广东省汕头市2019-2020学年高二上学期期末联考数学(理)试题Word版含答案

合集下载

2019-2020学年广东省联考联盟高二(上)期末数学试卷

2019-2020学年广东省联考联盟高二(上)期末数学试卷

2019-2020学年广东省联考联盟高二(上)期末数学试卷一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“x R ∀∈,22x x ≠”的否定是( ) A .x R ∀∈,22x x =B .0x R ∃∉,202x x =C .0x R ∃∈,202x x ≠ D .0x R ∃∈,202x x =2.(5分)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒3.(5分)若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )A .(7,B .(14,C .(7,±D .(7,4.(5分)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A .//m α,//n α,则//m nB .m α⊂,//n α,则//m nC .m α⊥,n α⊥,则//m nD .//αβ,m α⊂,n β⊂,则//m n5.(5分)正方体的棱长为a ,且正方体各面的中心是一个几何体的顶点,这个几何体的棱长为( )A B .12aC D .13a6.(5分)已知直线1:(1)2l x m y m ++=-与2:24160l mx y ++=,若12//l l ,则实数m 的值为( ) A .2或1-B .1C .1或2-D .2-7.(5分)曲线221169x y +=与曲线221(916)169x y k k k+=<<--的( )A .长轴长相等B .短轴长相等C .焦距相等D .离心率相等8.(5分)在平行六面体1111ABCD A B C D -中,若1123AC xAB yBC zDD =-+u u u u r u u u r u u u r u u u u r,则(x y z ++=) A .23B .56C .1D .769.(5分)直线1y x =+被椭圆2224x y +=所截得的弦的中点坐标是( )A .12(,)33-B .1(3-,1)2C .1(2,1)3-D .2(3-,1)310.(5分)如图,已知一个圆柱的底面半径为3,高为2,若它的两个底面圆周均在球O 的球面上,则球O 的表面积为( )A .323πB .16πC .8πD .4π11.(5分)已知双曲线2222:1(0,0)x y E a b a b-=>>,过原点O 任作一条直线,分别交曲线两支于点P ,Q (点P 在第一象限),点F 为E 的左焦点,且满足||3||PF FQ =,||OP b =,则E 的离心率为( ) A 3B 2C 5D .212.(5分)一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)四边形;(3)五边形;(4)六边形,其中正确的结论是( ) A .(1)(3)B .(2)(4)C .(2)(3)(4)D .(1)(2)(3)(4)二、填空题(本大题共4小题,每题5分,共20分)13.(5分)已知椭圆2212516x y +=上的点P 到一个焦点的距离为3,则P 到另一个焦点的距离为 .14.(5分)命题“2240x ax --->不成立”是真命题,则实数a 的取值范围是 . 15.(5分)圆锥的侧面展开图为一个扇形,其圆心角为23π,半径为3,则此圆锥的体积为 . 16.(5分)已知圆22:1O x y +=,点(2,2)P ,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,记C 为圆O 上到点P 距离最远的点,则四边形PACB 的面积为 .三、解答题(本大题共6小题,共70分.解答应写出文字说眀、证眀过程或演算步骤.17.(10分)已知p :式子2log ()(k a a -为常数)有意义,q :方程221(13x y k k k+=+-为实数)表示双曲线.若q ⌝是p 的充分不必要条件,求实数a 的取值范围. 18.(12分)已知直线1:23l x y -=与直线2:4350l x y --=. (1)求直线1l 与2l 的交点坐标;(2)求经过直线1l 与2l 的交点,且与直线320x y -+=垂直的直线l 的方程. 19.(12分)已知关于x ,y 的方程22:420C x y x y m +--+=. (1)若方程C 表示圆,求实数m 的取值范围;(2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值. 20.(12分)如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90ABC PCD ∠=∠=︒,60BAC CAD ∠=∠=︒,设E 、F 分别为PD 、AD 的中点. (Ⅰ)求证:CD AC ⊥; (Ⅱ)求证://PB 平面CEF ;21.(12分)如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90︒的角)的余弦值.22.(12分)已知抛物线2:2(0)C y px p =>的焦点F 与椭圆22:143x y Γ+=的右焦点重合,过焦点F 的直线l 交抛物线于A ,B 两点. (1)求抛物线C 的方程;(2)记抛物线C 的准线与x 轴的交点为H ,试问:是否存在λ,使得()AF FB R λλ=∈u u u r u u u r,且22||||40HA HB +…成立?若存在,求实数λ的取值范围;若不存在,请说明理由.2019-2020学年广东省联考联盟高二(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“x R ∀∈,22x x ≠”的否定是( ) A .x R ∀∈,22x x =B .0x R ∃∉,202x x =C .0x R ∃∈,202x x ≠ D .0x R ∃∈,202x x = 【解答】解:命题是全称命题,则否定的特称命题,即0x R ∃∈,202x x =, 故选:D .2.(5分)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒【解答】解:直线过点(2,4),(1,4+,则此直线的斜率为tan k θ===又[0θ∈︒,180)︒, 所以倾斜角120θ=︒. 故选:C .3.(5分)若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )A .(7,B .(14,C .(7,±D .(7,【解答】解:根据抛物线28y x =,知4p =根据抛物线的定义可知点P 到其焦点的距离等于点P 到其准线2x =-的距离, 得7p x =,把x 代入抛物线方程解得y =± 故选:C .4.(5分)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A .//m α,//n α,则//m nB .m α⊂,//n α,则//m nC .m α⊥,n α⊥,则//m nD .//αβ,m α⊂,n β⊂,则//m n【解答】解:A ,m ,n 也可能相交或异面;B ,m ,n 也可能异面;C ,同垂直与一个平面的两直线平行,正确;D ,m ,n 也可能异面.故选:C .5.(5分)正方体的棱长为a ,且正方体各面的中心是一个几何体的顶点,这个几何体的棱长为( )A B .12aC D .13a【解答】解:如图,建立空间直角坐标系, Q 正方体的棱长为a ,(2a E ∴,2a ,)a ,(2a F ,2a ,0),(2a M ,a ,)2a ,(0N ,2a ,)2a ,(2a P ,0,)2a ,(Q a ,2a ,)2a. 这个几何体是正八面体,棱长||PQ ==.∴. 故选:A .6.(5分)已知直线1:(1)2l x m y m ++=-与2:24160l mx y ++=,若12//l l ,则实数m 的值为( ) A .2或1-B .1C .1或2-D .2-【解答】解:由2(1)40m m +-=,解得1m =或2-. 经过验证可得:2m =-时重合,舍去. 故选:B .7.(5分)曲线221169x y +=与曲线221(916)169x y k k k+=<<--的( )A .长轴长相等B .短轴长相等C .焦距相等D .离心率相等【解答】解:曲线221169x y +=是解得在x 轴上的椭圆;它的焦距为:216927-=曲线221(916)169x y k k k+=<<--是焦点坐标在x 轴上的双曲线,它的焦距为:16(9)7k k -+-.所以曲线221169x y +=与曲线221(916)169x y k k k+=<<--的焦距相等.故选:C .8.(5分)在平行六面体1111ABCD A B C D -中,若1123AC xAB yBC zDD =-+u u u u r u u u r u u u r u u u u r,则(x y z ++=) A .23 B .56 C .1 D .76【解答】解:在平行六面体1111ABCD A B C D -中,若11123AC AB BC DD xAB yBC zDD =++=-+u u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r ,则1x =,21y -=,31z =,则1x =,12y =-,13z =.1151236x y z ∴++=-+=. 故选:B .9.(5分)直线1y x =+被椭圆2224x y +=所截得的弦的中点坐标是( )A .12(,)33-B .1(3-,1)2C .1(2,1)3-D .2(3-,1)3【解答】解:将直线1y x =+代入椭圆2224x y +=中,得222(1)4x x ++=23420x x ∴+-= ∴弦的中点横坐标是142()233x =⨯-=-, 代入直线方程中,得13y =∴弦的中点是2(3-,1)3故选:D .10.(5分)如图,已知一个圆柱的底面半径为3,高为2,若它的两个底面圆周均在球O 的球面上,则球O 的表面积为( )A .323πB .16πC .8πD .4π【解答】解:根据题意,画图如下:则OA R =,O A r '==12hOO '==,故在Rt △OO A '中,2OA ===,2R ∴=,2244216S R πππ∴==⋅=球.故选:B .11.(5分)已知双曲线2222:1(0,0)x y E a b a b-=>>,过原点O 任作一条直线,分别交曲线两支于点P ,Q (点P 在第一象限),点F 为E 的左焦点,且满足||3||PF FQ =,||OP b =,则E 的离心率为( )A BCD .2【解答】解:由题意可知:双曲线的右焦点1F ,由P 关于原点的对称点为Q , 则||||OP OQ =,∴四边形1PFQF 为平行四边形,则1||||PF FQ =,1||||PF QF =,由||3||PF FQ =,根据双曲线的定义1||||2PF PF a -=, 1||PF a ∴=,||OP b =,1||OF c =, 190OPF ∴∠=︒,在1QPF ∆中,||2PQ b =,1||3QF a =,1||PF a =, 222(2)(3)b a a ∴+=,整理得:222b a =,则双曲线的离心率c e a ==.故选:A .12.(5分)一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)四边形;(3)五边形;(4)六边形,其中正确的结论是()A.(1)(3)B.(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)【解答】解:正方体容器中盛有一半容积的水,无论怎样转动,其水面总是过正方体的中心.三角形截面不过正方体的中心,故(1)不正确;过正方体的一对棱和中心可作一截面,截面形状为长方形,故(2)正确;正方体容器中盛有一半容积的水,任意转动这个正方体,则水面在容器中的形状不可能是五边形,故(3)不正确;过正方体一面上相邻两边的中点以及正方体的中心得截面形状为正六边形,故(4)正确.故选:B.二、填空题(本大题共4小题,每题5分,共20分)13.(5分)已知椭圆2212516x y+=上的点P到一个焦点的距离为3,则P到另一个焦点的距离为7.【解答】解:椭圆2212516x y+=的长轴长为10根据椭圆的定义,Q椭圆2212516x y+=上的点P到一个焦点的距离为3P∴到另一个焦点的距离为1037-=故答案为:714.(5分)命题“2240x ax --->不成立”是真命题,则实数a 的取值范围是 22a -剟 . 【解答】解:命题“2240x ax --->不成立”是真命题, 即:命题“2240x ax ---„成立为真命题”. 故:△24160a =-„, 解得:22a -剟. 故答案为:22a -剟.15.(5分)圆锥的侧面展开图为一个扇形,其圆心角为23π,半径为3,则此圆锥的体积为. 【解答】解:依题意,圆锥的母线长为3,底面圆的周长为2323ππ⨯=, 设底面圆的半径为r ,则22r ππ=,即1r =,∴圆锥的高h ==∴2113V π=⨯⨯⨯..16.(5分)已知圆22:1O x y +=,点P ,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,记C 为圆O 上到点P 距离最远的点,则四边形PACB 的面积为.【解答】解:根据题意,连接PO ,如图,P ,则||2PO ==,C 为圆O 上到点P 距离最远的点,则||||13PC PO =+=, 过点A 作AE OP ⊥,垂足为E ,Rt AOP ∆中,||1OA =,||2OP =,则||PA =则||||||||OA AP AE OP ⨯==,故1222ACP PACB S S AE PC ∆⎛⎫==⨯⨯⨯= ⎪⎝⎭四边形,.三、解答题(本大题共6小题,共70分.解答应写出文字说眀、证眀过程或演算步骤.17.(10分)已知p :式子2log ()(k a a -为常数)有意义,q :方程221(13x y k k k+=+-为实数)表示双曲线.若q ⌝是p 的充分不必要条件,求实数a 的取值范围. 【解答】解:p :式子2log ()(k a a -为常数)有意义,k a >,q :方程221(13x y k k k+=+-为实数)表示双曲线, 则(1)(3)0k k +-<,即(k ∈-∞,1)(3-⋃,)+∞, 若q ⌝是p 的充分不必要条件,[1k ∈-,3]是{|}a k a >的真子集, 故1a -….18.(12分)已知直线1:23l x y -=与直线2:4350l x y --=. (1)求直线1l 与2l 的交点坐标;(2)求经过直线1l 与2l 的交点,且与直线320x y -+=垂直的直线l 的方程. 【解答】解:(1)联立23x y -=与直线2:4350l x y --=.解得2x =,1y =. ∴直线1l 与2l 的交点坐标(2,1).(2)设与直线320x y -+=垂直的直线l 的方程为30x y m ++=, 把(2,1)代入解得:7m =-.∴要求的直线方程为:370x y +-=.19.(12分)已知关于x ,y 的方程22:420C x y x y m +--+=. (1)若方程C 表示圆,求实数m 的取值范围;(2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值. 【解答】解:(1)由22:420C x y x y m +--+=,得22(2)(1)5x y m -+-=-, 若方程C 表示圆,则50m ->,即5m <;(2)圆C 的半径为5m -,圆心(2,1)到直线240x y +-=的距离55d ==, 又45||MN =, ∴222525()()(5)m +=-,解得4m =. 20.(12分)如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90ABC PCD ∠=∠=︒,60BAC CAD ∠=∠=︒,设E 、F 分别为PD 、AD 的中点. (Ⅰ)求证:CD AC ⊥; (Ⅱ)求证://PB 平面CEF ;【解答】(本小题满分12分)证明:(Ⅰ)PA ⊥Q 平面ABCD ,PA CD ∴⊥.90PCD ∠=︒Q ,PC CD ∴⊥.⋯⋯⋯⋯⋯⋯⋯(2分) PA PC P =Q I ,CD ∴⊥平面PAC ,AC ⊂Q 平面PAC ,CD AC ∴⊥.⋯⋯⋯⋯⋯⋯⋯(4分) (Ⅱ)由(Ⅰ)得90ACD ∠=︒.在直角三角形ACD 中,60CAD ∠=︒,CF AF =,60ACF ∴∠=︒,//CF AB ∴.⋯⋯⋯⋯⋯⋯⋯(6分) CF ⊂/Q 平面PAB ,AB ⊂平面PAB ,//CF ∴平面PAB .⋯⋯⋯⋯⋯⋯⋯(8分) E Q 、F 分别是PD 、AD 中点,//EF PA ∴,又EF ⊂/Q 平面PAB ,PA ⊂平面PAB ,//EF ∴平面PAB . CF EF F =Q I ,∴平面//CEF 平面PAB .⋯⋯⋯⋯⋯⋯⋯(10分)PB ⊂Q 平面PAB ,//PB ∴平面CEF .⋯⋯⋯⋯⋯⋯⋯(12分)21.(12分)如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90︒的角)的余弦值.【解答】解:(1)以{AB u u u r ,AC u u u r,1}AA u u u r 为单位正交基底建立空间直角坐标系A xyz -, 则由题意知(0A ,0,0),(2B ,0,0),(0C ,2,0), 1(0A ,0,4),(1D ,1,0),1(0C ,2,4),∴1(2A B =u u u r ,0,4)-,1(1C D =u u u u r,1-,4)-,1cos A B ∴<u u u r ,11111310||||2018A B C D C D A B C D >==u u u r u u u u ru u u u r g u u u r u u u u r g ,∴异面直线1A B 与1C D 310. (2)(0,2,0)AC =u u u r是平面1ABA 的一个法向量,设平面1ADC 的法向量为(,,)m x y z =r, Q (1,1,0)AD =u u u r ,1(0,2,4)AC =u u u u r∴10240m AD x y m AC y z ⎧=+=⎪⎨=+=⎪⎩u u u r r g u u u u r r g ,取1z =,得2y =-,2x =, ∴平面1ADC 的法向量为(2m =r,2-,1), 设平面1ADC 与1ABA 所成二面角为θ, cos |cos AC θ∴=<u u u r ,2|||329n >==r,∴平面1ADC 与1ABA 所成二面角的余弦值为:23.22.(12分)已知抛物线2:2(0)C y px p =>的焦点F 与椭圆22:143x y Γ+=的右焦点重合,过焦点F 的直线l 交抛物线于A ,B 两点. (1)求抛物线C 的方程;(2)记抛物线C 的准线与x 轴的交点为H ,试问:是否存在λ,使得()AF FB R λλ=∈u u u r u u u r,且22||||40HA HB +…成立?若存在,求实数λ的取值范围;若不存在,请说明理由. 【解答】解:(1)依题意,椭圆22:143x y Γ+=中,24a =,23b =,得2221c a b =-=,则(1,0)F ,得14p=,即4p =,故抛物线C 的方程为24y x =.(2)设:1l x ty =+,1(A x ,1)y ,2(B x ,2)y ,联立方程241y x x ty ⎧=⎨=+⎩消去x ,得2440y y --=,∴121244y y ty y +=⎧⎨=-⎩①且112211x ty x ty =+⎧⎨=+⎩,又()AF FB R λλ=∈u u u r u u u r ,则1(1x -,12)(1y x λ-=-,2)y ,即12y y λ=-,代入①得222(1)44y t y λλ-=⎧⎨-=-⎩, 消去2y 得2142t λλ=+-,易得(1,0)H -,则2222221122||||(1)(1)HA HB x y x y +=+++++22221212122()2x x x x y y =++++++2222121212(1)(1)2(2)2ty ty ty ty y y =+++++++++2221212(1)()4()8t y y t y y =+++++22(1)(168)448t t t t =++++g42164016t t =++, 由4216401640t t ++=, 解得212t =或23t =-(舍),将212t =代入2142t λλ=+-,解得2λ=.故存在实数2λ=满足题意.。

