点建立平面直角坐标系,则点A 的轨迹方程是( )A.x 29-y 227=1 B.x 29-y 227=1(x <-3) C.x 227-y 29=1 D.x 227-y 29=1(x <-3) 解析:选B 由题意知,B (-6,0),C (6,0) 由sin B -sin C =12sin A 得b -c =12a =6,即|AC |-|AB |=6.所以点A 的轨迹是以B (-6,0),C (6,0)为焦点,2a =6的双曲线的左支且y ≠0.其方程为 x 29-y 227=1(x <-3). 3.已知一椭圆的方程为x 216+y 24=1,如果x 轴上的单位长度为y 轴上单位长度的12,则该椭圆的形状为( )解析:选B 如果y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的12,则该椭圆的形状为选项B 中所示.4.平面内有一条固定线段AB ,|AB |=4,动点P 满足|P A |-|PB |=3,O 为AB 的中点,则|OP |的最小值是( )A.32B.12 C .2D .3解析:选A 以AB 的中点O 为原点,AB 所在直线为x 轴建立平面直角坐标系,∴a =32.如图,则点P 的轨迹是以A ,B 为焦点的双曲线的一部分.2c =4,c =2,2a =3,∴b 2=c 2-a 2=4-94=74.∴点P 的轨迹方程为x 294-y 274=1(x ≥32).由图可知,点P 为双曲线与x 轴的右交点时,|OP |最小,|OP |的最小值是32.二、填空题5.已知点A (-2,0),B (-3,0),动点P (x ,y )满足PA ·PB=x 2+1,则点P 的轨迹方程是________. 解析:由题意得PA =(-2-x ,-y ),PB=(-3-x ,-y ). ∴PA ·PB=(-2-x )(-3-x )+(-y )2=x 2+1. 即y 2+5x +5=0. 答案:y 2+5x +5=06.在平面直角坐标系中,O 为原点,已知两点A (4,1),B (-1,3),若点C 满足OC =m OA +n OB,其中m ,n ∈[0,1],且m +n =1,则点C 的轨迹方程为________.解析:由题意知,A ,B ,C 三点共线且C 在线段AB 上,点A ,B 所在的直线方程为2x +5y -13=0,且点C 的轨迹为线段AB ,所以,点C 的轨迹方程为2x +5y -13=0,x ∈[-1,4].答案:2x +5y -13=0(-1≤x ≤4)7.在平面直角坐标系中,设点P (x ,y ),定义|OP |=|x |+|y |,其中O 为坐标原点,对以下结论: ①符合|OP |=1的点P 的轨迹围成图形面积为2;②设P 为直线5x +2y -2=0上任意一点,则|OP |的最小值为1;③设P 为直线y =kx +b (k ,b ∈R )上任意一点,则“使|OP |最小的点P 有无数个”的必要不充分条件是“k =±1”.其中正确的结论有________.(填序号) 解析:在①中,由于|OP |=1 ⇔⎩⎪⎨⎪⎧y =-x +1,0≤x ≤1,y =-x -1,-1≤x ≤0,y =x +1,-1≤x ≤0,y =x -1,0≤x ≤1,其图像如图故其面积为2×⎝⎛⎭⎫12×2×1=2. 故①正确. 在②中,当P ⎝⎛⎭⎫255,0时,|OP |=|x |+|y |=255<1, ∴|OP |的最小值不为1,故②错误. 在③中,∵|x |+|y |≥|x +y |=|(k +1)x +b |, 当k =-1时,|x |+|y |≥|b |满足题意, 即|x |+|y |≥|x -y |=|(k -1)x -b |,当k =1时,|x |+|y |≥|b |满足题意,故③正确. 答案:①③8.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________.解析:因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,而a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以|PF 1||PF 2|=a 2对应的轨迹关于原点对称,即②正确;因为S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2≤12|PF 1||PF 2|=12a2,即面积不大于12a 2,所以③正确.答案:②③ 三、解答题9.如图所示,△ABC 中,角A ,B ,C 所对三边分别为a ,b ,c ,且B (-1,0),C (1,0).(1)求满足b >a >c ,b ,a ,c 成等差数列时,顶点A 的轨迹方程. (2)在x 轴上的单位长度为y 轴上单位长度的12倍的平面直角坐标系中作出(1)中轨迹.解:(1)∵b ,a ,c 成等差数列, ∴b +c =2a =2×2=4.即|AB |+|AC |=4>|BC |=2符合椭圆定义条件. 动点A (x ,y )的轨迹是椭圆,且⎩⎪⎨⎪⎧ 2a =4,2c =2,∴⎩⎪⎨⎪⎧a =2,c =1,∴A 点的轨迹方程是x 24+y 23=1.由于b >c ,即|AC |>|AB |,可知A 点轨迹是椭圆左半部分,还必须除去点(0,-3),(0,3). ∵A ,B ,C 构成三角形,∴必须除去点(-2,0). ∴所求轨迹方程为x 24+y 23=1 (-2<x <0).(2)如果y 轴上的单位长度不变,x 轴上的单位长度缩小为原来的12,x 24+y 23=1(-2<x <0)的图形为图示.10.我海军某部发现,一艘敌舰从离小岛O 正东方向80 n mile 的B 处,沿东西方向向O 岛驶来,指挥部立即命令在岛屿O 正北方向40 n mile 的A 处的我军舰沿直线前往拦截,以东西方向为x 轴,南北方向为y 轴,岛屿O 为原点,建立平面直角坐标系并标出A ,B 两点,若敌我两舰行驶的速度相同,在上述坐标系中标出我军舰最快拦住敌舰的位置,并求出该点的坐标.解:A ,B 两点如图所示,A (0,40),B (80,0),∴OA =40(n mile),OB =80(n mile). 我军舰直行到点C 与敌舰相遇, 设C (x,0),∴OC =x ,BC =OB -OC =80-x . ∵敌我两舰速度相同, ∴AC =BC =80-x .在Rt △AOC 中,OA 2+OC 2=AC 2, 即402+x 2=(80-x )2,解得x =30. ∴点C 的坐标为(30,0).11.如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左、右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.解:(1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a (x +a ),①直线A 2B 的方程为y =-y 1x 1-a (x -a ).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③ 由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝⎛⎭⎫1-x 21a 2,代入③得x 2a 2-y 2b2=1(x <-a ,y <0).(2)设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以 b 2x 21⎝⎛⎭⎫1-x 21a 2=b 2x 22⎝⎛⎭⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2.从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.§2极_坐_标_系2.1&2.2 极坐标系的概念 点的极坐标与直角坐标的互化[对应学生用书P5][自主学习]1.极坐标系的概念 (1)极坐标系:在平面内取一个定点O ,叫作极点,自极点O 引一条射线Ox ,叫作极轴;选定一个单位长度和角的正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)点的极坐标:对于平面上任意一点M ,用ρ表示线段OM 的长,用θ表示以Ox 为始边,OM 为终边的角度,ρ叫作点M 的极径,θ叫作点M 的极角,有序实数对(ρ,θ)就叫作点M 的极坐标,记作M (ρ,θ).①特别地,当点M 在极点时,它的极径ρ=0,极角θ可以取任意值;②点与极坐标的关系:平面内一点的极坐标可以有无数对,当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点,如果规定ρ>0,0≤θ<2π或者-π<θ≤π,那么除极点外,平面内的点和极坐标就一一对应了.2.点的极坐标与直角坐标的互化 (1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合; ③两种坐标系取相同的长度单位. (2)极坐标与直角坐标的互化:①将点M 的极坐标(ρ,θ)化为直角坐标(x ,y )的关系式为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ.②将点的直角坐标(x [合作探究],y )化为极坐标(ρ,θ)的关系式为⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).1.极坐标系与平面直角坐标系有什么区别和联系?提示:区别:平面直角坐标系以互相垂直的两条数轴为几何背景,而极坐标以角和距离为背景. 联系:二者都是平面坐标系,用来研究平面内点与距离等有关问题.2.点M (ρ,θ)关于极轴、极点以及过极点且垂直于极轴的直线的对称点的坐标各为什么? 提示:(ρ,2π-θ),(ρ,π+θ),(ρ,π-θ).3.把直角坐标转化为极坐标时,表示方法唯一吗? 提示:通常有不同的表示法.(极角相差2π的整数倍)[对应学生用书P6][例1] 在极坐标系中,画出点A ⎝⎭⎫1,π4,B ⎝⎭⎫2,3π2,C ⎝⎭⎫3,-π4,D ⎝⎭⎫4,9π4. [思路点拨] 本题考查极坐标系以及极坐标的概念,同时考查数形结合思想,解答此题需要先建立极坐标系,再作出极角的终边,然后以极点O 为圆心,极径为半径分别画弧,从而得到点的位置.[精解详析] 在极坐标系中先作出π4线,再在π4线上截取|OA |=1,这样可得到点A ⎝⎛⎭⎫1,π4.同样可作出点B ⎝⎛⎭⎫2,3π2,C ⎝⎛⎭⎫3,-π4,D ⎝⎛⎭⎫4,9π4,如图所示.由极坐标确定点的位置的步骤 (1)取定极点O ;(2)作方向为水平向右的射线Ox 为极轴;(3)以极点O 为顶点,以极轴Ox 为始边,通常按逆时针方向旋转极轴Ox 确定出极角的终边; (4)以极点O 为圆心,以极径为半径画弧,弧与极角终边的交点即是所求点的位置.1.在极坐标系中,作出以下各点:A (4,0),B ⎝⎛⎭⎫3,π4,C ⎝⎛⎭⎫2,π2,D ⎝⎛⎭⎫3,7π4;结合图形判断点B ,D 的位置是否具有对称性;并求出B ,D 关于极点的对称点的极坐标.(限定ρ≥0,θ∈[0,2π))解:如图,A ,B ,C ,D 四个点分别是唯一确定的.由图形知B ,D 两点关于极轴对称,且B ,D 关于极点的对称点的极坐标分别为⎝⎛⎭⎫3,5π4,⎝⎛⎭⎫3,3π4.[例2] 已知A ⎝⎭⎫3,-π3,B ⎝⎭⎫1,2π3,将A ,B 坐标化为直角坐标,并求A ,B 两点间的距离. [思路点拨] 本题考查如何将极坐标化为直角坐标,解答此题需要利用互化公式先将极坐标化为直角坐标,再由两点间的距离公式得结果.[精解详析] 将A ⎝⎛⎭⎫3,-π3,B ⎝⎛⎭⎫1,2π3由极坐标化为直角坐标, 对于点A ,有x =3cos ⎝⎛⎭⎫-π3=32, y =3sin ⎝⎛⎭⎫-π3=-332,∴A ⎝⎛⎭⎫32,-332. 对于点B ,有x =1×cos 2π3=-12,y =1×sin 2π3=32,∴B (-12,32).∴|AB |=⎝⎛⎭⎫32+122+⎝⎛⎭⎫-332-322 =4+12=4.1.将极坐标M (ρ,θ)化为直角坐标(x ,y ),只需根据公式:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ即可得到;2.利用两种坐标的互化,可以把不熟悉的极坐标问题转化为熟悉的直角坐标问题求解.本例中如何由极坐标直接求A ,B 两点间的距离? 解:根据M (ρ1,θ1),N (ρ2,θ2),则由余弦定理得:|MN |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2),所以|AB |=32+12-2×3×1×cos ⎣⎡⎦⎤2π3-⎝⎛⎭⎫-π3=4.[例3] 分别将下列点的直角坐标化为极坐标(ρ>0,(1)(-1,1),(2)(-3,-1).[思路点拨] 本题考查如何将直角坐标化为极坐标,同时考查三角函数中由值求角问题,解答此题利用互化公式即可,但要注意点所在象限.[精解详析] (1)∵ρ=(-1)2+12=2,tan θ=-1,θ∈[0,2π), 又点(-1,1)在第二象限,∴θ=3π4.∴直角坐标(-1,1)化为极坐标为⎝⎛⎭⎫2,3π4. (2)ρ=(-3)2+(-1)2=2, tan θ=-1-3=33,θ∈[0,2π),∵点(-3,-1)在第三象限, ∴θ=76π.∴直角坐标(-3,-1)化为极坐标为⎝⎛⎭⎫2,7π6.将点的直角坐标(x ,y )化为极坐标(ρ,θ)时,运用公式⎩⎪⎨⎪⎧ρ=x 2+y 2,tan θ=yx (x ≠0)即可,在[0,2π)范围内,由tan θ=yx (x ≠0)求θ时,要根据直角坐标的符号特征,判断出点所在象限,如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π,k ∈Z 即可.2.