由连续几个数构平方和关系
七年级数学上册第五章代数式与函数的初步认识5
运算顺序的符号表达数量关系的语言称符号语言。通过 数 时
例1我们把文字语言转化成符号语言。可以看出在描述 学 ,
问题时数学语言比自然语言更简单明确。
数学应用
1.选择题:
(1)下列结论中正确的是( D )
A.a是代数式,1不是代数式 B.1是代数式,a不是代数式
C.1与a都不是代数式
D.1与a都是代数式
则剩下的钱为(166-5n)元,他最多能买这种钢笔33支.
像5n+2 、4n、ab+ c、2 s、166-5n 、33的这样式子叫
t
代数式.
一般地,用运算符号加、减、乘、除、乘方、开方把数或者 表示数的字母连接起来,所得到的式子叫做代数式。
注意:
重探要索结发现论
1. 单独一个数或一个字母也是代数式。
⑵ 如何用代数式表示一个三位数?
4.(1) a、b两数的平方和减去他们乘积的2倍; (2) a、b两数的和的平方减去他们的差的平方; (3) a、b两数的和与他们的差的乘积
课堂小结
今
天 这
1、什么是代数式?怎么书写?
节 2.怎样列代数式?
课 ,
3.列代数式的关键是什么?我 于较复杂的数量关系,应按下述规律列代数式:
s
(2) t (4) x=2
(5) 3×4 -5
(6) 3×4 -5 =7
(7) x-1≤0
(8) x+2>3
(9) 10x+5y=15
(10) a +c
b
答: (1)、(2)、(3)、(5)、(10)是代数式;
(4)、(6)、(7)、(8)、(9)不是。
典型例题
语只解
言要答
例1 用代数式表示:
第三十一讲 完全平方数和完全平方式
第三十一讲完全平方数和完全平方式设n是自然数,若存在自然数m,使得n=m2,则称n是一个完全平方数(或平方数).常见的题型有:判断一个数是否是完全平方数;证明一个数不是完全平方数;关于存在性问题和其他有关问题等.最常用的性质有:(1)任何一个完全平方数的个位数字只能是0,1,4,5,6,9,个位数字是2,3,7,8的数一定不是平方数;(2)个位数字和十位数字都是奇数的两位以上的数一定不是完全平方数,个位数字为6,而十位数字为偶数的数,也一定不是完全平方数;(3)在相邻两个平方数之间的数一定不是平方数;(4)任何一个平方数必可表示成两个数之差的形式;(5)任何整数平方之后,只能是3n或3n+1的形式,从而知,形如3n+2的数绝不是平方数;任何整数平方之后只能是5n,5n+1,5n+4的形式,从而知5n+2或5n+3的数绝不是平方数;(6)相邻两个整数之积不是完全平方数;(7)如果自然数n不是完全平方数,那么它的所有正因数的个数是偶数;如果自然数n是完全平方数,那么它的所有正因数的个数是奇数;(8)偶数的平方一定能被4整除;奇数的平方被8除余1,且十位数字必是偶数.例题求解【例1】n是正整数,3n+1是完全平方数,证明:n+l是3个完全平方数之和.【例2】一个正整数,如果加上100是一个平方数,如果加上168,则是另一个平方数,求这个正整数.【例3】一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=52—32,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个数?并请你说明理由.【例4】(太原市竞赛题)已知:五位数abcde满足下列条件:(1)它的各位数字均不为零;(2)它是一个完全平方数;(3)它的万位上的数字a是一个完全平方数,干位和百位上的数字顺次构成的两位数bc以及十位和个位上的数字顺次构成的两位数de也都是完全平方数.试求出满足上述条件的所有五位数.【例5】(2002年北京)能够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够;请说明理由.【例6】使得(n2—19n+91)为完全平方数的自然数n的个数是多少?【例7】 (“我爱数学”夏令营)已知200221a a a ,,, 的值都是1或—1,设m 是这2002个数的两两乘积之和.(1)求m 的最大值和最小值,并指出能达到最大值、最小值的条件;(2)求m 的最小正值,并指出能达到最小正值的条件.例8】 (全国竞赛题)如果对一切x 的整数值,x 的二次三项式c bx ax ++2都是平方数(即整数的平方),证明: (1) 2a 、2b 都是整数; (2)a 、b 、c 都是整数,并且c 是平方数.反过来,如果(2)成立,是否对一切x 的整数值,c bx ax ++2的值都是平方数?学力训练(A 级)1.(山东省竞赛题)如果a -是整数,那么a 满足( )A .a>0,且a 是完全平方数B .a<0,且-a 是完全平方数C .a ≥0,且a 是完全平方数D .a ≤0,且—a 是完全平方数2.设n 是自然数,如果n 2的十位数字是7,那么n 2的末位数字是( )A .1B .4C .5D .63.(五羊杯,初二)设自然数N 是完全平方数,N 至少是3位数,它的末2位数字不是00,且去掉此2位数字后,剩下的数还是完全平方数,则N 的最大值是 .4.使得n 2—19n+95为完全平方数的自然数n 的值是 .5.自然数n 减去52的差以及n 加上37的和都是整数的平方,则n= .6.两个两位数,它们的差是56,它们的平方数的末两位数字相同,则这两个数分别是.7.是否存在一个三位数abc (a ,b ,c 取从1到9的自然数),使得cab bca abc ++为完全平方数?8.求证:四个连续自然数的积加l ,其和必为完全平方数.(B 级)1.若x 是自然数,设1222234++++=x x x x y ,则 ( )A .y 一定是完全平方数B .存在有限个,使y 是完全平方数C .y 一定不是完全平方数D .存在无限多个,使y 是完全平方数2.已知a 和b 是两个完全平方数,b 的个位数字为l ,十位数字为x ;b 的个位数为6,十位数字为y ,则( )A .x ,y 都是奇数B .x ,y 都是偶数C .x 是奇数,y 是偶数D .x 为偶数,y 为奇数3.若四位数xxyy 是一个完全平方数,则这个四位数是 .4.设m 是一个完全平方数,则比m 大的最小完全平方数是 .5.(全国联赛题)设平方数y 2是11个连续整数的平方和,则y 的最小值是 .6.(北京市竞赛,初二)p 是负整数,且2001+p 是—个完全平方数,则p 的最大值为 .7.有若干名战士,恰好组成一个八列长方形队列.若在队列中再增加120人或从队列中减去120人后,都能组成一个正方形队列.问原长方形队列共有多少名战士?8.证明:10006999309个各n n 是一个完全平方数.。
数据结构说课ppt课件
基本概念与术语
据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:
1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
单链表
链表操作算法:初始化、插入、输出、删除、遍历
8. 在一个单链表中删除q所指结点时,应执行如下操作:
q=p->next;
p->next=( p->next->next );
free(q);//这种题目靠一根指针是没有办法完成的,必须要借助第二根指针。
9. 在一个单链表中p所指结点之后插入一个s所指结点时,应执行:
(2) 若表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取表中的元
问答题
素,这时,应采用哪种存储表示?为什么?