2019-2020学年上学期高二数学12月月考试题含解析(1261)

2019-2020学年上学期高二数学12月月考试题含解析(1261)

宁陵县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α2. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20483. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .4. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位5.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C. D.6.已知直线y=ax+1经过抛物线y2=4x的焦点,则该直线的倾斜角为()A.0 B.C.D.7.为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位8.下列判断正确的是()A.①不是棱柱B.②是圆台C.③是棱锥D.④是棱台9.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10] B.(5,10)C.[3,12] D.(3,12)10.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为()A.10 13 B.12.5 12 C.12.5 13 D.10 1511.设集合A={x|2x≤4},集合B={x|y=lg(x﹣1)},则A∩B等于()A.(1,2) B.[1,2] C.[1,2)D.(1,2]12.已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是()A.B.C. D.0二、填空题13.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= . 14.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .15.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .16.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .17.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系是 .18.若log 2(2m ﹣3)=0,则e lnm ﹣1= .三、解答题19.在平面直角坐标系中,已知M (﹣a ,0),N (a ,0),其中a ∈R ,若直线l 上有且只有一点P ,使得|PM|+|PN|=10,则称直线l 为“黄金直线”,点P 为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线; ②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.20.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.21.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.22.已知等差数列的公差,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.23.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.24.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.宁陵县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:A 选项中,两个平面可以相交,l 与交线平行即可,故不正确; B 选项中,垂直于同一平面的两个平面平行,正确;C 选项中,直线与直线相交、平行、异面都有可能,故不正确;D 中选项也可能相交. 故选:B .【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.2. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1 考点:程序框图. 3. 【答案】D【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为,画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,∴△A ′B ′C ′的高为=,∴△A ′B ′C ′的面积S==.故选D .【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.4. 【答案】B【解析】试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换. 5. 【答案】A【解析】解:设AB 的中点为C ,则 因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a ≤﹣1或a ≥1,因为<1,所以﹣<a <,所以实数a 的取值范围是,故选:A .【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.6. 【答案】D【解析】解:抛物线y 2=4x 的焦点(1,0),直线y=ax+1经过抛物线y 2=4x 的焦点,可得0=a+1,解得a=﹣1, 直线的斜率为﹣1,该直线的倾斜角为:.故选:D .【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.7. 【答案】A【解析】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选A .【点评】本题主要考查诱导公式和三角函数的平移.属基础题.8. 【答案】C【解析】解:①是底面为梯形的棱柱; ②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C.9.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.10.【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可∴中位数是13故选:C.【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.11.【答案】D【解析】解:A={x|2x≤4}={x|x≤2},由x﹣1>0得x>1∴B={x|y=lg(x﹣1)}={x|x>1}∴A∩B={x|1<x≤2}故选D.12.【答案】A【解析】解:取AB的中点C,连接OC,,则AC=,OA=1∴sin =sin∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A.二、填空题13.【答案】{2,3,4}.【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},∴C U A={3,4},又B={2,3},∴(C U A)∪B={2,3,4},故答案为:{2,3,4}14.【答案】64.【解析】解:由图可知甲的得分共有9个,中位数为28∴甲的中位数为28乙的得分共有9个,中位数为36∴乙的中位数为36则甲乙两人比赛得分的中位数之和是64故答案为:64.【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.15.【答案】 (,+∞) .【解析】解:由题意,a >1.故问题等价于a x>x (a >1)在区间(0,+∞)上恒成立.构造函数f (x )=a x ﹣x ,则f ′(x )=a xlna ﹣1,由f ′(x )=0,得x=log a (log a e ),x >log a (log a e )时,f ′(x )>0,f (x )递增; 0<x <log a (log a e ),f ′(x )<0,f (x )递减. 则x=log a (log a e )时,函数f (x )取到最小值,故有﹣log a (log a e )>0,解得a >.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.16.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 17.【答案】12()()f x f x >] 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.18.【答案】 .【解析】解:∵log 2(2m﹣3)=0,∴2m﹣3=1,解得m=2,∴elnm ﹣1=e ln2÷e=.故答案为:.【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用.三、解答题19.【答案】 ①②③【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN 上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;④当a=0时,点M 与N 重合为(0,0),|PM|+|PN|=10=2|PM|,点P 在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.故答案为:①②③.【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.20.【答案】(1)圆与圆相离;(2)定值为2.【解析】试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,DM r =,然后根据圆心距MN 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和BP 的距离相等,所以两个三角形的面积比值PAPB S S APG PBG =∆∆,根据点P 在圆M 上,代入两点间距离公式求PB 和PA ,最后得到其比值.试题解析:(1) ∵圆N 的圆心)35,35(-N 关于直线x y =的对称点为)35,35(-M , ∴916)34(||222=-==MD r , ∴圆M 的方程为916)35()35(22=-++y x .∵3823210)310()310(||22=>=+=r MN ,∴圆M 与圆N 相离.考点:1.圆与圆的位置关系;2.点与圆的位置关系.1 21.【答案】【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数)得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9. 即C 1的普通方程为(x -1)2+(y -2)2=9,由C 2:ρ=2sin (θ+π4)得ρ(sin θ+cos θ)=2, 即x +y -2=0,即C 2的普通方程为x +y -2=0.(2)由C 1:(x -1)2+(y -2)2=9得 x 2+y 2-2x -4y -4=0,其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 将θ=3π4代入上式得ρ2-2ρ-4=0,ρ1+ρ2=2,ρ1ρ2=-4,∴|MN |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=32.C 3:θ=34π(ρ∈R )的直角坐标方程为x +y =0,∴C 2与C 3是两平行直线,其距离d =22=2.∴△PMN 的面积为S =12|MN |×d =12×32×2=3.即△PMN 的面积为3. 22.【答案】【解析】【知识点】等差数列 【试题解析】(Ⅰ)由题意,得解得 或(舍). 所以. (Ⅱ)由(Ⅰ),得.所以. 所以只需求出的最大值.由(Ⅰ),得. 因为,所以当,或时,取到最大值.所以的最大值为.23.【答案】(1)0.3a ;(2)3.6万;(3)2.9. 【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1考点:频率分布直方图.24.【答案】(1)()()448a b --=;(2)()()()2222,2x y x y --=>>;(3)6. 【解析】试题分析:(1)利用2CD =,得圆心到直线的距离2d =2=,再进行化简,即可求解()()44a b --的值;(2)设点P 的坐标为(),x y ,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨迹方程;(3)将面积表示为()()()114482446224ADP b S a a b a b a b ∆==+-=+-=-+-+,再利用基本不等式,即可求得ADP ∆的面积的最小值.(3)()()()11448244666224ADP b S a a b a b a b ∆==+-=+-=-+-+≥=,∴当4a b ==+, 面积最小, 最小值为6.考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446A D P S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题.。

