液压与气压传动

合集下载

液压与气压传动

液压与气压传动


液压技术正在向高压、高速、大流 量、高效率、低噪音,集成比方向发展; 新的液压元件和液压系统的计算机辅助 设计、优化设计数字仿真、微机控制等 新技术也日益发展、应用,并取得了很 多显著成果。,提高
元件效率。 二、液压与微电子、计算机技术结合, 提高控制性能和操作性能。 三、提高液压传动的可靠性。 四、发展新型液压介质和相应元件。 五、高度集成化。
不考虑液体的可压缩性、 漏损和缸体、管路的变形, 则容积变化量必然是相等的。 |ΔV1|=|ΔV2| 液压传动本质上是容积传动。
液压传动装置的组成:
液压千斤顶是一个简单又较完整的
液压传动装置。 组成部分:

(1)能源装置 (2)执行装置 (3)控制调节装置 (4)辅助装置 (5)工作介质
第三节 液压传动的特点及应用
一、特点 优点: 1、液压传动能在运行中实现大范围的无级调速,
调速方便。 2、液压传动工作比较平稳,反应快,冲击小,能 高速启动,制动和换向。易于实现往复直线运动。 3、在同等功率的情况下,液压传动装置的体积小, 重量轻,惯性小,结构紧凑,而且能传递较大的 力或转矩。 4、液压传动装置的控制、调节比较简单,操纵比 较方便、省力。


2 1
6 3 5 7
4
图1-1 油压千斤顶工作原理图
图1-1 油压千斤顶工作原理图 图1-1 油压千斤顶工作原理图
1.小油缸
2.大油缸
3.截止阀
4.油箱
5、6.单向阀
7.安全阀
小活塞和单向阀5、6一起完成吸油和排油,
将杠杆的机械能转换为油液的压力能输出。 习惯上将机械能转换为压力能的元件称为动 力元件。(液压泵) 大活塞将油液的压力能转换为机械能输出, 抬起重物。将压力能转换为机械能的元件称 为执行元件。(液压缸、液压马达) 大、小活塞组成了最简单的液压传动系统, 实现了力和运动的传递 。 这个过程表示为: 机械能→液体的压力能→机械能

液压与气压传动

液压与气压传动

液压与气压传动液压与气压传动是工业现代化生产的重要组成部分,液压与气压作为传动介质,已经广泛应用于各种机械、工具、设备、以及各类工业自动化系统和生产流水线上。

本文将主要从液压与气压传动的基本原理、特点以及优缺点等方面进行探讨。

一、液压气压传动基本原理液压传动系统的基本组成部分主要包括:液压泵、液压缸、液压阀、液压油箱、油管、以及液压控制阀等。

液压系统中,液压泵负责将机械能转换成液压能,由液压泵产生的液压能作为有效载荷传递到被控制的液压元件上,通过控制液压阀的开启和关闭来实现各种运动控制。

气压传动系统也是由几个部分组成的,主要包括压缩机、气缸、气阀、压力表、以及一个气槽等。

气压系统中,压缩机负责将机械能转换成压缩空气,通过气缸所传递的空气压力,实现各种运动控制。

二、液压气压传动的特点1、液压传动特点液压传动系统比气压传动系统在各方面都更加稳定和可靠。

由于液压能储存时间较长,且油液受热膨胀系数小,不易泄漏,因此液压传动系统运行起来比气压传动稍微安全。

此外,液压传动系统可实现无级调速功能,同时承受的荷载也能大于气压传动系统。

2、气压传动特点相对于液压传动,气压传动具有价格较为便宜的优势。

气压传动的另一个优势是气缸行程大,且行程能通过重复拼接的方式实现无级调节。

此外,气压传动还具有快速响应的特点,当工作中的负荷突然增加时,气压传动能够响应自如,更快地完成加速和减速操作。

三、液压气压传动优缺点比较1、液压传动系统优缺点液压传动系统具有加速、减速平稳、静音、开关灵活、精确度高等优点,此外使用寿命比较长,维护成本较低。

但是,液压传动系统也存在着以下缺点:传动过程中会产生噪音,维护操作人员需要具备一定的技能和经验。

另外还需要经常维护常规保养,以及防止油液泄漏等问题。

2、气压传动系统优缺点气压传动系统具有价格低廉,适用范围广、安全性高的优点。

此外,气压传动系统操作简单,无需专业技能。

但是,气压传动系统存在传动路途中能量损失较大,且响应速度慢,不能实现调速等缺点。

液压与气压传动概念

液压与气压传动概念

液压与气压传动概念1.液压与气压传动系统的工作原理:1).液压与气压传动是分别以液体和气体作为工作介质来进行能量传递和转换的;2).液压与气压传动是分别以液体和气体的压力能来传递动力和运动的;3).液压与气压传动中的工作介质是在受控制、受调节的状态下进行的。