应采用顺序存储表示。因为顺序存储表示的存取速度快,但修改效率低。若表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取表中的元素,这时采用顺序存储表示较好。
03
栈和队列
数据结构说课ppt课件
演讲人
数据结构概述
01
线性表
02
栈和队列
03
目录
01
数据结构概述
基本概念与术语
2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。)
在右侧编辑区输入内容
顺序表的存储效率高,存取速度快。此,不易扩充。同时,由于在插入或删除时,为保持原有次序,平均需要移动一半(或近一半)元素,修改效率不高。
数字推理技巧四
1.数字推理数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。
一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。
只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。
只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。
因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。
这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。
有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。
此时,与其“卡”死在这里,不如抛开这道题先做别的题。
在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。
在做这些难题时,有一个基本思路:“尝试错误”。
很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
常用平方立方和公式整理
常用平方立方和公式整理在数学中,平方和和立方和是两个常见的数学概念。
平方和是指一系列相关数值的平方值的总和,而立方和则是指一系列相关数值的立方值的总和。
这两个概念在许多数学应用中非常有用,包括代数、几何和统计学等领域。
在本文中,我们将整理一些常用的平方和和立方和公式,以便读者更好地理解和应用这些概念。
一、平方和公式1.平方和公式平方和公式是一个用于计算一些数列平方和的公式。
假设我们有一个由n个连续整数构成的数列,首项为a,公差为d。
那么这个数列的平方和可以通过以下公式计算:平方和=n(a^2)+n(n-1)d^2/2例如,如果我们有一个由1到5的连续整数构成的数列,那么我们可以使用平方和公式来计算该数列的平方和。
首项a为1,公差d为1,n 为5、将这些值代入公式中,我们可以得到:平方和=5(1)^2+5(5-1)(1)^2/2=5+20/2=5+10=15所以,由1到5的连续整数的平方和为152.平方差公式平方差公式是一个用于计算两个数的平方差的公式。
假设我们有两个数a和b,那么它们的平方差可以通过以下公式计算:平方差=(a+b)(a-b)例如,如果我们有两个数3和5,那么我们可以使用平方差公式来计算它们的平方差。
将这两个数代入公式中,我们可以得到:平方差=(3+5)(3-5)=8(-2)=-16所以,3和5的平方差为-16二、立方和公式1.立方和公式立方和公式是一个用于计算一些数列立方和的公式。
假设我们有一个由n个连续整数构成的数列,首项为a,公差为d。
那么这个数列的立方和可以通过以下公式计算:立方和=[n*(n+1)/2]^2例如,如果我们有一个由1到5的连续整数构成的数列,那么我们可以使用立方和公式来计算该数列的立方和。
首项a为1,公差d为1,n 为5、将这些值代入公式中,我们可以得到:立方和=[5*(5+1)/2]^2=[5*(6)/2]^2=[15]^2=225所以,由1到5的连续整数的立方和为2252.立方差公式立方差公式是一个用于计算两个数的立方差的公式。
求连续自然数平方和的公式精品
求连续自然数平方和的公式前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。
这种方法浅显易懂,有它突出的优越性。
在“有趣的图形数”一文中, 也曾经用图形法推出过求连续自然数平方和的公式:12+ 22+ 3一+ n2二n(n 1)(2n 1)6这里用列表法再来推导一下这个公式,进一步体会列表法的优点。
首先,算出从1开始的一些连续自然数的和与平方和,列出下表:n 1 2 3 4 5 r\61 +2 + 3+^+ n 13 6 10 15 2112+ 22+ 32+…+ n2 1 5 14 30 55 91然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数,2 小2小2 21 2 3nn—-------------------- ,1 2 3 n既然人=匚上3------- ,而它的通项公式是•红」,于是大胆猜想1 2 3 n 32 2 2 21 2 3 n 2n 1------------- = ----- 。
1 2 3 n 3因为分母1+2+ 3+…+ n= n(n 1),所以22 2 2 21 2 3 n 2n 1------------- = ----- 。
n(n 1) 32再根据表中的数据,算出分数A的值,列出下表:3由此得到12+ 22 + 32...+ n 2= n(n 1) % 2n 1 = n(n 1)(2n 1)。
236。
用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续 自然数平方和的公式。
这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了 “猜 想一证明”的思路。
联想到当年著名文学家胡适也曾经有过“大胆假设,小心 求证”的名言。
看来,无论数学也好,文学也好,追求真理的道路是相通的。
这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、 类比和猜想能力的培养,这往往是培育创新思维的有效途径。
,2小2 亠21 +2 +3 …+n(n 1)(2 n 1) 。
学习知识点058完全平方公式定理(解答)
1、已知n是正整数,1++是一个有理式A的平方,那么,A= ±.考点:完全平方式。
专题:计算题。
分析:先通分,分母n2(n+1)2是完全平方的形式,然后把分子整理成完全平方式的形式,从而即可得解.解答:解:1++=,分子:n2(n+1)2+(n+1)2+n2=n2(n+1)2+n2+2n+1+n2,=n2(n+1)2+2n(n+1)+1,=[n(n+1)+1]2,∴分子分母都是完全平方的形式,∴A=±.故答案为:±.点评:本题考查了完全平方式,先通分,然后把分子整理成完全平方公式的形式是解题的关键,难度较大,灵活性较强.2、关于x的二次三项式:x2+2mx+4﹣m2是一个完全平方式,求m的值.考点:完全平方式。
专题:计算题。
分析:这里首末两项是x和m这两个数的平方,那么中间一项为加上或减去x和m积的2倍.解答:解:∵x2+2mx+4﹣m2是完全平方式,∴x2+2mx+4﹣m2=(x±m)2,∴4﹣m2=m2,∴m=±,即m1=,m2=﹣.点评:本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3、x,y都是自然数,求证:x2+y+1和y2+4x+3的值不能同时是完全平方.考点:完全平方式。
专题:证明题。
分析:先假设x2+y+1和y2+4x+3的值能同时是完全平方,那么就可写成完全平方式,从而可求y=2x,x=y,而xy是自然数,则必是无理数,那么就与已知相矛盾,故可得证.解答:解:设x2+y+1和y2+4x+3的值能同时是完全平方,那么有x2+y+1=(x+1)2,y2+4x+3=(y+)2,∴y=2x,4x=2y,即y=2x,x=y,又∵x、y是自然数,∴y必是无理数,∴与已知矛盾,故x2+y+1和y2+4x+3的值不能同时是完全平方.点评:本题考查了完全平方式、无理数、自然数的定义.两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.4、(2003•黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.考点:完全平方式。
自然数平方和公式及证明
自然数平方和公式证明1:此式对于任何自然数n都成立。
依次把n=1,2,3,...,n-1,n代入止式可得把这n个等式的左边与右边对应相加,则n个等式的左边各项两两相消,最后只剩下;而前n个等式的右边各项,我们把它们按三列相加,提取公因数后,第一列出现我们所要计算的前n个自然数的平方和,第二列出现我们在上一段已经算过的前n个自然数的和,第三列是n个1。
因而我们得到。