将下列各点由直角坐标化为极径ρ是正值,极角在0到2π之间的极坐标. (1)(3,3);(2)(-2,-23).解:(1)ρ=32+(3)2=23,tan θ=y x =33,又点(3,3)在第一象限,所以θ=π6.所以点(3,3)的极坐标为23,π6.(2)ρ=(-2)2+(-23)2=4, tan θ=y x =-23-2=3,又点(-2,-23)在第三象限,所以θ=4π3.所以点(-2,-23)的极坐标为⎝⎛⎭⎫4,4π3.本课时常考查极坐标的确定及点的直角坐标与极坐标的互化,特别是直角坐标化为极坐标常与三角知识交汇命题,更成为命题专家的新宠.点P 的直角坐标为(1,-3),则点P 的极坐标为( ) A.⎝⎛⎭⎫2,π3 B.⎝⎛⎭⎫2,4π3 C.⎝⎛⎭⎫2,-π3 D.⎝⎛⎭⎫2,-4π3 [命题立意] 本题主要考查点的极坐标与直角坐标 的互化,同时还考查了三角知识及运算解题能力. [自主尝试]ρ=12+(-3)2=2,tan θ=-31=-3,又点(1,-3)在第四象限,所以OP 与x 轴所成的角为5π3,故点P 的一个极坐标为⎝⎛⎭⎫2,5π3,排除A ,B 选项.又-43π+2π=23π,所以极坐标⎝⎛⎭⎫2,-4π3所表示的点在第二象限,故D 不正确,而-π3+2π=53π. [答案] C[对应学生用书P8]一、选择题1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( ) A.⎝⎛⎭⎫2,π4 B.⎝⎛⎭⎫2,3π4 C.⎝⎛⎭⎫2,5π4 D.⎝⎛⎭⎫2,7π4 解析:选B ρ=(-2)2+(2)2=2, tan θ=2-2=-1,∵点P 在第二象限, ∴最小正角θ=3π4.2.在极坐标系中与点A ⎝⎛⎭⎫3,-π3关于极轴所在的直线对称的点的极坐标是( ) A.⎝⎛⎭⎫3,2π3 B.⎝⎛⎭⎫3,π3 C.⎝⎛⎭⎫3,4π3 D.⎝⎛⎭⎫3,5π6 解析:选B 与点A ⎝⎛⎭⎫3,-π3关于极轴所在直线的对称的点的极坐标可以表示为⎝⎛⎭⎫3,2k π+π3(k ∈Z ),这时只有选项B 满足条件.3.在极坐标系中,若等边△ABC 的两个顶点是A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,5π4,那么可能是顶点C 的坐标的是( )A.⎝⎛⎭⎫4,3π4B.⎝⎛⎭⎫23,3π4 C.()23,πD.()3,π解析:选B 如图,由题设,可知A ,B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形,∴|OC |=23,∠AOC =π2,点C 的极角θ=π4+π2=3π4或5π4+π2=7π4,即点C 的极坐标为⎝⎛⎭⎫23,3π4或⎝⎛⎭⎫23,7π4. 4.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点(ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称.二、填空题5.将极轴Ox 绕极点顺时针方向旋转π6得到射线OP ,在OP 上取点M ,使|OM |=2,则ρ>0,θ∈[0,2π)时点M 的极坐标为________,它关于极轴的对称点的极坐标为________(ρ>0,θ∈[0,2π)).解析:ρ=|OM |=2,与OP 终边相同的角为-π6+2k π(k ∈Z ).∵θ∈[0,2π),∴k =1,θ=11π6.∴M ⎝⎛⎭⎫2,11π6. ∴M 关于极轴的对称点为(2,π6).答案:⎝⎛⎭⎫2,11π6 ⎝⎛⎭⎫2,π6 6.点A ⎝⎛⎭⎫5,π3在条件: (1)ρ>0,θ∈(-2π,0)下的极坐标是________; (2)ρ<0,θ∈(2π,4π)下的极坐标是________.解析:(1)当ρ>0时,点A 的极坐标形式为⎝⎛⎭⎫5,2k π+π3(k ∈Z ), ∵θ∈(-2π,0).令k =-1,点A 的极坐标为⎝⎛⎭⎫5,-5π3,符合题意. (2)当ρ<0时,⎝⎛⎭⎫5,π3的极坐标的一般形式是⎝⎛⎭⎫-5,(2k +1)π+π3(k ∈Z ).∵θ∈(2π,4π),当k =1时,点A 的极坐标为⎝⎛⎭⎫-5,10π3,符合题意. 答案:⎝⎛⎭⎫5,-5π3 (2)⎝⎛⎭⎫-5,10π3 7.直线l 过点A ⎝⎛⎭⎫7,π3,B ⎝⎛⎭⎫7,π6,则直线l 与极轴所在直线的夹角等于________. 解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=7,∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12.所以∠ACO =π-π3-5π12=π4.答案:π48.已知两点的极坐标是A ⎝⎛⎭⎫3,π12,B ⎝⎛⎭⎫-8,π12,则AB 中点的一个极坐标是________. 解析:画出示意图,A ,B 与极点O 共线,∴ρ=12(3-8)=-52,θ=π12. 故AB 中点的一个极坐标为⎝⎛⎭⎫-52,π12. 答案:⎝⎛⎭⎫-52,π12 三、解答题9.设有一颗彗星,围绕地球沿一抛物线轨道运行,地球恰好位于该抛物线的焦点处,当此彗星离地球30万千米时,经过地球和彗星的直线与抛物线对称轴的夹角为30°,试建立适当的极坐标系,写出彗星此时的极坐标.解:如图所示,建立极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列4种情形:①当θ=30°时,ρ=30(万千米); ②当θ=150°时,ρ=30(万千米); ③当θ=210°时,ρ=30(万千米); ④当θ=330°时,ρ=30(万千米).∴彗星此时的极坐标有4种情形:(30,30°),(30,150°),(30,210°),(30,330°). 10.在极坐标系中,点A 和点B 的极坐标分别为⎝⎛⎭⎫2,π3和(3,0),O 为极点. (1)求|AB |;(2)求S △AOB .解:|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)=22+32-2×2×3×cos ⎝⎛⎭⎫π3-0=4+9-6=7.S △AOB =12|OA |·|OB |·sin ∠AOB=12×2×3×sin ⎝⎛⎭⎫π3-0 =332. 11.在极坐标系中,如果A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标. 解:法一:对于A ⎝⎛⎭⎫2,π4有ρ=2,θ=π4, ∴x =ρcos θ=2cos π4=2,y =ρsin θ=2sin π4= 2.∴A (2,2).对于B ⎝⎛⎭⎫2,5π4有ρ=2,θ=54π. ∴x =2cos 5π4=-2,y =2sin 5π4=- 2.∴B (-2,-2).设C 点的坐标为(x ,y ),由于△ABC 为等边三角形,故有|AB |=|BC |=|AC |. ∴有(x +2)2+(y +2)2=(x -2)2+(y -2)2 =(2+2)2+(2+2)2.∴有⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解之得⎩⎨⎧ x =6,y =-6,或⎩⎨⎧x =-6,y = 6.∴C 点的坐标为(6,-6)或(-6,6).∴θ=7π4或θ=3π4.∴点C 的极坐标为⎝⎛⎭⎫23,7π4或⎝⎛⎭⎫23,3π4. 法二:设C 点的极坐标为(ρ,θ)(0≤θ<2π,ρ>0). 则有|AB |=|BC |=|AC |.∴⎩⎨⎧ρ2+22-2×2ρcos ⎝⎛⎭⎫θ-π4=22+22-2×2×2cos π,ρ2+22-2×2ρ cos ⎝⎛⎭⎫θ-5π4=22+22-2×22cos π.解之得⎩⎪⎨⎪⎧ ρ=23,θ=3π4或⎩⎪⎨⎪⎧ρ=23,θ=7π4.∴点C 的极坐标为⎝⎛⎭⎫23,3π4,⎝⎛⎭⎫23,7π4.2.3直线和圆的极坐标方程[对应学生用书P9][自主学习]1.曲线的极坐标方程(1)意义:在极坐标系中,如果曲线C上的点与一个二元方程φ(ρ,θ)=0建立了如下的关系:①曲线C上的每个点的极坐标中至少有一组(ρ,θ)满足方程φ(ρ,θ)=0;②极坐标满足方程φ(ρ,θ)=0的点都在曲线C上.那么方程φ(ρ,θ)=0叫作曲线C的极坐标方程,曲线C叫作极坐标方程φ(ρ,θ)=0的曲线.(2)求极坐标方程的步骤:求曲线的极坐标方程通常有以下五个步骤:①建立适当的极坐标系;②在曲线上任取一点M(ρ,θ);③根据曲线上的点所满足的条件写出等式;④用极坐标ρ,θ表示上述等式,并化简得曲线的极坐标方程;⑤证明所得的方程是曲线的极坐标方程.通常第⑤步不必写出,只要对特殊点的坐标加以检验即可.2.常见直线和圆的极坐标方程[合作探究]1.曲线的极坐标方程与直角坐标方程有何异同?提示:由于平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程与直角坐标方程也有不同之处.一条曲线上点的极坐标有多组表示形式,这里要求至少有一组满足极坐标方程.有些表示形式可能不满足方程.例如,对极坐标方程ρ=θ,点M ⎝⎛⎭⎫π4,π4可以表示为⎝⎛⎭⎫π4,π4+2π或⎝⎛⎭⎫π4,π4-2π等多种形式,其中只有⎝⎛⎭⎫π4,π4的形式满足方程,而其他表示形式都不满足方程.2.在极坐标系中,θ=-π4与tan θ=-1表示同一条直线吗?提示:表示同一条直线.3.在极坐标系中,ρ=1或ρ=-1表示同一个圆吗? 提示:表示同一个圆.[对应学生用书P9][例1] 求:(1)过点A ⎝⎭⎫2,π4平行于极轴的直线的极坐标方程. (2)过点A ⎝⎛⎭⎫3,π3且和极轴成3π4角的直线的极坐标方程. [思路点拨] 本例主要考查直线的极坐标方程以及正弦定理等三角、平面几何知识,同时亦考查了数形结合思想,解答此题需要先设待求直线上任一点M (ρ,θ),寻找到ρ,θ满足的几何等式,建立关于ρ,θ的方程,再化简即可.[精解详析] (1)法一:如图在直线l 上任取一点M (ρ,θ),在△OAM 中|OA |=2,|OM |=ρ, ∠OAM =π-π4⎝⎛⎭⎫或π4, ∠OMA =θ(或π-θ). 在△OAM 中,由正弦定理得2sin θ=ρsin π4, ∴ρsin θ= 2.点A ⎝⎛⎭⎫2,π4也满足上述方程. 因此过点A ⎝⎛⎭⎫2,π4平行于极轴的直线的极坐标方程为ρsin θ= 2. 法二:如图,在直线l 上任取一点M (ρ,θ),过M 作MH ⊥极轴于H 点.∵A 点坐标为⎝⎛⎭⎫2,π4, ∴|MH |=2·sin π4= 2.在直角三角形MHO 中,点A ⎝⎛⎭⎫2,π4也满足此方程. ∴过点A ⎝⎛⎭⎫2,π4平行于极轴的直线的极坐标方程为ρsin θ= 2. (2)如图,设M (ρ,θ)为直线l 上一点.已知A ⎝⎛⎭⎫3,π3,故|OA |=3. ∠AOB =π3,又已知∠MBx =3π4,∴∠OAB =3π4-π3=5π12.又∠OMA =π-⎝⎛⎭⎫3π4-θ=π4+θ,在△MOA 中,根据正弦定理得3sin ⎝⎛⎭⎫π4+θ=ρsin 5π12,又sin 5π12=sin 7π12=sin ⎝⎛⎭⎫π4+π3=6+24, 将sin ⎝⎛⎭⎫π4+θ展开化简代入可得 ρ(sin θ+cos θ)=332+32,又点A ⎝⎛⎭⎫3,π3也满足上述方程, 所以过点A ⎝⎛⎭⎫3,π3且和极轴成3π4角的直线的极坐标方程为:ρ(sin θ+cos θ)=332+32.在极坐标系中,求直线的极坐标方程的一般思路:在直线上设M (ρ,θ)为任意一点,连接OM ;构造出含OM 的三角形,再利用正弦定理求OM ,即把OM 用θ表示,即为直线的极坐标方程.若将本例(2)中点A 变为(2,0),3π4变为π6,则直线的极坐标方程如何?解:设M (ρ,θ)为直线上除A 点以外的任意一点, 连接OM ,则在△AOM 中,∠AOM =θ,∠AMO =π6-θ,∠OAM =π-π6,OM =ρ,由正弦定理可得|OA |sin ⎝⎛⎭⎫π6-θ=|OM |sin ⎝⎛⎭⎫π-π6.∴ρsin ⎝⎛⎭⎫π-π6=2sin ⎝⎛⎭⎫π6-θ. ∴ρ=1sin ⎝⎛⎭⎫π6-θ.∴ρsin π6cos θ-ρcos π6sin θ=1.化简得:ρcos θ-3ρsin θ=2. 经检验点(2,0)的坐标适合上述方程, 所以满足条件的直线的极坐标方程为 ρ(cos θ-3sin θ)=2,其中,0≤θ<π6(ρ≥0)和7π6≤θ<2π(ρ≥0).[例2] 求圆心在A ⎝⎛⎭⎫2,3π2处并且过极点的圆的极坐标方程,并判断点⎝⎭⎫-2,sin 5π6是否在这个圆上. [思路点拨] 本题考查圆的极坐标方程及解三角形的知识,解答此题需要先设圆上任意一点M (ρ,θ),建立等式转化为ρ,θ的方程,化简即可.[精解详析] 由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连接AM ,则OM ⊥MA ,在Rt △OAM中,|OM |=|OA |cos ∠AOM ,即ρ=2r cos ⎝⎛⎭⎫3π2-θ,∴ρ=-4sin θ.经验证,点O (0,0),A ⎝⎛⎭⎫4,3π2的坐标满足上式.所以满足条件的圆的极坐标方程为ρ=-4sin θ. ∵sin5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2, ∴点⎝⎛⎭⎫-2,sin 5π6在此圆上.在极坐标系中,求圆的极坐标方程的一般思路:在圆上设M (ρ,θ)为任意一点,连接OM ,构造出含OM 的三角形,再利用解直角三角形或解斜三角形的正弦、余弦定理求OM ,即把OM 用θ表示,从而得到圆的极坐标方程.1.求半径为1,圆心在点C ⎝⎛⎭⎫3,π4的圆的极坐标方程. 解:设圆C 上的任意一点为M (ρ,θ),且O ,C ,M 三点不共线,不妨设如图所示情况,在△OCM 中,由余弦定理得:。