2.液压与气压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。

3.液压与气压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。

2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。

4.液压传动的特点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,可以很方便地对液体的流动方向、压力和流量进行调节和控制,并能很容易地和电气、电子控制、气压传动控制或其它传动控制结合起来,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),因此,传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。

5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。

液压与气压传动

液压与气压传动

第一章液压传动概述第一节液压传动发展概况一、液压传动的定义一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。

原动机包括电动机、内燃机等。

工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。

由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。

一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。

(举例说明机器的组成及传动机构在机器中的作用及能量在机器工作过程中输入、输出的转换形式。

)传动机构通常分为机械传动、电气传动和流体传动机构。

机械传动是通过齿轮、齿条、蜗轮、蜗杆等机件直接把动力传送到执行机构的传递方式。

电气传动是利用电力设备,通过调节电参数来传递或控制动力的传动方式。

流体传动是以流体为工作介质进行能量转换、传递和控制的传动。

它包括液压传动、液力传动和气压传动。

液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。

液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。

(举例说明液压传动和液力传动的区别)由于液压传动有许多突出的优点,因此被广泛用于机械制造、工程建筑、石油化工等各个工程技术领域。

液压传动——利用液体静压力传递动力液体传动液力传动——利用液体静流动动能传递动力流体传动气压传动气体传动气力传动二、液压传动的发展概况自18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二三百年的历史。