现在这里对这个结果进行恒等变形可得移项,合并同类项可得即证明2:设12+ 22 + … + n 2 =An 3+Bn 2+Cn+D,令n=1,2,3,4得关于A ,B ,C 。
D 的四元一次方程组,可解得A=C=16 ,B=12 ,D=0,再用数学归纳法证明。
证明3:设f(x)=(1+x)2+ (1+x)3 +… +(1+x)n ,则x 2的系数和为 C 22 + C 23 +… + C 2n=12 [12+ 22 + … + n 2]-12 (1+2+… + n) = 12 [12+ 22 + … + n 2]- -14n(n+1) 又f(x)=(1+x)2-(1+x)n+1x,其中x 2的系数为C 3n+1 ,于是有12 [12+ 22 + … + n 2]- -14 n(n+1)= C 3n+1 ,解得 12+ 22 + … + n 2 = n(n+1)(2n+1)6关于自然数平方和的几个模型归纳法、变换数学公式、组合恒等式等证明外,还可以构造模型来证明示k 个k 之和(图1(1)).旋转此三角形数阵得到另两个三角形数阵(图1(2)、1(3)),每一线段上的数字顺序成等差数列,再重叠三个数阵,则每一点上的数字和为(2n +1).于是透了运动的思想,动静结合,相得益彰.割补、数形结合来证明.(n-1)(2n-1)个单位正方形;再给前n-2层各补(2n-3)个单位正方形,共补(n-2)(2n-3)个;……,最后给第一层补3个,这样添补的单位正模型2数形结合,以形助数,比较直观.而应用映射方法将求和问题映射成几何上的求堆垒总数问题,再利用几何体的割补求和,也体现了化归思想.而添补的立方体个数为1×3+2×5+…+n(2n+1),原有立方体个数以上三个均属构造的数学模型,另外还可以构造物理模型,从物理意义上进行探讨.垂线段上分别等距离地放1个,2个,…,n个重量为1个单位的质点.则这些质点对原点的力矩数学知识结构之间的相互联系,为我们解决问题提供了丰富的源泉.数学问题的模型是多样的.通过对不同模型的探讨,将有助于开阔我们的视野,有助于提高我们的分析问题和解决问题的能力.前n 个连续自然数的平方和公式的最新证明方法关于前n 个连续自然数的平方和: )12)(1(61 (222)2321++=++++n n n n 的证明方法很多,这里不再一一列举了.为了让小学生掌握住这个公式,我现在用一种比较合适的方法,方便孩子们理解和掌握,同时发现这个方法教学效果很好. 我们先来计算:321222++=1×1+2×2+3×3,即1个1与2个2与3个3的和。
完全平方数和完全平方式(初三)
初中数学辅导资料完全平方数和完全平方式内容提要一. 定义1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,254,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的.例如:在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.二. 整数集合里,完全平方数的性质和判定1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数.三. 完全平方式的性质和判定在实数范围内如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.在有理数范围内当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.四. 完全平方式和完全平方数的关系1. 完全平方式(ax+b )2 中当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.五. 完全平方数与一元二次方程的有理数根的关系1. 在整系数方程ax 2+bx+c=0(a ≠0)中① 若b 2-4ac 是完全平方数,则方程有有理数根;② 若方程有有理数根,则b 2-4ac 是完全平方数.2. 在整系数方程x 2+px+q=0中① 若p 2-4q 是整数的平方,则方程有两个整数根;② 若方程有两个整数根,则p 2-4q 是整数的平方.例题例1. 求证:五个连续整数的平方和不是完全平方数.证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2=5(m 2+2).∵m 2的个位数只能是0,1,4,5,6,9∴m 2+2的个位数只能是2,3,6,7,8,1∴m 2+2不能被5整除.而5(m 2+2)能被5整除,即S 能被5整除,但不能被25整除.∴五个连续整数的平方和不是完全平方数.例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?解:根据在实数范围内完全平方式的判定,得当且仅当⎩⎨⎧>-010m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.解这个方程, 得 m 1=0.5, m 2=2.解不等式 m -1>0 , 得m>1.即⎩⎨⎧>==125.0m m m 或 它们的公共解是 m=2.答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证: a=b=c.证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a+b+c)x+ab+ac+bc∵它是完全平方式,∴△=0.即 4(a+b+c)2-12(ab+ac+bc)=0.∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,(a -b)2+(b -c)2+(c -a)2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得a=b=c.例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.可设△= m 2 (m 为整数),即(-5)2-4k=m 2 (m 为整数),解得,k=4252m -. ∵ k 是非负整数,∴ ⎪⎩⎪⎨⎧-≥-的倍数是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;由25-m 2是4的倍数,得 m=±1, ±3, ±5.以 m 的公共解±1, ±3, ±5,分别代入k=4252m -. 求得k= 6, 4, 0.答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解例5. 求证:当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根.证明: (用反证法)设方程有有理数根,那么△是整数的平方.∵△=(8k )2-16(k 2+1)=16(3k 2-1).设3k 2-1=m 2 (m 是整数).由3k 2-m 2=1,可知k 和m 是一奇一偶,下面按奇偶性讨论3k 2=m 2+1能否成立.当k 为偶数,m 为奇数时,左边k 2是4的倍数,3k 2也是4的倍数;右边m 2除以4余1,m 2+1除以4余2.∴等式不能成立.; 当k 为奇数,m 为偶数时,左边k 2除以4余1,3k 2除以4余3右边m 2是4的倍数,m 2+1除以4余1∴等式也不能成立.综上所述,不论k, m 取何整数,3k 2=m 2+1都不能成立.∴3k 2-1不是整数的平方, 16(3k 2-1)也不是整数的平方.∴当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根练习题1. 如果m 是整数,那么m 2+1的个位数只能是____.2. 如果n 是奇数,那么n 2-1除以4余数是__,n 2+2除以8余数是___,3n 2除以4的余数是__.3. 如果k 不是3的倍数,那么k 2-1 除以3余数是_____.4. 一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?5. 一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.(1990年全国初中数学联赛题)6. m 取什么值时,代数式x 2-2m(x -4)-15是完全平方式?7. m 取什么正整数时,方程x 2-7x+m=0的两个根都是整数?8. a, b, c 满足什么条件时,代数式(c -b)x 2+2(b -a)x+a -b 是一个完全平方式?9. 判断下列计算的结果,是不是一个完全平方数:① 四个连续整数的积; ②两个奇数的平方和.10. 一个四位数加上38或减去138都是平方数,试求这个四位数.11. 已知四位数aabb 是平方数,试求a, b.12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.14. 已知:a, b 是自然数且互质,试求方程x 2-abx+21(a+b)=0的自然数解. (1990年泉州市初二数学双基赛题)15.恰有35个连续自然数的算术平方根的整数部分相同,那么这个整数是( )(A) 17 (B) 18 (C) 35 (D) 36(1990年全国初中数学联赛题)练习题答案1. 1,2,5,6,7,02. 0,3,33. 04. 不是平方数,因为能被3整除而不能被9整除5. 5。