高中数学选修4-4第一讲坐标系1.1平面直角坐标系

高中数学选修4-4第一讲坐标系1.1平面直角坐标系
2 2
得9x -9y =9 即x -y =1
2
2
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题; (2)掌握平面直角坐标系中的伸缩 变换。
xxz
根据几何特点选择适当的直角坐标系的一些规则: (1)如果图形有对称中心,可以选择对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能地在坐标轴上。
二.平面直角坐标系中的伸缩变换
思考:
(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?


1 x x 2 y y
1
通常把 1 叫做平面直角坐标系中的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到曲 线y=3sinx?写出其坐标变换。 y y=3sinx
y=sinx 2


x
(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出 其坐标变换。 在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。 设点P(x,y)经变换得到点为 p x, y
为平面直角坐标系中的伸缩变换。
注 (1) 0, 0 (2)把图形看成点的运动轨迹,平面图 形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不 变,在同一直角坐标系下进行伸缩变换。
例2:在直角坐标系中,求下列方程所对应的图形经过 伸缩变换 x 2 x
1 x x 2 y 3 y
3
通常把 3 叫做平面直角坐标系中 的一个坐标伸缩变换。
定义:设P(x,y)是平面直角坐标系中任意一点, 在变换 ( 0) x' x : 4 ( 0) y' y 的作用下,点P(x,y)对应 p x, y 称

2017-2018学年高中数学人教A版选修1-1教学案:第一章1.1命题及其关系含答案

2017-2018学年高中数学人教A版选修1-1教学案:第一章1.1命题及其关系含答案

第1课时命题[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P4,回答下列问题.观察教材P2“思考”中的6个语句.(1)这6个语句都是陈述句吗?提示:是.(2)能否判断这6个语句的真假性?提示:能.2.归纳总结,核心必记命题及相关概念命题错误![问题思考](1)“x〉5”是命题吗?提示:不是.(2)陈述句一定是命题吗?提示:不一定.(3)命题“当x=2时,x2-3x+2=0”的条件和结论各是什么?提示:条件:x=2;结论:x2-3x+2=0.(4)“若p则q"形式的命题一定是真命题吗?提示:不一定.(5)数学中的定义、公理、定理、推论是真命题吗?提示:是.[课前反思](1)命题的定义是:;(2)真、假命题的定义是:;(3)命题的条件和结论的定义是:.[思考]一个语句是命题应具备哪两个要素?提示:(1)是陈述句;(2)可以判断真假.讲一讲1.判断下列语句中,哪些是命题?(链接教材P2-例1) (1)函数f(x)=错误!在定义域上是减函数;(2)一个整数不是质数就是合数;(3)3x2-2x〉1;(4)在平面上作一个半径为4的圆;(5)若sin α=cos α,则α=45°;(6)2100是一个大数;(7)垂直于同一个平面的两条直线一定平行吗?(8)若x∈R,则x2+2>0.[尝试解答] (1)是陈述句,且能判断真假,是命题.(2)是陈述句,且能判断真假,是命题.(3)当x∈R时,3x2-2x与1的大小关系不确定,无法判断其真假,不是命题.(4)不是陈述句,不是命题.(5)是陈述句,且能判断真假,是命题.(6)是陈述句,但是“大数"的标准不确定,所以无法判断其真假,不是命题.(7)不是陈述句,不是命题.(8)是陈述句,且能判断真假,是命题.(1)一个语句是命题应具备两个条件:一是陈述句;二是能够判断真假.一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有变量的语句,要注意根据变量的取值范围,看能否判断真假.若能,就是命题;若不能,就不是命题.(3)还有一些语句,目前无法判断真假,但从事物的本质而论,这些语句是可辨别真假的,尤其是科学上的一些猜想等,这类语句也叫做命题.(4)数学中的定义、公理、定理和推论都是命题.练一练1.下列语句中是命题的有________.(填序号)①地球是太阳的一个行星.②甲型H1N1流感是怎样传播的?③若x,y都是无理数,则x+y是无理数.④若直线l不在平面α内,则直线l与平面α平行.⑤60x+9〉4。

人教版高中数学选修4-4课件:第一讲四柱坐标系与球坐标系简介

人教版高中数学选修4-4课件:第一讲四柱坐标系与球坐标系简介

且角 θ 的终边经过点(1,1,0),所以 θ=π4,

所以点 M 的柱坐标为

2,π4,1.
(2)设点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,
z),

因为(ρ,θ,z)=

2,34π,2,
x=ρcos θ, x= 2cos 34π, x=-1,


由公式y=ρsin
tzρa==nzθ=x2xy+(yx2,≠0),及rc=os
x2+y2+z2, φ=zr.
在用三角函数值求角时,要结合图形确定角的取值范 围再求值;若不是特殊角,可以设定角,然后明确其余弦 值或正切值,并标注角的取值范围即可.
[变式训练]如图所示,已知长方体
ABCD-A1B1C1D1 的边长 AB=6 3, AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点,以射线 AB、AD、AA1 分别 为 x 轴、y 轴、z 轴的正半轴,建立空间直 角坐标系,求长方体顶点 C1 的空间直角坐标、柱坐标、 球坐标.
()
A.(2 2,2 2,3)
B.(-2 2,2 2,3)
C.(-2 2,-2 2,3) D.(2 2,-2 2,3)
解析:x=ρcos θ=4cos54π=-2 2, y=ρsin θ=4sin 54π=-2 2,
故其直角坐标为(-2 2,-2 2,3). 答案:C
4.如图所示,正方体 OABC-O1A1B1C1 中,棱长为 1. (1)在柱坐标系中,点 B1 的坐标为 ________________. (2)在球坐标系中,点 C1 的坐标为 ________________.
5.已知点 M 的直角坐标为(1,2,3),球坐标为(r, φ,θ),则 tan φ=________,tan θ=________.