直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。

在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。

第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。

本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。

气压传动与液压传动的比较分析

气压传动与液压传动的比较分析

气压传动与液压传动的比较分析气压传动和液压传动都是常见的工业传动方式,它们在工业领域广泛应用。

本文将对气压传动和液压传动进行比较分析,从能源效率、控制系统、维护成本等方面进行对比,以便更好地了解两者的差异与适用场景。

一、能源效率气压传动和液压传动在能源效率方面有一定的差异。

气压传动系统使用的是压缩空气作为动力源,而液压传动则使用液体作为动力源。

由于压缩空气具有较低的能量传输效率,气压传动在同等功率下的能源效率相对较低。

液压传动系统由于液体的高传输效率,在同等条件下能够实现更高的能源转换效率。

二、控制系统在控制系统设计方面,气压传动和液压传动也存在一些不同。

气压传动系统的控制相对简单,往往采用开关控制或者调节阀控制来实现运动的启停和速度的调节。

而液压传动系统采用的是流量控制技术,可以实现精确的运动控制,例如速度控制、位置控制等。

液压传动的控制系统较为复杂,但也具备更高的控制精度和灵活性。

三、维护成本从维护成本的角度看,气压传动和液压传动也有一些区别。

由于气压传动系统相对简单,其维护成本相对较低。

气压传动系统不需要液体介质,维护过程中无需更换油液或者进行液压系统的排气等工作。

液压传动系统则需要定期更换液体介质,并进行液压系统的检修和保养。

液压传动的维护成本较高,但在可靠性和稳定性方面更具优势。

结论综上所述,气压传动和液压传动在能源效率、控制系统和维护成本等方面存在一定的差异。

气压传动适用于对精度要求不高的简单控制系统,维护成本相对较低;而液压传动适用于对精度要求高、需要精确控制的系统,虽然维护成本较高但相对更稳定可靠。

在实际应用中,需要根据具体需求和条件来选择合适的传动方式。

总之,气压传动与液压传动都是在工业领域中常见的传动方式。

对于不同的应用场景,根据能源效率、控制系统和维护成本等方面的比较分析,我们可以选择更适合的传动方式,以提高工作效率和降低成本。

在未来的发展中,也有可能出现新的传动方式,我们需要密切关注并进行适时的技术更新与应用。

液压与气压传动报告

液压与气压传动报告

液压与气压传动报告1.液压传动的工作原理液压传动利用液体在封闭系统内的压力传递力量。

液压系统由一个液压泵、液压缸、阀门、管道和液压油组成。

当泵工作时,它通过管道将液压油推送到液压缸中,液压油的压力使液压缸活塞移动,从而产生力量。

这种力量可以用于执行各种工作,如起重、挤压和控制系统中的动作。

2.液压传动的优势液压传动具有以下几个优势:•高功率密度:相比于气压传动,液压传动可以提供更高的功率输出。

•精确控制:液压系统可以通过精确调节流量和压力来实现精确的运动控制。

•动力平稳:液压传动的工作非常平稳,几乎没有冲击和振动。

3.气压传动的工作原理气压传动利用气体在封闭系统内的压力传递力量。

气压系统由一个气压泵、气压缸、阀门、管道和压缩空气组成。

当泵工作时,它将压缩空气推送到气压缸中,压缩空气的压力使气压缸活塞移动,从而产生力量。

气压传动常用于需要较小功率输出的应用,如自动化生产线上的轻型装配工作。

4.气压传动的优势气压传动相对于液压传动具有以下几个优势:•成本较低:气压传动的设备和维护成本通常比液压传动更低。

•安全性较高:气体在泄漏时较容易检测,相比于液体泄漏更加安全。

•简单维护:与液压系统相比,气压系统的维护较为简单。

5.液压与气压传动的应用领域液压传动和气压传动在不同的应用领域中得到广泛应用。

•液压传动:液压系统常用于需要高功率输出和精确控制的应用,如建筑机械、航空航天设备和工业自动化。

•气压传动:气压系统常用于需要较小功率输出和简单操作的应用,如汽车制造、食品加工和轻型装配线。

总结:液压传动和气压传动都是常见的动力传动系统,它们在不同的应用领域中有着各自的优势。

液压传动适用于需要高功率输出和精确控制的场景,而气压传动适用于需要较小功率输出和简单操作的场景。

选择液压传动还是气压传动应根据具体应用需求来决定,以达到最佳效果。

液压与气压传动

液压与气压传动
执行元件(液压缸、液压马达等)将液体的压力能转 化为机械能输出,以得到既定的运动和力的形式。
液压系统的 基本组成
动力元件:液压泵。
执行元件:液压缸、液压马达。
控制调节元件:控制和调节液压系统的压力、 流量及液流方向的装置,如各类液压阀等。
液压传动系统组成
两次能 量转化
动力元件(液压泵)将机械能转换为液体的压力能;
对环境的适应性好。如:易燃易爆、高温场合、 食品、医药医疗。
气压传动的特点
相比之下,空气介质具有无成本、流动阻力小、较易压缩、环境适应强等特点
压力小,动力性能不如液压,执行件尺寸较大。
气压传动 的特点为
系统稳定性差、调速性能差。
某些情况气源处理装置花费大
液压传动的基本应用
工程机械
1
2 金属切削机床、压力机
液压与气动传动的工作原理
液压传动的工作原理: 如图1-1是液压千斤顶的工作原理图。提起手柄→小活塞 上移→小活塞下端油腔容积增大(形成局部真空)→单向阀 4打开→经吸油管5从油箱12中吸油; 压下手柄→小活塞下移→小活塞下腔压力升高→单向阀4 关闭,单向阀7打开→下腔的油液经管道6、单向阀7输入 油缸9的下腔→迫使大活塞8上移→顶起重物。再提手柄 吸油时→单向阀7自动关闭→油液不能倒流→保证了重物 不会自行下落。不断地往复扳动手柄,就能不断地把油液 压入举升缸下腔,使重物逐渐地升起。如打开截止阀11→ 举升缸下腔的油液经管道10、截止阀11流回油箱→重物 就向下移动。这就是液压千斤顶的工作原理。
执行元件(液压缸、液压马达等)将液体的压力能转 化为机械能输出,以得到既定的运动和力的形式。
工作介质:通常为液压油
液压系统的 基本组成
辅助元件:如油管、管 接头、油箱、过滤器、 蓄能器和压力表等。

液压与气压传动

液压与气压传动

液压传动的工作原理和特征讲解:杨竞为例来简述液压传动的工作原理=WA1/A2工作压力取决于外负载。

运动的传递遵照容积变化相等的原则而与液体压力P的压力和流量是液压与气压传动中的两个最基本的系统原理图形符号图液压与气压传动系统的组成�动力元件——将机械能转换为流体压力能的装置。

液压泵或空气压縮机。

�执行元件——将流体的压力能转换为机械能的元件。

液压缸或气缸、液压马达或气马达。

�控制元件——控制系统压力、流量、方向的元件以及进行信号转换、逻辑运算和放大等功能的信号控制元件。

如溢流阀、节流阀、方向阀等。

�辅助元件——保证系统正常工作除上述三种元件外的装置。

如油箱、过滤器、蓄能器、油雾器、消声器、管件等。

�工作介质——传递信号和能量。

如空气、水、液压油液压系统的基本组成液压传动的优点与缺点液压传动的优点� 1.流量和压力具有良好的可控性,可实现较宽的调速范围,能较方便地实现无级调速,调速范围为2000:1 ;� 2.易于实现过载保护;� 3.具有防锈和自润滑能力,使用寿命长;� 4.在输出同等功率条件下,液压传动体积小,重量轻,即动力密度大;� 5.便于布局,适宜中距离传输和分配动力;� 6.易于实现系列化、标准化、通用化及自动化。