平方和公式
平方和公式
平方和,数学术语,定义为2个或多个数的平方相加。
通常是一些正整数的平方之和,整数的个数可以是有限个,也可以是无限多。
平方公式(a+b)^2=a^2+b^2+2ab,其中a^2+b^2是平方和。
平方和公式是一个比较常用公式,用于求连续自然数的平方和,其和又可称为四角锥数,或金字塔数也就是正方形数的级数。
此公式是冯哈伯公式的一个特例。
扩展资料:
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。
表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。
完全平方数大全
完全平方数目录一、定义二、基础性质及推论三、重要结论四、区别五、特殊的完全平方数六、范例1.例12.例23.例34.例45.例56.例67.例78.例8七、讨论题一、定义及表达式1、定义:若一个数能表示成某个整数的平方,则称这个数为完全平方数,也叫平方数。
1.1例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361, 400,441,484,529,…2、标准分解式:大于1的平方数n 的标准分解式如下:1222212kl l l k n p p p =(1)其中12121,,,,k k k p p p p p p ≥<<<是质数,12,,,k l l l 是自然数。
2.1例如:2222422223623,10025,14423,900235,=⨯=⨯=⨯=⨯⨯二、基础性质及推论观察0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361, 400,441,484,529,…完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。
下面我们来研究完全平方数的一些常用性质: 1、性质1:末位数只能是0,1,4,5,6,9. (此为完全平方数的必要不充分条件)证明:设2()n n N ∈为完全平方数,0n 是n 的个位数,则2n 的个位数与20n 的个位数相同。
利用整数同余的知识有如果0(mod10)n n ≡,那么220(mod10)n n ≡又0n 的全体是集合{}0,1,2,3,4,5,6,7,8,9,20n 的全体是{}0,1,4,9,16,25,36,49,64,81,20n 的个位数全体是{}0,1,4,5,6,9。
所以平方数末位数只能是0,1,4,5,6,9.2、性质2:奇数的平方的个位数字一定是奇数,偶数的平方的个位数一定是偶数。
现代心理与教育统计学的复习重点
一二章、绪论现代统计学之父:皮尔逊描述统计与推断统计描述统计主要研究如何整理、描述数据的特征。
推断统计主要研究如何通过局部数据所提供的信息推论总体特征。
变量类型定类变量:如,性别、学号、颜色类别、教学方法。
特征:没有绝对零点,没有测量单位。
变量值之间有“相等”和“不等”的关系,但没有大小之分,不能比较大小,更不能进行加、减、乘、除四则运算。
定序变量:程度、等级和水平。
如,比赛名次、品质等级、喜爱程度特征:既无零点、又无测量单位。
变量的值之间具有“等于”或“不等于”关系、序关系(优于、先于、劣于、后于等),四则运算没有意义。
定比变量:除了可以说出名称和排出大小,还能算出差异大小量的变量。
如温度、测验成绩、智商。
特征:有相等的测量单位,无绝对零点。
考试成绩为零不表示没有一点知识。
可进行加减运算,乘除运算则无意义。
定距变量:如身高、重量、学生人数。
既有测量单位,又有绝对零点,可进行计算。
降低偏差:利用随机抽样降低变异性:用大一点的样本三、描述统计一、频数:某一事件在某一类别中出现的次数。
频数分布类型:正态,正(负)偏态,正(反)J 形,U 形分布。
分布性质;集中(分散)程度,偏度和峰度不同。
偏态系数:数据的对称性峰态系数:数据的峰度二、集中量数:包括算术平均数M 、中位数d M 、众数0M (用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便)、加权平均数W M 、几何平均数g M 、调和平均数H M 。
组数据中有少数数据偏大或偏小,数据的分布呈偏态时,应用几何平均数。
算数平均数的性质(算法必须会):(1)每一个变量加减或乘除一个数之后,均值也相应增加。
(2)变量值与均值的离均差之和为零。
(3)变量值与均值的离均差平方和为最小值。
三、离散量数:全距R 、四分位差Q 、平均差A.D 、方差(样本统计量,2S 总体参数2)、标准差(s 或者SD)、百分位差全距:全部数据中的最大值与最小值的差,描述了数据分布的范围。
总离差平方和回归平方和残差平方和的关系_理论说明
总离差平方和回归平方和残差平方和的关系理论说明1. 引言1.1 概述本篇长文旨在探讨总离差平方和、回归平方和和残差平方和之间的关系,以及它们在回归分析中的含义及意义。
总离差平方和、回归平方和和残差平方和是统计学中常用于衡量数据变异程度的指标,对于了解数据之间的相关性具有重要作用。
1.2 文章结构本文将按照以下结构进行论述:- 引言:概述文章主题与目的;- 总离差平方和、回归平方和和残差平方和的定义:详细介绍每个指标的定义;- 总离差平方和与回归平方和之间的关系:通过推导过程,阐述两者之间的关系;- 回归分析中各部分的含义及意义:深入探讨每个指标在回归分析中所扮演的角色;- 结论:总结主要发现或结果,并讨论研究局限性及未来展望。
1.3 目的本篇长文旨在帮助读者深入理解总离差平方和、回归平方和以及残差平方和在统计学中的应用和意义。
通过对它们的定义及推导过程的分析,读者将能够更好地使用这些指标来分析数据集中的相关性,并进一步应用于回归分析中,为实际问题提供解决方案。
同时,我们也将讨论这些指标的局限性,并展望未来在此领域中可能出现的重要发展方向。
以上就是文章“1. 引言”部分的内容。
2. 总离差平方和、回归平方和和残差平方和的定义本部分将详细介绍总离差平方和、回归平方和和残差平方和的定义。
2.1 总离差平方和的定义:总离差平方和(Total Sum of Squares, SST)用于衡量自变量对因变量整体变化的解释程度。
它是观测值与因变量均值之间的偏离程度的总和,可以被表示为所有观测值与均值之间差异的平方和。
总离差平方和可以通过以下公式计算得到:SST = Σ(yᵢ - ȳ)²其中,yᵢ代表第i个观测值,ȳ代表所有观测值的均值,Σ表示求和运算。
2.2 回归平方和的定义:回归平方和(Regression Sum of Squares, SSR)描述了自变量对因变量造成的波动或变异。
它衡量了自变量对因变量能够解释的部分,并用于评估模型拟合优度。
完全平方数2
一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441, 484,…观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。
下面我们来研究完全平方数的一些常用性质:性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
证明奇数必为下列五种形式之一:10a+1, 10a+3, 10a+5, 10a+7, 10a+9分别平方后,得(10a+1)²=100a²+20a+1=20a(5a+1)+1(10a+3)²=100a²+60a+9=20a(5a+3)+9(10a+5)²=100a²+100a+25=20 (5a+5a+1)+5(10a+7)²=100a²+140a+49=20 (5a+7a+2)+9(10a+9)²=100a²+180a+81=20 (5a+9a+4)+1综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
证明已知m²=10k+6,证明k为奇数。
因为的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。
则10k+6=(10n+4)^2=100+(8n+1)x10+6或 10k+6=(10n+6)^2=100+(12n+3)x10+6即 k=10+8n+1=2(5+4n)+1或 k=10+12n+3=2(5+6n)+3∴ k为奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。
蒙氏数学
数棒
数
• 对象:针对3岁或已经经过数
棒
学前练习,准备进入数学领域
教
的孩子
具
• 构成:是由十根逐渐递增的
木棒构成,最短的10公分,依 次以10公分为差递增
操作:
• 1.取数棒,并依序将数 棒按长短排列好
延伸:
