COUPLING NORSOK CO2 CORROSION PREDICTION MODEL
电化学模拟垢下腐蚀
Ya-Chiao Chang,a Richard Woollam,b and Mark E. Orazema,∗,z
aversity of Florida, Gainesville, Florida 32611, USA bBP America, Inc., Houston, Texas 77079, USA
C321
Under-deposit corrosion is a type of localized corrosion that can lead to a catastrophic consequence in the gas and oil industry. CORMED,1 Norsok,1 and deWaards2 built empirical and semiempirical models that can provide accurate interpolation prediction for corrosion rate; however, more complicated correction factors are required to account for situations where extrapolation or prediction fails. Mechanistic models developed by Gray,3 Nesic,4,5 and Anderko6 are based on fundamental theories, but the assumption of pre-defined anodic and cathodic regions introduces errors in the predicted corrosion rate.
英文文献CO2 removal Aspen 模拟氨水脱碳
*S Supporting Information
ABSTRACT: A pilot plant at laboratory scale for absorption of CO2 has been constructed and operated to test the CO2 removal by aqueous ammonia solutions. The design of the pilot plant is based on a standard absorption and desorption flow sheet and partial or complete separation of gas mixtures. Pilot plant data for CO2 removal efficiencies, effects of CO2 loading, and temperature profiles are obtained. A rate-based model, RateFrac in Aspen Plus simulator, is used to simulate the CO2 absorption of the pilot plant. The simulation results of the CO2 capture predicted by the rate-based model are in good agreement with the experimental data of the pilot plant. Further, the optimization covering operational parameters is carried out using the rate-based model.
NORSOK目录
NORSOK英文版内容C-Civil and ArchitectC-001 Living Quarter.pdfC-002 Architectural Components and Equipment.pdfC-004 Helicopter deck.pdfE-DrillingD-001 Drilling Facilities.pdfD-002 System requirements well intervention equipment .pdfD-007-SR Well testing system.pdfD-010Well integrity in drilling and well operations (Rev. 3, August 2004).pdfE-ElectricalE-001-Data_Sheets.zipE-001Electrical systems (Rev. 4, Mar. 2001).pdfE-002 Adjustable Speed AC Motor Drives (Rev. 3, Mar. 2001).pdfE-002-Data_Sheets.zipG-GeotechnologyG-001 Marine soil investigations (Rev. 2, October 2004).pdfH-HVACH-001 HVAC (Heating, ventilation and air conditioning) (Rev. 4, Nov. 2001).pdfH-002-CR Piping and plumbing (Rev. 1, Jan. 1996).pdfI-InstrumentationI-001 Field instrumentation (Rev. 3, Apr. 2000).pdfI-001-Data_Sheets.zipI-002 Safety and automation systems (SAS) (Rev. 2, May. 2001).pdfI-MeteringI-104 Fiscal measurement systems for hydrocarbon gas (Rev. 2, June 1998).pdf I-105 Fiscal measurement systems for hydrocarbon liquid (Rev. 2, June 1998).pdf I-SCD-System Control DiagramI-005 System control diagram (Rev. 2, April 2005).pdfJ-Marine OperationJ-003 Marine operations (Rev. 2, Aug. 1997).pdfL-Piping and LayoutL-001 Piping and Valves (Rev. 3, Sept 1999)L-002 Piping design, layout and stress analysis (Rev. 2, Sept. 1997).pdfL-003-CR Piping details (Rev. 1, Jan. 1996).pdfL-004-CR Piping fabrication, installation, flushing and testing (Rev. 1, Jan. 1996).pdf L-005 Compact flanged connections (Rev. 1, Sept. 2003).pdfM-MaterialM-001 Materials selection (Rev. 4, August 2004).pdfM-101 Structural steel fabrication (Rev. 4, Dec. 2000).pdfM-102 Structural aluminium fabrication (Rev. 1, Sept. 1997).pdfM-120 Material data sheets for structural steel (Rev. 4, June 2004).pdfM-121 Aluminium structural material (Rev. 1, Sept. 1997).pdfM-122 Cast structural steel (Rev. 1, June 2003).pdfM-123 Forged structural steel (Rev. 1, June 2003).pdfM-501 Surface preparation and protective coating (Rev. 5, June 2004).pdfM-503 Cathodic protection (Rev. 2, Sept. 1997).pdfM-506 CO2 corrosion rate calculation model (Rev. 2, June 2005).pdfM-601 Welding and inspection of piping (Rev. 4, July 2004).pdfM-622 Fabrication and installation of GRP piping systems (Rev 1 April 2005).pdfM-630 Material data sheets for piping (Rev. 4, January 2004).pdfM-650 Qualification of manufacturers of special materials (Rev. 3, April 2004).pdfM-701-CR Materials for well completion equipment (Rev. 1, Dec. 1994).pdfM-702 Drill String Components (Rev. 2, June. 1999).pdfM-703-CR Casing and tubing materials (Rev. 1, Jan. 1996).pdfM-710 Qualification of non-metallic sealing materials and ..., (Rev. 2, Oct. 2001).pdf M-506r2_IFE_06-2005.xlsM-650r3_Annex_C_empty.docM-120_MDS_Data_Sheets.zipN-StructuralN-001 Structural design (Rev. 4, February 2004).pdfN-002 Collection of metocean data (Rev. 1, Sept. 1997).pdfN-003 Actions and action effects (Rev 1, Feb. 1999).pdfN-004 Design of steel structures (Rev. 2, October 2004).pdfN-005 Condition monitoring of loadbearing structures (Rev. 1, Dec. 1997).pdf O-OperationO-CR-001 Life cycle cost for systems and equipment (Rev. 1, April 1996).pdf O-CR-002 Life cycle cost for production facility (Rev. 1, April 1996).pdfO-DP-001 Operational principles.pdfO-CR-001r1-Lcc.xlsO-CR-001r1-Lcc-calc.xlsO-CR-002r1-Facility.xlsP-ProcessP-001 Process Design (Rev 4, Oct. 1999).pdfP-100 Process systems (Rev. 2, Nov. 2001).pdfP-100-Annex_A1.docR-Lifting EquipmentR-002-CR Lifting equipment (Rev. 1, Jan. 1995).pdfR-003 Safe use of lifting equipment (Rev. 2, July 2004).pdfR-CR-002r1-Data_Sheets.zipR-MechnicalR-001 Mechanical equipment (Rev. 3, Nov. 1997).pdfR-001-Data_sheets.zipR-004 Piping and equipment insulation (Draft for Rev. 3, June 2005).pdfR-004 Piping and Equipment Insulation (Rev 2, June 1999).pdfR-100 Mechanical equipment selection (Rev. 2, Nov. 1997).pdfS-Satefy(SHE)S-001 Technical Safety (Rev. 3, Jan. 2000).pdfS-002 Working environment (Rev. 4, August 2004).pdfS-003 Environmental Care (Rev 2, May 1999).pdfS-005 Machinery- working enviroment analyses and documentation (Rev.1, March 1999).pdfS-006 HSE evaluation of contractors (Rev. 2, December 2003).pdfS-011 Safety Equiptment Data Sheets (Rev 2, Aug. 1999).pdfS-012 Health, Safety and Environment (HSE) in construction-related activities (Rev. 2, Aug. 2002). pdfS-001-Data_Sheet.xlsS-002_-_SDS05001.xlsS-011-Data_Sheets.zipT-TelecommunicationT-001Telecom systems (Rev. 3, December 2003).pdfT-003 Telecommunication and IT systems for drilling (Rev. 2, November 2004).pdfT-100 Telecom subsystems (Rev. 3, January 2004).pdfU-SubseaU-001 Subsea Production Systems (Rev. 3, Oct. 2002).pdfU-Underwater OperationU-100 Manned Underwater Operations (Rev. 1, Aug. 1999).pdfU-101 Diving Respiratory Equipment (Rev. 1, Aug 1999).pdfU-102 Remotely operated vehicle (ROV) services (Rev. 1, October 2003).pdfWF- Well fluidsY-PipelinesY-001 Subsea pipelines (Rev. 1, Sept. 1997).pdfZ-E&I InstallationZ-010 Electrical, instrumentation and telecommunication installation (Rev. 3, October 2000).pdfZ-MC & PreservationZ-006 Preservation (Rev. 2, Nov. 2001).pdfZ-007 Mechanical Completion and Commissioning (Rev 2, Dec. 1999).pdfZ-006-Data_Sheet.docZ-007-Data_Sheet.docZ-Regularity & CriticalityZ-008 Criticality Analysis for maintenance purposes (Rev. 2, Nov. 2001).pdf Z-016 Regularity management & reliability technology (Rev. 1, Dec. 1998).pdf Z-Risk analysesZ-013 Risk and emergency preparedness analysis (Rev. 2, Sep. 2001).pdfZ-Stand. Cost CodingZ-014 Standard cost coding system (SCCS) (Rev. 1, Oct. 2002).pdfZ-Technical InfoZ-001 Documentation for operation (DFO (Rev. 4, March 1998).pdfZ-002-CR Component identification system (Rev. 1, May 1996).pdfZ-002-DP Coding system (Rev. 3, Oct. 1996).pdfZ-003 Technical Information Flow Requirements (Rev. 2, May 1998).pdfZ-004 CAD symbol libraries (Rev. 1, July 1998.).pdfZ-004-CAD_Symbols_Autocad.zipZ-004-CAD_Symbols_MS.zipZ-005 2D-CAD drawing standard (Rev. 1, October 1997).pdfZ-Temporary EquipmentZ-015 Temporary equipment (Rev. 3, June 2004).pdfTemporary equipment - Checklists equipment (Rev. 3, June 2004) Temporary equipment - Checklists containers (Rev. 3, June 2004)Z-015_Data_sheet_for_temporary_equipment.docZ-015_Declaration_of_conformity.doc。
IEC-61854架空线.隔离层的要求和检验