液压传动的缺点1.由于泄漏和管道的弹性变形等原因,液压传动不宜用于传动比要求严格的场合;2.液压传动如密封不严或零件磨损后产生渗漏,影响工作机构运动的平稳性和系统效率,而且污染环境;3.液压系统混入空气后,会产生爬行和噪声等;4.液压传动的能量损失较大,系统效率较低;5.油液的黏度随温度而变,从而影响运动的平稳性,故不宜在温度变化范围较大的工作场合工作;6.故障不宜查找等。

气压传动及控制的优缺点(1) 气动元件结构简单,标准化、系列化、通用化程度高(2) 工作介质来源方便,能采用集中供气源(3) 易于实现自动化,是实现低成本自动化的最佳手段(4) 具有广泛的工作适应性(如易燃、易爆场合),安全、可靠、易实现过载保护(5) 输出力或力矩小(6) 传动效率低、运动平稳性差、难于实现精确控制容易小小易易较高较差较快较快较大大大较大液压与气压传动的应用概况�工业应用:液压与气动技术应用在机床、工程机械、冶金机械、塑料机械。

气压传动的液压传动对比与选择

气压传动的液压传动对比与选择

气压传动的液压传动对比与选择液压传动和气压传动是目前工业领域中常用的两种传动方式。

它们以流体力学为基础,具有相似的原理,但在一些实际应用中存在较大的差异。

本文将对气压传动和液压传动进行对比,并为读者提供选择的建议。

一、气压传动的特点气压传动是利用气体的压力进行能量传递的一种传动方式。

其主要特点如下:1. 高压气体驱动:气压传动使用高压气体(通常为压缩空气)作为动力源,能够提供较大的工作压力。

这使得气压传动适用于一些需要高压力的工况,如冲压、压铆等。

2. 较高的能量密度:由于气体的压缩性质,气压传动具有较高的能量密度。

相较于传统的机械传动方式,气压传动可以在较小的空间内实现相同功效的动力传输。

3. 无火灾隐患:气压传动主要使用压缩空气作为动力源,相较于液压传动中的液体,气体没有引燃的危险,降低了火灾的风险。

二、液压传动的特点液压传动是利用液体的压力进行能量传递的一种传动方式。

其主要特点如下:1. 较稳定的输出:相较于气体,液体在传动过程中有较小的压力损失,能够提供更稳定的输出力。

这使得液压传动在需要精确控制的场合中更加适用,如机床、起重设备等。

2. 较高的传动效率:液压传动具有较高的传动效率,能够实现较大功率的传递。

在一些需要较大扭矩和动力输出的工况下,液压传动常常被选择作为首选传动方式。

3. 精确的控制性能:液压传动系统具有较好的封闭性和可调性,能够实现精确的控制和调节。

这使得液压传动在需要实时调整的工况中更具优势,如汽车制动系统、航空航天领域等。

三、选择气压传动还是液压传动?在选择气压传动或液压传动时,需根据具体应用场景进行综合考虑。

以下是一些参考因素:1. 工作环境:气压传动适用于一些易燃易爆的环境,而液压传动则适用于一些特殊工况,如高温、低温等。

根据实际工作环境的特点,选择合适的传动方式。

2. 功率需求:如果需要传递较大功率和扭矩,液压传动通常更为适用。

而对于较小功率的传动需求,气压传动可能更加经济高效。

液压与气压传动总结(全)

液压与气压传动总结(全)

一、名词解释1.帕斯卡原理(静压传递原理):(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。

)2.系统压力:(系统中液压泵的排油压力。

)3.运动粘度:(动力粘度μ和该液体密度ρ之比值。

)4.液动力:(流动液体作用在使其流速发生变化的固体壁面上的力。

)5.层流:(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。

)6.紊流:(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。

)7.沿程压力损失:(液体在管中流动时因粘性摩擦而产生的损失。

)8.局部压力损失:(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.液压卡紧现象:(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。