九的排列也可以延伸为四十五排列,所谓 四十五排列,即是依每个数字对应出同等 的金黄色珠,所以在每个位数中应精确的 准备四十五份金黄色珠以供排列
注意:
由于排列壮观费时,可以采用小组或团体 合作方式完成。完成这项工作对幼儿来说 是一件愉悦且有成就感的活动
五、九的危机
所需教具:有两组 第一组: 包括9颗金黄色珠,九串金黄色
一、数学前准备教具分类:
• 1.配对教具 • 2.序列教具 • 3.秩序教具 • 4.空间教具 • 5.分类教具 • 6.无符号的量的练习
数学前准备的活动内容
• 1.配对 • 2.分类 • 3.序列 • 4.秩序 • 5.一对一对应 • 6.空间、方位 • 7.无符号的量的练习
配对:
分 类
序列是被排成一列的对象(或事件);这
样,每个元素不是在其他元素之前,就是在 其他元素之后。这里,元素之间的顺序非常 重要。
秩序:
秩序是一个词语,意思是有条理地、有组 织地安排各构成部分以求达到正常的运转 或良好的外观的状态。
一对一对应:
空间、方位:
无符号的量的练习:
二、一至十的认识
延伸:
幼儿闭眼,老师从四样教具中,随意取走 一样,让幼儿猜猜看,老师取走的是哪一 样
大数字卡
连续平方和公式推导过程
连续平方和公式推导过程连续平方和公式是一种数学公式,可以用来求解从1到n的所有整数的平方的和。
这个公式的推导过程非常有趣,让我们一起来看一看。
我们需要明确连续平方和公式的表达方式。
假设我们要求解从1到n的所有整数的平方的和,可以用S表示,即S = 1^2 + 2^2 + 3^2 + ... + n^2。
接下来,我们可以利用数学归纳法来推导连续平方和公式。
首先,我们需要找到一个基准情况,即n=1时的情况。
此时,S = 1^2 = 1,所以当n=1时,连续平方和公式成立。
接下来,我们假设当n=k时,连续平方和公式成立,即S = 1^2 + 2^2 + 3^2 + ... + k^2。
然后,我们考虑当n=k+1时的情况。
此时,S = 1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2。
我们可以将S分解为两个部分,第一部分是1^2 + 2^2 + 3^2 + ... + k^2,即S1。
第二部分是(k+1)^2,即(k+1)的平方。
根据我们的假设,S1 = 1^2 + 2^2 + 3^2 + ... + k^2 = k(k+1)(2k+1)/6。
将S1和(k+1)^2相加,我们可以得到S = S1 + (k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2。
我们可以对S进行简化,得到S = (k+1)(k^2 + (k+1)^2)/6。
进一步简化,我们可以得到S = (k+1)(2k^2 + 3k + 1)/6。
我们将S进行整理,得到连续平方和公式:S = (k+1)(k+2)(2k+1)/6。
通过这个推导过程,我们可以看到连续平方和公式的由来,并理解其背后的数学原理。
这个公式在解决一些数学问题时非常有用,例如求解从1到n的所有整数的平方的和。
我们可以通过代入不同的n值来计算结果,非常方便快捷。
希望通过这个推导过程,你对连续平方和公式有了更深入的了解。
数学的魅力在于其推导过程和逻辑性,通过不断探索和推理,我们可以揭示数学世界的奥秘。
关于完全平方数的一个性质
关于完全平方数的一个性质董祥南【摘要】运用不定方程的理论讨论了完全平方数的一个基本性质,得到了关于完全平方数的几个重要定理。
%In this paper some basic properties of perfect square numbers was discussed by the theory of inde-terminate equations,and we obtained several important theorem about the perfect square numbers.【期刊名称】《纯粹数学与应用数学》【年(卷),期】2016(032)006【总页数】9页(P574-582)【关键词】不定方程;完全平方数问题;同余;Legendre符号【作者】董祥南【作者单位】江西师范大学数学与信息科学学院,江西南昌 330022【正文语种】中文【中图分类】O156.4在自然数中,1,4,9,···,n2···是一类很重要的整数,称为完全平方数,古代人从几何图形的角度称其为正方形数-形数的一种[1-4],对这类整数从古代至今已有许多的研究,所得的结论常被用于数列,不定方程和密码信息学的算法分析等问题,例如十八世纪法国的Lagrange就建立了关于完全平方数的一条重要的著名定理[1]:每一个正整数都能表示成至多四个整数的平方和.它用不定方程的术语可以叙述为,对于任意的n∈N,不定方程都存在整数解组.本文对完全平方数作了一些简单而基本的讨论,得到了一些这类数的基本性质.具体来讲,研究了如下的问题1:问题1[5]设n≥2是正整数,n个连续的整数的平方和是完全平方数吗?注 2.1首先考虑n≥3是奇素数p的情况,此时的问题1是讨论如下不定方程,是否存在整数解组(x,y).利用公式上面的不定方程可以化为从而归结为不定方程,令y=pz,定理2.1设p>2是素数,p=12n+1,则从而有,定理2.2设p>2是素数,p=12n+5,n是偶数,则推论2.1设p≡5(mod 24)是素数,则p个连续整数的平方和不可能是完全平方数. 注 2.2由推论2.1,当p=5,29,53,101,149,173,197,293,317,389,461,509,557,653,···时,p个连续整数的平方和不可能是完全平方数.定理2.3设p>2是素数,p=12n+7,n是奇数,则推论2.2设p≡19(mod 24)是素数,则p个连续整数的平方和不可能是完全平方数. 证明与推论2.1的证明完全类似,此处略.注2.3由推论2.2可知,当p=19,43,67,139,163,211,283,307,331,379,499,523,547,571,619,···时,p个连续整数的平方和不可能是完全平方数.和上面一样讨论,我们也可以得到下列结论:定理2.4设p>2是素数,推论2.3设p>2是素数,p≡41(mod 48)或p≡17(mod 192),则p个连续整数的平方和不可能是完全平方数.注 2.4由推论2.3,当p=41,89,137,233,281,521,569,617,···或p=17,401,593,···时,p个连续整数的平方和不可能是完全平方数.定理2.5设p>2是素数,p≡7(mod 48),则推论2.4设p>2是素数,p≡7(mod 48),则p个连续整数的平方和不可能是完全平方数.注 2.5由推论2.4,当p=7,103,151,199,439,487,631,···时,p个连续整数的平方和不可能是完全平方数.注 2.6由上面的讨论我们可以看出,对许多的奇素数p>2,p个连续整数的平方和不可能是完全平方数,似乎有理由提出如下的猜测:设p是任意奇素数,则p个连续整数的平方和不可能是完全平方数.遗憾的是,这个猜测是不正确的,我们已经发现了如下的一些反例,另一方面,用模3分类的方法可以证明3个连续整数的平方和不可能是完全平方数(比前面的方法更简单),也同样可以证明p=13,31,79,107,113,127,223,257,271,311,353,367,463时,p个连续整数的平方和不可能是完全平方数,但是因p=3,13,31,79,107,113,127,223,257,271,311,353,367,463这几个素数却不在上面几个定理中讨论的素数p的范围内,因此,除了推论2.1,推论2.2,推论2.3以及推论2.4中的那些素数外,在剩余的素数中,还有哪些素数p,使得p个连续整数的平方和不可能是完全平方数?更具体地来讲,在300以内的素数中,在p=23,37,47,59,61,71,73,83,97,109,131,157,167,179,181,191,193,227,229,239,24 1,251,263,277这24个素数中,哪几个素数p使得p个连续整数的平方和不可能是完全平方数?这是一个有意义的值得进一步研究讨论的问题.下面考虑问题1中n不是素数p的情形.定理3.1设p≡5(mod 24)是素数,则p3个连续整数的平方和不可能是完全平方数.定理3.2设p≡19(mod 24)是素数,则p3个连续整数的平方和不可能是完全平方数. 注3.1由定理3.1可知,当p=5,29,53,101,149,173,197,269,293,317,389,461,509,557,653,···时,p3个连续整数的平方和不可能是完全平方数.注3.2由定理3.2可知,当p=19,43,67,139,163,211,283,307,331,379,499,523,547,571,619,···时,p3个连续整数的平方和不可能是完全平方数.完全类似地,可以证明:定理3.3设p≡7(mod 48)是素数,则p3个连续整数的平方和不可能是完全平方数. 定理3.4设p≡41(mod 48)是素数,则p3个连续整数的平方和不可能是完全平方数. 