NORMEINTERNATIONALECEI IEC INTERNATIONALSTANDARD 61854Première éditionFirst edition1998-09Lignes aériennes –Exigences et essais applicables aux entretoisesOverhead lines –Requirements and tests for spacersCommission Electrotechnique InternationaleInternational Electrotechnical Commission Pour prix, voir catalogue en vigueurFor price, see current catalogue© IEC 1998 Droits de reproduction réservés Copyright - all rights reservedAucune partie de cette publication ne peut être reproduite niutilisée sous quelque forme que ce soit et par aucunprocédé, électronique ou mécanique, y compris la photo-copie et les microfilms, sans l'accord écrit de l'éditeur.No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,including photocopying and microfilm, without permission in writing from the publisher.International Electrotechnical Commission 3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.ch IEC web site http: //www.iec.chCODE PRIX PRICE CODE X– 2 –61854 © CEI:1998SOMMAIREPages AVANT-PROPOS (6)Articles1Domaine d'application (8)2Références normatives (8)3Définitions (12)4Exigences générales (12)4.1Conception (12)4.2Matériaux (14)4.2.1Généralités (14)4.2.2Matériaux non métalliques (14)4.3Masse, dimensions et tolérances (14)4.4Protection contre la corrosion (14)4.5Aspect et finition de fabrication (14)4.6Marquage (14)4.7Consignes d'installation (14)5Assurance de la qualité (16)6Classification des essais (16)6.1Essais de type (16)6.1.1Généralités (16)6.1.2Application (16)6.2Essais sur échantillon (16)6.2.1Généralités (16)6.2.2Application (16)6.2.3Echantillonnage et critères de réception (18)6.3Essais individuels de série (18)6.3.1Généralités (18)6.3.2Application et critères de réception (18)6.4Tableau des essais à effectuer (18)7Méthodes d'essai (22)7.1Contrôle visuel (22)7.2Vérification des dimensions, des matériaux et de la masse (22)7.3Essai de protection contre la corrosion (22)7.3.1Composants revêtus par galvanisation à chaud (autres queles fils d'acier galvanisés toronnés) (22)7.3.2Produits en fer protégés contre la corrosion par des méthodes autresque la galvanisation à chaud (24)7.3.3Fils d'acier galvanisé toronnés (24)7.3.4Corrosion causée par des composants non métalliques (24)7.4Essais non destructifs (24)61854 © IEC:1998– 3 –CONTENTSPage FOREWORD (7)Clause1Scope (9)2Normative references (9)3Definitions (13)4General requirements (13)4.1Design (13)4.2Materials (15)4.2.1General (15)4.2.2Non-metallic materials (15)4.3Mass, dimensions and tolerances (15)4.4Protection against corrosion (15)4.5Manufacturing appearance and finish (15)4.6Marking (15)4.7Installation instructions (15)5Quality assurance (17)6Classification of tests (17)6.1Type tests (17)6.1.1General (17)6.1.2Application (17)6.2Sample tests (17)6.2.1General (17)6.2.2Application (17)6.2.3Sampling and acceptance criteria (19)6.3Routine tests (19)6.3.1General (19)6.3.2Application and acceptance criteria (19)6.4Table of tests to be applied (19)7Test methods (23)7.1Visual examination (23)7.2Verification of dimensions, materials and mass (23)7.3Corrosion protection test (23)7.3.1Hot dip galvanized components (other than stranded galvanizedsteel wires) (23)7.3.2Ferrous components protected from corrosion by methods other thanhot dip galvanizing (25)7.3.3Stranded galvanized steel wires (25)7.3.4Corrosion caused by non-metallic components (25)7.4Non-destructive tests (25)– 4 –61854 © CEI:1998 Articles Pages7.5Essais mécaniques (26)7.5.1Essais de glissement des pinces (26)7.5.1.1Essai de glissement longitudinal (26)7.5.1.2Essai de glissement en torsion (28)7.5.2Essai de boulon fusible (28)7.5.3Essai de serrage des boulons de pince (30)7.5.4Essais de courant de court-circuit simulé et essais de compressionet de traction (30)7.5.4.1Essai de courant de court-circuit simulé (30)7.5.4.2Essai de compression et de traction (32)7.5.5Caractérisation des propriétés élastiques et d'amortissement (32)7.5.6Essais de flexibilité (38)7.5.7Essais de fatigue (38)7.5.7.1Généralités (38)7.5.7.2Oscillation de sous-portée (40)7.5.7.3Vibrations éoliennes (40)7.6Essais de caractérisation des élastomères (42)7.6.1Généralités (42)7.6.2Essais (42)7.6.3Essai de résistance à l'ozone (46)7.7Essais électriques (46)7.7.1Essais d'effet couronne et de tension de perturbations radioélectriques..467.7.2Essai de résistance électrique (46)7.8Vérification du comportement vibratoire du système faisceau/entretoise (48)Annexe A (normative) Informations techniques minimales à convenirentre acheteur et fournisseur (64)Annexe B (informative) Forces de compression dans l'essai de courantde court-circuit simulé (66)Annexe C (informative) Caractérisation des propriétés élastiques et d'amortissementMéthode de détermination de la rigidité et de l'amortissement (70)Annexe D (informative) Contrôle du comportement vibratoire du systèmefaisceau/entretoise (74)Bibliographie (80)Figures (50)Tableau 1 – Essais sur les entretoises (20)Tableau 2 – Essais sur les élastomères (44)61854 © IEC:1998– 5 –Clause Page7.5Mechanical tests (27)7.5.1Clamp slip tests (27)7.5.1.1Longitudinal slip test (27)7.5.1.2Torsional slip test (29)7.5.2Breakaway bolt test (29)7.5.3Clamp bolt tightening test (31)7.5.4Simulated short-circuit current test and compression and tension tests (31)7.5.4.1Simulated short-circuit current test (31)7.5.4.2Compression and tension test (33)7.5.5Characterisation of the elastic and damping properties (33)7.5.6Flexibility tests (39)7.5.7Fatigue tests (39)7.5.7.1General (39)7.5.7.2Subspan oscillation (41)7.5.7.3Aeolian vibration (41)7.6Tests to characterise elastomers (43)7.6.1General (43)7.6.2Tests (43)7.6.3Ozone resistance test (47)7.7Electrical tests (47)7.7.1Corona and radio interference voltage (RIV) tests (47)7.7.2Electrical resistance test (47)7.8Verification of vibration behaviour of the bundle-spacer system (49)Annex A (normative) Minimum technical details to be agreed betweenpurchaser and supplier (65)Annex B (informative) Compressive forces in the simulated short-circuit current test (67)Annex C (informative) Characterisation of the elastic and damping propertiesStiffness-Damping Method (71)Annex D (informative) Verification of vibration behaviour of the bundle/spacer system (75)Bibliography (81)Figures (51)Table 1 – Tests on spacers (21)Table 2 – Tests on elastomers (45)– 6 –61854 © CEI:1998 COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE––––––––––LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISESAVANT-PROPOS1)La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composéede l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales.Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.2)Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesuredu possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d’études.3)Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiéscomme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.4)Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer defaçon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.5)La CEI n’a fixé aucune procédure concernant le marquage comme indication d’approbation et sa responsabilitén’est pas engagée quand un matériel est déclaré conforme à l’une de ses normes.6) L’attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent fairel’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.La Norme internationale CEI 61854 a été établie par le comité d'études 11 de la CEI: Lignes aériennes.Le texte de cette norme est issu des documents suivants:FDIS Rapport de vote11/141/FDIS11/143/RVDLe rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.L’annexe A fait partie intégrante de cette norme.Les annexes B, C et D sont données uniquement à titre d’information.61854 © IEC:1998– 7 –INTERNATIONAL ELECTROTECHNICAL COMMISSION––––––––––OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERSFOREWORD1)The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprisingall national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.2)The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, aninternational consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.3)The documents produced have the form of recommendations for international use and are published in the formof standards, technical reports or guides and they are accepted by the National Committees in that sense.4)In order to promote international unification, IEC National Committees undertake to apply IEC InternationalStandards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.5)The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for anyequipment declared to be in conformity with one of its standards.6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subjectof patent rights. The IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61854 has been prepared by IEC technical committee 11: Overhead lines.The text of this standard is based on the following documents:FDIS Report on voting11/141/FDIS11/143/RVDFull information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.Annex A forms an integral part of this standard.Annexes B, C and D are for information only.