2017-2018学年高中数学人教A版选修4-4创新应用教学案

2017-2018学年高中数学人教A版选修4-4创新应用教学案

[核心必知]1.平面直角坐标系 (1)平面直角坐标系的作用通过直角坐标系,平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法解决几何问题的“三部曲”第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算解决代数问题;第三步:把代数运算结果翻译成几何结论.2.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.[问题思考]1.用坐标法解决几何问题时,坐标系的建立是否是唯一的?提示:对于同一个问题,可建立不同的坐标系解决,但应使图形上的特殊点尽可能多地落在坐标轴,以便使计算更简单、方便.2.伸缩变换中的系数λ,μ有什么特点?在伸缩变换下,平面直角坐标系是否发生变化?提示:伸缩变换中的系数λ>0,μ>0,在伸缩变换下,平面直角坐标系保持不变,只是对点的坐标进行伸缩变换.已知Rt △ABC ,|AB |=2a (a >0),求直角顶点C 的轨迹方程.[精讲详析] 解答此题需要结合几何图形的结构特点,建立适当的平面直角坐标系,然后设出所求动点的坐标,寻找满足几何关系的等式,化简后即可得到所求的轨迹方程.以AB 所在直线为x 轴,AB 的中点为坐标原点,建立如图所示的直角坐标系,则有 A (-a ,0),B (a ,0),设顶点C (x ,y ).法一:由△ABC 是直角三角形可知|AB |2=|AC |2+|BC |2,即(2a )2=(x +a )2+y 2+(x -a )2+y 2,化简得x 2+y 2=a 2.依题意可知,x ≠±a .故所求直角顶点C 的轨迹方程为x 2+y 2=a 2(x ≠±a ).法二:由△ABC 是直角三角形可知AC ⊥BC ,所以k AC ·k BC =-1,则y x +a ·y x -a =-1(x ≠±a ),化简得直角顶点C 的轨迹方程为x 2+y 2=a 2(x ≠±a ).法三:由△ABC 是直角三角形可知|OC |=|OB |,且点C 与点B 不重合,所以x 2+y 2=a (x ≠±a ),化简得直角顶点C 的轨迹方程为x 2+y 2=a 2(x ≠±a ).——————————————————求轨迹方程,其实质就是根据题设条件,把几何关系通过“坐标”转化成代数关系,得到对应的方程.(1)求轨迹方程的一般步骤是:建系→设点→列式→化简→检验.(2)求轨迹方程时注意不要把范围扩大或缩小,也就是要检验轨迹的纯粹性和完备性. (3)由于观察的角度不同,因此探求关系的方法也不同,解题时要善于从多角度思考问题.1.已知线段AB 与CD 互相垂直平分于点O ,|AB |=8,|CD |=4,动点M 满足|MA |·|MB |=|MC |·|MD |,求动点M 的轨迹方程.解:以O 为原点,分别以直线AB ,CD 为x 轴、y 轴建立直角坐标系, 则A (-4,0),B (4,0),C (0,2),D (0,-2).设M (x ,y )为轨迹上任一点,则|MA |=(x +4)2+y 2,|MB |=(x -4)2+y 2, |MC |=x 2+(y -2)2,|MD |=x 2+(y +2)2, ∴由|MA |·|MB |=|MC |·|MD |,可得 [(x +4)2+y 2][(x -4)2+y 2] =[x 2+(y -2)2][x 2+(y +2)2]. 化简,得y 2-x 2+6=0. ∴点M 的轨迹方程为x 2-y 2=6.已知△ABC 中,AB =AC ,BD 、CE 分别为两腰上的高.求证:BD =CE . [精讲详析] 本题考查坐标法在几何中的应用.解答本题可通过建立平面直角坐标系,将几何证明问题转化为代数运算问题.如图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系. 设B (-a ,0),C (a ,0),A (0,h ).则直线AC 的方程为y =-ha x +h ,即:hx +ay -ah =0.直线AB 的方程为y =ha x +h ,即:hx -ay +ah =0.由点到直线的距离公式:|BD |=|2ah |a 2+h 2,|CE |=|2ah |a 2+h 2, ∴|BD |=|CE |, 即BD =CE . ——————————————————(1)建立适当的直角坐标系,将平面几何问题转化为解析几何问题,即“形”转化为“数”,再回到“形”中,此为坐标法的基本思想,务必熟练掌握.(2)建立坐标系时,要充分利用图形的几何特征.例如,中心对称图形,可利用它的对称中心为坐标原点;轴对称图形,可利用它的对称轴为坐标轴;题设中有直角,可考虑以两直角边所在的直线为坐标轴等.2.已知△ABC 中,BD =CD ,求证:AB 2+AC 2=2(AD 2+BD 2). 证明:以A 为坐标原点O ,AB 所在直线为x 轴,建立平面直角坐系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则D (a +b 2,c 2),∴AD 2+BD 2=(a +b )24+c 24+(a -b )24+c 24=12(a 2+b 2+c 2), AB 2+AC 2=a 2+b 2+c 2. ∴AB 2+AC 2=2(AD 2+BD 2).在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧x ′=13x ,y ′=12y后的图形是什么形状?(1)y 2=2x ;(2)x 2+y 2=1.[精讲详析] 本题考查伸缩变换的应用,解答此题需要先根据伸缩变换求出变换后的方程,然后再判断图形的形状.由伸缩变换⎩⎨⎧x ′=13x ,y ′=12y .可知⎩⎪⎨⎪⎧x =3x ′,y =2y ′.(1)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入y 2=2x ,可得4y ′2=6x ′,即y ′2=32x ′.即伸缩变换之后的图形还是抛物线.(2)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入x 2+y 2=1,得(3x ′)2+(2y ′)2=1,即x ′219+y ′214=1, 即伸缩变换之后的图形为焦点在y 轴上的椭圆. ——————————————————利用坐标伸缩变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)求变换后的曲线方程,其实质是从中求出⎩⎨⎧x =1λx ′,y =1μy ′,然后将其代入已知的曲线方程求得关于x ′,y ′的曲线方程.3.将圆锥曲线C 按伸缩变换公式⎩⎪⎨⎪⎧3x ′=x ,2y ′=y 变换后得到双曲线x ′2-y ′2=1,求曲线C 的方程.解:设曲线C 上任意一点P (x ,y ),通过伸缩变换后的对应点为P ′(x ′,y ′),由⎩⎪⎨⎪⎧3x ′=x ,2y ′=y 得⎩⎨⎧x ′=13x ,y ′=12y .代入x ′2-y ′2=1得(x 3)2-(y 2)2=1,即x 29-y 24=1为所求.本课时考点常以解答题(多出现在第(1)小问)的形式考查轨迹方程的求法,湖北高考将圆锥曲线的类型讨论同轨迹方程的求法相结合,以解答题的形式考查,是高考命题的一个新热点.[考题印证](湖北高考改编)设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标.[命题立意] 本题考查圆锥曲线的相关知识以及轨迹方程的求法. [解]如图,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |. ①因为A 点在单位圆上运动,所以x 20+y 20=1. ②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).一、选择题1.y =cos x 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后,曲线方程变为( )A .y ′=3cos x ′2 B .y ′=3cos 2x ′C .y ′=13cos x ′2D .y ′=13cos 2x ′解析:选A 由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 得⎩⎨⎧x =12x ′,y =13y ′.又∵y =cos x ,∴13y ′=cos x ′2,即y ′=3cos x ′2. 2.直线2x +3y =0经伸缩变换后变为x ′+y ′=0,则该伸缩变换为( ) A.⎩⎪⎨⎪⎧x ′=12x ,y ′=3yB.⎩⎪⎨⎪⎧x ′=2x ,y ′=3yC.⎩⎪⎨⎪⎧x ′=2x ,y ′=13y D.⎩⎨⎧x ′=12x ,y ′=13y解析:选B 设变换为⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0)y ′=μ·y ,(μ>0), 将其代入方程x ′+y ′=0,得,λx +μy =0.又∵2x +3y =0,∴λ=2,μ=3.即⎩⎪⎨⎪⎧x ′=2x ,y ′=3y . 3.将一个圆作伸缩变换后所得到的图形不可能是( ) A .椭圆 B .比原来大的圆 C .比原来小的圆 D .双曲线 解析:选D 由伸缩变换的意义可得.4.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B 设P 点的坐标为(x ,y ), ∵|P A |=2|PB |,∴(x +2)2+y 2=4[(x -1)2+y 2]. 即(x -2)2+y 2=4.故P 点的轨迹是以(2,0)为圆心,以2为半径的圆, 它的面积为4π. 二、填空题5.将点P (2,3)变换为点P ′(1,1)的一个伸缩变换公式为________.解析:设伸缩变换为⎩⎪⎨⎪⎧x ′=hx (h >0)y ′=kx (k >0),由⎩⎪⎨⎪⎧1=2h 1=3k ,解得⎩⎨⎧h =12,k =13∴⎩⎨⎧x ′=x 2,y ′=y 3.答案:⎩⎨⎧x ′=x 2,y ′=y36.将对数曲线y =log 3x 的横坐标伸长到原来的2倍得到的曲线方程为________. 解析:设P (x ,y )为对数曲线y =log 3x 上任意一点,变换后的对应点为P ′(x ′,y ′),由题意知伸缩变换为⎩⎪⎨⎪⎧x ′=2xy ′=y ,∴⎩⎪⎨⎪⎧x =12x ′,y =y ′.代入y =log 3x 得y ′=log 312x ′,即y =log 3x 2.答案:y =log 3x27.把圆x 2+y 2=16沿x 轴方向均匀压缩为椭圆x ′2+y ′216=1,则坐标变换公式是________.解析:设φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0),则⎩⎨⎧x =x ′λ,y =y ′μ.代入x 2+y 2=16得x ′216λ2+y ′216μ2=1.∴16λ2=1,16μ2=16. ∴⎩⎪⎨⎪⎧λ=14,μ=1.故⎩⎪⎨⎪⎧x ′=x 4,y ′=y . 答案:⎩⎪⎨⎪⎧x ′=x 4,y ′=y8.已知A (2,-1),B (-1,1),O 为坐标原点,动点M 满足,其中m ,n ∈R ,且2m 2-n 2=2,则M 的轨迹方程为________.解析:设M (x ,y ),则(x ,y )=m (2,-1)+n (-1,1)=(2m -n ,n -m ),∴⎩⎪⎨⎪⎧x =2m -n ,y =n -m .又2m 2-n 2=2,消去m ,n 得x 22-y 2=1.答案:x 22-y 2=1三、解答题9.在同一平面直角坐标系中,将曲线x 2-36y 2-8x +12=0变成曲线x ′2-y ′2-4x ′+3=0,求满足条件的伸缩变换.解:x 2-36y 2-8x +12=0可化为 (x -42)2-9y 2=1.① x ′2-y ′2-4x ′+3=0可化为 (x ′-2)2-y ′2=1.②比较①②,可得⎩⎪⎨⎪⎧x ′-2=x -42,y ′=3y ,即⎩⎪⎨⎪⎧x ′=x 2,y ′=3y .所以将曲线x 2-36y 2-8x +12=0上所有点的横坐标变为原来的12,纵坐标变为原来的3倍,就可得到曲线x ′2-y ′2-4x ′+3=0的图象.10.在正三角形ABC 内有一动点P ,已知P 到三顶点的距离分别为|P A |,|PB |,|PC |,且满足|P A|2=|PB|2+|PC|2,求点P的轨迹方程.解:以BC的中点为原点,BC所在的直线为x轴,BC的垂直平分线为y轴,建立如图所示的直角坐标系,设点P(x,y),B(-a,0),C(a,0),A(0,3a),(y>0,a>0)用点的坐标表示等式|P A|2=|PB|2+|PC|2,有x2+(y-3a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+(y+3a)2=(2a)2,即点P的轨迹方程为x2+(y+3a)2=4a2(y>0).11.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y=x+2相切.(1)求a与b;(2)设该椭圆的左、右焦点分别为F1和F2,直线l1过F2且与x轴垂直,动直线l2与y 轴垂直,l2交l1于点P.求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.解:(1)∴e=3 3,∴e2=c2a2=a2-b2a2=13,∴b2a2=23.又圆x2+y2=b2与直线y=x+2相切,∴b=21+1= 2.∴b2=2,a2=3.因此,a=3,b= 2.(2)由(1)知F1,F2两点的坐标分别为(-1,0),(1,0),由题意可设P(1,t).那么线段PF1的中点为N(0,t2).设M (x ,y ),由于MN ―→=(-x ,t 2-y ), PF 1―→=(-2,-t ),则⎩⎪⎨⎪⎧MN ―→·PF 1―→=2x +t (y -t 2)=0y =t,消去t 得所求轨迹方程为y 2=-4x ,曲线类型为抛物线.。