注 3.3由定理3.3可知,当p=7,103,151,199,487,631,···时,p3个连续整数的平方和不可能是完全平方数.注 3.4由定理3.4可知,当p=41,89,137,233,281,521,569,617,···时,p3个连续整数的平方和不可能是完全平方数.定理3.5设p≡17(mod 192)是素数,则p3个连续整数的平方和不可能是完全平方数.注 3.5由定理3.5可知,当p=17,401,593,···时,p3个连续整数的平方和不可能是完全平方数.再次,设p和q是两个不相等的奇素数,令则是2t+1个连续的整数,如果其平方和是完全平方数,则和前面一样处理可以导出不定方程,直接计算可得,定理3.6设p是奇素数,p满足下列条件之一,q是不等于p的奇素数,则pq个连续整数的平方和不可能是完全平方数.定理3.7设定理3.6中p,q位置互换,则定理结论任然成立.注 3.6设p≡5(mod 24)是奇素数,即p=24n+5,则令则有这连续的2t+1=p2个整数的平方和是整数y的平方,即有这说明当p≡5(mod 24)时,p2个连续整数的平方和可以是某个整数的平方.参考文献[1]闵嗣鹤,严士键.初等数论[M].2版.北京:高等教育出版社,1982.[2]Silverman J H.数论概貌[M].3版.北京:机械工业出版社,2008.[3]柯召,孙琦.数论讲义:上册[M].北京:高等教育出版社,2001.[4]Rosen K H.初等数论及其应用[M].5版.夏鸿刚,译.北京:机械工业出版社,2009.[5]董祥南.关于模椭圆曲线上的格点计算[J].江西科学,2014,32(2):202-266.[6]南开大学数学系.世界数学奥林匹克解题大辞典[M].石家庄:河北少年儿童出版社,2012.[7]Chen J H,Paul plete solution of the Diophantine equationX2+1=dY4and a related family of quartic Tude equations[J].J.Number Theory,1997,62(1):71-99.[8]Walsh G.A note on a theorems of Ljunggren and the Diophantine equations x2-kxy2+y4=1[J].Arch.Math.,1999,73(2):119-125.。
数字推理题的基本题型和规律
精心整理数字推理题的基本题型和规律归纳总结:数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。
10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。
1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n 的立方加减n3、数列中每一个数字都是n的倍数加减一个常数寻找规律。
当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。
我们这里所介绍的是数字推理的一般规律,学员在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案的。
数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案。
按照数字排列的规律,数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36()A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。
三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,(),14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=95+9=149+14=2314+23=37,因此,答案为D;例题:5,10,15,()A.16B.20C.25D.30答案是B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,()A.102B.101C.100D.99答案是B解析:邻数之间的差值为5、4、3、(2),等差数列,差值为1 103-2=1014、二级等比:相减的差是等比数列五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,()前两个数的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2例题:6,14,30,62,()A.85B.92C.126D.250解析:6×2+2=1414×2+2=3030×2+2=6262×2+2=126,答案为C练习:28,54,106,210,()3、两数相乘的积呈现规律:等差,等比,平方,...1)直接得出:2,4,16,()解析:前一个数的平方等于第三个数,答案为256。
初中的一元二次方程 应用 专题
初中的一元二次方程应用专题1、传播、循环问题与一元二次方程【例1】有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【解析】(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64,x=7或x=-9(舍去).答:每轮传染中平均一个人传染了7个人;(2)64×7=448(人).答:第三轮将又有448人被传染.这类题型的方法总结:传播问题应用公式a(1+x)n=A,a表示传播之前的人数,x表示每轮每人传播的人数,n表示传播的天数或轮数,A表示最终的总人数。
当我们遇到这类传播的问题时,只要按照这样的公式进行解题那么解题效率就可以得到提高。
2、数式问题与一元二次方程【例2】我们知道,3²+4²=5²,这是一个由三个连续正整数组成,且前两个数的平方和等于第三个数的平方的等式,是否还存在另一个“由三个连续正整数组成,且前两个数的平方和等于第三个数的平方”的等式?试说出你的理由.【解析】假定存在这样的三个数,其中中间的数为n,则有(n-1)²+n²=(n+1)²整理得n²-4n=0,∴n=0或n=4,又∵n≥2,∴n=4.∴除了3²+4=5外,不存在另一个这样的等式.方法总结:有关数字的应用题,大致可以分为三类,及即一般数目关系问题、连续数问题、数字排列问题。
①一般数目关系问题,数目关系比较简单,利用加、减、乘、除、和、差、积、商、倍数、余数、大、小、等于以及算律、算序等,就可以根据题目所给的条件列出方程.②连续数问题,有三种:连续整数、连续偶数、连续奇数,掌握它们的表示法是解决这类应用题的关键.③数字排列问题,例如:三位数=百位上的数字×100+十位上的数字×10+个位数字.3、增长率问题与一元二次方程【例3】(2014·江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为___万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.【解析】(1)2.6(1+x);(2)由题意,得4+2.6(1+x)²=7.146,解得x=0.1,x:=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.方法总结:在增长率问题中,要理解a(1+x)n=b(其中a是原来的量,x是平均增长率,n是增长的次数,b是增长到的量)的含义.原来的量经过一次增长后达到a(1+x);在这个基础上,再增长一次即经过第二次增长后达到a(1+x)(1+x)= a(1+x)2;在这个基础上,再增长一次即经过第三次增长后达到a(1+x)(1+x)(1+x)= a(1+x)3;…;以此类推.解增长率问题公式:a(1±x)n=b.4、利润问题与一元二次方程【例4】某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?【解析】(1)80-x,200+10x,800-200-(200+10x);(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9000,整理,得x²-20x+100=0,解这个方程,得x=x=10.当x=10时,80-x=70>50.知乎@唐老师小课堂答:第二个月的单价应是10元.方法总结:有关利润问题常用的关系是有:利润=售价-成本,利润=成本×利润率,利润率=(售价一成本)÷成本,售价=成本×(1+利润率)。
佛山市第一中学七年级数学上册第二单元《整式加减》-解答题专项知识点复习