2022-2023学年广东省大湾区高二上学期期末联考地理试卷含详解

2022-2023学年广东省大湾区高二上学期期末联考地理试卷含详解

2022-2023学年第一学期期末大湾区联考高二地理试卷一、选择题:本题共24小题,每小题2分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

我国某中学在高三毕业典礼(7月10日)上进行了日晷石雕捐赠仪式。

该日晷属于赤道式日晷(晷盘平行于赤道面,晷针指向北极星附近),其晷针仰角约为32°,可利用晷针的日影变化进行计时。

日晷背依书山(图书馆),面朝学海(教学楼)。

下图为该日晷侧视示意图及景观图。

据此完成下面小题。

1.该中学位于()A.北京B.海口C.合肥D.哈尔滨2.日晷位于图书馆()A.东侧B.南侧C.西侧D.北侧3.捐赠仪式当天天气晴朗,晷针日影在晷盘上的移动方向是()A.顺时针B.先顺时针后逆时针C.逆时针D.先逆时针后顺时针崖嶂是火山多次喷发后经断裂、崩塌、侵蚀而形成的流纹岩地貌,在我国主要分布在浙闽丘陵。

下图示意浙江省温州市雁荡山崖嶂地貌景观。

据此完成下面小题。

4.造成崖嶂地貌边缘陡峭的主要外力作用是()A.重力崩塌B.垂直抬升C.断裂错位D.物理风化5.崖嶂地貌在我国主要分布在浙闽丘陵,是因为地质时期该地()A.地形复杂多样B.流水作用明显C.地壳活跃度高D.地壳岩性较软贵州三都水族自治县境内有一处“产蛋崖”,崖壁每隔30年左右就会有“石蛋”自行脱落。

研究发现该石壁为三叠纪时期形成的软泥岩层(硬度3.5,硬度数值越大,越坚硬),“石蛋”为寒武纪时期浅海石灰岩结核(硬度约4.5)。

下图为贵州三都产蛋石壁景观图。

据此完成下面小题。

6.贵州三都水族自治县“产蛋崖”所产“石蛋”属于()A.喷出型岩浆岩B.侵入性岩浆岩C.沉积岩D.变质岩7.贵州三都“石蛋”崖壁的地质形成过程是()A.石灰岩沉积——软泥岩沉积——地壳抬升——风化剥落B.软泥岩沉积——石灰岩沉积——地壳抬升——风化剥落C.软泥岩沉积——地壳抬升——岩浆侵入——风化剥落D.软泥岩沉积——地壳抬升——岩浆喷出——变质作用河流阶地的形成与地壳抬升及流水下切侵蚀有密切关系。

广东省汕头市达濠华侨中学、东厦中学2018-2019学年高二上学期期末联考数学(文)试题 Word

广东省汕头市达濠华侨中学、东厦中学2018-2019学年高二上学期期末联考数学(文)试题 Word

姓名,年级:时间:2018—2019学年度第一学期期末联考高二级文科数学试题命题人:陈论钦审核人: 陈映吟本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将考生号填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,答题卡交回.第Ⅰ卷(选择题)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.圆22240++-=的半径为()x y x yA.3 B.3.5.52.“()x="的().-="是“0210x xA.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件3.直线1x =的倾斜角和斜率分别是( )A .45,1︒B .90︒,不存在C .135,1︒-D .180︒,不存在4.已知函数2y x =-的定义域为M ,集合(){}|lg 1 N x y x ==-,则M N ⋂= ( )A .[)0,2B .()0,2C .[)1,2D .(]1,25.设,αβ是两个不重合的平面,,m n 是两条不重合的直线,则以下结论错误..的是( )A .若αβ∥,α⊂m ,则m β∥B .若,,m m n αβαβ=∥∥ ,则m n ∥C .若,,,m n m n ααββ⊂⊂∥∥,则αβ∥D .若,m m αβ⊥∥,则 αβ⊥6.函数222x y x =-+在[]2,2-的图像大致为( )A .B .C .D .7.设为等差数列的前项和,且,则=4a ( )A .28B .14C .7D .28.将函数的图象向右平移 个单位长度后得到的图象,则( )A .B .C .D .9.已知函数()2,0{,0x b x f x lgx x +≤=>,若1410f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,则b =( ) A .3 B .2 C .0 D .1-10.已知,是椭圆上的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若是正三角形,则这个椭圆的离心率是A .B .C .D .11.一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为( )A .4B .8C .16D .2412.设P 是椭圆192522=+y x 上一点,M N ,分别是两圆:22(4)1x y ++=和22(4)1x y -+=上的点,则||||PM PN +的最小值、最大值的分别为 ( )A .9,12B .8,11C .8,12D .10,12第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分.)13.已知3sin 2α=,则cos2α=__________. 14.已知双曲线14222=-by x 的右焦点为(3,0),则该双曲线的渐近线方程为________. 15.已知向量,,若向量,则__________.16.已知函数()f x 满足2f x f x +=()(),且()f x 是偶函数,当[]1,0x ∈-时, ()2f x x =,若在区间[]1,3-内,函数()()()log 2a g x f x x =-+有个零点,则实数a 的取值范围是 .三、解答题:(共70分,解答过程要有必要文字说明与推理过程.) 17.(本小题满分10分)在中, 。

2019-2020学年上学期高二数学12月月考试题含解析(1219)

2019-2020学年上学期高二数学12月月考试题含解析(1219)

南靖县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a(0a>),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为()(A)400 (B )500 (C)600 (D)8002.已知函数f(x)=x3+mx2+(2m+3)x(m∈R)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是()A.[0,2] B.[0,3] C.[0,)D.[0,)3.设集合()A.B. C.D.4.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2015)=()A.2 B.﹣2 C.8 D.﹣85.已知函数f(x)=Asin(ωx+φ)(a>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=sin(3x+)B.f(x)=sin(2x+)C.f(x)=sin(x+)D.f(x)=sin(2x+)6. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定7. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OPQ ∆的面积等于( )A .B .C .2 D .48. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( ) A .60° B .45° C .90° D .120°9. 有以下四个命题:①若=,则x=y . ②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②B .①③C .②③D .③④10.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4} C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}11.函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}12.已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或二、填空题13.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是.14.在下列给出的命题中,所有正确命题的序号为.①函数y=2x3+3x﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.15.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π).16.已知函数f(x)=x3﹣ax2+3x在x∈[1,+∞)上是增函数,求实数a的取值范围.17.若正数m、n满足mn﹣m﹣n=3,则点(m,0)到直线x﹣y+n=0的距离最小值是.18.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)三、解答题19.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.20.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()12333xxf xg x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.21.如图,A 地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

专题25期中全真模拟卷05-2020-2021学年八年级数学上学期期中考试高分直通车(原卷版)

专题25期中全真模拟卷05-2020-2021学年八年级数学上学期期中考试高分直通车(原卷版)

20202021学年八年级上学期数学期中考试高分直通车【人教版】专题2.5人教版八年级数学上册期中全真模拟卷05姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择12道、填空6道、解答8道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•新都区模拟)下列图形中,是轴对称图形的是()A.B.C.D.2.(2020春•沙坪坝区校级月考)下列各线段中,能与长为4,6的两线段组成三角形的是()A.2B.8C.10D.123.(2019秋•肇庆期末)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.(2020•温州模拟)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.55.(2020春•肇东市期末)如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形6.(2019秋•松滋市期末)如图,已知D为BC上一点,∠B=∠1,∠BAC=64°,则∠2的度数为()A .37°B .64°C .74°D .84°7.(2019秋•万州区期末)如图,在△ABC 中,边AC 的垂直平分线交边AB 于点D ,连结CD .若∠A =50°,则∠BDC 的大小为( )A .90°B .100°C .120°D .130°8.(2020•恩平市模拟)如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB9.(2019•霞山区一模)如图,点P 是∠AOB 的角平分线OC 上一点,PD ⊥OA ,垂足为点D ,PD =2,M 为OP 的中点,则点M 到射线OB 的距离为( )A .12B .1C .√2D .210.(2019•大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A.15°B.30°C.45°D.60°11.(2019秋•郯城县期中)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD 为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°12.(2019秋•西城区校级期中)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点,如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s 的速度运动.经过()秒后,△BPD与△CQP全等.A.2B.3C.2或3D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.(2020秋•江岸区校级月考)五边形的内角和是,外角和是,对角线有条.14.(2019秋•铜山区期中)如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=8,点E是AB上一动点,DE的最小值为.15.(2019•广安)如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.16.(2019秋•岱岳区期中)茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的长度为cm.17.(2019秋•镇原县期末)如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.18.(2018秋•全南县期中)在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•禅城区期末)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A、B、C的对应点分别是A1、B1、C1,则A1、B1、C1的坐标为:A1(,),B1(,)、C1(,);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,则△CC1C2的面积是.20.(2020•宁波模拟)如图1是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼一个图形,使得所拼成的新图形:(1)是轴对称图形,但不是中心对称图形.(2)既是轴对称图形,又是中心对称图形.(请将两个小题依次作答在图①、②中,均只需画出符合条件的一种情形,内部涂上阴影)21.(2020•江阴市模拟)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.22.(2019秋•鹿邑县期末)如图,△ABC中,AB=AC,∠A=50°,P为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.23.(2019•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.24.(2019秋•渝中区校级期中)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE ⊥BC交BC于点E,交CA延长线于点F.(1)证明:AF=AD;(2)若∠B=60°,BD=4,AD=2,求EC的长.25.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.26.(2019秋•日照期中)综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.。

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。

广东省汕头市潮南区峡山街道联考2024-2025学年上学期期中考试九年级数学试题(含答案)

广东省汕头市潮南区峡山街道联考2024-2025学年上学期期中考试九年级数学试题(含答案)

2024~2025学年度第一学期九年级期中考试数学试卷(S )说明:1、本卷满分120分;2、考试时间120分钟;3、答案请写在答题卷上.一、选择题(每小题3分,共30分)1.关于的一元二次方程(为实数)根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定2.已知二次函数,当时,随增大而增大,则实数的取值范围是( )A. B. C. D.3.下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A. B.C. D.4.二次函数图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.是一元二次方程的一个根,则代数式的值是( )A. B.2017 C. D.20256.某商品原价200元,连续两次降价后售价为148元,下列所列方程正确的是( )A. B.C. D.7.如图,是一个中心对称图形,为对称中心,若,,,则的长为( )B.D.48.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是( )A.6B.12C.12D.6x 220x kx --=k 2(1)y a x =-0x >y x a 0a >1a >1a ≠1a <2(1)2y x =-++m 220x x ++=2222021m m +-2017-2025-%a 2200(1%)148a +=()22001%148a -=200(12%)148a -=2200(1%)148a -=A 90C ∠=︒60BAC ∠=︒1BC =CC '27120x x -+=9.已知抛物线,则当时,函数的最大值为( )A. B. C.0 D.210.如图,抛物线经过正方形的三个顶点,,,点在轴上,则的值为( )A. B. C. D.二、填空题(每小题3分,共15分)11.已知关于的方程有一个根1,那么__________.12.若二次函数的图象与轴有且只有一个交点,则的值为________.13.如图,在正方形中,,E 为的中点,连接,将绕点按逆时针方向旋转得到,连接,则的长为_________.14.在平面直角坐标系中,将抛物线先绕原点旋转,再向下平移5个单位,所得到的抛物线的顶点坐标是_________.15.观察下列图形规律:当_________时,图形“”的个数是“”的个数的2倍.三、解答题(一)(每小题7分,共21分)16.用配方法解一元二次方程:17.如图,在中,,点、点分别为、的中点,连结,将绕点旋转得到.试判断四边形的形状,并说明理由.221y xx =--03x ≤≤2-1-2y axc =+OABC A B C B y a c 1-2-3-4-x 20ax bx c ++=a b c ++=2(1)42y a x x a =--+x a ABCD 4AB =AB DE DAE △D 90︒DCF △EF EF 221y xx =+-180︒n =∆∙2213x x+=ABC △2AB BC =D E AB AC DE ADE △E 180︒CFE ∆BCFD18.已知开口向上的抛物线经过点.(1)确定此拋物线的解析式;(2)当取何值时,有最小值,并求出这个最小值.四、解答题(二)(每小题9分,共27分)19.如图,在边长均为1个单位长度的小正方形组成的网格中,点,点,点均为格点(每个小正方形的顶点叫做格点).【实践与操作】(1)作点关于点的对称点;(2)连接,将线段绕点顺时针旋转得点对应点,画出旋转后的线段;【应用与计算】(3)连接,求出四边形的面积.20.如图,二次函数(为常数)的图象的对称轴为直线.(1)求的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式。