人教A版2019年高中数学选修4-4教学案: 第一讲 第2节 极坐标系_含答案

人教A版2019年高中数学选修4-4教学案: 第一讲 第2节 极坐标系_含答案

[核心必知]1.极坐标系的概念 (1)极坐标系的建立在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)点的极坐标设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 2.极坐标与直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位.(2)互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ; ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0)W. [问题思考]1.平面上的点与这一点的极坐标是一一对应的吗?为什么?提示:不是.在极坐标系中,与给定的极坐标(ρ,θ)相对应的点是唯一确定的;反过来,同一个点的极坐标却可以有无穷多个.如一点的极坐标是(ρ,θ)(ρ≠0),那么这一点也可以表示为(ρ,θ+2n π)或(-ρ,θ+(2n +1)π)(其中n ∈Z ).2.若ρ>0,0≤θ<2π,则除极点外,点M (ρ,θ)与平面内的点之间是否是一一对应的?提示:如果我们规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)来表示,这时,极坐标与平面内的点之间就是一一对应的关系.3.若点M 的极坐标为(ρ,θ),则M 点关于极点、极轴、过极点且垂直于极轴的直线的对称点的极坐标是什么?提示:设点M 的极坐标是(ρ,θ),则M 点关于极点的对称点的极坐标是(-ρ,θ)或(ρ,θ+π);M 点关于极轴的对称点的极坐标是(ρ,-θ);M 点关于过极点且垂直于极轴的直线的对称点的极坐标是(ρ,π-θ)或(-ρ,-θ).已知定点P ⎝⎛⎭⎫4,π3.(1)将极点移至O ′⎝⎛⎭⎫23,π6处极轴方向不变,求P 点的新坐标;(2)极点不变,将极轴顺时针转动π6角,求P 点的新坐标.[精讲详析] 本题考查极坐标系的建立及极坐标的求法.解答本题需要根据题意要求建立正确的极坐标系,然后求相应的点的极坐标.(1)设P 点新坐标为(ρ,θ),如图所示,由题意可知|OO ′|=23, |OP |=4,∠POx =π3,∠O ′Ox =π6,∴∠POO ′=π6.在△POO ′中,ρ2=42+(23)2-2·4·23·cos π6=16+12-24=4,∴ρ=2. 即|O ′P |=2.∴|OP |2=|OO ′|2+|O ′P |2,∠OO ′P =π2.∴∠OPO ′=π3.∴∠OP ′P =π-π3-π3=π3.∴∠PP ′x =2π3.∴∠PO ′x ′=2π3.∴P 点的新坐标为(2,2π3).(2)如图,设P 点新坐标为(ρ,θ),则ρ=4,θ=π3+π6=∴P 点的新坐标为(4,π2).—————————————建立极坐标系的要素是(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向.四者缺一不可.极轴是以极点为端点的一条射线,它与极轴所在的直线是有区别的;极角θ的始边是极轴,它的终边随着θ的大小和正负而取得各个位置;θ的正方向通常取逆时针方向,θ的值一般是以弧度为单位的量数;点M 的极径ρ表示点M 与极点O 的距离|OM |,因此ρ≥0;但必要时,允许ρ<0.1.边长为a 的正六边形的一个顶点为极点,极轴通过它的一边,求正六边形各顶点坐标.解:由点的极坐标的定义可知,正六边形各顶点的极坐标分别为:(0,0)、(a ,0)、(3a ,π6)、(2a ,π3)、(3a ,π2)、(a ,23π)或(0,0)、(a ,0)、(3a ,-π6)、(2a ,-π3)、(3a ,-π2)、(a ,-23π).若以极点为原点,极轴为x 轴正半轴建立直角坐标系. (1)已知点A 的极坐标⎝⎛⎭⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)[精讲详析] 本题考查极坐标和直角坐标的互化.解答此题只需将已知条件代入相关公式即可.(1)∵x =ρcos θ=4·cos 5π3=2. y =ρsin θ=4sin5π3=-2 3. ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1.且点B 位于第四象限内, ∴θ=7π4.∴点B 的极坐标为(22,7π4).又∵x =0,y <0,ρ=15, ∴点C 的极坐标为(15,3π2).(1)将极坐标(ρ,θ)化为直角坐标(x ,y )的公式是:x =ρcos θ,y =ρsin θ;(2)将直角坐标(x ,y )化为极坐标(ρ,θ)的公式是:ρ2=x 2+y 2,tan θ=yx (x ≠0),在利用此公式时要注意ρ和θ的取值范围.2.(1)把点M 的极坐标⎝⎛⎭⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标.(ρ>0,0≤θ<2π) 解:(1)x =8cos 2π3=-4, y =8sin2π3=43, 因此,点M 的直角坐标是(-4,43). (2)ρ=(6)2+(-2)2=22, tan θ=-26=-33,又因为点在第四象限,得θ=116π.因此,点P 的极坐标为(22,11π6).在极坐标系中,已知A ⎝⎛⎭⎫3,-π3,B ⎝⎛⎭⎫1,23π,求A 、B 两点之间的距离. [精讲详析] 本题考查极坐标与直角坐标的互化、极坐标系中两点间的距离公式.解答此题可直接利用极坐标系中两点间的距离公式求解,也可以先将极坐标化为直角坐标,然后利用两点间的距离公式求解.法一:由A (3,-π3)、B (1,2π3)在过极点O 的一条直线上,这时A 、B 两点的距离为|AB |=3+1=4,所以,A 、B 两点间的距离为4.法二:∵ρ1=3,ρ2=1,θ1=-π3,θ2=2π3,由两点间的距离公式得|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)=32+12-2×3×1×cos (-π3-23π)=10-6cos π =10+6 =16 =4.法三:将A (3,-π3),B (1,2π3)由极坐标化为直角坐标,对于A (3,-π3)有x =3cos (-π3)=32,y =3sin(-π3)=-332,∴A (32,-332).对于B (1,2π3)有x =1×cos 2π3=-12,y =1×sin2π3=32, ∴B (-12,32).∴|AB |=(32+12)2+(-332-32)2=4+12=4. ∴AB 两点间的距离为4.对于这类问题的解决方法,可以直接用极坐标内两点间的距离公式d =ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)求得;也可以把A 、B 两点由极坐标化为直角坐标,利用直角坐标中两点间的距离公式d =(x 1-x 2)2+(y 1-y 2)2求得;极坐标与直角坐标的互化体现了化归的解题思想;还可以考虑其对称性,根据对称性求得.3.在极坐标系中,如果等边三角形的两个顶点是A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,54π,则求第三个顶点C 的坐标.解:由题设知,A 、B 两点关于极点O 对称,又|AB |=4,由正三角形的性质知,|CO |=23,∠AOC =π2,从而C 的极坐标为(23,34π)或(23,-π4).极坐标与直角坐标的互化在高考模拟中经常出现.本考题将极坐标与直角坐标的互化同极坐标系中两点间的距离和简单的三角恒等变换相结合考查,是高考模拟命题的一个新亮点.[考题印证]已知极坐标系中,极点为O ,将点A (4,π6)绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.[命题立意] 本题主要考查点的极坐标的求法以及直角坐标与极坐标的转化. [解析] 依题意,点B 的极坐标为(4,5π12),∵cos 5π12=cos (π4+π6)=cos π4cos π6-sin π4·sin π6=22·32-22·12=6-24, sin 5π12=sin (π4+π6)=sin π4cos π6+cos π4·sin π6=22·32+22·12=6+24, ∴x =ρcos θ=4×6-24=6-2, y =ρsin θ=6+ 2.∴点B 的直角坐标为(6-2,6+2). [答案] (6-2,6+2)一、选择题1.在极坐标系中,点M ⎝⎛⎭⎫-2,π6的位置,可按如下规则确定( )A .作射线OP ,使∠xOP =π6,再在射线OP 上取点M ,使|OM |=2 B .作射线OP ,使∠xOP =7π6,再在射线OP 上取点M ,使|OM |=2 C .作射线OP ,使∠xOP =7π6,再在射线OP 的反向延长线上取点M ,使|OM |=2 D .作射线OP ,使∠xOP =-π6,再在射线OP 上取点M ,使|OM |=2解析:选B 当ρ<0时,点M (ρ,θ)的位置按下列规定确定:作射线OP ,使∠xOP =θ,在OP 的反向延长线上取|OM |=|ρ|,则点M 就是坐标(ρ,θ)的点.2.在极坐标平面内,点M ⎝⎛⎭⎫π3,200π,N ⎝⎛⎭⎫-π3,201π,G ⎝⎛⎭⎫-π3,-200π,H ⎝⎛⎭⎫2π+π3,200π中互相重合的两个点是( )A .M 和NB .M 和GC .M 和HD .N 和H 解析:选A 由极坐标定义可知,M 、N 表示同一个点.3.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点 (ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称. 4.已知极坐标平面内的点P ⎝⎛⎭⎫2,-5π3,则P 关于极点的对称点的极坐标与直角坐标分别为( )A.⎝⎛⎭⎫2,π3,(1,3)B.⎝⎛⎭⎫2,-π3,(1,-3)C.⎝⎛⎭⎫2,2π3,(-1,3)D.⎝⎛⎭⎫2,-2π3,(-1,-3)解析:选D 点P (2,-5π3)关于极点的对称点为(2,-5π3+π),即(2,-2π3),且x =2cos (-2π3)=-2cos π3=-1,y =2sin (-2π3)=-2sin π3=- 3.二、填空题5.限定ρ>0,0≤θ<2π时,若点M 的极坐标与直角坐标相同,则点M 的直角坐标为________.解析:点M 的极坐标为(ρ,θ),设其直角坐标为(x ,y ),依题意得ρ=x ,θ=y , 即x 2+y 2=x 2. ∴y =θ=0,ρ>0,∴M (ρ,0). 答案:(ρ,0)6.已知极坐标系中,极点为O ,0≤θ<2π,M ⎝⎛⎭⎫3,π3,在直线OM 上与点M 的距离为4的点的极坐标为________.解析:如图所示,|OM |=3,∠xOM =π3,在直线OM 上取点P 、Q ,使|OP |=7,|OQ |=1,∠xOP =π3,∠xOQ =4π3,显然有|PM |=|OP |-|OM |=7-3=4,|QM |=|OM |+|OQ |=3+1=4.答案:(7,π3)或(1,4π3)7.直线l 过点A ⎝⎛⎭⎫3,π3,B ⎝⎛⎭⎫3,π6,则直线l 与极轴夹角等于________.解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=3, ∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12.所以∠ACO =π-π3-5π12=π4.答案:π48.已知点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为________.解析:∵tan θ=-43,π2<θ<π,∴cos θ=-35,sin θ=45.∴x =5cos θ=-3,y =5sin θ=4. ∴点M 的直角坐标为(-3,4). 答案:(-3,4) 三、解答题9.设点A ⎝⎛⎭⎫1,π3,直线L 为过极点且垂直于极轴的直线,分别求出点A 关于极轴,直线L ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π)解:如图所示:关于极轴的对称点为 B (1,-π3)关于直线L 的对称点为C (1,2π3).关于极点O 的对称点为D (1,-2π3).10.已知点P 的直角坐标按伸缩变换⎩⎨⎧x ′=2x ,y ′=3y变换为点P ′(6,-3),限定ρ>0,0≤θ≤2π时,求点P 的极坐标.解:设点P 的直角坐标为(x ,y ),由题意得⎩⎨⎧6=2x -3=3y ,解得⎩⎨⎧x =3,y =- 3.∴点P 的直角坐标为(3,-3).ρ=32+(-3)2=23,tan θ=-33,∵0≤θ<2π,点P 在第四象限, ∴θ=11π6.∴点P 的极坐标为(23,11π6). 11.在极轴上求与点A ⎝⎛⎭⎫42,π4的距离为5的点M 的坐标. 解:设M (r ,0),因为A (42,π4), 所以 (42)2+r 2-82r ·cos π4=5. 即r 2-8r +7=0.解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0).。