一、解答题1.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.2.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条x,分别回答下列的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为cm问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示) 解析:(1) x <5.2 (2) 13-1.5x 【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度. (2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x-+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm .点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 3.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值. 【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5, 解得m =1,n =4. 【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键. 4.有这样一道题,计算()()4322433222422x x y x yxx y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响. 【详解】解:()()4322433222422x x y x yxx y y x y -----+=43224332224242x x y x y x x y y x y ---+++ =32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果. 【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.5.日历上的规律:下图是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角上的四个数之和与九宫格中央这个数有什么关系?(2)请你自选一块九宫格进行计算,观察四个角上的四个数之和与九宫格中央那个数是否还有这种关系. (3)试说明原理.解析:(1)四个角上的四个数之和等于九宫格中央这个数的4倍;(2)四个角上的四个数之和等于九宫格中央这个数的4倍,选取九宫格见解析;(3)见解析. 【分析】(1)求出四个角上的四个数之和与九宫格中央这个数,从而验证它们的关系. (2)选择如下图的九宫格,验证他们的关系即可. (3)设九宫格中央这个数为a ,列等式进行验证即可. 【详解】(1)四个角上的四个数之和等于九宫格中央这个数的4倍. 理由如下:6228202828414+++=+=⨯.(2)如图,9112325174+++=⨯,所以四个角上的四个数之和等于九宫格中央这个数的4倍.(选取的九宫格不唯一).(3)设九宫格中央这个数为a ,那么左上角的数为71a --,右上角的数为71a -+,左下角的数为71a +-,右下角的数为71a ++,四个数的和为(71)(71)(71)(71)4a a a a a --+-+++-+++=. 即四个角上的四个数之和等于九宫格中央这个数的4倍. 【点睛】本题考查了整式的加减应用,掌握整式的加减运算法则是解题的关键.6.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可. 【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+. 故答案为:3a b c --+. 【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.7.单项式233x y π-的系数是______,次数是______.佳佳认为此单项式的系数是3-,次数为6,请问佳佳的答案正确吗?如果不正确,请说明错误的理由,并且把正确的答案写出来.解析:23π-,4.佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.正确的答案为系数是23π-,次数是4. 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.故正确的答案为系数是23π-,次数是4. 【点睛】考查了单项式,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 8.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=.解析:8xy -,12 【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可. 【详解】解:原式2236328x xy x y xy y xy =--+--=-,当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.9.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程. 解析:是从第①步开始出错的,见解析 【分析】根据多项式的加减运算法则进行运算即可求解. 【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下: 根据题意,得:()()222223x y xyxy xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +. 故答案为222x y xy +. 【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算. 10.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可. 【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.11.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字. 解析:22017的个位数字是2. 【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案. 【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环, ∵22017=450412⨯+, ∴22017的个位数字是2. 【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键. 12.观察下列等式. 第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值. 解析:(1)1911⨯;12×11911⎛⎫-⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得; (2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】 (1)由观察知,左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1, 右边:这两个奇数的倒数差的一半, ∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫-⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半. 13.用代数式表示:(1)a 的5倍与b 的平方的差; (2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍. 解析:(1)5a -b 2(2)m 2+n 2 (3)x 2+y 2-2xy 【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可; (2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可; 【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2; (2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy . 【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.14.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD . (1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可. 