– 8 –61854 © CEI:1998LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISES1 Domaine d'applicationLa présente Norme internationale s'applique aux entretoises destinées aux faisceaux de conducteurs de lignes aériennes. Elle recouvre les entretoises rigides, les entretoises flexibles et les entretoises amortissantes.Elle ne s'applique pas aux espaceurs, aux écarteurs à anneaux et aux entretoises de mise à la terre.NOTE – La présente norme est applicable aux pratiques de conception de lignes et aux entretoises les plus couramment utilisées au moment de sa rédaction. Il peut exister d'autres entretoises auxquelles les essais spécifiques décrits dans la présente norme ne s'appliquent pas.Dans de nombreux cas, les procédures d'essai et les valeurs d'essai sont convenues entre l'acheteur et le fournisseur et sont énoncées dans le contrat d'approvisionnement. L'acheteur est le mieux à même d'évaluer les conditions de service prévues, qu'il convient d'utiliser comme base à la définition de la sévérité des essais.La liste des informations techniques minimales à convenir entre acheteur et fournisseur est fournie en annexe A.2 Références normativesLes documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif est sujet à révision et les parties prenantes aux accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.CEI 60050(466):1990, Vocabulaire Electrotechnique International (VEI) – Chapitre 466: Lignes aériennesCEI 61284:1997, Lignes aériennes – Exigences et essais pour le matériel d'équipementCEI 60888:1987, Fils en acier zingué pour conducteurs câblésISO 34-1:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 1: Eprouvettes pantalon, angulaire et croissantISO 34-2:1996, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 2: Petites éprouvettes (éprouvettes de Delft)ISO 37:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination des caractéristiques de contrainte-déformation en traction61854 © IEC:1998– 9 –OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERS1 ScopeThis International Standard applies to spacers for conductor bundles of overhead lines. It covers rigid spacers, flexible spacers and spacer dampers.It does not apply to interphase spacers, hoop spacers and bonding spacers.NOTE – This standard is written to cover the line design practices and spacers most commonly used at the time of writing. There may be other spacers available for which the specific tests reported in this standard may not be applicable.In many cases, test procedures and test values are left to agreement between purchaser and supplier and are stated in the procurement contract. The purchaser is best able to evaluate the intended service conditions, which should be the basis for establishing the test severity.In annex A, the minimum technical details to be agreed between purchaser and supplier are listed.2 Normative referencesThe following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication of this standard, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.IEC 60050(466):1990, International Electrotechnical vocabulary (IEV) – Chapter 466: Overhead linesIEC 61284:1997, Overhead lines – Requirements and tests for fittingsIEC 60888:1987, Zinc-coated steel wires for stranded conductorsISO 34-1:1994, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 1: Trouser, angle and crescent test piecesISO 34-2:1996, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 2: Small (Delft) test piecesISO 37:1994, Rubber, vulcanized or thermoplastic – Determination of tensile stress-strain properties– 10 –61854 © CEI:1998 ISO 188:1982, Caoutchouc vulcanisé – Essais de résistance au vieillissement accéléré ou à la chaleurISO 812:1991, Caoutchouc vulcanisé – Détermination de la fragilité à basse températureISO 815:1991, Caoutchouc vulcanisé ou thermoplastique – Détermination de la déformation rémanente après compression aux températures ambiantes, élevées ou bassesISO 868:1985, Plastiques et ébonite – Détermination de la dureté par pénétration au moyen d'un duromètre (dureté Shore)ISO 1183:1987, Plastiques – Méthodes pour déterminer la masse volumique et la densitérelative des plastiques non alvéolairesISO 1431-1:1989, Caoutchouc vulcanisé ou thermoplastique – Résistance au craquelage par l'ozone – Partie 1: Essai sous allongement statiqueISO 1461,— Revêtements de galvanisation à chaud sur produits finis ferreux – Spécifications1) ISO 1817:1985, Caoutchouc vulcanisé – Détermination de l'action des liquidesISO 2781:1988, Caoutchouc vulcanisé – Détermination de la masse volumiqueISO 2859-1:1989, Règles d'échantillonnage pour les contrôles par attributs – Partie 1: Plans d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)ISO 2859-2:1985, Règles d'échantillonnage pour les contrôles par attributs – Partie 2: Plans d'échantillonnage pour les contrôles de lots isolés, indexés d'après la qualité limite (QL)ISO 2921:1982, Caoutchouc vulcanisé – Détermination des caractéristiques à basse température – Méthode température-retrait (essai TR)ISO 3417:1991, Caoutchouc – Détermination des caractéristiques de vulcanisation à l'aide du rhéomètre à disque oscillantISO 3951:1989, Règles et tables d'échantillonnage pour les contrôles par mesures des pourcentages de non conformesISO 4649:1985, Caoutchouc – Détermination de la résistance à l'abrasion à l'aide d'un dispositif à tambour tournantISO 4662:1986, Caoutchouc – Détermination de la résilience de rebondissement des vulcanisats––––––––––1) A publierThis is a preview - click here to buy the full publication61854 © IEC:1998– 11 –ISO 188:1982, Rubber, vulcanized – Accelerated ageing or heat-resistance testsISO 812:1991, Rubber, vulcanized – Determination of low temperature brittlenessISO 815:1991, Rubber, vulcanized or thermoplastic – Determination of compression set at ambient, elevated or low temperaturesISO 868:1985, Plastics and ebonite – Determination of indentation hardness by means of a durometer (Shore hardness)ISO 1183:1987, Plastics – Methods for determining the density and relative density of non-cellular plasticsISO 1431-1:1989, Rubber, vulcanized or thermoplastic – Resistance to ozone cracking –Part 1: static strain testISO 1461, — Hot dip galvanized coatings on fabricated ferrous products – Specifications1)ISO 1817:1985, Rubber, vulcanized – Determination of the effect of liquidsISO 2781:1988, Rubber, vulcanized – Determination of densityISO 2859-1:1989, Sampling procedures for inspection by attributes – Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspectionISO 2859-2:1985, Sampling procedures for inspection by attributes – Part 2: Sampling plans indexed by limiting quality level (LQ) for isolated lot inspectionISO 2921:1982, Rubber, vulcanized – Determination of low temperature characteristics –Temperature-retraction procedure (TR test)ISO 3417:1991, Rubber – Measurement of vulcanization characteristics with the oscillating disc curemeterISO 3951:1989, Sampling procedures and charts for inspection by variables for percent nonconformingISO 4649:1985, Rubber – Determination of abrasion resistance using a rotating cylindrical drum deviceISO 4662:1986, Rubber – Determination of rebound resilience of vulcanizates–––––––––1) To be published.。
IEC61400-1-2005风电机组设计要求标准英汉对照
需要什么文档直接在我的文档里搜索比直接在网站大海捞针要容易的多也准确省时的多
INTERNATIONAL STANrbines – Part 1:
Design requirements
Publication numbering As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.
Further information on IEC publications The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued,is also available from the following: IEC Web Site (www.iec.ch) Catalogue of IEC publications The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches,technical committees and date of publication. Online information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda. IEC Just Published This summary of recently issued publications (www.iec.ch/online_news/justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information. Customer Service Centre If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre: Email: custserv@iec.ch Tel: +41 22 919 02 11 Fax: +41 22 919 03 00 .
顿挫期圆锥角膜拟锥体参数与角膜动力学响应参数的关系
between corneal cone parameters and dynamic corneal response parameters in forme fruste keratoconus [ J] .
radius of curvature; integrated radius
0 引言
圆锥角膜( keratoconus,KC) 是一种以角膜扩张
为特征,致角膜中央部向前凸出呈圆锥形,产生高度
不规则近视散光和不同视力损害的原发性角膜变性
疾病。 KC 的治疗包括适用于轻中度病例的角膜胶
原交联手术和角膜基质环植入手术,以及针对严重
第 42 卷 第 6 期
2023 年 12 月
北京生物医学工程
Beijing Biomedical Engineering
Vol 42 No 6
December 2023
顿挫期圆锥角膜拟锥体参数与角膜动力学响应
参数的关系
王维1 张慧1 田磊2 李林1,3 张海霞1,3
摘 要 目的 探索圆锥角膜拟锥体的中心位置和力学性质对角膜动力学响应参数的影响。 方法
region,the simulation results of corneal dynamic response parameters under air pulse were calculated to study
the relationship of the position and mechanical parameters of the corneal cone region with the DCR parameters.