当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。

)10.液压冲击:(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。

)11.气穴现象;气蚀:(在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。

当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。

如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。

这种因空穴产生的腐蚀称为气蚀。

)12.排量:(液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。

)13.自吸泵:(液压泵的吸油腔容积能自动增大的泵。

)14.变量泵:(排量可以改变的液压泵。

)15.恒功率变量泵:(液压泵的出口压力p与输出流量q的乘积近似为常数的变量泵。

液压与气压传动

液压与气压传动

液压与气压传动液压与气压传动是现代工程领域常用的一种能量传递方式。

本文将从液压传动和气压传动的原理、应用领域、优缺点等方面进行详细介绍。

一、液压传动液压传动是一种以液体作为工作介质的传动方式。

液压传动主要由液压泵、液压缸、液压阀等组成。

其工作原理是利用泵将液压油加压后,通过阀控制液压油的流动来实现能量传递。

1. 液压传动的原理液压传动原理基于Pascal定律,即在任何封闭系统内,外加的压力改变会均匀传递到系统的各个部分。

液压传动通过控制液体的流动来实现机械部件的运动。

液压泵会产生一定压强的液压油,经过液压阀的控制,液压油进入液压缸,从而使液压缸产生推力,推动负载实现运动。

2. 液压传动的应用领域液压传动在众多领域中得到广泛应用。

例如,工程机械领域中的挖掘机、装载机等重型设备常采用液压传动。

汽车工业领域中的液压刹车、液压助力转向系统也是液压传动的典型应用。

此外,航空、冶金、军事等领域中也广泛使用液压传动。

3. 液压传动的优缺点液压传动的优点主要有:传动力矩大、速度可调、传动平稳、反应迅速、工作可靠等。

液压传动的缺点主要有:液压油易泄漏、工作温度高、噪音大等。

二、气压传动气压传动是一种以气体作为工作介质的传动方式。

气压传动主要由气压泵、气缸、气控阀等组成。

其工作原理是通过控制气体的压力和流量来实现能量传递。

1. 气压传动的原理气压传动原理基于Boyle定律和Charles定律,即在一定温度下,气体的压强与体积呈反比关系;气体的压强与温度呈正比关系。

气压传动通过控制气体的压力和流量来实现机械部件的运动。

气压泵将气体加压后通过气控阀控制气流的流动,从而推动气缸产生推力,实现负载的运动。

2. 气压传动的应用领域气压传动在一些特定领域中得到广泛应用。

例如,自动化生产线中常使用气压传动控制机械臂、夹具等设备。

汽车维修行业中的气动工具也大量采用气压传动。

此外,喷涂、抽吸、包装等行业中也常使用气压传动。

3. 气压传动的优缺点气压传动的优点主要有:传动力矩大、速度可调、反应迅速、结构简单、成本较低等。

液压与气压传动

液压与气压传动
单位换算:1 m2 /s=104 St(斯)=106 cSt(厘斯)
例1:普通液压油YA-N32,N32表示该油在40℃时平均运动粘 度为 32 mm2/s , 即 32 × 10-6 m2/s。
例2:20 ℃时 ν水= 10-6 m2/s, ρ水= 103 kg/m3; ν空气= 15× 10-6 m2/s, ρ空气= 1.2 kg/m3。
1、力比关系
p G F
A2
A1
或: G A 2
F
A1
讨论:(不考虑活塞自重及摩擦阻力)
(1)当G=0时, p=0, F=0; (2)当G → ∞ 时, p → ∞, F → ∞ 。
F A1
结论: A、系统的工作压力取决于负载,而与流量大小无关。 B、当A2 》A1,只要施加很小的力F,就可举起很重的物体,
于静止状态的液体不呈现粘性。
例1:如一瓶水和一瓶菜油,放在形状完全相同的两 只棕色瓶中,怎样鉴别?(不准用嗅觉和味觉)
2、粘度
液体的粘性大小可用粘度来表示。
动力粘度μ :单位:Pa•S(帕•秒)
粘度 运动粘度ν :单位:m2/s 。与动力粘度换算公式:
ν=μ/ρ
相对粘度:用各种粘度计测量。
(1)动力粘度μ
较麻烦。
2、用液压与气动系统图形符号表示(GB786—76, GB786.1-93)
基本规定 :
(1)符号只表示元件的职能,连接系统的通路,不表示元件的 具体结构和参数,也不表示元件在机器中的实际安装位置。
(2) 主油(气)路用标准实线表示,控制油(气)路用虚线表示。 元件符号内的流体流动方向用“↑”表示,“↑”指向不一定是 油流方向。
⑤由于工作压力低(小于0.8MPa),对元件材料及加工精度要求低。