2019-2020学年广东省汕头市龙湖区七年级(上)期末数学试卷解析版

2019-2020学年广东省汕头市龙湖区七年级(上)期末数学试卷解析版

2019-2020学年广东省汕头市龙湖区七年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2019的相反数是()A.﹣2019B.2019C.﹣D.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.53.(3分)据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1084.(3分)下列各式的计算,正确的是()A.3a+2b=5ab B.5y2﹣3y2=2C.4m2n﹣2mn2=2mn D.﹣12x+7x=﹣5x5.(3分)如图,某同学家在A处,现在该同学要去位于B处的同学家去玩,请帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B6.(3分)下列各式运用等式的性质变形,错误的是()A.若﹣a=﹣b,则a=bB.若=,则a=bC.若ac=bc,则a=bD.若(m2+1)a=(m2+1)b,则a=b7.(3分)如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b﹣a<0D.8.(3分)把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°9.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元10.(3分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2019个图中共有正方形的个数为()A.2019B.2021C.6049D.6055二、填空题(本大题7小题,每小题4分,共28分,将答案填在答题纸上)11.(4分)在有理数﹣2、﹣1、0、1 中,最小的数是.12.(4分)单项式﹣的系数是,次数分别是.13.(4分)已知已知实数x,y满足|x﹣3|+(y+4)2=0,则代数式(x+y)2019的值为.14.(4分)如图:若CD=4cm,BD=7cm,B是AC的中点,则AC的长为.15.(4分)已知x+2y﹣5=0,则代数式2x+4y﹣7的值是.16.(4分)某车间有22名工人,每人每天可以生产600个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应如何安排生产螺钉和螺母的工人各多少名?设该车间每天有x人生产螺钉,则根据题意列出的方程为.17.(4分)在求1+3+32+33+34+35+36+37+38的值时,李敏发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①然后在①式的两边都乘3,得3S=3+32+33+34+35+36+37+38+39②②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,所以S=请爱动脑筋的你求出1+5+52+53+54+…+52019的值.正确答案是.三、解答题:本大题3小题,每小题6分,共18分.解答应写出文字说明、证明过程或演算步骤.18.(6分)计算:(﹣2)3×(﹣)+30÷(﹣5)﹣|﹣3|19.(6分)化简:5(3a2b﹣ab2)﹣(ab2+3a2b)20.(6分)解方程:2(3y﹣1)﹣3(2﹣4y)=10四、解答题:本大题3小题,每小题8分,共24分.解答应写出文字说明、证明过程或演算步骤.21.(8分)老师在黑板上出了一道解方程的题,小明马上举起手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2)①8x﹣4=1﹣3x﹣6②8x+3x=1﹣6+4③11x=﹣1④x=⑤老师说;小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填编号);请您认真地做出正确答案.22.(8分)如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=;(2)先化简,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.23.(8分)如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.五、解答题:本大题2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤. 24.(10分)某校计划购买20张书柜和一批书架,现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元;A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品8折;设该校购买x(x>20)只书架.(1)若该校到同一家超市选购所有商品,则到A超市要准备元货款,到B超市要准备元货款;(用含x的式子表示)(2)若规定只能到其中一个超市购买所有商品,当购买多少只书架时,无论到哪家超市所付货款都一样?(3)若该校想购买20张书柜和100只书架,且可到两家超市自由选购,你认为至少准备多少货款,并说明理由.25.(10分)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?2019-2020学年广东省汕头市龙湖区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:﹣2019的相反数是:2019.故选:B.2.【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.3.【解答】解:14420000=1.442×107.故选:A.4.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.5y2﹣3y2=2y2,所以不能合并,故本选项不合题意;C.4m2n与﹣2mn2不是同类项,所以不能合并,故本选项不合题意;D.﹣12x+7x=﹣5x,正确,故本选项符合题意.故选:D.5.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→C→F→B.故选:B.6.【解答】解:A、两边都乘以﹣1,结果不变,故A正确;B、两边都乘以c,结果不变,故B正确;C、c等于零时,除以c无意义,故C错误;D、两边都除以(m2+1),结果不变,故D正确;故选:C.7.【解答】解:∵a在原点的左侧,b再原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴<0,∴D错误.故选:B.8.【解答】解:∠ABC=30°+90°=120°.故选:D.9.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.10.【解答】解:图①中的正方形剪开得到图②,图②中共有3×1+1=4个正方形;将图②中一个正方形剪开得到图③,图③中共有3×2+1=7个正方形;将图③中一个正方形剪开得到图④,图④中共有3×3+1=10个正方形……发现规律:第n个图中共有正方形的个数为:3(n﹣1)+1=3n﹣2则第2019个图中共有正方形的个数为3×2019﹣2=6055.故选:D.二、填空题(本大题7小题,每小题4分,共28分,将答案填在答题纸上)11.【解答】解:∵﹣2<﹣1<0<1,∴最小的是﹣2.故答案为﹣2.12.【解答】解:单项式﹣的系数是﹣,次数是3,故答案为:﹣;3.13.【解答】解:∵|x﹣3|+(y+4)2=0,∴x﹣3=0,y+4=0,解得:x=3,y=﹣4,故(x+y)2019=(3﹣4)2019=﹣1.故答案为:﹣1.14.【解答】解:∵CD=4cm,BD=7cm,∴BC=BD﹣CD=7﹣4=3(cm),∵B是AC的中点,∴AC=2BC=6cm.故答案为:6cm.15.【解答】解:∵x+2y﹣5=0,∴x+2y=5,∴2x+4y﹣7=2(x+2y)﹣7=10﹣7=3.故答案为:3.16.【解答】解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得1000(22﹣x)=2×600x,故答案是:1000(22﹣x)=2×600x.17.【解答】解:设S=1+5+52+53+54+ (52019)则5S=5+52+53+54+ (52020)5S﹣S=52020﹣1,4S=52020﹣1,则S=,即1+5+52+53+54+…+52019的值是,故答案为:.三、解答题:本大题3小题,每小题6分,共18分.解答应写出文字说明、证明过程或演算步骤.18.【解答】解:原式=﹣8×(﹣)﹣6﹣3=6﹣6﹣3=﹣3.19.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2.20.【解答】解:去括号得:6y﹣2﹣6+12y=10,移项合并得:18y=18,解得:y=1.四、解答题:本大题3小题,每小题8分,共24分.解答应写出文字说明、证明过程或演算步骤.21.【解答】解:他错在第①步(填编号),正确答案为:4(2x﹣1)=12﹣3(x+2)①8x﹣4=12﹣3x﹣6②8x+3x=12﹣6+4③11x=10④x=⑤,故答案为:①22.【解答】解:(1)由长方体纸盒的平面展开图知,a与﹣1、b与2、c与3是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数,所以a=1,b=﹣2,c=﹣3.故答案为:1,﹣2,﹣3.(2)5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc=5a2b﹣(2a2b﹣6abc+3a2b)+4abc=5a2b﹣2a2b+6abc﹣3a2b+4abc=10abc.当a=1,b=﹣2,c=﹣3时,原式=10×1×(﹣2)×(﹣3)=10×6=60.23.【解答】解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°;(2)∠DOC=×∠BOC=×70°=35°∠AOE=×∠AOC=×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.五、解答题:本大题2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤. 24.【解答】解:(1)设买x张书架,根据题意得A超市所花钱数为:20×210+70(x﹣20)=70x+2800,B超市所花钱数为:0.8(20×210+70x)=56x+3360.(2)由题意,得70x+2800=56x+3360,解得:x=40.答:购买40只书架时,无论到哪家超市所付货款都一样.(3)因为买一个书柜赠一个书架相当于打7.5折,B超市的优惠政策为所有商品8折,所以应该到A超市购买20个书柜和20个书架,到B超市购买80个书架.20×210+70×80×0.8=8680(元)答:至少准备8680元贷款.25.【解答】解:(1)OB=3OA=30.故B对应的数是30;(2)设经过x秒,点M、点N分别到原点O的距离相等①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等;(3)设经过y秒,恰好使AM=2BN.①点N在点B左侧,则3y=2(30﹣2y),解得y=,3×﹣10=;②点N在点B右侧,则3y=2(2y﹣30),解得y=60,3×60﹣10=170;即点M运动到或170位置时,恰好使AM=2BN.故答案为:30.。