用于寡核苷酸二级结构预测的热力学数据库研究进展
用于寡核苷酸二级结构预测的热力学数据库研究进展刘哲言;屈武斌;张成岗【摘要】基于核酸分子杂交的生物技术(如PCR)在病原微生物检测、临床诊断等诸多领域中应用广泛,此类技术的可靠性在于寡核苷酸分子与其靶点结合的高稳定性与特异性,而精确预测寡核苷酸与靶分子结合的二级结构是分析其稳定性与特异性的关键。
其中,基于热力学的最近邻模型是寡核苷酸二级结构预测最为可靠的计算方法,但其精确性强烈依赖于精确的热力学参数。
由于寡核苷酸分子二级结构的复杂性,除了完美匹配外,还需要错配、内环、膨胀环、末端摇摆、CNG重复、GU摆动等特殊结构的热力学数据。
本文综述了近年来用于寡核苷酸二级结构预测的有效热力学数据库及相关计算方法,并指出当前热力学数据库的局限及未来发展方向。
%The nucleotide hybridization based molecular biological technologies like PCR have been widely used in many fields, such as pathogenic microorganism detection, clinical diagnosis. And the accurate prediction of secondary structures between oligonucleotide and its binding sites is the key to these technologies. The Nearest-Neighbor Model based on thermodynamics is the most accurate method to predict oligonucleotide secondary structure, and the precision mainly depends on the thermodynamic parameters. Meanwhile, the diversity of secondary structure requires different thermodynamic parameters for different motifs, including perfect matches, mismatches, internal loops, bulge loops, dangling ends, CNG repeats, and GU wobble base pairs. Therefore, this review summarized the current parameter sets available for oligonucleotide secondary structure prediction. We also pointed out thelimitations and future development directions of the thermodynamic database.【期刊名称】《生物信息学》【年(卷),期】2014(000)003【总页数】10页(P196-205)【关键词】寡核苷酸二级结构;热力学数据库;热力学计算【作者】刘哲言;屈武斌;张成岗【作者单位】军事医学科学院放射与辐射医学研究所,蛋白质组学国家重点实验室,全军军事认知与心理卫生研究中心,北京100850;军事医学科学院放射与辐射医学研究所,蛋白质组学国家重点实验室,全军军事认知与心理卫生研究中心,北京100850;军事医学科学院放射与辐射医学研究所,蛋白质组学国家重点实验室,全军军事认知与心理卫生研究中心,北京100850【正文语种】中文【中图分类】Q522近年来,以核酸分子杂交为基础的生物技术如聚合酶链反应、DNA印迹、RNA印迹、芯片杂交等在病原微生物检测、临床诊断中应用广泛,其可靠性依赖于寡核苷酸分子与其靶点结合的高稳定性与特异性,而分析这种结合特性的关键在于寡核苷酸与靶分子结合的二级结构的精确预测,否则会导致假阴性或假阳性的检测结果[1-4]。
二氧化碳浓度升高对植物影响的研究进展
二氧化碳浓度升高对植物影响的研究进展摘要摘要:二氧化碳是作物光合作用的原料,对植物的生长发育会产生显著影响。
本文通过对国内外二氧化碳浓度升高的研究现状,归纳出其对植物的影响状况。
二氧化碳浓度的升高对植物体的生长整体上具有促进作用,主要表现在植物形态、植物生理、植物根系、产量品质、植物种群、植物群落和植物生态系统。
对植物生理的影响主要表现在植物光合作用、呼吸作用、蒸腾作用、植物抗逆性等方面。
关键词:CO2;植物;影响0前言2009年11月24日发布的《哥本哈根诊断》报告指出,到2100年全球气温可能上升7°C,海平面可能上升1米以上。
世界自然基金委员会发表的另一份报告称,到2050年,全球海平面将上升50厘米,就全球而言,136座沿海大城市,价值28.21万亿美元的财产将受到影响。
为此,就要求大气中的温室气体浓度稳定在450ppm 二氧化碳当量,气温升高控制在2°C左右。
根据世界银行报告《2010世界发展报告:发展与气候变化》提供的最新资料,在过去150年,由于人类排放的温室气体,全球气温已经比工业化前升高了将近1°C;预计21世纪(指2000-2100年)全球温度将比工业化前总共升高5°C。
C02是作物光合作用的原料,C02浓度增加及其温室效应引起的气候变化,对植物的生长发育会产生显著影响。
近20年来,世界各国科学家对此作了较为详细的研究,其研究涉及到植物的形态学特征、生理生化机制、生物量及籽粒品质等多方面内容,取得了明显的进展。
1 CO2浓度升高对植物体的影响1.1对植物形态的影响CO2浓度的升高对植物形态具有一定的影响,会使植物的冠幅、高度增大;茎干中次生木质部的生长轮加宽,材积增大;节间数、叶片数增多;叶片厚度增加,栅栏组织层数增加,下表皮有的覆盖有角质层,单位面积内表皮细胞和气孔数量减少;根系数量增多,根幅扩大;果实种子增大。
1.2对植物生理的影响1.2.1对光合作用的影响光合作用作为植物物质生产的生理过程,连接植物生长、叶的化学特征、物候和生物产量分配对CO2浓度升高的反应。
燃料电池专业词汇
Fuel Cell Glossary Activation voltage loss: 活化电压损失Activation energy: 活化能Activation impedance loop:活化阻抗回路Activation kinetics: 活化反应动力学Activation barrier: 活化壁垒Activation overpotential: 活化过电位Air relative permeability: 空气相对渗透率Air-water two-phase flow: 水-气两相流Anode heat exchanger: 阳极热交换器Anode subsystem: 阳极子系统Arrhenius relationship: 阿伦尼乌斯关系Associative pathway: 旁路,侧路Atmospheric CO2 concentration: 大气CO2浓度Automotive fuel cells: 汽车用燃料电池Avogadro’s number: 阿伏伽德罗常数AC/DC converter: 交流/直流转换器Alkaline fuel cell: 碱性燃料电池AFM: atomic force microscopy: 原子力显微镜Air blower: 风机Air pollution: 空气污染Air supply: 供气Aqueous potassium hydroxide: 氢氧化钾溶液Ammonium borohydride:NH4BH4硼氢化铵Anaerobic digester gas(ADG): 厌氧沼气Anode Galvani potential: 阳极伽伐尼电位Anode supported MEA: 阳极支撑膜电极Aqueous alkaline electrolyte: 含水的碱性电解质Aqueous electrolyte/ionic liquids: 含水电解质/离子溶液Area-normalized reaction rates: 面积归一化的反应速率Area-specific resistance: 面阻抗Arhenius conductivity equation: 阿伦尼乌斯导电率方程Aromatic hydrocarbon membranes: 芳香族碳氢化合物膜Asiplex(Asahi Chemical Industry): 朝日化工Back-diffusion water fluxes: 反扩散水通量Backward flux: 反向通量Batteries: 电池Binary diffusion coefficient: 二元扩散系数Biological fuel cells: 生物燃料电池Bipolar plates: 双极板Blocking electrode: 阻断电极Boltzmann’s constant: 波尔兹蔓常数Bonding energy: 键能Bottleneck processes: 瓶颈技术Boundary conditions: 边界条件Boundary layer theory: 边界层理论Bonding energy: 键能Built-in voltage: 内置电压Bulk reactant: 总体反应物Butler-Volmer equation: 巴特勒-沃尔默方程Bypass valve: 旁通阀BYZ:Yttrium doped barium zirconate:钇掺杂的锆酸钡Bruggeman correlation: 布鲁格曼相关系数Capacitive double-layer impedance: 电容式双层阻抗Capacitors: 电容器Carbon cloth(paper): 碳布(纸)Carbon dioxide: 二氧化碳Carbon monoxide tolerance: 一氧化碳耐受度Carbon emission: 碳排放Carnot cycle: 卡诺循环Carrier-gas based fuel-processing subsystem: 载气燃料处理系统Carrier hydrogen storage system: 载波储氢系统Carriers concentration:载流浓度Catalyst layer: 催化层Catalyst layer interface: 催化层界面Catalyst reactant: 催化反应物Catalyst deactivation: 催化剂失活Catalytic electrode: 催化电极Catalytic fuel reformer: 催化燃料重整器Cathode Galvani potential: 阴极伽伐尼电位Cathode-membrane interface: 阴极-膜界面Cathode subsystem: 阴极子系统Cathode intercooler: 阴极中冷器Cathode degradation: 阴极衰减Cathode intercooler: 阴极中冷器Cathode activation overvoltage: 阴极活化过电位Cathode supported MEA: 阴极支撑的膜电极Ceramic electrolytes: 陶瓷电解质Ceramic materials: 陶瓷材料Chemisorptions: 化学吸附Current density: 电流密度Cell voltage variation: 电池电压变化Cluster-network model: 串网络模型Cold-start cell voltage: 冷启动电池电压Ceria-based anodes: 铈基阳极CFD: computational fluid dynamics: 计算流体动力学Charged species: 带电粒子Charge flux: 电荷通量Charge carriers: 电荷载体Charge conservation: 电荷守恒Charge transfer mechanisms: 电荷传输机理Charge transfer reactions: 电荷传输反应Charge transport: 电荷传输Chemical bonds: 化学键Chemical determinations: 化学测定法Chemical energy: 化学能Chemical free energy difference: 化学自由能差Chemical potential: 化学电位Chemical reaction: 化学反应Chemical surface oxidation: 化学表面氧化Chemical Structure:化学结构Chemisorbed hydrogen charge transfer reaction: 基于化学吸附的氢气传输反应CHP: combined heat and power: 热电联产(供)Chromium-based metallic interconnects: 铬基金属连接Circuit diagram: 电路图Climate change: 气候变化Climate mitigation: 减缓气候变化Closed system: 封闭系统Coal gasification plant: 煤气化工厂Cold stream:冷流Compressed hydrogen/air: 压缩氢气/空气Compression force: 压缩力Composite membranes: 复合膜Concentration gradient: 浓度梯度Concentration losses: 浓度损失Condenser heat: 冷凝热Conductivity: 导电率Conservation laws: 守恒定律Conservation equations: 守恒方程Constant-current-density assumption: 恒电流密度假设Constant flow rate condition: 流量恒定条件Constant and variable-flow models: 恒流-变流模型Constant-pressure process: 恒压过程Constant stoichiometry: 恒定化学计量比Constitutive equations:本构方程Continuity equation: 连续性方程Continuum diffusion coefficient: 连续性扩散系数Control volume method: 体积控制法Consumption rate: 消耗速率Contact resistance: 接触电阻Convection diffusion: 对流扩散Convective-dominated flow: 对流控制流体Convective fluid transport: 对流流体传输Convective forces: 对流力Convective heat transfer: 对流换热Convective heat-transfer coefficient: 对流传热系数Convective mass transport process: 对流传质过程Convective transport: 对流传输Cooling requirement: 冷却条件Cooling systems: 冷却系统Coupling coefficients: 耦合系数Coupled thermal-water management: 耦合的水热管理Crystal structure: 晶体结构Cross-membrane interconnections: 膜间互连结构Cross section: 断面Crystalline electrolyte: 晶体电解质Current interrupt technique: 电流中断技术Current-voltage curve: 电流-电压曲线Cyclic voltammetry: 循环伏安(法)Capillary flux: 毛细通量Darcy’s law: 达西定律Derivation: 衍生,推导Diffusion coefficients: 扩散系数Diffusion mechanism: 扩散机理Diffusion transport: 扩散传输Diffusivity: 扩散系数Diffusion flux: 扩散通量Diffusion Layers:扩散层Dimensionless groups: 无量纲组Dimensionless factor: 无量纲因子Dissociative pathway: 分解途径Dual-layer cathode electrode: 双层阴极Dusty-fluid model: 尘流模型DC-DC converter: 直流-直流转换器Dead zones: 盲端Decay rate: 衰减速率Dependent variables: 独立变量Dielectric breakdown: 介电击穿Dilute solution(ideal solution): 稀溶液(理想溶液)Direct alcohol fuel cells: 直接醇燃料电池Direct electro-oxidation: 直接电氧化Direct formic acid fuel cells: 直接甲酸燃料电池Direct methanol fuel cells: 直接甲醇燃料电池Dopant ions: 掺杂离子Doped carbon: 碳掺杂Double-layer capacitance: 双层电容Dual-layer approach: 双层接触Durability: 耐久性Dynamic equilibrium: 动态平衡Economic trade-off: 经济权衡(效益/性价比)Electro-osmotic flow: 电渗流Electrochemical reaction kinetics: 电化学反应动力学Electrode-electrolyte interface: 电极-电解质界面Electrolyte membrane: 电解质膜Electromotive force: 电动势Empirical correlation: 经验相关性Energy balance: 能量平衡Enthalpy change: 焓变Entropic heat: 熵热Effective diffusivity: 有效扩散Effective porosity: 有效孔隙率Effective resistance: 有效阻抗Efficiency loss: 效率损失EIS: electrochemical impedance spectroscopy:电化学阻抗谱图分析Electrochemical reaction kinetics: 电化学反应动力学Electrical efficiencies: 发电效率Electrical driving forces: 电子驱动力Electrical potential: 电压Electrical field force: 电场力Electric power: 电功Electric wall conditions: 电壁条件Electrical work: 电功Electrochemical half reactions: 电化学半反应Electrochemical reaction heterogeneity: 电化学反应异质性Electrode-electrolyte microstructure: 电极-电解质微观结构Electrode materials: 电极材料Electro-osmotic drag: 电渗拖拽Endothermic reaction: 吸热反应Exothermic reaction: 放热反应Energy buffers: 能量缓冲器Energy conversion device: 能量转换装置Equivalent circuit elements: 等效电路元件Equivalent circuit (fuel cell) model: 等效电路(燃料电池)模型Equivalent weight: 当量Exponential Boltzmann factor: 指数波尔兹曼因子External heat transfer: 外部传热Extrinsic carriers: 外源载体Exchange current: 交换电流Experimental visualization: 可视化实验Extrinsic carriers: 外源载体Faraday’s law: 法拉第定律Fick’s law: 费克定律Fickian diffusion (coefficients): 费克扩散系数First law of thermodynamics: 热力学第一定律Flooding: 水淹Flow equations: 流量方程Fluid mixer: 混合流、流体混合器Four-point membrane –conductivity measuring cell: 四点法膜导电率测定Fourier’s law: 傅里叶定律Freezing point depression: 冰点抑制法Free-electron model: 自由电子模型Free volumes: 自由体积Frictional pressure drop: 摩擦压降Feedback loop: 反馈回路Fermi level: 费米能级Fixed stoichiometry condition: 固定化学计量比Flip-flop designs: 触发器设计Flow channels: 流道Flow field plates: 流场板Forced convection: 强迫对流Formation enthalpy: 生成焓Formic acid: 甲酸Forward activation barriers: 正向活化能Forward current density: 正向电流密度Forward flux: 正向通量Freezing/thawing: 冻结/融化Fuel crossover: 燃料穿透性Fuel processors: 燃料处理器Fuel reformers: 燃料重整器Fuel cell vehicles: 燃料电池汽车Fuel cell stacks: 燃料电池堆Fuel cell systems: 燃料电池系统Galvanostatic techniques: 恒流技术Gas-phase mole fraction of species i: i粒子气相摩尔分数GDL de-wetting and voltage loss: 气体扩散层脱湿及电压损失Green house gas emissions: 温室气体排放Gross heating value: 总热值Gibbs free energy: 吉布斯自由能Gadolinium-doped ceria: 钇掺杂的氧化铈Galvanic cell: 原电池(伽伐尼电池)Galvani potential: 伽伐尼电压Gas flow channels: 气体流道Gas diffusion layer: 气体扩散层Gasification: 气化Gasoline vehicle supply chain: 汽油车供应链Generalized mass-transfer driving force: 广义的传质驱动力Geometric design guidelines: 几何设计指南Global