液压与气压传动

液压与气压传动

3
纺织印染行业
空气传动在纺织印染行业中用于机动车、染色机、印花机、拉幅机、细纱机、绷马、卷绕机、挠 绒机、剪毛机、缝纫机等设备。
汽车气压传动的应用
1
制动系统
制动气压系统是现代汽车的标准配置,使用气送式液压技术实现制动。它比液压 制动系统更容易维修和保养。
2
悬挂系统
汽车气压悬挂技术主要是针对高级别的豪华轿车或SUV所采用的,通过碰撞传感 器、弹簧和气压缓冲杆等实现悬挂调节。
油管管路
将液体传输到各液压元件,并保持良好的密封性和 可靠性。
压力表和油温计
用于显示液压系统压力和温度,监控液压系统运行 状态。
控制阀
控制液压系统压力、流量、方向、线速等参数。
液压传动应用场景
1
冶金机械
2
钢铁行业和有色金属冶炼业使用大量液压传
动设备,如轧机、冷却机、混铁炉等。
3
工程机械
液压传动常用于挖掘机、起重机、铲运机等 工程机械中,提高运行效率和精度。
3
结构件和安全系统
气压技术也用于汽车挂架结构件、座椅调剂和安全系统等,如安全气囊、气囊卷 扬器、气囊电子控制系统等。
液压传动的故障排除
1 常见故障
2 检修方法
液压传动系统常见故障有油温过高、油流量差、 压力偏低等问题,这些问题可能是由于液体流动 障碍、元件或管路损坏或液压系统过载所导致的。
液压传动故障排除方法一般是逐个排查三大元件 并修理、更换。同时,应常规进行检验、清洁和 添加润滑油等维护保养工作。
液压缸的运动力从小到大,速度从 慢到快,使得其在机械设备上所起 的作用也有所差异。
液压泵原理与应用
工作原理
由于变径装置的作用,完成将机械 能转化为液压能的功能,压缩油液 并驱动输液管道,从而播种牧草等 农业设备的空气式喷雾。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压传动课程设计题目名称液压与气压传动专业班级2013机械设计制造及自动化学生姓名董韬志学号51501111006指导教师王月英机械与车辆工程系二○一六年六月八日目录一:任务书 (3)二:指导老师评阅表 (4)三:设计内容 (5)1.分析负载 (5)2.确定执行元件主要参数 (6)3.设计液压系统方案和拟定液压系统原理图 (9)4.选择液压元件 (15)5.验算液压系统性能 (20)四:设计小结 (24)五:参考资料 (25)蚌埠学院机械与车辆工程系一:液压传动课程设计任务书班级:2015机械设计制造及自动化(升本)姓名:董韬志学号:51501111006 指导老师:王月英1.设计题目:设计一台卧式单面多轴钻孔组合机床动力滑台的液压传动系统,动力滑台的工作循环是“快进---工进---快退---停止”,液压传动系统的主要性能参数如下:轴向切削力为11000N,移动部件的总重力为10000N,快进行程为100mm,快进与快退速度均为4m/min,工进行程为50mm,工进速度为0.08m/min,加速和减速时间均为0.3s,滑台采用平导轨,静摩擦系数为0.2,动摩擦系数为0.15,动力滑台可以随时在中途停止运动,设计该组合机床的液压传动系统。

2.设计要求:液压系统图拟定时需要提供两种以上的设计方案的选择比较。

从中选择你认为更好的一种进行系统元件选择计算。

3.工作量要求:a. 液压系统图一张b. 液压缸装配图一张c. 设计计算说明书一份系统图与液压缸装配图均使用A1图纸绘制二:指导老师评阅表蚌埠学院本科课程设计评阅表机械与车辆工程系2015级机械设计制造及自动化(升本)专业三:设计内容1 分析负载1) 工作负载:工作负载是在工作过程中由于机械特定的工作情况而产生的负载。

对于金属切削机床液压系统来说,沿液压缸轴线方向的切削力即为工作负载 即:F g =21000N2) 惯性负载(加减速时):机床的工作部件的总重力为12000N (g 取9.8kg )3) 阻力负载:机床工作部件对动力滑台导轨的法向力为:F n =mg=G=10000N静摩擦阻力:F fs =f s F n =0.2× 10000N=2000N动摩擦阻力:F fd =f d F n =0.15×10000N=1500N由此得出液压缸在各工作阶段的负载如表1所示:表1 液压缸在各工作阶段的负载F (单位:N)N 1.272N 3.0604)8.9/12000()/(m =⨯⨯=∆∆=t v g G F注:不考虑动力滑台上颠覆力矩的作用按上表数值绘制负载图1a所示:由于是v1=v3=3.5m/min、L1=100mm、L2=50mm、快退行程L3=L1+L2=150mm,工进速度v2=0.08m/min,由此可绘出速度图如图1b所示。