2017-2018学年高中数学人教A版选修4-4创新应用教学案: 第一讲 章末小结与测评

2017-2018学年高中数学人教A版选修4-4创新应用教学案: 第一讲 章末小结与测评

(1)利用问题的几何特征,建立适当坐标系,主要就是兼顾到它们的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x轴,y轴(坐标原点).(2)坐标系的建立,要尽量使我们研究的曲线的方程简单.舰A在舰B正东,距离6 km,舰C在舰B的北偏西30°,距离4 km,它们准备围捕海洋动物,某时刻A发现动物信号,4 s后,B、C同时发现这种信号,A于是发射麻醉炮弹.假设舰与动物都是静止的,动物信号的传播速度为1 km/s.空气阻力不计,求A炮击的方位角.[解]如图,以BA 为x 轴,BA 的中垂线为y 轴建立直角坐标系,则B (-3,0),A (3,0),C (-5,23).设动物所在位置P (x ,y ),P 在BC 中垂线上. ∵k BC =23-5+3=-3,BC 中点M (-4,3),∴BC 的中垂线方程为y -3=33(x +4). 即y =33(x +7).① ∵|PB |-|P A |=4<|AB |=6,∴P 在双曲线x 24-y 25=1 ②的右支上.由①②得P (8,53), 设∠xAP =α,则tan α=3, ∴α=60°.∴炮弹发射的方位角为北偏东30°.设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′)称φ为平面直角坐标系中的坐标伸缩变换.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=2y 后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.[解] 将⎩⎪⎨⎪⎧x ′=2x ,y ′=2y ,代入(x ′-5)2+(y ′+6)2=1中,得(2x -5)2+(2y +6)2=1.化简,得⎝⎛⎭⎫x -522+(y +3)2=14.该曲线是以⎝⎛⎭⎫52,-3为圆心,半径为12的圆. (1)在给定的平面上的极坐标系下,有一个二元方程F (ρ,θ)=0,如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F (ρ,θ)=0为曲线C 的极坐标方程.(2)由于平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处,一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.(3)求轨迹方程的方法有直接法、定义法、相关点代入法,在极坐标中仍然适用,注意求谁设谁,找出所设点的坐标ρ、θ的关系.△ABC 底边BC =10,∠A =12∠B ,以B 为极点,BC 为极轴,求顶点A 的轨迹的极坐标方程.[解]如图:令A (ρ,θ),△ABC 内,设∠B =θ,∠A =θ2,又|BC |=10,|AB |=ρ.于是由正弦定理,得ρsin ⎝⎛⎭⎫π-3θ2=10sinθ2,化简,得A 点轨迹的极坐标方程为ρ=10+20cos θ.(1)互化的前提依旧是把直角坐标系的原点作为极点,x 轴的正半轴作为极轴并在两种坐标系下取相同的单位.(2)互化公式为x =ρcos θ,y =ρsin θ ρ2=x 2+y 2 tan θ=yx(x ≠0)(3)直角坐标方程化极坐标方程可直接将x =ρcos θ,y =ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x ,y 代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.把下列极坐标方程化为直角坐标方程,并指出它们分别表示什么曲线. (1)ρ=2a cos θ(a >0); (2)ρ=9(sin θ+cos θ); (3)ρ=4;(4)2ρcos θ-3ρsin θ=5.[解] (1)ρ=2a cos θ,两边同时乘以ρ得ρ2=2a ρcos θ,即x 2+y 2=2ax . 整理得x 2+y 2-2ax =0,即(x -a )2+y 2=a 2. 是以(a ,0)为圆心,以a 为半径的圆. (2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ), 即x 2+y 2=9x +9y ,又可化为⎝⎛⎭⎫x -922+⎝⎛⎭⎫y -922=812, 是以⎝⎛⎭⎫92,92为圆心,以922为半径的圆. (3)将ρ=4两边平方得ρ2=16,即x 2+y 2=16. 是以原点为圆心,以4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x -3y =5,是一条直线.(1)柱坐标定义:设P 是空间内任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点Q 在平面Oxy 上的极坐标.这时点P 的位置可由有序数组(ρ,θ,z )表示,叫做点P 的柱坐标.(2)球坐标:建立空间直角坐标系O -xyz ,设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q .Ox 轴逆时针方向旋转到OQ 时,所转过的最小正角为θ,则P (r ,φ,θ)为P 点的球坐标.如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=3,|OC |=3,|OD ′|=3,A ′C ′与B ′D ′相交于点P ,分别写出点C ,B ′,P 的柱坐标.[解] C 点的ρ、θ分别为|OC |及∠COA . B ′点的ρ为|OB |=|OA |2+|AB |2=32+32=32;θ=∠BOA ,而tan ∠BOA =|AB ||OA |=1.所以∠BOA =π4.P 点的ρ、θ分别为OE 、∠AOE ,|OE |=12|OB |=322,∠AOE =∠AOB .所以C 点的柱坐标为⎝ ⎛⎭⎪⎫3,π2,0;B ′点的柱坐标为⎝ ⎛⎭⎪⎫32,π4,3;P 点的柱坐标为⎝ ⎛⎭⎪⎫322,π4,3.如图,长方体OABC —D ′A ′B ′C ′中OA =OC =a ,BB ′=2OA ,对角线OB ′与BD ′相交于点P ,顶点O 为坐标原点;OA ,OC 分别在x 轴,y 轴的正半轴上.试写出点P 的球坐标.[解] r =|OP |,φ=∠D ′OP ,θ=∠AOB , 而|OP |=a ,∠D ′OP =∠OB ′B , tan ∠OB ′B =|OB ||BB ′|=1,∴∠OB ′B =π4,θ=∠AOB =π4.∴点P 的球坐标为⎝ ⎛⎭⎪⎫a ,π4,π4.一、选择题1.点M 的直角坐标是(-1, 3),则点M 的极坐标为( ) A.⎝⎛⎭⎫2,π3 B.⎝⎛⎭⎫2,-π3C.⎝⎛⎭⎫2,2π3D.⎝⎛⎭⎫2,2k π+π3,(k ∈Z )解析:选D ρ2=(-1)2+(3)2=4,∴ρ=2. 又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴⎩⎨⎧cos θ=-12,sin θ=32,∴θ=2π3+2k π,k ∈Z .即点M 的极坐标为(2,2k π+2π3),(k ∈Z ).2.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1 解析:选C ρ(ρcos θ-1)=0,ρ=x 2+y 2=0,或ρcos θ=x =1.3.极坐标方程ρcos θ=2sin 2θ表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆解析:选C ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ,(ρ2=4ρsin θ),则x =0,或x 2+y 2=4y .4.(安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( ) A .θ=0(ρ∈R )和ρcos θ=2 B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R ) 和ρcos θ=1解析:选B 由ρ=2cos θ,可得圆的直角坐标方程为(x -1)2+y 2=1,所以垂直于x 轴的两条切线方程分别为x =0和x =2,即所求垂直于极轴的两条切线方程分别为θ=π2(ρ∈R )和ρcos θ=2,故选B.二、填空题5.点M 的柱坐标为⎝⎛⎭⎫2,π3,8,则它的直角坐标为________.解析:∵x =2cos π3=1,y =2sin π3=3,z =8.∴它的直角坐标为(1,3,8). 答案:(1,3,8)6.点M 的球坐标为⎝⎛⎭⎫6,π2,π3,则它的直角坐标为________.解析:x =6·sin π2·cos π3=3,y =6sin π2sin π3=33,z =6cos π2=0,∴它的直角坐标为(3,33,0). 答案:(3,33,0)7.在极坐标系中,点(1,2)到直线ρ(cos θ+sin θ)=2的距离为________. 解析:直线的直角坐标方程为x +y -2=0, d =|1+2-2|2=22.答案:228.在极坐标系中,过点A (6,π)作圆ρ=-4cos θ的切线,则切线长为________. 解析:圆ρ=-4cos θ化为(x +2)2+y 2=4,点(6,π)化为 (-6,0),故切线长为42-22=12=2 3.答案:2 3 三、解答题9.求由曲线4x 2+9y 2=36变成曲线x ′2+y ′2=1的伸缩变换.解:设变换为⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0),将其代入方程x ′2+y ′2=1,得λ2x 2+μ2y 2=1. 又∵4x 2+9y 2=36, 即x 29+y 24=1. ∴⎩⎨⎧λ2=19,μ2=14.又∵λ>0,μ>0, ∴λ=13,μ=12.∴将曲线4x 2+9y 2=36变成曲线x ′2+y ′2=1的伸缩变换为⎩⎨⎧x ′=13x ,y ′=12y .10.如图,圆O 1和圆O 2的半径都是1,|O 1O 2|=4,过动点P 分别作圆O 1和圆O 2的切线PM 、PN (M 、N 分别为切点)使得|PM |=2|PN |,试建立适当的坐标系,并求动点P 的轨迹方程.解:如图,以直线O 1O 2为x 轴,线段O 1O 2的垂直平分线为y 轴,建立平面直角坐标系,则两圆心的坐标分别为O 1(-2,0),O 2(2,0).设P (x ,y ),则|PM |2=|PO 1|2-|MO 1|2=(x +2)2+y 2-1.同理,|PN |2=(x -2)2+y 2-1. ∵|PM |=2|PN |,即|PM |2=2|PN |2.即(x +2)2+y 2-1=2[(x -2)2+y 2-1].即x 2-12x +y 2+3=0. 即动点P 的轨迹方程为(x -6)2+y 2=33.11.在极坐标系中,已知圆C 的圆心C ⎝⎛⎭⎫3,π6,半径为1.Q 点在圆周上运动,O 为极点.(1)求圆C 的极坐标方程;(2)若P 在直线OQ 上运动,且满足OQ QP =23,求动点P 的轨迹方程.解:(1)如图所示,设M (ρ,θ)为圆C 上任意一点,如图,在△OCM 中,|OC |=3,|OM |=ρ,|CM |=1,∠COM =⎪⎪⎪⎪⎪⎪θ-π6,根据余弦定理,得1=ρ2+9-2·ρ·3·cos ⎪⎪⎪⎪⎪⎪θ-π6,化简整理,得ρ2-6·ρcos (θ-π6)+8=0为圆C 的轨迹方程.(2)设Q (ρ1,θ1),则有ρ21-6·ρ1cos (θ1-π6)+8=0.