warming potential: 全球变暖潜力Governing equations: 控制方程Gravimetric energy density(specific energy): 重量能量密度(比能量)Gravimetric Power density(specific power): 重量功率密度(比功率)Gravimetric Ragone plots: 重量比功率-比能量曲线图Heat capacity: 热容Heat capacity effects:热容效应Heat and mass transfer: 传热传质Hydrogen reduction reaction: 氢还原反应Heat conduction: 热传导Heat pipe effect: 热管效应Heat radiation: 热辐射Heat spreaders cooling: 散热器冷却Heat transfer modes: 传热模式Heat engine: 热机Heat management: 热管理Heat release: 放热Heat exchangers: 热交换器Henry’s constant: 亨利常数Heat recovery efficiency: 热回收效率Helmholtz free energy: 亥姆霍兹自由能Heterpoly acid catalyst: 杂聚酸催化剂High current density region: 高电流密度区High-frequency intercept: 高频截距High-potential-energy initial state: 高势能初始状态High-temperature fuel cells: 高温燃料电池High-temperature oxidizing: 高温氧化Honda Home Energy Station: 本田家庭能源电站Hopping activation barrier: 跃迁活化能垒Hopping mechanisms: 跃迁机理Hopping model: 跃迁模型Hot reformate stream: 热重整气流Heuristic percolation theory: 启发式渗流理论High-frequency resistance: 高频阻抗Higher heating value: 高热值Hydrocarbon fuel: 碳氢燃料Hydrocarbon polymer: 碳氢高聚物Hydrogen-oxygen combustion reaction: 氢-氧燃烧反应Hydrogen-oxygen electrochemical reaction: 氢-氧电化学反应Hydrogen oxidation reaction: 氢气氧化反应Hypothetical condition: 假设条件Hydrogen utilization: 氢气利用率Humidification changes: 湿度变化Hydraulic permeation: 液压渗透Hydrogen and oxygen concentration contours: 氢气氧气浓度轮廓图Hydrophilic GDL: 亲水气体扩散层Hydrophobic GDL: 疏水气体扩散层Hydrostatic pressure: 静水压Hydrogen-hydrogen bond: 氢键能Hydrophobic treatment: 疏水处理Hydroscopic oxide: 吸湿氧化物Hydroxide compounds: 氢氧化物Hydroxy radicals: 氢氧自由基ICE(internal combustion engines):内燃机Ideal gas: 理想气体Impedance behavior: 阻抗行为Impedance response: 阻抗反应Incremental voltage loss: 增量式电压损失Inertial forces: 惯性力Infinite Warburg impedance element: 无限沃伯格阻抗元素Infinite Warburg behavior: 无限沃伯格行为Ink deposition: (催化剂)喷墨技术Inlet condition: 入口条件In situ electrochemical characterization techniques: 电化学原位表征技术Interdigitated flow: 交指型流动Interfacial potential: 界面电压Intermediate-strength bond: 中强化学键Internal fluid friction: 内流摩擦Internuclear separation: 核间距Intrinsic carriers: 內源载体Internal energy: 内能Intrinsic hopping rate: 内在跃迁速率Irreversible reaction process: 不可逆反应过程Isothermal reaction: 等温反应Ice dynamics and removal: 成冰动力学及除冰Ice formation: 结冰Ice melting: 冰融化Ice volume fraction: 冰体积分数Impedance model: 阻抗模型Ionic conduction: 离子传导Ionic conductors: 离子导体Ionic/electronic conductivities: 离子/电子导电率Ionic charge transport: 离子电荷传输Iterative process: 迭代过程Joules heat: 焦耳热Jump attempt frequency: 频率跃变Kinetic energy: 动能Kinetic Monte Carlo technique: 动力学蒙特卡洛技术Kinetic properties: 动力学性质KOH aqueous solution: 氢氧化钾水溶液Kinematic viscosity: 动力学粘度Knudsen diffusion: 努森扩散Lambert-Beer law: 朗伯-比尔定律Laminar flow: 层流Lanthanum gallate(LaGaO3): 酯酸镧Lanthanum Strontium Manganite(LSM):掺锶的亚锰酸镧Law of conservation of energy: 能量守恒定律Life cycle assessment: 生命周期评价Linear approximation: 线性逼近Linear voltage gradient: 线性电压梯度Linear Tafel fit: 线性塔菲尔拟合Liquid-gas transport models: 气-液传输模型Liquid-tin anode SOFC: 液态锡阳极SOFCLiquid water dynamics and removal: 液态水动力学及除水Liquid water transport model: 液态水传输模型Liquid saturation contours: 液态饱和廓线Lumped-system model: 总系统模型Logarithmic form: 对数形式Lone pair substitution: 孤对电子取代Low carbon fuels: 低碳燃料Low current densities: 低电流密度Low-potential-energy final state:低势能终态Low-temperature fuel cells: 低温燃料电池Lower heating value: 低热值Lumped-system model: 总系统模型Mass transfer: 传质Mass and momentum conservation: 质量和动量守恒Membrane hydration: 膜的湿化Microporous layers: 微孔层Macroscopic model prediction:宏观模型预测Mass and momentum conservation:质量与动量守恒Maxwell-Stefan flux equations: 麦克斯韦-斯特凡通量方程Molten carbonate fuel cells: 熔融碳酸盐燃料电池Membrane electrode assembly: 膜电极Membrane ionic conductivity: 膜离子导电率Membrane resistance profiles: 膜阻抗特征Methane: 甲烷Methanol: 甲醇Migration energy barrier: 迁移能垒Micro- , macro-transport: 微观,宏观传输Multiphase flow: 多相流Multiple-layered cathode catalyst layers: 多层阴极催化层Mass flow controllers: 质量流量控制器Matrix material: 基体材料Mechanical integrity: 机械优异性Membrane degradation: 膜降解Metal-air cells: 金属-空气电池Metal-based GDL materials: 金属基扩散层材料Metal hydride: 金属氢化物Metallic electron conductor: 金属电子导体Metal surfaces: 金属表面MEA fabrication: 膜电极制备Minimum temperature difference: 最小温差Mixed ion-conducting and electronically conducting: 混合离子-电子传导Molecular weight: 分子量Mobile fuel cell application: 手机燃料电池应用Modeling two-phase flow: 模拟两相流Monitoring system: 检测系统Molar concentration: 摩尔浓度Molar flow rate: 摩尔流速Molar flux: 摩尔通量Molar reaction quantities: 摩尔反应量Molar-weighted reactant: 摩尔加权反应Multicomponent gas diffusion: 多组分气体扩散Multiphase mixture formulation: 多相混合物配制Nafion:杜邦公司生产的质子交换膜,商品名,分117,115,112,212系列Nafion-based fuel cell system: 基于Nafion膜的燃料电池系统Natural desulfurized gas fuel: 天然脱硫气体燃料Natural gas fuel: 天然气燃料Natural greenhouse effect: 天然气温室效应Negative energy change: 负能量变化Nernst equation: 能斯特方程Nernstian concentration losses: 能斯特浓度损失Nernst voltage: 能斯特电压Net electrical efficiencies: 净电效率Net flux: 净通量Net reaction rate: 净反应速率Neutral water balance: 中性水平衡Net current extraction: 静电流输出Neutron radiography: 中子照相Net water transport coefficient: 净水传输系数Neutron radiography: 中子成相Newton’s law of cooling: 牛顿冷却定律Nickel-based