2019-2020学年广东省深圳高中联考联盟高二(上)期末数学试卷

2019-2020学年广东省深圳高中联考联盟高二(上)期末数学试卷

2019-2020学年广东省深圳高中联考联盟高二(上)期末数学试卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若直线过点(1,3),(4,3+,则此直线的倾斜角是( ) A .6πB .4π C .3π D .23π 2.(5分)椭圆221y x m+=的焦点在y 轴上,长轴长是短轴长的两倍,则(m = )A .4B .12C .2D .143.(5分)设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率(e =)A .5BC D .544.(5分)若向量(0a =r,1,1)-,(1b =r ,1,0),且()a b a λ+⊥r r r ,则实数λ的值是( ) A .1-B .0C .2-D .15.(5分)与圆22:40C x y x +-=外切,又与y 轴相切的圆的圆心的轨迹方程是( ) A .28y x = B .28(0)y x x =>和0y =C .28(0)y x x =>D .28(0)y x x =>和0(0)y x =<6.(5分)已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为( ) A .22230x y x +--= B .2240x y x ++=C .22230x y x ++-=D .2240x y x +-=7.(5分)设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9(a = ) A .6-B .4-C .2-D .28.(5分)设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若l α⊥,αβ⊥,则l β⊂B .若//l α,//αβ,则l β⊂C .若l α⊥,//αβ,则l β⊥D .若//l α,αβ⊥,则l β⊥9.(5分)设1F ,2F 是双曲线22124y x-=的两个焦点,P 是双曲线上的一点,且123||4||PF PF =,则△12PF F 的面积等于( ) A .42B .83C .24D .4810.(5分)如图是抛物线拱形桥,当水面在l 时,拱顶高于水面2米,水面宽为4米,当水面宽为25米时,水位下降了( )米.A 5B .2C .1D .1211.(5分)数列{}n a 中,已知对任意正整数n ,有12321n n a a a a +++⋯+=-,则22212(n a a a ++⋯⋯+= )A .2(21)n -B .1(41)3n -C .1(21)3n -D .41n -12.(5分)已知抛物线2:2(0)E y px p =>,直线l 过E 的焦点,交E 于AB ,两点,且A 在x 轴上方,M 是E 的准线上一点,AM 平行于x 轴,O 为坐标原点,若||4||OM OB =,则l 的斜率为( ) A .43-B .34-C .34D .43二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)在正项等比数列{}n a 中,246825a a a a =,则19a a = .14.(5分)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 .15.(5分)已知数列{}n a 满足11a =,131nn n a a a +=+,则n a = 16.(5分)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数列*{}()n a n N ∈是公差不为0的等差数列,11a =,且2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n na a +⎧⎫⎨⎬⎩⎭g 的前n 项和为n T ,求n T .18.(12分)已知圆C 的圆心在x 轴上,且经过点(1,0)A -,(1,2)B . (1)求圆C 的标准方程;(2)过点(0,2)P 的直线l 与圆C 相交于M ,N 两点,且||23MN =,求直线l 的方程. 19.(12分)在三棱锥S ABC -中,ABC ∆是正三角形,面SAC ⊥面ABC ,4AB =,22SA SC ==,E 、F 分别是AB ,SB 的中点.(1)证明:AC SB ⊥;(2)求二面角B CE F --的余弦值.20.(12分)某企业2018年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从2019年起每年比上一年纯利润减少20万元,2019年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(2019年为第一年)的利润为1500(1)2n+万元(n 为正整数). (1)设从2019年起的前n 年,若该企业不进行技术改造的累计纯利润为n A 万元,进行技术改造后的累计纯利润为n B 万元(须扣除技术改造资金),求n A 、n B 的表达式; (2)依上述预测,从2019年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?21.(12分)在梯形ABCD 中,//AB CD ,3BAD π∠=,224AB AD CD ===,P 为AB 的中点,线段AC 与DP 交于O 点(如图1).将ACD ∆沿AC 折起到ACD '∆的位置,使得二面角AB AC D '--为直二面角(如图2). (1)求证://BC 平面POD ';(2)线段PD'上是否存在点Q,使得CQ与平面BCD'所成角的正弦值为6?若存在,求出PQPD'的值;若不存在,请说明理由.22.(12分)已知(0,2)A,(3,1)B是椭圆2222:1(0)x yG a ba b+=>>上的两点.(1)求椭圆G的离心率;(2)已知直线l过点B,且与椭圆G交于另一点C(不同于点)A,若以BC为直径的圆经过点A,求直线l的方程.2019-2020学年广东省深圳高中联考联盟高二(上)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若直线过点(1,3),(4,3+,则此直线的倾斜角是( ) A .6πB .4π C .3π D .23π【解答】解:直线过点(1,3),(4,3+,则直线的斜率k =, ∴此直线的倾斜角是6π.故选:A .2.(5分)椭圆221y x m+=的焦点在y 轴上,长轴长是短轴长的两倍,则(m = )A .4B .12C .2D .14【解答】解:椭圆221y x m+=的焦点在y 轴上,长轴长是短轴长的两倍,2=,解得4m =. 故选:A .3.(5分)设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率(e =)A .5BC D .54【解答】解:依题意可知12b a =,求得2a b =c ∴==c e a ∴==故选:C .4.(5分)若向量(0a =r ,1,1)-,(1b =r ,1,0),且()a b a λ+⊥r r r ,则实数λ的值是() A .1-B .0C .2-D .1【解答】解:()a b a λ+⊥r r rQ ,22()(010)0a b a a b a λλλ∴+=+=+⨯++=r r rr r r g g ,解得2λ=-. 故选:D .5.(5分)与圆22:40C x y x +-=外切,又与y 轴相切的圆的圆心的轨迹方程是( ) A .28y x = B .28(0)y x x =>和0y =C .28(0)y x x =>D .28(0)y x x =>和0(0)y x =<【解答】解:设与y 轴相切且与圆22:40C x y x +-=外切的圆心为(,)P x y ,半径为r ,||2x =+,若0x >,则28y x =;若0x <,则0y =; 故选:D .6.(5分)已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为( ) A .22230x y x +--= B .2240x y x ++=C .22230x y x ++-=D .2240x y x +-=【解答】解:设圆心为(a ,0)(0)a >, 由题意知圆心到直线3440x y ++=的距离3425a d r +===,解得2a =,所以圆心坐标为(2,0)则圆C 的方程为:22(2)4x y -+=,化简得2240x y x +-= 故选:D .7.(5分)设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9(a = ) A .6-B .4-C .2-D .2【解答】解:n S Q 为等差数列{}n a 的前n 项和,834S a =,72a =-,∴1118784(2)262a d a d a d ⨯⎧+=+⎪⎨⎪+=-⎩, 解得110a =,2d =-, 91810166a a d ∴=+=-=-.故选:A .8.(5分)设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若l α⊥,αβ⊥,则l β⊂ B .若//l α,//αβ,则l β⊂C .若l α⊥,//αβ,则l β⊥D .若//l α,αβ⊥,则l β⊥【解答】解:若l α⊥,αβ⊥,则l β⊂或//l β,故A 错误; 若//l α,//αβ,则l β⊂或//l β,故B 错误;若l α⊥,//αβ,由平面平行的性质,我们可得l β⊥,故C 正确; 若//l α,αβ⊥,则l β⊥或//l β,故D 错误; 故选:C .9.(5分)设1F ,2F 是双曲线22124y x -=的两个焦点,P 是双曲线上的一点,且123||4||PF PF =,则△12PF F 的面积等于( ) A.B.C .24D .48【解答】解:1(5,0)F -,2(5,0)F ,12||10F F =, 123||4||PF PF =Q ,∴设2||PF x =,则14||3PF x =, 由双曲线的性质知423x x -=,解得6x =.1||8PF ∴=,2||6PF =, 1290F PF ∴∠=︒,∴△12PF F 的面积186242=⨯⨯=. 故选:C .10.(5分)如图是抛物线拱形桥,当水面在l 时,拱顶高于水面2米,水面宽为4米,当水面宽为( )米.。

2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)

2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)

2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)1.如图,在四边形ABCD中,AB=BC=3,CD,DA=5,∠B=90°,求∠BCD的度数.2.如图,已知某开发区有一块四边形空地ABCD,现计划在该空地上种植草皮,经测量∠ADC=90°,CD =6m,AD=8m,BC=24m,AB=26m,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?3.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?4.如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.5.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB =90°,AC+AB=10,BC=3,求AC的长.6.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?7.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.8.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.9.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.10.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.11.已知某校有一块四边形空地ABCD如图,现计划在该空地上种草皮,经测量∠A=90°,AB=3m,BC =12m,CD=13m,DA=4m.若种每平方米草皮需100元,问需投入多少元?12.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)13.如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,,;这个三角形的面积为.14.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.15.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.16.如图,∠ABC=90°,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?17.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?18.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E 的距离相等,则收购站E应建在离A点多远处?19.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,求四边形ABCD的面积.20.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.21.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.22.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C 处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)参考答案与试题解析一.解答题(共23小题)1.【答案】见试题解答内容【解答】解:∵在Rt△ABC中,AB=BC=3,∠B=90°,∴由勾股定理得:AC2=AB2+BC2=32+32=18,∵CD,DA=5,∴CD2+AC2=DA2,∴∠ACD=90°,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∴∠BCD=∠ACB+∠ACD=45°+90°=135°.2.【答案】见试题解答内容【解答】解:连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD=S△ACB﹣S△ACD•AC•BCAD•CD,10×248×6=96.所以需费用96×200=19200(元).3.【答案】见试题解答内容【解答】解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:,∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米.4.【答案】见试题解答内容【解答】(1)证明:∵CD=3,BC=5,BD=4,∴CD2+BD2=9+16=25=BC2,∴△BCD是直角三角形,∴BD⊥AC;(2)解:设AD=x,则AC=x+3.∵AB=AC,∴AB=x+3.∵∠BDC=90°,∴∠ADB=90°,∴AB2=AD2+BD2,即(x+3)2=x2+42,解得:x,∴AB3.5.【答案】见试题解答内容【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x=4.55,即AC=4.55.6.【答案】见试题解答内容【解答】解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD3×45×12=6+30=36.答:这块钢板的面积等于36.7.【答案】见试题解答内容【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15,DB=9,∴CD12;(2)在Rt△ACD中,∵AC=20,CD=12,∴AD16,则AB=AD+DB=16+9=25.8.【答案】见试题解答内容【解答】解:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=90°.在Rt△ACD中,AD=5,CD=12,AC13.∵BC=13,∴AC=BC.∵CE⊥AB,AB=10,∴AE=BEAB10=5.在Rt△CAE中,CE12.∴S四边形ABCD=S△DAC+S△ABC5×1210×12=30+60=90.9.【答案】见试题解答内容【解答】(1)△ABE≌△ACD.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD;(2)证明∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.10.【答案】见试题解答内容【解答】解:(1)证明:连接AD∵AB=AC,∠A=90°,D为BC中点∴ADBD=CD且AD平分∠BAC∴∠BAD=∠CAD=45°在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF∵∠BDE+∠ADE=90°∴∠ADF+∠ADE=90°即:∠EDF=90°∴△EDF为等腰直角三角形.(2)解:仍为等腰直角三角形.理由:∵△AFD≌△BED∴DF=DE,∠ADF=∠BDE∵∠ADF+∠FDB=90°∴∠BDE+∠FDB=90°即:∠EDF=90°∴△EDF为等腰直角三角形.11.【答案】见试题解答内容【解答】解:∵∠A=90°,AB=3m,DA=4m,∴DB5(m),∵BC=12m,CD=13m,∴BD2+BC2=DC2,∴△DBC是直角三角形,∴S△ABD+S△DBC3×45×12=36(m2),∴需投入总资金为:100×36=3600(元).12.【答案】见试题解答内容【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD(米),∴BD=AB﹣AD=12(米),答:船向岸边移动了(12)米.13.【答案】见试题解答内容【解答】解:(1)面积为10的正方形的边长为,∵,∴如图1所示的四边形即为所求;(2)∵,,∴如图2所示的三角形即为所求这个三角形的面积2×2=2;故答案为:2.14.【答案】见试题解答内容【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE4.8(cm)∴CE3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.15.【答案】见试题解答内容【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE,∴CE,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.16.【答案】见试题解答内容【解答】解:设BC=xcm时,三角形ACD是以DC为斜边的直角三角形,∵BC+CD=34,∴CD=34﹣x,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2﹣AD2=(34﹣x)2﹣576,∴36+x2=(34﹣x)2﹣576,∴当C离点B8cm时,△ACD是以DC为斜边的直角三角形.17.【答案】见试题解答内容【解答】解:连结AC,在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC5(米),∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,该区域面积S=S△ACB﹣S△ADC5×123×4=24(平方米),即铺满这块空地共需花费=24×100=2400元.18.【答案】见试题解答内容【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.19.【答案】见试题解答内容【解答】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABCAC×CDAB×BC5×124×3=30﹣6=24.故四边形ABCD的面积为24cm2.20.【答案】见试题解答内容【解答】解:(1)如图①所示:(2)如图②③所示.21.【答案】见试题解答内容【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).22.【答案】见试题解答内容【解答】解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒时,所以速度为72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.23.【答案】见试题解答内容【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。

广东省汕头市2019-2020学年高二上学期阶段联考数学(文)试题Word版含解析

广东省汕头市2019-2020学年高二上学期阶段联考数学(文)试题Word版含解析

广东省汕头市2019-2020学年高二上学期阶段联考数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )A. [-1,3]B. [-1,2]C. (1,3]D. (1,2]【答案】D【解析】由题意得,集合,所以,故选D.2. 下列函数中,既是偶函数又在上单调递增的是()A. B. C. D.【答案】D【解析】A项,函数是奇函数,不合题意;B项,函数是偶函数。

当x>0时,根据余弦函数的图像可知,在上不单调,不符合题意;C项,对于函数,是奇函数,不合题意;D项,函数,既是偶函数又在上单调递增,故选D.3. .经过圆的圆心,且与直线平行的直线方程为( )A. B. C. D.【答案】B【解析】由圆x2+y2+2y=0得x2+(y+1)2=1,圆心坐标为C(0,−1),直线2x+3y−4=0的斜率k=−,∴经过圆心C,且与直线2x+3y−4=0平行的直线方程为y+1=−x,即2x+3y+3=0.故选B.4. 过,圆心在轴上的圆的方程为()A. B.C. D.【答案】D【解析】设圆O的方程为,将代入得 ,计算得出,圆方程是故选D.5. 设变量满足约束条件,则的最大值为()A. 6B. 8C. 10D. 12【答案】C【解析】将目标函数转化为.根据已知条件作出不等式组的可行域如图所示.若目标函数取得最大值,即图象的纵截距最小。