图1 组合机床液压缸负载图和速度图a)负载图 b)速度图2 确定执行元件主要参数1) 由《液压与气压传动》第2版教材书表8-7,表8-8可知,组合机床在最大负载约为11000N时液压系统宜取压力P1=2.5Mpa.2) 动力滑台要求快进,快退速度相等,且是单面钻孔所以这里的液压缸可选用单活塞杆式,并在快进时做差动连接。

这种情况下液压缸的无杆腔的工作面积A1应为有杆腔动作面积A2的两倍,即φ=A1/A2=2,而活塞杆直径d与缸筒直径D成d=0.707D的关系。

在钻孔加工时,液压缸回油路上必须具有背压p2,以保证钻孔时滑台的平稳。

按《液压与气压传动》第2版教材表8-3取p2=0.6MPa。

快进时液压缸作差动连接,管路中有压力损失,有杆腔的压力应略大于无杆腔,但其差值较小,可先按0.4MPa考虑。

快退时回油腔中是有背压的,这时p2也可按0.6MPa估算。

液压缸的效率ηm=0.95。

由工进时的负载值按由工进时的负载值按《液压与气压动》第二版教材表8-9中的公式计算液压缸面积:将这些直径按GB/T2348—2001圆整成就近标准值得:D=0.07m、d=0.05m由此求得液压缸两腔的实际有效面积为:A1=πD/4=54×10-4m2,A2=π(D-d)/4=15×10-4m2根据上述D和d的值,可估算出液压缸在各个工作阶段中的压力、流量和功率,如表2所示,并据此绘出工况图如图2所示。

表2 液压缸在不同工作阶段的压力、流量和功率值注:m /'ηF F =。

图2 液压缸工况图3 设计液压系统方案和拟定系统原理图1) 设计液压系统方案工况图表明,所设计组合机床液压系统在整个工作循环过程中所需要的功率较小,系统的效率和发热问题并不突出,因此考虑采用节流调速回路即可。

虽然节流调速回路效率低,但适合于小功率场合,而且结构简单、成本低。

该机床的进给运动要求有较好的低速稳定性和速度-负载特性,因此有三种速度控制方案可以选择,即进油节流调速、回油节流调速、容积节流调速。

钻孔加工属于连续切削加工,加工过程中切削力变化不大,因此钻削过程中负载变化不大,采用节流阀的节流调速回路即可。

但由于在钻头钻入工件表面及孔被钻通时的瞬间,存在载荷突变的可能,因此考虑在工作进给过程中采用具有压差补偿的进油调速阀的调速方式,且在回油路上设置背压阀。

从工况图中可以得到,在这个液压系统的工作循环内,液压缸要求油源交替地提供低压大流量和高压小流量的油液。

快进加快退所需的时间t1和工进所需的时间t2分别为:亦即是t1/t2=10。

因此从提高系统效率、节省能量角度来看,如果选用单个定量泵作为整个系统的油源,液压系统会长时间处于大流量溢流状态,从而造成能量的大量损失,这样的设计显然是不合理的。

如果采用一个大流量定量泵和一个小流量定量泵双泵串联的供油方式,由双联泵组成的油源在工进和快进过程中所输出的流量是不同的,此时液压系统在整个工作循环过程中所需要消耗的功率估大,除采用双联泵作为油源外,也可选用限压式变量泵作油源。

但限压式变量泵结构复杂、成本高,且流量突变时液压冲击较大,工作平稳性差,最后确定选用双联液压泵供油方案,有利于降低能耗和生产成本。

如图3(a)所示。

2) 选择基本回路由于不存在负载对系统作功的工况,也不存在负载制动过程,故不需要设置平衡及制动回路。

但必须具有快速运动、换向、速度换接以及调压、卸荷等回路。

a 选择快速运动和换向回路所设计的液压系统对换向平稳性的要求不高,流量不大,压力不高,所以选用价格较低的电磁换向阀控制换向回路即可。

为便于实现差动连接,选用三位五通电磁换向阀。

为了调整方便和便于增设液压夹紧支路,应考虑选用Y型中位机能。

如图3(b)所示。

b 选择速度换接回路由工况图可知:当滑台从快进转为工进时,输入液压杆的流量由15.38L/min降至6.2L/min,滑台的变化速度较大,可选用行程阀来控制速度的换接,以减小液压冲击,如图3(C)所示。