electrodes: 镍基电极Nitrates: 硝酸盐Nitrogen flux: 氮气通量Nonplatinum ORR catalysts: 非铂氧气还原反应催化剂Nonuniformities: 非均一性Nonspontaneous reaction: 非自发反应Norminal diffusivity: 校正扩散Numerical analysis: 数值分析Nusselt number:努赛尔数Nyquist diagram/plot: 奈奎斯特图One-dimensional analysis: 一维分析Operational sweet spot: 操作优化点Ohmic loss: 欧姆损失Ohm’s law: 欧姆定律Ohmic voltage loss: 欧姆电压损失Ohmic activation loss: 欧姆活化损失Ohmic overvoltage: 欧姆过电位Ohmic resistance: 欧姆电阻Overall efficiency: 整体效率Oxygen/water concentration: 氧气/水浓度ORR(oxygen reduction reaction): 氧气还原反应Open circuit voltage: 开路电压Ordinary differential equation: 常微分方程Optical microscopy: 光学显微镜On-board fuel processor: 板载燃料处理器One-phase AC power: 单相交流电源Operating temperature: 操作温度Organic matter: 有机物质Orthorhombic tungsten bronze: 斜方晶钨青铜Outlet condition: 出口条件Oxidant species: 氧化剂粒子Oxide electrolytes: 氧化物电解质Oxide ions: 氧离子Oxygen-deficient perovskites: 缺氧型钙钛矿Oxygen-oxygen bonds: 氧-氧(共价)键Oxygen vacancies: 氧空位(穴)PEM fuel cell: 质子交换膜燃料电池Parasitic nonelectrochemical reactions: 寄生的非电化学反应Parasitic power: 寄生功率Partially humidified air: 部分加湿的空气Partial oxidation: 部分氧化PBI(polybenzimidazole): 聚苯并咪唑(一种高温质子交换膜)Phase change:相变Phase equilibrium: 相平衡Phase mobility: 相流动性Phase-change-based cooling: 基于相变的冷却Polymer electrolyte membrane fuel cell: 聚合物电解质膜燃料电池Pore-level heat transfer: 孔隙传热Pore-scale transport: 孔尺度传输Porous media: 多孔介质Power density: 功率密度Power-law conductivity model: 幂律特征的导电率模型Proton conductivity models: 质子导电模型Proton transport: 质子传输Phosphoric acid fuel cell: 磷酸燃料电池Palladium membrane: 钯膜Parallel flow: 平行流Power control unit: 动力控制单元PEEK(polyether ether ketone): 聚醚醚酮(一种低温质子交换膜)Perfectly smooth electrode-electrolyte interface: 完美的电极-电解质界面Perfluorinated polymers: 全氟聚合物(以Nafion为代表)Permeability: 渗透率Perovskite anode materials: 钙钛矿阳极材料Perovskite structure: 钙钛矿结构PTFE(Polytetrafluoroethylene): 聚四氟乙烯Phase-shifted current response: 基于相转移的电流响应Phosphoric acid doped PBI: 磷酸掺杂PBI膜Phosphotungstic acid: 磷钨酸Pinch point analysis: 夹点分析Planar connection designs: 面连接设计Planck’s constant: 普朗克常数Platinum-free catalysts: 非铂催化剂Poisoning effect: 中毒效应Polarization curve: 极化曲线Polymer: 高分子,聚合物Polymer chains: 高聚物链Power density: 功率密度Polymer ion conductors: 高聚物离子导体Pore size distributions: 孔径分布Porosity: 孔隙率Portable fuel cell: 可携带燃料电池Potassium hydroxide: 氢氧化钾Potential energy: 势能Pre-leaching process: 预浸工艺Pressure gauges: 压力表Pressure-swing absorption: 变压吸附Pressurized fuel cell system: 增压燃料电池系统Primary fuel reforming reactions: 主要燃料重整反应Proton conducting polymer: 质子导电聚合物Pt-based catalyst: 铂基催化剂Pulse-width voltage modulation: 脉宽电压调制方式Pyrochlore-type oxides: 焦绿石型氧化物Physical properties: 物理性质Planar structures: 面内结构Platinum electrodes: 铂电极Potentiostatic techniques: 恒压技术Proton transport: 质子传输Phase-change-based cooling: 基于相变的冷却Quantum mechanics: 量子力学Radiator: 散热器Reaction spontaneity: 反应自发性Reduction reaction: 还原反应Relative humidity:相对湿度Renewable fuel: 可再生燃料Reversible thermodynamic efficiency: 可逆热力学效率Reversible voltage: 可逆电压Reaction enthalpy: 反应焓Reverse current density: 反向电流密度Reynolds number: 雷诺数Radial frequency: 径向频率Reactants concentration: 反应物浓度Reaction rates: 反应速率Real fuel cell efficiency: 真实燃料电池效率Redox active dye molecules: 氧化还原活性染料分子Reforming process: 重整工艺Relaxation parameters: 松弛参数Resistors: 电阻器Reverse current density: 可逆电流密度Reverse reaction: 可逆反应Reversible thermodynamic efficiency: 可逆热力学效率Rotational diffusion transfer mechanisms: 旋转扩散传输机制Ruthenium: 钌Salt bridge: 盐桥Salt water battery: 盐水电池Scenario analysis: 方案分析Sealing method: 密封方法Solid state ionic conductor: 固态离子导体Spatially varying properties: 空间变化特性Species convection: 离子对流State of subfreezing water: 零下水状态Steady-state galvanostatic measurement: 静态恒流测试Steady-state properties:静态性质Stoichiometric number: 化学计量数Sulfonic group: 磺酸基Supply chain: 供应链Species transport equation: 粒子传输方程Stochastic material reconstruction: 随机材料重构Scaling and dimensionless groups: 缩放及无量纲组Schmidt number: 施密特数Second law of thermodynamics: 热力学第二定律Serpentine flow: 蛇形流Sherwood number: 舍伍德数Solid oxide fuel cells: 固体氧化物燃料电池Stanton number: 斯坦顿数Stefan-Boltzmann constant: 斯特凡-波尔兹曼常数Stefan-Boltzmann law: 斯特凡-波尔兹曼定律Samaria-doped ceria: 氧化钐掺杂的氧化铈Scanning electron microscopy: 扫描电子显微镜Sealant degradation: 密封胶降解Selective oxidation reactor: 选择性氧化反应器Semi-empirical expression: 半经验方程Shear force: 剪切力Shorting: 短路Silicotungstic acid: 硅钨酸Sintering: 烧结Sinusoidal current response:正弦电流响应Step-down converter: 降压转换器Step-up converter: 升压转换器Sulfonated polymer: 磺化聚合物Sulfonated hydrocarbon polymers: 磺化碳氢聚合物Symmetry condition: 对称条件Tafel equation: 塔菲尔方程Tafel slope: 塔菲尔斜率Thermal expansion coefficient: 热膨胀系数Thermal subsystem: 热系统Thermal conductivity: 热导率Thermodynamic voltage: 热力学电压Transport delay: 传输延迟Thermodynamics: 热力学Teflon: 聚四氟乙烯Temperature evolution and voltage loss: 温度变化与电压损失Transient phenomena: 瞬态现象Transversal membrane hydration: 横向膜加湿Transmission electron microscopy: 透射式电子显微镜Triple phase boundary: 三相界面Triple phase zones: 三相反应区Temperature-enthalpy diagram: 热-焓图Thermal balances: 热平衡Thermodynamics: 热力学Three-dimensional analysis: 三维分析Test conditions: 测试条件Turbulent flow: 湍流Two-fluid modeling:双流体模型Two-phase flow patterns: 两相流模式Vapor-phase