【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形(2)()()()2111222224APD APC PDEACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABD a b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABDb a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 15.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n - 【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形. 【详解】解:(1)根据图形可得:5,9; (2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形. 【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.16.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc . (1)计算B 的表达式; (2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.解析:(1)﹣2a 2b+ab 2+2abc ;(2) 8a 2b ﹣5ab 2;(3)对,0. 【分析】(1)根据B =4a 2b ﹣3ab 2+4abc -2A 列出关系式,去括号合并即可得到B ; (2)把A 与B 代入2A-B 中,去括号合并即可得到结果; (3)把a 与b 的值代入计算即可求出值. 【详解】解:(1)∵2A +B =4a 2b ﹣3ab 2+4abc , ∴B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc) =4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc =-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc) =6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc =8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关, 将a =18,b =15代入,得 8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项. 17.数学老师给出这样一个题: 2-⨯2 2x x =-+.(1)若“”与“”相等,求“”(用含x 的代数式表示);(2)若“”为2326x x -+,当1x =时,请你求出“”的值.解析:(1)22x x --;(2)2223x x -+,3 【分析】 (1)用替换,得到-22x x =-+,进而得到答案;(2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到: 2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.18.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n个单项式为:(-2)n x n.【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.19.通过计算和观察,可以发现:1=12,1+3=4=22,1+3+5=9=32,请你计算:(1)1+3+5+7=____________=____________,1+3+5+7+9=____________=____________,1+3+5+7+9+…+97+99=____________=____________(2)用字母表示1+3+5+7+9+…+(2n-1)的结果;(3)用一句话概括你发现的规律.解析:(1)16,42,25,52,2500,502;(2)n2;(3)前n个连续正奇数的和为n2【分析】(1)观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…,即可求出答案;(2)根据规律即可猜想从1开始的连续n个奇数的和;(3)根据上述的规律,即可得到答案.【详解】解:(1)根据题意,则1+3+5+7=16=42;1+3+5+7+9=25=52;1+3+5+7+9+…+97+99=2500=502;故答案为:16,42,25,52,2500,502;(2)根据题意:1+3+5+7+9+…+(2n-1)=n2;(3)根据上述的结论,则得到:前n个连续正奇数的和为n2.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.20.已知单项式﹣2x2y的系数和次数分别是a,b.(1)求a b﹣ab的值;(2)若|m|+m=0,求|b﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a、b的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.21.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.22.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.23.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.24.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-. ()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.25.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 26.已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.27.先化简,再求值(1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.28.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p ,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A 表示数-3,∴将A 点向右移动7个单位长度,那么终点B 表示的数是-3+7=4,A ,B 两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2,故答案为:1,2;(3)∵点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A ,B 两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度, 那么点B 表示的数为m+n-p ,A ,B 两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p ,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.29.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少? 解析:(1)①7;②206;(2)256a =或256a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=,解得6a =或6a =-.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 30.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个连续数构平方和关系
---涂强
一个由3个连续正整数组成,前2个数平方和等于后1个数的平方和。
32+42=52
一个由5个连续正整数组成,前3个数平方和等于后2个数的平方和。
102+112+122=132+142
一个由7个连续正整数组成,前4个数平方和等于后3个数的平方和。
212+222+232+242=252+262+272
一个由9个连续正整数组成,前5个数平方和等于后4个数的平方和。
362+372+382+392+402=412+422+432++442
一个由2n+1个连续正整数组成,前n+1个数平方和等于后n个数的平方和。
(x+i)2= n+1
i=1
(x+i)2 2n+1
i=n+1
对此通过解方程求出x的数值,可以求出任何一个连续多个数的平方和的关系。
对于上述平方和的个数必需是奇数个才能成立。
平方和的个数必需是偶数个能否成立,有待于读者研究探讨。