c 选择调压和卸荷回路油源中有溢流阀(见图8 3a),调定系统工作压力,因此调压问题已在油源中解决,无须另外再设置调压回路。

而且,系统采用进油节流调速,故溢流阀常开,即使滑台被卡住,系统压力也不会超过溢流阀的调定值,所以又起安全作用。

在图8 3a所示的双液压泵自动两级供油的油源中设有卸荷阀,当滑台工进和停止时,低压、大流量液压泵都可经此阀卸荷。

由于工进在整个工作循环周期中占了绝大部分时间,且高压、小流量液压泵的功率较小,故可以认为卸荷问题已基本解决,就不需要再设置卸荷回路。

图3 油源及液压回路的选择a)液压源 b)换向回路 c)速度换接回路3)将液压回路综合成液压系统把上面选出的各种液压回路组合画在一起,就可以得到一张图4所示的液压系统原理图(不包括点划线圆框内的元件)。

将此图仔细检查一遍,可以发现,该图所示系统在工作中还存在问题。

为了防止干扰、简化系统并使其功能更加完善,必须对图4所示系统进行如下修整:图4 液压回路的综合和整理为了解决滑台工进(阀2在左位)时图中进、回油路相互接通,系统无法建立压力的问题,必须在换向回路中串接一个单向阀a,将进、回油路隔断。

为了解决滑台快进时回油路接通油箱,无法实现液压缸差动连接的问题,必须在回油路上串接一个液控顺序阀b。

这样,滑台快进时因负载较小而系统压力较低,使阀b关闭,便阻止了油液返回油箱。

为了解决机床停止工作后回路中的油液流回油箱,导致空气进入系统,影响滑台运动平稳性的问题,必须在电液换向阀的回油口增设一个单向阀c。

为了在滑台工进后系统能自动发出快退信号,须在调速阀输出端增设一个压力继电器d。

若将顺序阀b和背压阀8的位置对调一下,就可以将顺序阀与油源处的卸荷阀合并,从而省去一个阀。

经过修改、整理后的液压系统原理图如图5所示:1图5 整理后的液压系统原理图图6 电磁铁动作顺序表要实现系统的动作,即要求实现的动作顺序为:快进→工进→快退→停止。

则可得出液压系统中各电磁铁的动作顺序如上图6所示。

表中“+”号表示电磁铁通电或行程阀压下;“—”号表示电磁铁断电或行程阀复位。

具体油路分析:A.快进:油箱→滤油器11 →双泵1 →单向阀10 →阀2左腔→单向阀6 →行程阀3下腔→缸右腔→缸左腔→阀2左腔B.工进:油箱→滤油器11 →双泵1 →单向阀10 →阀2左腔→调速阀4 →缸右腔→缸左腔→阀2左腔→阀8 →阀7 →油箱C.快退:油箱→滤油器11 →双泵1 →单向阀10 →阀2左腔→缸右腔→缸左腔→单向阀12 →油箱D.停止:阀2中位、阀3上腔4 选择液压元件1)液压泵液压缸在整个工作循z环中的最大工作压力为5.6MPa,如取进油路上的压力损失为0.8MPa,为使压力继电器能可靠地工作,取其调整压力高出系统最大工作压力0.5MPa,则小流量液压泵的最大工作压力应为:P p1=(5.6+0.8+0.5)MPa=6.9MPa大流量液压泵在快进、快速运动时才向液压缸输油,由图2可知,快退时液压缸的工作压力比快进时大,如取进油路上的压力损失为0.5MPa(因为此时进油不经调速阀故压力损失减小),则大流量液压泵的最高工作压力为:P p2=(1.676+0.5)MPa=2.176MPa由图2可知,两个液压泵应向液压缸提供的最大流量为14L/min,因系统较简单,取泄漏系数K L=1.05,则两个液压泵的实际流量应为:q p=1.05×14L/min=14.7L/min考虑到溢流阀的最小稳定溢流量为3L/min,而工进时输入液压缸的流量为 6.24L/min,且小流量液压泵单独供油,所以小液压泵的流量规格最少应为9.24L/min。

根据以上压力和流量的数值查阅设计手册,确定选取PV2R12-6/26型双联叶片液压泵,其小液压泵和大液压泵的排量分别为6mL/r和26mL/r,当液压泵的转速np=940r/min时该液压泵的理论流量为30.08L/min,取液压泵的容积效率ηv=0.9,则液压泵的实际输出流量为:q p=[(9.24+26)×940×0.9/1000]L/min =29.81L/min由于液压缸在快退时输入功率最大,这时液压泵工作压力为2.176MPa、流量为29.81L/min。

相关文档
最新文档