由图象可知,当过点A时,纵截距最小。

根据已知条件,解出A点坐标为(3,-4).故目标函数的最大值为 . 故选C. 点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意前面的系数为负时,截距越大,值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.6. 阅读下面的程序框图,则输出的等于()A. 14B. 20C. 30D. 55【答案】C【解析】试题分析:程序在执行过程中,的值依次为:;;;;,因为,程序结束,输出.考点:程序框图.视频7. 已知,且,函数在同一坐标系中的图象可能是( )A. B. C. D.【答案】A【解析】由题可知,当底数a>1时,指数函数与对数函数均为增函数,直线与y轴的截距大于1,当底数0<a<1时,指数函数与对数函数均为减函数,直线与y轴的截距小于1,故选A.8. 将函数的图像向右平移个单位后所得的图像的一个对称轴是()A. B. C. D.【答案】A【解析】由题意,函数的图像向右平移,可得函数,令,则,令,则,即函数其中一条对称轴的方程是,故选A.9. 已知两直线两平面,且.则下面四个命题中正确的有()个.①若,则有;②若,则有;③若,则有;④若,则有.A. 0B. 1C. 2D. 3【答案】C【解析】(1),,又故(1)正确;(2)令面AC, , ,面,明显与不平行,故(2)错误.(3),又故答案(3)正确(4)令面AC, ,,面,明显m与n不平行,故(4)错误.故选C.10. 若点与点关于直线对称,则点的坐标为()A. (5,1)B. (1,5)C. (-7,-5)D. (-5,-7)【答案】B【解析】设B(m,n),由题意可得解得 .故选B11. 已知一个球的表面上有三点,且,若球心到平面的距离为 1,则该球的表面积为()A. B. C. D.【答案】A【解析】由题意,平面ABC截球面所得的截面圆恰为正三角形ABC的外接圆O′,设截面圆O′的半径为r,由正弦定理可得 ,解得r=2,设球O的半径为R,球心到平面ABC的距离为1,由勾股定理可得 ,球O的表面积,故选A.12. 当点在圆上变动时,它与定点的连结线段的中点的轨迹方程是( )A. B.C. D.【答案】B【解析】设PQ中点M(x,y),因为点Q 的坐标为(3,0),所以P(2x-3,2y),代入圆的方程,x2+y2=1得(2x-3)2+4y2=1.故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知为等差数列,若,则数列的通项公式为__________.【答案】【解析】设数列的公差为d,则,解得,.14. 已知直线与垂直,则的值是__________.【答案】1或4【解析】直线与垂直,,化简可得,解得k=1或k=4.15. 如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为__________.【答案】【解析】由三视图可知,该几何体为半球和圆锥的组合体,所以几何体的表面积S表=×4π×32+π×3×5=33π.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.16. 直线,对任意直线恒过定点__________.【答案】(-1,1)【解析】可化为:,若要让m,n “失去作用”,则,解得,即定点为.点晴:本题考查的是直线过定点问题。

2019-2020学年汕头市数学高二第二学期期末考试试题含解析

2019-2020学年汕头市数学高二第二学期期末考试试题含解析

2019-2020学年汕头市数学高二第二学期期末考试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知函数()f x 在区间[,]a b 上的图像是连续不断的一条曲线,命题p :总存在(,)c a b ∈,有()0f c =;命题q :若函数()f x 在区间(,)a b 上有()(0)f a f b <,则p 是q 的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要2.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知命题p :∃x ∈R ,x 2-x +1≥1.命题q :若a 2<b 2,则a <b ,下列命题为真命题的是( ) A .p q ∧B .p q ¬∧C .p q ∧¬D .p q ∧¬¬4.()52x x y ++的展开式中,33x y 的系数为( ) A .10B .20C .30D .605.设函数2()ln()f x e x =-,集合(){}(){}|,|A x y f x B y y f x ====,则图中的阴影部分表示的集合为( )A .[,1]e -B .(,1)e -C .(,](1,)e e -∞-⋃D .(,)(1,)e e -∞-⋃6.执行如图所示的程序框图,若输出的120S =,则判断框内应填入的条件是( )A .4k >B .5k >C .6k >D .7k >7.若()()20nax a +≠的展开式中各项的二项式系数之和为512,且第6项的系数最大,则a 的取值范围为( )A .()[],02,3-∞UB .()11,0,32⎡⎤-∞⎢⎥⎣⎦UC .[]2,3D .11,32⎡⎤⎢⎥⎣⎦8.已知集合M ={x|(x -1)2<4,x ∈R},N ={-1,0,1,2,3},则M∩N =( ) A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}9.在极坐标系中,点()M 1,0关于极点的对称点为( ) A .()1,0 B .()1,π-C .()1,πD .()1,2π10.若复数z 满足20171zi i=-,其中i 为虚数单位,则z =( ) A .1i -B .1i +C .1i --D .1i -+11.已知()()5212ax x +- 的展开式中,含2x 项的系数为70,则实数a 的值为( ) A .1B .-1C .2D .-212.设0a >,0b >,若21a b +=,则21a b+的最小值为 A.B .8C .9D .10二、填空题(本题包括4个小题,每小题5分,共20分)13.已知函数()y f x =的图象在点()()1,1M f 处的切线方程是2y x =+,则()()11f f +'=_________.14.二项式66ax ⎛+ ⎝⎭的展开式中5x20ax dx =⎰________. 15.已知0a >,0b >,当()214a b ab++取得最小值时,b =__________. 16.设随机变量()~2,B p ξ,()~4,B p η,若5(1)9P ξ≥=,则D η=___________.三、解答题(本题包括6个小题,共70分) 17.选修4-4:坐标系与参数方程点P 是曲线1C :22(2)4x y -+=上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90o 得到点Q ,设点Q 的轨迹为曲线2C . (1)求曲线1C ,2C 的极坐标方程; (2)射线3πθ=,(0ρ>)与曲线1C ,2C 分别交于,A B 两点,设定点(2,0)M ,求MAB ∆的面积.18.已知函数f(x)=aln x +21x + (a ∈R). (1)当a =1时,求f(x)在x ∈[1,+∞)内的最小值; (2)若f(x)存在单调递减区间,求a 的取值范围;(3)求证ln(n +1)>111135721n +++++L (n ∈N *). 19.(6分)选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,已知曲线1C 的方程为2cos 2sin r q q =+,直线2C 的参数方程为1{1x t y t=-+=--(t 为参数).(1)将1C 的方程化为直角坐标方程;(2)P 为1C 上一动点,求P 到直线2C 的距离的最大值和最小值.20.(6分)用数学归纳法证明:()()()2222*24(2)221335212121n n nn N n n n +++⋯+=∈⋅⋅-++. 21.(6分)已知某条有轨电车运行时,发车时间间隔t (单位:分钟)满足:220t ≤≤,t ∈N .经测算,电车载客量()p t 与发车时间间隔t 满足:24002(10)210()4001020t t p t t ⎧--≤<=⎨≤≤⎩,其中t ∈N .(1)求(5)p ,并说明(5)p 的实际意义; (2)若该线路每分钟的净收益为6()150060p t Q t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求每分钟最大净收益.22.(8分)交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T ,其范围为[0,10],分为五个级别,[0,2)T ∈畅通;[2,4)T ∈基本畅通;[4,6)T ∈轻度拥堵;[6,8)T ∈中度拥堵;[8,10]T ∈严重拥堵.早高峰时段(3T ≥),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如图.(1)这50个路段为中度拥堵的有多少个?(2)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟,中度拥堵为42分钟,严重拥堵为60分钟,求此人所用时间的数学期望.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.C 【解析】 【分析】利用充分、必要条件的定义及零点存在性定理即可作出判断. 【详解】命题p 推不出命题q ,所以充分性不具备;比如:()2f x x =,区间为[]3,2-,满足命题p ,但()()320f f ->,根据零点存在性定理可知,命题q 能推出命题p ,所以必要性具备; 故选:C 【点睛】本题考查充分必要条件,考查零点存在性定理,属于基础题. 2.A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 3.B 【解析】 【分析】先判定命题,p q 的真假,再结合复合命题的判定方法进行判定. 【详解】命题p :∃x=1∈R ,使x 2-x+1≥1成立.故命题p 为真命题;当a=1,b=-2时,a 2<b 2成立,但a <b 不成立, 故命题q 为假命题,故命题p ∧q ,¬p ∧q ,¬p ∧¬q 均为假命题; 命题p ∧¬q 为真命题, 故选:B . 【点睛】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档. 4.B 【解析】 【分析】将二项式表示为()()5522x x yx x y ⎡⎤++=++⎣⎦,利用二项展开式通项()525rr r C x x y -⋅+,可得出3r =,再利用完全平方公式计算出()22x x +展开式中3x 的系数,乘以35C 可得出结果.【详解】()()5522x x y x x y ⎡⎤++=++⎣⎦Q ,其展开式通项为()525rr r C x x y -⋅+,由题意可得3r =,此时所求项为()()222334323552C x xy C x x x y ⋅+=⋅++,因此,()52x x y ++的展开式中,33x y 的系数为35221020C =⨯=,故选B.【点睛】本题考查三项展开式中指定项的系数,解题时要将三项视为两项相加,借助二项展开式通项求解,考查运算求解能力,属于中等题. 5.C 【解析】 【分析】根据集合的定义可知A 为()f x 定义域,B 为()f x 值域;根据对数型复合函数定义域的要求可求得集合A ,结合对数型复合函数单调性可求得()f x 值域,即集合B ;根据Venn 图可知阴影部分表示()A BC A B U I ,利用集合交并补运算可求得结果.【详解】()()2ln f x e x =-的定义域为:20e x ->,即:(x ∈ (A ∴=2y e x =-Q 在()上单调递增,在(上单调递减()()2ln f x e x ∴=-在()上单调递增,在(上单调递减()()max 0ln 1f x f e ∴===;当x →()f x →-∞;当x →()f x →-∞()f x ∴的值域为:(],1-∞ (],1B ∴=-∞图中阴影部分表示:()A B C A B U I又(A B =-∞U ,(A B ⎤=⎦I ()((,A B C A B ∴=-∞U I U本题正确选项:C 【点睛】本题考查集合基本运算中的交并补混合运算,关键是能够明确两个集合表示的含义分别为函数的定义域和值域,利用对数型复合函数的定义域要求和单调性可求得两个集合;涉及到Venn 图的读取等知识. 6.B 【解析】 【分析】分析程序中两个变量和流程图可知,该算法为先计算后判断的直到型循环,模拟执行程序,即可得到答案. 【详解】 程序执行如下故当6k =时120S =,程序终止,所以判断框内应填入的条件应为5k >. 故选:B. 【点睛】本题考查了循环结构的程序框图,正确判断循环的类型和终止循环的条件是解题关键 7.C 【解析】 【分析】计算9n =,计算()55469C 2T ax =,()44559C 2T ax =,()66379C 2T ax =,根据系数的大小关系得到5454549954563699C 2C 2C 2C 2a a a a ⎧≥⎨≥⎩,解得答案. 【详解】2512n =,9n =,()55469C 2T ax =,()44559C 2T ax =,()66379C 2T ax =,Q 第6项的系数最大,5454549954563699C 2C 2,C 2C 2,a a a a ⎧≥∴⎨≥⎩,则23a ≤≤. 故选:C . 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力. 8.A 【解析】试题分析:求出集合M 中不等式的解集,确定出M ,找出M 与N 的公共元素,即可确定出两集合的交集. 解:由(x ﹣1)2<4,解得:﹣1<x <3,即M={x|﹣1<x <3}, ∵N={﹣1,0,1,2,3}, ∴M∩N={0,1,2}. 故选A点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 9.C 【解析】分析:在极坐标系中,ρθ(,)关于极点的对称点为ρπθ+(,). 详解:∵ρθ(,)关于极点的对称点为ρπθ+(,).,∴()M 1,0关于极点的对称点为()1,π. 故选:C .点睛:本题考查一个点关于极点的对称点的求法,是基础题,解题时要认真审题,注意极坐标性质的合理运用. 10.A 【解析】 【分析】 【详解】 由2017i 1iz=-,得()()()50420174i 1i i i 1i 1z i =-=-=+,则1i z =-,故选A.11.A 【解析】 【分析】 【详解】分析:由题意结合二项式展开式的通项公式得到关于a 的方程,解方程即可求得实数a 的值.详解:()512x -展开式的通项公式为:()()15522rrrr r r T C x C x +=-=-,由于()()()()55521221212ax x x ax x +-=-+-,据此可知含2x 项的系数为:()()2121552228010C a C a ⨯-+-=-,结合题意可知:801070a -=,解得:1a =. 本题选择A 选项.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解. 12.C 【解析】 【分析】根据题意可知,利用“1”的代换,将21a b +化为()2()21a ba b ++,展开再利用基本不等式,即可求解出答案。