① 设P (ρ,θ),则OQ ∶QP =ρ1∶(ρ-ρ1)=2∶3⇒ρ1=25ρ,又θ1=θ,即⎩⎪⎨⎪⎧ρ1=25ρ,θ1=θ,代入①得425ρ2-6·25ρcos (θ-π6)+8=0,整理得ρ2-15ρcos (θ-π6)+50=0为P 点的轨迹方程.(时间:90分钟 满分:120分)一、选择题(本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M 的极坐标为⎝⎛⎭⎫2,π3,则它的直角坐标为( )A .(3,1)B .(-1,3)C .(1,3)D .(-3,-1)解析:选C x =ρcos θ=2cos π3=1,y =ρsin θ=2sin π3= 3.∴它的直角坐标为(1,3).2.原点与极点重合,x 轴正半轴与极轴重合,则点(-2,-23)的极坐标是( ) A.⎝⎛⎭⎫4,π3 B.⎝⎛⎭⎫4,4π3C.⎝⎛⎭⎫-4,-2π3D.⎝⎛⎭⎫4,2π3解析:选B 由直角坐标与极坐标互化公式:ρ2=x 2+y 2, tan θ=yx (x ≠0).把点(-2,-23)代入即可得ρ=4,tan θ=3,因为点(-2,-23)在第三象限, 所以θ=4π3.3.可以将椭圆x 210+y 28=1变为圆x 2+y 2=4的伸缩变换为 ( )A.⎩⎨⎧5x ′=2x ,2y ′=y B.⎩⎨⎧2x ′=5x ,y ′=2y C.⎩⎨⎧2x ′=x ,5y ′=2x D.⎩⎨⎧5x ′=2x ,2y ′=y解析:选D 法一:将椭圆方程x 210+y 28=1化为2x 25+y 22=4,∴(2x 5)2+(y2)2=4.令⎩⎪⎨⎪⎧x ′=25 x ,y ′=y 2得x ′2+y ′2=4,即x 2+y 2=4.∴伸缩变换⎩⎪⎨⎪⎧5x ′=2x ,2y ′=y 为所求.法二:将x 2+y 2=4改写为x ′2+y ′2=4,设满足题意的伸缩变换为⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0),代入x ′2+y ′2=4得λ2x 2+μ2y 2=4,即λ2x 24+μ2y 24=1.与椭圆x 210+y 28=1比较系数得⎩⎪⎨⎪⎧λ24=110,μ24=18,解得⎩⎪⎨⎪⎧λ=25,μ=12.∴伸缩变换为⎩⎪⎨⎪⎧x ′=25 x ,y ′=12y .即⎩⎪⎨⎪⎧5x ′=2x ,2y ′=y .4.曲线的极坐标方程为ρ=4sin θ,化成直角坐标方程为( ) A .x 2+(y +2)2=4 B .x 2+(y -2)2=4 C .(x -2)2+y 2=4 D .(x +2)2+y 2=4解析:选B 由直角坐标和极坐标的互化公式y =ρsin θ, 即ρ2=x 2+y 2,可得x 2+y 2=4y ,整理得:x 2+(y -2)2=4. 5.圆ρ=2(cos θ+sin θ)的圆心坐标是( ) A.⎝⎛⎭⎫1,π4 B.⎝⎛⎭⎫12,π4C.⎝⎛⎭⎫2,π4D.⎝⎛⎭⎫2,π4解析:选A 法一:∵圆ρ=2(cos θ+sin θ)=2sin (θ+π4),可以看作由圆ρ=2sin θ顺时针旋转π4得到.而ρ=2sin θ的圆心为(1,π2),顺时针旋转π4得到(1,π4),∴ρ=2(cos θ+sin θ)的圆心坐标为(1,π4).法二:圆ρ=2(cos θ+sin θ)直角坐标方程为 x 2+y 2-2x -2y =0, ∴(x -22)2+(y -22)2=1, 圆心的直角坐标为(22,22),化为极坐标为(1,π4). 6.已知点P 的坐标为(1,π),则过点P 且垂直极轴的直线方程是( ) A .ρ=1 B .ρ=cos θ C .ρ=-1cos θD .ρ=1cos θ解析:选C 由点P 的坐标可知,过点P 且垂直极轴的直线方程在直角坐标中为x =-1,即ρcos θ=-1.7.曲线θ=2π3与ρ=6sin θ的两个交点之间的距离为( )A .1 B. 3 C .3 3 D .6 解析:选C极坐标方程θ=2π3,ρ=6sin θ分别表示直线与圆,如图所示,圆心C (3,π2),∠AOC =π6,∴|AO |=2×3×cos π6=6×32=3 3.8.点M ⎝⎛⎭⎫1,7π6关于直线θ=π4(ρ∈R )的对称点的极坐标为 ( )A.⎝⎛⎭⎫1,4π3B.⎝⎛⎭⎫1,2π3C.⎝⎛⎭⎫1,π3D.⎝⎛⎭⎫1,-7π6解析:选A 法一:点M (1,7π6)关于直线θ=π4(ρ∈R )的对称点为(1,7π6+π6),即(1,4π3). 法二:点M (1,7π6)的直角坐标为(cos 7π6,sin 7π6)=(-32,-12),直线θ=π4(ρ∈R ),即直线y =x ,点(-32,-12)关于直线y =x 的对称点为(-12,-32), 再化为极坐标即(1,4π3).9.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A.22B. 2 C .2 D .2 2 解析:选B圆ρ=4cos θ的圆心C (2,0),如图,|OC |=2, 在Rt △COD 中,∠ODC =π2,∠COD =π4,∴|CD |= 2.10.圆ρ=r 与圆ρ=-2r sin ⎝⎛⎭⎫θ+π4(r >0)的公共弦所在直线的方程为( )A .2ρ(sin θ+cos θ)=rB .2ρ(sin θ+cos θ)=-r C.2ρ(sin θ+cos θ)=r D.2ρ(sin θ+cos θ)=-r解析:选D 圆ρ=r 的直角坐标方程为x 2+y 2=r 2① 圆ρ=-2r sin (θ+π4)=-2r (sin θcos π4+cos θsin π4)=-2r (sin θ+cos θ).两边同乘以ρ得ρ2=-2r (ρsin θ+ρcos θ) ∵x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2, ∴x 2+y 2+2rx +2ry =0.②①-②整理得2(x +y )=-r ,即为两圆公共弦所在直线的普通方程.再将直线2(x +y )=-r 化为极坐标方程为2ρ(cos θ+sin θ)=-r .二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.直线x cos α+y sin α=0的极坐标方程为________. 解析:ρcos θcos α+ρsin θsin α=0,cos (θ-α)=0, 取θ-α=π2.答案:θ=π2+α12.在极坐标系中,若过点A (4,0)的直线l 与曲线ρ2=4ρcos θ-3有公共点,则直线l 的斜率的取值范围为________.解析:将ρ2=4ρcos θ-3化为直角坐标方程得(x -2)2+y 2=1, 如右图易得-33≤k ≤33. 答案:[-33,33] 13.已知点M 的柱坐标为⎝⎛⎭⎫2π3,2π3,2π3,则点M 的直角坐标为________,球坐标为________.解析:设点M 的直角坐标为(x ,y ,z ),柱坐标为(ρ,θ,z ),球坐标为(r ,φ,θ),由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,得⎩⎪⎨⎪⎧x =2π3cos 2π3=-π3,y =2π3sin 2π3=3π3,z =2π3, 由⎩⎪⎨⎪⎧r =x 2+y 2+z 2,cos φ=zr ,得⎩⎪⎨⎪⎧r =22π3,cos φ=22.即⎩⎪⎨⎪⎧r =22π3,φ=π4. ∴点M 的直角坐标为(-π3,3π3,2π3),球坐标为(22π3,π4,2π3).答案:(-π3,3π3,2π3) (22π3,π4,2π3)14.(湖南高考)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________.解析:曲线C 1的直角坐标方程为2x +y =1,曲线C 2的直角坐标方程为x 2+y 2=a 2,C 1与x 轴的交点坐标为(22,0),此点也在曲线C 2上,代入解得a =22. 答案:22三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)极坐标系中,求点⎝⎛⎭⎫m ,π3(m >0)到直线ρcos(θ-π3)=2的距离.解:将直线极坐标方程化为ρ(cos θcos π3+sin θsin π3)=2,化为直角坐标方程为x +3y -4=0,点(m ,π3)的直角坐标为(12m ,32m ),∴点(12m ,32m )到直线x +3y -4=0的距离为|12m +3·32m -4|1+3=2|m -2|2=|m -2|.16.(12分)极坐标方程ρ=-cos θ与ρcos ⎝⎛⎭⎫θ+π3=1表示的两个图形的位置关系是什么?解:ρ=-cos θ可变为ρ2=-ρcos θ,化为普通方程为 x 2+y 2=-x ,即(x +12)2+y 2=14它表示圆心为(-12,0),半径为12的圆.将ρcos (θ+π3)=1化为普通方程为x -3y -2=0,∵圆心(-12,0)到直线的距离为|-12-2|1+3=54>1,∴直线与圆相离.17.(12分)(江苏高考)在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin(θ-π3)=-32中令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P (2,π4),所以圆C 的半径PC =(2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.18.(14分)已知线段BB ′=4,直线l 垂直平分BB ′,交BB ′于点O ,在属于l 并且以O 为起点的同一射线上取两点P 、P ′,使OP ·OP ′=9,建立适当的坐标系,求直线BP 与直线B ′P ′的交点M 的轨迹方程.解:以O 为原点,BB ′为y 轴,l 为x 轴,建立如图所示的直角坐标系,则B (0,2),B ′(0,-2),设P (a ,0)(a ≠0),则由OP ·OP ′=9,得P ′(9a ,0),直线BP 的方程为x a +y2=1,直线B ′P ′的方程为x 9a+y-2=1,即l BP :2x +ay -2a =0,l B ′P ′:2ax -9y -18=0.设M (x ,y ),则由⎩⎪⎨⎪⎧2x +ay -2a =0,2ax -9y -18=0,解得⎩⎪⎨⎪⎧2x =(2-y )a ,9y +18=2ax(a 为参数).消去a ,可得4x 2+9y 2=36(x ≠0),所以点M 的轨迹是焦点在x 轴上,长轴长为6,短轴长为4的椭圆(除去点B ,B ′).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[对应学生用书P1] 1.平面直角坐标系(1)平面直角坐标系的作用:使平面上的点与坐标、曲线与方程建立联系,从而实现数与形的结合.(2)坐标法解决几何问题的“三部曲”:第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算解决代数问题;第三步:把代数运算结果翻译成几何结论.2.平面直角坐标系中的伸缩变换(1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归纳为坐标伸缩变换,这就是用代数方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换:设点P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎨⎧x ′=λx (λ>0)y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称为φ-平面直角坐标系中的坐标伸缩变换,简称伸缩变换.[对应学生用书P1][例1] 已知△ABC 中,AB =AC ,BD 、CE 分别为两腰上的高.求证:BD =CE .[思路点拨] 由于△ABC 为等腰三角形,故可以BC 为x 轴,以BC 中点为坐标原点建立直角坐标系,在坐标系中解决问题.[证明] 如图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系.设B (-a,0),C (a,0),A (0,h ). 则直线AC 的方程为 y =-ha x +h , 即:hx +ay -ah =0.直线AB 的方程为y =ha x +h , 即:hx -ay +ah =0.由点到直线的距离公式:得|BD |=|2ah |a 2+h2,|CE |=|2ah |a 2+h2.∴|BD |=|CE |,即BD =CE .建立平面直角坐标系的原则根据图形的几何特点选择适当的直角坐标系的一些规则:①如果图形有对称中心,选对称中心为原点,②如果图形有对称轴,可以选对称轴为坐标轴,③使图形上的特殊点尽可能多地在坐标轴上.1.求证等腰梯形对角线相等. 已知:等腰梯形ABCD .求证:AC =BD .证明:取B 、C 所在直线为x 轴,线段BC 的中垂线为y 轴, 建立如图所示的直角坐标系.设A (-a ,h ),B (-b,0), 则D (a ,h ),C (b,0). ∴|AC |=(b +a )2+h 2, |BD |=(a +b )2+h 2.∴|AC |=|BD |,即等腰梯形ABCD 中,AC =BD . 2.已知△ABC 中,BD =CD , 求证:AB 2+AC 2=2(AD 2+BD 2).证明:以A 为坐标原点O ,AB 所在直线为x 轴,建立平面直角坐系xOy ,则A (0,0).设B (a,0),C (b ,c ), 则D (a +b 2,c 2), 所以AD 2+BD 2=(a +b )24+c 24+(a -b )24+c 24 =12(a 2+b 2+c 2),AB 2+AC 2=a 2+b 2+c 2=2(AD 2+BD 2).[例2] 如图所示,A ,B ,C 是三个观察站,A 在B 的正东,两地相距6 km ,C 在B 的北偏西30°,两地相距4 km ,在某一时刻,A 观察站发现某种信号,并知道该信号的传播速度为1km/s,4 s 后B ,C 两个观察站同时发现这种信号,在以过A ,B 两点的直线为x 轴,以AB 的垂直平分线为y 轴建立的平面直角坐标系中,指出发出这种信号的P 的坐标.[思路点拨] 由题意可知,点P 所在的位置满足两个条件:(1)在线段BC 的垂直平分线上;(2)在以A ,B 为焦点的双曲线上.[解] 设点P 的坐标为(x ,y ),则A (3,0),B (-3,0),C (-5,23). 因为|PB |=|PC |,所以点P 在BC 的中垂线上. 因为k BC =-3,BC 的中点D (-4,3), 所以直线PD 的方程为y -3=13(x +4).① 又因为|PB |-|P A |=4,所以点P 必在以A ,B 为焦点的双曲线的右支上, 双曲线方程为x 24-y 25=1(x ≥2).② 联立①②,解得x =8或x =-3211(舍去), 所以y =5 3.所以点P 的坐标为(8,53).运用解析法解决实际问题的步骤(1)建系——建立平面直角坐标系.建系原则是利于运用已知条件,使表达式简明,运算简便.因此,要充分利用已知点和已知直线作为原点和坐标轴.(2)设点——选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程.(3)运算——通过运算,得到所需要的结果.3.已知B 村位于A 村的正西方向1千米处,原计划经过B 村沿着北偏东60°的方向埋设一条地下管线m ,但A 村的西北方向400米处,发现一古代文物遗址W .根据初步勘察的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?解:建立如图所示的平面直角坐标系,则A (0,0),B (-1 000,0),由W 位于A 的西北方向及 |AW |=400,得W (-2002,2002).由直线m 过B 点且倾斜角为90°-60°=30°,得直线m 的方程是x -3y +1 000=0.于是,点W 到直线m 的距离为 |-2002-3×2002+1 000|2=100×(5-2-6)≈113.6>100.所以,埋设地下管线m 的计划可以不修改.[例3] 求满足下列图形变换的伸缩变换:由曲线x 2+y 2=1变成曲线x ′29+y ′24=1.[思路点拨] 设出变换公式,代入方程,比较系数,得出伸缩变换. [解] 设变换为⎩⎪⎨⎪⎧x ′=λx ,λ>0y ′=μy ,μ>0,代入方程x ′29+y ′24=1,得λ2x 29+μ2y 24=1.与x 2+y 2=1比较,将其变形为λ29x 2+μ24y 2=1,比较系数得λ=3,μ=2.∴⎩⎪⎨⎪⎧x ′=3x y ′=2y,即将圆x 2+y 2=1上所有点横坐标变为原来的3倍,纵坐标变为原来的2倍,可得椭圆x ′29+y ′24=1.坐标伸缩变换φ:⎩⎨⎧x ′=λx λ>0y ′=μy μ>0注意变换中的系数均为正数.在伸缩变换下,平面直角坐标系保持不变,即在同一坐标系下只对点的坐标进行伸缩变换.利用坐标伸缩变换φ可以求变换前和变换后的曲线方程.已知前换前后曲线方程也可求伸缩变换φ.4.求4x 2-9y 2=1经过伸缩变换⎩⎨⎧x ′=2xy ′=3y 后的图形所对应的方程.解:由伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 得:⎩⎪⎨⎪⎧x =12x ′,y =13y ′,将其代入4x 2-9y 2=1, 得4·(12x ′)2-9·(13y ′)2=1. 整理得:x ′2-y ′2=1.∴经过伸缩变换后图形所对应的方程为x ′2-y ′2=1.5.在同一直角坐标系下经过伸缩变换⎩⎨⎧x ′=3x ,y ′=y 后,曲线C 变为x ′2-9y ′2=9,求曲线C 的方程.解:将⎩⎪⎨⎪⎧x ′=3x ,y ′=y 代入x ′2-9y ′2=9,得9x 2-9y 2=9,即x 2-y 2=1.6.求满足下列图形变换的伸缩变换:由曲线x 24+y 29=1变成曲线x ′216+y ′29=1.解:设变换为⎩⎪⎨⎪⎧x ′=λx ,λ>0,y ′=μy ,μ>0,代入方程x ′216+y ′29=1,得λ2x 216+μ2y 29=1,与x 24+y 29=1比较系数, 得λ216=14,μ29=19,得λ=2,μ=1.∴⎩⎪⎨⎪⎧x ′=2x y ′=y,即将椭圆x 24+y 29=1上所有点横坐标变为原来的2倍,纵坐标不变,可得椭圆x ′216+y ′29=1.[对应学生用书P3] 一、选择题1.将一个圆作伸缩变换后所得到的图形不可能是( ) A .椭圆 B .比原来大的圆 C .比原来小的圆D .双曲线解析:由伸缩变换的意义可得. 答案:D2.点(1,2)经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y后的点的坐标是( )A .(4,-3)B .(-2,3)C .(2,-3)D.⎝ ⎛⎭⎪⎫12,23 解析:把(1,2)代入⎩⎪⎨⎪⎧x ′=12x ,y ′=13y ,得⎩⎪⎨⎪⎧x ′=12,y ′=23.答案:D3.在同一平面直角坐标系中经过伸缩变换⎩⎨⎧x ′=5x ,y ′=3y 后曲线C 变为曲线2x ′2+8y ′2=0,则曲线C 的方程为( )A .25x 2+36y 2=0B .9x 2+100y 2=0C .10x +24y =0D.225x 2+89y 2=0解析:将⎩⎪⎨⎪⎧x ′=5xy ′=3y 代入2x ′2+8y ′2=0,得:2·(5x )2+8·(3y )2=0,即:25x 2+36y 2=0. 答案:A4.在同一坐标系中,将曲线y =3sin 2x 变为曲线y ′=sin x ′的伸缩变换是( )A.⎩⎪⎨⎪⎧x =2x ′y =13y ′B.⎩⎪⎨⎪⎧x ′=2x y ′=13y C.⎩⎨⎧x =2x ′y =3y ′ D.⎩⎨⎧x ′=2x y ′=3y 解析:设⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),则μy =sin λx ,即y =1μsin λx . 比较y =3sin 2x 与y =1μsin λx ,可得1μ=3,λ=2,∴μ=13,λ=2.∴⎩⎨⎧x ′=2x ,y ′=13y .答案:B 二、填空题5.y =cos x 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后,曲线方程变为________.解析:由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,得⎩⎪⎨⎪⎧x =12x ′,y =13y ′,代入y =cos x ,得13y ′=cos 12x ′,即y ′=3cos 12x ′. 答案:y ′=3cos x ′26.已知平面内有一固定线段AB 且|AB |=4.动点P 满足|P A |-|PB |=3,O 为AB 中点,则|PO |的最小值为________.解析:以AB 为x 轴,O 为坐标原点建立平面直角坐标系,则动点P 是以AB 为实轴的双曲线的右支.其中a =32.故|PO |的最小值为32.答案:327.△ABC 中,B (-2,0),C (2,0),△ABC 的周长为10,则A 点的轨迹方程为________.解析:∵△ABC 的周长为10, ∴|AB |+|AC |+|BC |=10.其中|BC |=4, 即有|AB |+|AC |=6>4.∴A 点轨迹为椭圆除去B 、C 两点,且2a =6,2c =4.∴a =3,c =2,b 2=5.∴A 点的轨迹方程为x 29+y 25=1(y ≠0). 答案:x 29+y 25=1(y ≠0) 三、解答题8.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y后的图形.(1)5x +2y =0;(2)x 2+y 2=1. 解:由伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y得到⎩⎪⎨⎪⎧x =2x ′,y =3y ′.①(1)将①代入5x +2y =0,得到经过伸缩变换后的图形的方程是5x ′+3y ′=0,表示一条直线.(2)将①代入x 2+y 2=1,得到经过伸缩变换后的图形的方程是x ′214+y ′219=1,表示焦点在x 轴上的椭圆.9.已知△ABC 是直角三角形,斜边BC 的中点为M ,建立适当的平面直角坐标系,证明:|AM |=12|BC |.证明:以Rt △ABC 的直角边AB ,AC 所在直线为坐标轴,建立如图所示的平面直角坐标系.设B ,C 两点的坐标分别为 (b,0),(0,c ).23 则M 点的坐标为(b 2,c 2).由于|BC |=b 2+c 2,|AM |= b 24+c 24=12 b 2+c 2,故|AM |=12|BC |.10.如图,在以点O 为圆心,|AB |=4为直径的半圆ADB 中,OD ⊥AB ,P 是半圆弧上一点,∠POB =30°,曲线C 是满足||MA |-|MB ||为定值的动点M 的轨迹,且曲线C 过点P.建立适当的平面直角坐标系,求曲线C 的方程.解:以O 点为原点,AB ,OD 所在直线分别为x 轴,y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (3,1),依题意得||MA |-|MB ||=|P A |-|PB |=(2+3)2+12-(2-3)2+12=22<|AB |=4. ∴曲线C 是以原点为中心,A ,B 为焦点的双曲线.设实半轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为x 22-y 22=1.。

相关文档
最新文档