广东省汕头市2019-2020学年数学高二第二学期期末检测试题含解析

广东省汕头市2019-2020学年数学高二第二学期期末检测试题含解析

广东省汕头市2019-2020学年数学高二第二学期期末检测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知椭圆221112211:1(0)x y C a b a b +=>>与双曲线222222222:1(0,0)x y C a b a b -=>>有相同的焦点12,F F ,点P 是曲线1C 与2C 的一个公共点,1e ,2e 分别是1C 和2C 的离心率,若12PF PF ⊥,则22124e e +的最小值为( ) A .92B .4C .52D .92.给出以下四个说法:①残差点分布的带状区域的宽度越窄相关指数越小②在刻画回归模型的拟合效果时,相关指数2R 的值越大,说明拟合的效果越好;③在回归直线方程0.212ˆy x =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④对分类变量X 与Y ,若它们的随机变量2K 的观测值k 越小,则判断“X 与Y 有关系”的把握程度越大.其中正确的说法是()A .①④B .②④C .①③D .②③3.已知命题:p x R ∀∈,1sin x e x ≥+.则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R ∃∈,001sin x e x ≤+ D .0x R ∃∈,001sin x ex <+4.设0sin a xdx π=⎰,则二项式51ax x ⎛⎫+ ⎪⎝⎭展开式的所有项系数和为( )A .1B .32C .243D .10245.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的,a b 分别为12,4,则输出的n 等于( )A .4B .5C .6D .76.已知,则的解析式为( )A .B .C .D .7.已知函数()2ln 134x f x x x +=--+,则函数()f x 的定义域为( )A .()4,1-B .()1,1-C .()1,2-D .()1,28.已知2132n A =,则n =( )A .11B .12C .13D .149.的展开式中的第7项是常数,则正整数n 的值为( )A .16B .18C .20D .2210.某学校为解决教师的停车问题,在校内规划了一块场地,划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有( ) A .99A 种B .812A 种C .888A 种D .84842A A 种11.从2018名学生志愿者中选择50名学生参加活动,若采用下面的方法选取:先用简单随机抽样从2018人中剔除18人,剩下的2000人再按系统抽样的方法抽取50人,则在2018人中,每人入选的概率( ) A .不全相等 B .均不相等C .都相等,且为140D .都相等,且为25100912.若()()201822018012201812...x a a x a x a x x R -=++++∈,则20181222018222a a a ++的值为( ) A .2B .1C .0D .1-二、填空题(本题包括4个小题,每小题5分,共20分) 13.已知i 是虚数单位,则复数2ii+的实部为______ . 14.已知随机变量X 的分布列为P (X =k )=2ka(k =1,2,3,4),则a 等于_______. 15.已知OBC ∆为等边三角形,O 为坐标原点,,B C 在抛物线()220y px p =>上,则OBC ∆的周长为_____.16.已知点(1,4,1)A ,(2,0,1)B -,则AB =u u u v__________.三、解答题(本题包括6个小题,共70分)17.某中学高中毕业班的三名同学甲、乙、丙参加某大学的自主招生考核,在本次考核中只有合格和优秀两个等次.若考核为合格,则给予10分的降分资格;若考核为优秀,则给予20分的降分资格.假设甲、乙、丙考核为优秀的概率分别为23、23、12,他们考核所得的等次相互独立. (1)求在这次考核中,甲、乙、丙三名同学中至少有一名考核为优秀的概率;(2)记在这次考核中,甲、乙、丙三名同学所得降分之和为随机变量X ,请写出X 所有可能的取值,并求()50P X ≥的值. 18.已知函数ln ()xf x ax x=-,a ∈R . (1)若()0f x ≥,求a 的取值范围; (2)若()y f x =的图像与 y a =相切,求a 的值. 19.(6分)把四个半径为R 的小球放在桌面上,使下层三个,上层一个,两两相切,求上层小球最高处离桌面的距离.20.(6分)已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点()2,1M ,平行于OM 的直线l 在y 轴上的截距为()0m m ≠,l 交椭圆于,A B 两个不同点. (1)求椭圆的标准方程以及m 的取值范围;(2)求证直线,MA MB 与x 轴始终围成一个等腰三角形. 21.(6分)已知函数()()221ln f x ax a x x =+++,a R ∈.(1)若1a =,求函数()y f x =的图像在点()()1,1f 处的切线方程; (2)讨论()f x 的单调性.22.(8分)已知椭圆2222:1(0)x y C a b a b +=>>,1F ,2F分别是其左,右焦点,P 为椭圆C 上任意一点,且124PF PF +=. (1)求椭圆C 的标准方程;(2)过1F 作直线l 与椭圆C 交于,A B 两点,点(,0)Q m 在x 轴上,连结,QA QB分别与直线x =-于点,M N ,若11MF NF ⊥,求m 的值.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.A 【解析】 【分析】题意设焦距为2c ,椭圆长轴长为2a 1,双曲线实轴为2a 2,令P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a 12+a 22=2c 2,由此能求出4e 12+e 22的最小值. 【详解】由题意设焦距为2c ,椭圆长轴长为2a 1,双曲线实轴为2a 2, 令P 在双曲线的右支上,由双曲线的定义|PF 1|﹣|PF 2|=2a 2,① 由椭圆定义|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=4c 2,③①2+②2,得|PF 1|2+|PF 2|2=4a 12+4a 22,④ 将④代入③,得a 12+a 22=2c 2, ∴4e 12+e 22=2222124c c a a +=52+22212a a +21222a a ≥52+2=92. 故选A . 【点睛】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值. 2.D 【解析】根据残差点分布和相关指数的关系判断①是否正确,根据相关指数2R 判断②是否正确,根据回归直线的知识判断③是否正确,根据22⨯联表独立性检验的知识判断④是否正确. 【详解】残差点分布宽度越窄,相关指数越大,故①错误.相关指数越大,拟合效果越好,故②正确.回归直线方程斜率为0.2故解释变量x 每增加一个单位时,预报变量ˆy平均增加0.2个单位,即③正确.2K 越大,有把握程度越大,故④错误.故正确的是②③,故选D. 【点睛】本小题主要考查残差分析、相关指数、回归直线方程和独立性检验等知识,属于基础题. 3.D 【解析】 【分析】利用全称命题的否定解答. 【详解】命题:p x R ∀∈,1sin x e x ≥+.命题p ⌝为0x R ∃∈,001sin xe x <+.故选D 【点睛】本题主要考查全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题. 4.C 【解析】 【分析】根据定积分求得2a =,得出二项式,再令1x =,即可求得展开式的所有项的系数和,得到答案. 【详解】 由题意,可得00sin cos |2a xdx x ππ==-=⎰,所以二项式为51(2)x x+,令1x =,可得二项式51(2)x x+展开式的所有项系数和为5(21)243+=,故选C. 【点睛】本题主要考查了微积分基本定理的应用,以及二项展开式的系数问题,其中解答中熟记定积分的计算,以及二项式的系数的求解方法是解答的关键,着重考查了推理与运算能力,属于基础题. 5.A 【解析】分析:本题给只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误). 详解:模拟程序的运行,可得12,4,1,18,8a b n a b =====, 不满足结束循环的条件a b ≤,执行循环体,2,27,16n a b ===;不满足结束循环的条件a b ≤,执行循环体,813,,322n a b ===; 不满足结束循环的条件a b ≤,执行循环体,2434,,644n a b ===; 满足结束循环的条件a b ≤,退出循环,输出n 的值为4,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 6.C 【解析】 【分析】 将等式变形为,可得出函数的解析式,再计算出即可.【详解】,,,,因此,,故选C.【点睛】本题考查函数的解析式,属于中等题,求函数解析式常见题型由以下几种: (1)根据实际应用求函数解析式;(2)换元法求函数解析式,利用换元法一定要注意换元后参数的范围; (3)待定系数法求解析式,这种方法既适合已知函数名称的函数解析式;(4)消元法求函数解析式,这种方法适合求自变量互为倒数或相反数的函数解析式. 7.B【分析】根据对数的真数大于零,负数不能开偶次方根,分母不能为零求解. 【详解】 因为函数()2ln 134x f x x x +=--+,所以210340x x x +>⎧⎨--+>⎩,所以141x x >-⎧⎨-<<⎩,解得11x -<<,所以()f x 的定义域为()1,1-. 故选:B 【点睛】本题主要考查函数定义域的求法,还考查了运算求解的能力,属于基础题. 8.B 【解析】∵2132n A =,∴()1132n n -=, 整理,得,21320n n --=;解得12n =,或11n =-(不合题意,舍去); ∴n 的值为12. 故选:B. 9.B 【解析】 【分析】利用通项公式即可得出. 【详解】的展开式的第7项﹣9,令=0,解得n=1.故选:B.【点睛】本题考查了二项式定理的应用、方程思想,考查了推理能力与计算能力,属于中档题.10.A【解析】根据题意,要求有4个空车位连在一起,则将4个空车位看成一个整体,将这个整体与8辆不同的车全排列,有99A种不同的排法,即有99A种不同的停车方法;故选A.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.11.D【解析】【分析】根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断出每个人入选的概率.【详解】在系统抽样中,若所给的总体个数不能被样本容量整除时,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,所以,每个个体被抽到包括两个过程,一是不被剔除,二是选中,这两个过程是相互独立的,因此,每个人入选的概率为5025 20181009.故选:D.【点睛】本题考查简单随机抽样和系统抽样方法的应用,也考查了概率的意义,属于基础题. 12.D【解析】分析:令x=1,可得1=a 1.令x=12,即可求出. 详解:()()201822018012201812...x a a x a x a x x R -=++++∈,令x=1,可得1=0a .令x=12,可得a 1+12a +222a +…+201820182a =1, ∴12a +222a+…+201820182a =﹣1, 故选:D .点睛:本题考查了二项式定理的应用、方程的应用,考查了赋值法,考查了推理能力与计算能力,注意0a 的处理,属于易错题.二、填空题(本题包括4个小题,每小题5分,共20分) 13.1 【解析】 【分析】直接利用复数代数形式的乘除运算化简得答案. 【详解】()()22212i i i i i i +-+==--Q, ∴复数2ii+的实部为1. 故答案为:1. 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于容易题. 14.5 【解析】试题分析:.随机变量X 的取值有1、2、3、4,分布列为:由概率的基本性质知:41()k P X k ==⇒∑11321,522a a a a a+++== 考点:1、离散型随机变量的分布列.15. 【解析】 【分析】设1(B x ,1)y ,2(C x ,2)y ,由于OB OC =,可得22221122x y x y +=+.代入化简可得:12x x =.由抛物线对称性,知点B 、C 关于x 轴对称.不妨设直线OB的方程为:3y x =,与抛物线方程联立解出即可得出. 【详解】解:设1(B x ,1)y ,2(C x ,2)y ,OB OC =Q ,22221122x y x y ∴+=+. 又2112y px =Q ,2222y px =,()22212120x x p x x ∴-+-=,即()()211220x x x x p -++=.又1x Q 、2x 与p 同号,1220x x p ∴++≠.210x x ∴-=,即12x x =.由抛物线对称性,知点B 、C 关于x 轴对称. 不妨设直线OB的方程为:3y x =,联立22y x y px ⎧=⎪⎨⎪=⎩,解得()6,B p .OBC ∴∆的周长6=⨯=.故答案为:. 【点睛】本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题、等边三角形的性质,考查了推理能力与计算能力,属于基础题. 16.5 【解析】分析:运用向量坐标的求法以及向量的模长公式即可. 详解:Q 点()1,4,1A ,()2,0,1B -,∴ ()3,4,0AB =--u u u v ,5AB ∴==u u u v .故答案为5.点睛:向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.三、解答题(本题包括6个小题,共70分)17.(1)1718;(2)X 所有可能的取值为30、40、50、60,()2503P X ≥=. 【解析】【分析】(1)计算出三名同学考核均为合格的概率,利用对立事件的概率公式可计算出所求事件的概率;(2)根据题意得出X 所有可能的取值为30、40、50、60,利用相互独立事件概率乘法公式和互斥事件概率计算公式能求出()50P X ≥. 【详解】(1)由题意知,三名同学考核均为合格的概率为221111133218⎛⎫⎛⎫⎛⎫---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭, 因此,甲、乙、丙三名同学中至少有一名考核为优秀的概率为11711818P =-=; (2)由题意知,随机变量X 的所有可能取值有30、40、50、60,则()13018P X ==,()21222121540113323218P X C ⎛⎫⎛⎫==⋅-⋅⋅+-⋅= ⎪ ⎪⎝⎭⎝⎭, ()()()1525013040118183P X P X P X ∴≥=-=-==--=. 【点睛】 本题考查概率的求法,考查相互独立事件概率乘法公式、对立事件概率计算公式等基础知识,考查运算求解能力,是中等题.18.(1)12a e ≥;(2)1 【解析】【分析】(1)由题意可得2ln x a x ≥,设()2ln x g x x=,求得导数和单调性、极值和最值,即可得到所求范围;(2)设()y f x =的图象与y a =相切于点(),t a ,求得()f x 的导数,可得切线的斜率和切点满足曲线方程,解方程即可得到所求值.【详解】(1)由()0f x ≥得ln 0x ax x-≥. , 从而ln x ax x ≥,即2ln x a x≥. 设()2ln x g x x =. ,则()312ln x g x x -'=,(0x >)所以0x <<()0g x '>,()g x 单调递增;x >()0g x '<,()g x 单调递减,所以当x = ()g x取得最大值12g e=, 故a 的取值范围是12a e≥. (2)设()y f x =的图像与y a =相切于点(),t a ,依题意可得()(),0.f t a f t ⎧=⎪⎨='⎪⎩因为()21ln x f x a x -'=-, 所以2ln ,1ln 0,t at a t t a t ⎧-=⎪⎪⎨-⎪-=⎪⎩消去a 可得()121ln 0t t t ---=.令()()121ln h t t t t =---,则()()111212ln 2ln 1h t t t t t t=--⋅='---,显然()h t '在()0,∞+上单调递减,且()10h '=,所以01t <<时,()0h t '>,()h t 单调递增; 1t >时,()0h t '<,()h t 单调递减,所以当且仅当1t =时()0h t =.故1a =.【点睛】本题主要考查导数的几何意义即函数在某点处的导数即为在改点处切线的斜率,导数与函数单调性、极值和最值的关系,由()0f x '>,得函数单调递增,()0f x '<得函数单调递减,考查方程思想和运算能力、推理能力,属于中档题.19. (2+263)R 【解析】 【分析】 四个小球两两相切,其四个球心构成正四面体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省汕头市2019-2020学年高二上学期期末联考数学(理)试题本试卷分两部分,共4页,满分150分。

考试用时120分钟。

注意事项:1.答题前填写好自己的姓名、班级、考号等信息。

2.请将答案正确填写在答题卡上。

第I 卷(选择题)一、单选题(每小题5分,共60分) 1.已知集合,,则( )A .B .C .D .2.已知函数)sin()(ϕω+=x A x f )0,0(>>ϕω的部分图像如图所示,则实数ω的值为( )A.21B.1C.2D.43.等差数列{}n a 的前n 项和为n S ,且52515,2S a a =-+=-,则公差d = ( ) A .5 B .4 C .3 D .24.已知直线1:220l x y +-=, 2:410l ax y ++=,若12l l ⊥,则a 的值为( ) A .8 B .2 C .12-D .-2 5.在下列四个正方体中,能得出AB ⊥CD 的是① ② ③ ④A .①B .①②C .②③D .④6.设n m ,是两条不同的直线,βα,是两个不同的平面,下列命题正确的是( )A .若,//,,βαn m n m ⊥⊥则βα//B .若,//,//βαn m βα//,则n m //C .若,//,βαn m ⊥βα//则n m ⊥D .若n m //,,//,//βαn m 则βα//7.已知抛物线22y px =上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( ) A .x=8 B .x=-8C .x=4D .x=-48.椭圆与双曲线有相同的焦点,点是椭圆与双曲线的一个交点,则的面积是( )A .4B .2C .1D .9.已知椭圆()222210x y a b a b+=>>的左右焦点分别是12,F F ,焦距为2c ,若直线)y x c =+与椭圆交于点,且满足12212MF F MF F ∠=∠ ,则椭圆的离心率是( )A .2B 1 C10.在如图的平面图形中,已知,,,则的值为A .B .C .D .011.圆:和圆:有三条公切线,若,,且,则的最小值为( )A .1B .3C .4D .512.已知定义在R 上的函数)(x f y =对于任意的x 都满足)()1(x f x f -=+,当11<≤-x 时,3)(x x f =,若函数x x f x g a log )()(-=至少有6个零点,则a 的取值范围是( )A .∪(5,+∞)B .∪[5,+∞)C .∪(5,7) D .∪[5,7)第II 卷(非选择题)二、填空题(每小题5分,共20分)13.抛物线28x y =的焦点到准线的距离是______________.14.过点)2,2(-)且与双曲线1222=-y x 有公共渐近线的双曲线方程是_______________. 15.已知下列命题:①若直线与平面内的一条直线平行,则;②命题“,”的否定是“,”;③已知,则“”是“”的充分而不必要条件.其中正确的命题是________________.(填序号)16.某三棱锥的三视图如图所示,则它的外接球表面积为__________.三、解答题(共70分)17.(本题10分)已知圆C :(x –1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当直线l 的倾斜角是45°时,求弦AB 的长.18.(本题12分)在△ABC 中,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,且B a A b cos 3sin =(1)求∠B 的大小;(2) 若A C b sin 2sin ,3==求a 及c19.(本题12分)已知数列}{n a 满足)(12*1N n a a n n ∈-=+,21=a .(Ⅰ)求证}1{-n a 为等比数列,并数列}{n a 的通项公式;(Ⅱ)求数列}{n na 的前n 项和)(*N n S n ∈.20.(本小题12分)如图,在四棱锥ABCD P -中,⊥PC 底面ABCD ,底面ABCD 是直角梯形,AD AB ⊥,CD AB //,222===CD AD AB ,E 是PB 的中点.(1)求证:平面⊥EAC 平面PBC ;(2)若二面角E AC P --的余弦值为36,求直线PA 与平面EAC 所成角的正弦值.21.(本题12分)椭圆C : 22221(0)x y a b a b+=>>的离心率为2,(1)求椭圆C 的方程;(2)设过点D ()0,4的直线l 与椭圆C 交于,E F 两点, O 为坐标原点,若OEF ∆为直角三角形,求直线l 的斜率.22.(本题12分)已知函数()()222f x x m x m =-+-+-, x R ∈.PABCDE(1)若函数)(x f y =有两个不同的零点,求实数m 的取值范围;(2)是否存在整数a , b ,使得()a f x b ≤≤的解集恰好是[],a b ,若存在,求出a ,b 的值;若不存在,说明理由.广东省汕头市2019-2020学年高二上学期期末联考数学(理)试题参考答案一、选择题二、填空题13.4 14. 15. ② 16.100 3三、解答题17.(1)已知圆的圆心为,......................................1分∵直线过点,,∴, ......................................2分直线的方程为, ......................................3分即; ......................................4分(2)当直线的倾斜角为时,斜率为,直线的方程为,..................5分即,圆心到直线的距离为, ..................7分又∵圆的半径为,∴弦的长为. ........................ ........10分18.(1) 在△ABC中,由及正弦定理得.................2分所以, .....................................3分所以; ......................................5分(无写在△ABC中或B的取值范围扣1分)(2)由及得, ......................................6分由及余弦得.....................................8分.....................................12分19. (Ⅰ)由题可得()1211-=-+n n a a ,又111=-a ,.....................................1分2111=--∴+n n a a.....................................3分}{1-∴n a 是以1为首项2为公比的等比数列,.....................................4分122111+=∴=-∴--n n n n a a ; .....................................6分(Ⅱ),设的前项和为,所以 (7)分.....................................8分 所以,..........................10分所以 (12)分20. (1)证明:⊥PC 平面ABCD ,⊂AC 平面ABCD , PC AC ⊥∴,.....................................1分 2=AB ,1==CD AD ,2==∴BC AC222AB BC AC =+∴,BC AC ⊥∴.....................................2分又C PC BC = , .....................................3分⊥∴AC 平面PBC ,....................................4分∵⊂AC 平面EAC ,B∴平面⊥EAC 平面PBC .....................................5分(2)以C 为原点,建立空间直角坐标系如图所示,.....................................6分 则C (0,0,0),A (1,1,0),B (1,-1,0) 设P (0,0,a )(0>a ),则E (21,21-,2a),.....................................7分 )0,1,1(=CA ,),0,0(a CP =,)2,21,21(a-=,取=(1,-1,0) 则0=⋅=⋅,∴m 为面PAC 的法向量 .........8分设),,(z y x n =为面EAC 的法向量,则0=⋅=⋅, 即⎩⎨⎧=+-=+0,0az y x y x ,取a x =,a y -=,2-=z ,则)2,,(--=a a n ,.....................................9分依题意,362,cos 2=+==><a a n m ,则2=a .....................................10分于是)2,2,2(--=.....................................11分设直线PA 与平面EAC 所成角为θ,则32,cos sin ==><=n θ, 即直线PA 与平面EAC 所成角的正弦值为32.....................................12分21. (1)由已知225c a b a =+=,.....................................1分 又222a b c =+,解得224,1a b ==,.....................................3分所以椭圆C 的方程为2214x y +=; .....................................4分 (2)根据题意,过点()0,4D 满足题意的直线斜率存在,设:4l y kx =+,................5分联立221{ 44x y y kx +==+,消去y 得()221432600k x kx +++=,.....................................6分()()222322401464240k k k ∆=-+=-,令0∆>,解得2154k >.........................7分 设E 、F 两点的坐标分别为()()1122,,,x y x y , ⅰ)当EOF ∠为直角时, 则1212223260,1414k x x x x k k+=-=++,.....................................8分 因为EOF ∠为直角,所以0OE OF ⋅=,即12120x x y y +=,.....................................9分所以()()2121214160k x x k x x ++++=,所以()2222151********k k k k ⨯+-+=++,解得k = .....................................10分ⅱ)当OEF ∠或OFE ∠为直角时,不妨设OEF ∠为直角, 此时, 1OE k k ⋅=,所以111141y y x x -⋅=-,即221114x y y =-① 又221114x y +=② 将①代入②,消去1x 得2113440y y +-=,解得123y =或12y =-(舍去),.....................................11分 将123y =代入①,得1x =±所以114y k x -== 经检验,所求k 值均符合题意.综上, k的值为和.....................................12分22.(1)()()()()224226m m m m ∆=---=--.....................................1分 因为函数)(x f y =有两个不同的零点,所以0)6)(2(>--m m .....................................2分62><∴m m 或.....................................3分(2)假设存在整数a 、b ,使()a f x b ≤≤的解集恰好是[],a b ,则 ①若函数()y f x =在[],a b 上单调递增,则()f a a =, ()f b b =且22m b -≥, 即()()2222,{ 22,a m a m ab m b m b -+-+-=-+-+-=.....................................4分 作差得到21m a b -=++,代回得到1ab a b --=,即()()112a b --=,.....................................5分 由于a 、b 均为整数,故1a =-, 0b =, 2m =或2a =, 3b =, 8m =,经检验均不满足要求;.....................................6分②若函数()y f x =在[],a b 上单调递减,则()f a b =, ()f b a =且22m a -≤, 即()()2222,{ 22,a m a mb b m b m a -+-+-=-+-+-=.....................................7分 作差得到21m a b -=+-,代回得到:221ab a b --=-,即()()223a b --=,.....................................8分 由于a 、b 均为整数,故1a =-, 1b =, 1m =或3a =, 5b =, 9m =,经检验均不满足要求;.....................................9分 ③若函数()y f x =在[],a b 上不单调,则22m f b -⎛⎫≤⎪⎝⎭, ()()f a f b a ==,且22m a b -<<, 即()()2222,{ 22,a m a m ab m b m a -+-+-=-+-+-=.....................................10分 作差得到2m a b -=+,代回得到20ab a b --=,即()()122a b --=,由于a , b 均为整数, 故2a =, 4b =, 8m =或1a =-, 1b =, 2m =,经检验均满足要求;.....................................11分综上:符合要求的整数a、b是1,{1,2,abm=-==或2,{4,8.abm===......................................12分。

相关文档
最新文档