diffusion: 气相扩散Vapor-liquid phase change: 气-液相变Variable-flow model: 变流模型Vehicular-diffusion mechanism: 汽车式扩散机制Volumetric condensation/evaporation rate: 体积冷凝/蒸发速率Volumetric storage capability: 容积储存能力Vacancies:空穴Vaporization latent heat: 蒸发潜热Viscous drag interaction: 粘性阻力作用Viscous forces: 粘性力Volatile organic compounds: 挥发性有机物Volumetric air flow rate: 体积空气流速Volumetric power density: 体积功率密度Void space: 空隙间隔Vulcan XC-72: 炭黑催化剂,商品名Water content: 含水量Water droplet dynamics: 水滴动力学Water holding capacity: 保水容量Water vapor saturation concentration: 水气饱和浓度Weber number: 韦伯数Wall condition: 壁面(边界)条件Water back diffusion: 水的反扩散Water gas shift reactors: 水气转换反应器X-ray diffraction(XRD): X射线衍射X-ray imaging: X射线成像Yttria-stabilized zirconia: 氧化钇稳定的氧化锆Zinc-air cell: 锌空电池Zirconia: 氧化锆Zirconium cations: 氧化锆阳离子Zr4+。
用于合成和优化基于硼化合物的新型软材料的方法[发明专利]
专利名称:用于合成和优化基于硼化合物的新型软材料的方法专利类型:发明专利
发明人:R·蒙塔迪,O·图图索斯
申请号:CN202010417398.4
申请日:20200518
公开号:CN112018434A
公开日:
20201201
专利内容由知识产权出版社提供
摘要:本发明涉及用于合成和优化基于硼化合物的新型软材料的方法。
用于二次电化学电芯的软固态电解质组合物包括在软固体基体中分散或掺杂的金属盐。
用于合成组合物的方法包括用金属盐掺杂固体基体。
该基体包括有机阳离子和第一硼簇阴离子。
用于优化电解质的方法包括构建电解质库并且对于期望的性质而言筛选该库。
申请人:丰田自动车工程及制造北美公司
地址:美国得克萨斯
国籍:US
代理机构:中国贸促会专利商标事务所有限公司
代理人:谭冀
更多信息请下载全文后查看。
管道腐蚀速率机理及预测方法
管道腐蚀速率机理及预测方法谢明1,刘一存2,李蒲智3(1.中国石油西南油气田分公司天然气研究院,四川成都610213;2.中国石油西南管道兰成渝输油分公司,四川广元628000;3.中国石油西南油气田分公司蜀南气矿,四川泸州 646000)摘要:为控制管道腐蚀,减小管道腐蚀速率,对腐蚀机理开展研究,以进一步预测管道腐蚀速率与趋势。
通过分析管道腐蚀的各种因素及其相互作用,结合现场管道运行工况、输送介质组分分析及管道腐蚀产物测试结果,确定管道腐蚀主要为CO2腐蚀,从而合理选择腐蚀预测模型。
通过对CO2腐蚀预测模型与计算公式的分析,利用软件建立管道腐蚀预测模型,找到管道腐蚀速率范围与位置,进而确定腐蚀控制手段。
关键词:管道;腐蚀速率;预测方法;模型0 引言随着管道使用年限的不断增加,腐蚀状况日益严重,影响管道的安全运营。
为预测整条管道的腐蚀状况,掌握腐蚀对管道结构完整性的危害程度,有必要对腐蚀速率进行预测和计算。
管道输送过程中,导致腐蚀的原因很多,腐蚀速率不仅与水质组分、气质组分、流速流态、环境条件等因素有关,还与钢材和时间有关。
通常,导致管道腐蚀的各因素相互影响,组成了非常复杂的腐蚀体系。
同时,腐蚀体系内的大部分影响因素都在随机变化。
因此,为了得到准确的腐蚀速率,必须从腐蚀机理入手,分析并研究不同条件下的腐蚀状况,进而通过腐蚀预测模型和软件[1],模拟、计算得到腐蚀速率的大小和趋势。
1 管道腐蚀机理1.1 管道表面的吸氧腐蚀在钢铁表面吸附的水膜酸性很弱或是呈中性、且输送介质中含有氧气的情况下,氧气会不断溶解于水膜并扩散到阴极,O2比H+的氧化能力更强,更容易得到电子。
其腐蚀机理为:阳极反应:Fe-2e→Fe2+(1)阴极反应:O2+2H2O+4e→4OH-(2)在此之后继续发生反应:Fe2++2OH-→Fe(OH)2(3)4Fe(OH)2+O2+2H2O→4Fe(OH)3(4)2Fe(OH)3+nH2O→Fe2O3·nH2O+3H2O(5)Fe2O3不溶于水,但可溶于酸性溶液中,反应式为Fe2O3+6H+↔2Fe3++3H2O(6)1.2 酸性溶液中的析氢腐蚀管道输送天然气时含有一定量的CO2。
《抗冻蛋白热滞活性的二维吸附结合模型》范文
《抗冻蛋白热滞活性的二维吸附结合模型》篇一一、引言抗冻蛋白是一类在低温环境下,对生物体起到保护作用的特殊蛋白质。
它们能够显著降低冰点,并有效阻止生物体内或外部冰晶的形成。
其中,热滞活性是抗冻蛋白的一项重要特性,表现为在结冰过程中通过阻碍冰晶的生长来保持液体状态的稳定。
近年来,关于抗冻蛋白的生物物理特性和作用机制研究逐渐增多,其中二维吸附结合模型在解释抗冻蛋白热滞活性的过程中发挥了重要作用。
本文旨在构建一个抗冻蛋白热滞活性的二维吸附结合模型,并对其作用机制进行深入探讨。
二、抗冻蛋白的结构与功能抗冻蛋白主要存在于极地生物的体液中,如鱼类、昆虫等。
它们通常由一系列的氨基酸组成,具有独特的空间结构。
当环境温度降低时,抗冻蛋白能够与冰晶表面结合,阻止冰晶的进一步生长,从而保持液体状态。
这种热滞活性使得生物体在低温环境下能够维持正常的生理活动。
三、二维吸附结合模型的构建二维吸附结合模型是指在一定条件下,抗冻蛋白与冰晶表面的分子间相互作用。
首先,当环境温度逐渐降低时,冰晶开始在生物体内形成。
随后,抗冻蛋白分子开始在冰晶表面吸附和排列,通过氢键等相互作用力与冰晶表面的分子紧密结合。
这些分子间相互作用可以阻止冰晶的进一步生长,并降低生物体的冰点。
四、模型作用机制分析1. 吸附过程:在低温环境下,抗冻蛋白分子通过其特定的氨基酸序列和空间结构,与冰晶表面的分子发生相互作用。
这种相互作用包括静电作用、氢键等,使得抗冻蛋白分子能够在冰晶表面形成一层保护层。
2. 结合过程:当抗冻蛋白分子与冰晶表面形成紧密的结合后,它们能够有效地阻止冰晶的进一步生长。
这种阻止作用是通过改变冰晶的结晶结构来实现的,使得原本连续的冰晶结构变得不连续,从而减缓了冰晶的生长速度。
3. 热滞活性:由于抗冻蛋白的吸附和结合作用,生物体的冰点得以降低。
此外,在结冰过程中出现了一种延迟效应,即虽然周围环境的温度已经下降到接近生物体的正常冰点以下,但由于抗冻蛋白的参与,使得整个系统中的物质(如水溶液)并没有立刻形成大规模的固态冰块。
一种检测RNA中弱稳定性碱基对的固体核磁共振方法[发明专利]
专利名称:一种检测RNA中弱稳定性碱基对的固体核磁共振方法
专利类型:发明专利
发明人:王申林,赵莎,温子扬,邹梦冰,张立新
申请号:CN202011108878.9
申请日:20201016
公开号:CN112461881B
公开日:
20220218
专利内容由知识产权出版社提供
摘要:本发明公开了一种检测RNA中弱稳定性碱基对的固体核磁共振方法,涉及固体核磁共振波谱学领域。
通过设计一种新型二维氢检测固体核磁共振脉冲序列2DWaterREXSY,检测RNA中稳定性较弱的碱基对。
在脉冲序列中,利用了氢核上的Lee‑Goldburg自旋锁场,观测水与RNA中可交换质子的化学交换,并通过压制1H自旋扩散和偶极耦合相互作用,实现化学交换过程的专一性检测。
弱稳定性碱基对中的可交换质子与水的交换速率较快,信号较强,从而实现对弱稳定性碱基对的特异性检测。
申请人:北京大学,华东理工大学
地址:100871 北京市海淀区颐和园路5号北京大学
国籍:CN
代理机构:北京君尚知识产权代理有限公司
代理人:李文涛
更多信息请下载全文后查看。
二氧化碳制冷和热泵循环
文章编号:ISSN1005-9180(2009)04-0042-07X二氧化碳制冷和热泵循环周子成(广东西屋康达空调有限公司,广东佛山528000)[摘要]二氧化碳制冷剂由于它的制热性能系数高和对大气的全球气候变暖潜能值小,现在获得了愈来愈多的应用,尤其是在热泵热水器和汽车空调领域。
本文论述二氧化碳制冷剂的各种制冷和热泵循环。
[关键词]二氧化碳;制冷;热泵;循环[中图分类号]TQ05115;TU833[文献标识码]AC arbon Dioxide C ooling and Heating C yclesZ HOU Zicheng(Guangdong Siukonda Air Conditioning Co1,Ltd1,Guangdong528000,China) Abstract:Owing to the hi gh coefficient of heating and low Global Worming Potential,The application of carbon dioxide refri gerant is more and more widely1Especially in the area of heat pu mp water heaters and car air conditioners1In this pa-per,the di fferent kinds of carbon diox ide refrigerant cooling and heating cycles are discussed1Keywords:Carbon Dioxide;Refrigeration;Heat pump;Cycle1引言二氧化碳(CO2)是一种不破坏大气臭氧层(ODP=0)和全球气候变暖指数很小(GW P=1)的天然制冷剂。
国际标准和国家标准中的编号是R744。
它安全、低毒、不燃烧、与润滑油和金属及非金属材料不起作用、高温下也不会分解成有害气体。
综合生物信息学分析揭示乳腺癌细胞衰老的预后及免疫特征
综合生物信息学分析揭示乳腺癌细胞衰老的预后及免疫特征王科江;李雪森【期刊名称】《中国免疫学杂志》【年(卷),期】2024(40)2【摘要】目的:揭示乳腺癌中细胞衰老相关信号及其在临床结局和免疫治疗中的价值。
方法:通过DEseq2包分析细胞衰老相关差异基因,TCGA-BRCA队列作为训练集,单因素Cox回归筛选预后相关基因,LASSO回归和多因素Cox回归构建模型,GSE20685-BRCA队列作为外部验证集。
构建TCGA-BRCA队列的列线图模型并通过校准曲线和ROC曲线检验其预测性能。
根据细胞衰老关键预后基因风险评分中位值分组进行GSEA富集分析,CIBERSORT反卷积算法、ESTIMATE算法分析高、低风险患者免疫细胞浸润、免疫微环境评分及免疫检查点基因表达,Maftools包观察高、低风险患者基因组突变情况。
结果:构建了包含WT1、IFNG、TP63、IGFBP6、CPEB1共5个基因在内的最佳预后模型并在外部验证集中得到了验证,单因素及多因素Cox回归分析显示该风险模型是乳腺癌患者的独立预后因素。
基于风险评分和临床参数成功构建了TCGA-BRCA队列的列线图模型,其校准曲线拟合良好,在指导临床决策方面具有积极收益。
免疫细胞浸润、免疫评分、免疫检查点基因表达等相关分析提示高风险患者免疫抑制表型上调。
结论:细胞衰老相关基因预测模型对指导乳腺癌患者预后具有积极作用,并可与特异性免疫检查点因子或肿瘤微环境联合作为预测免疫检查点抑制剂反应的生物标志物。
【总页数】8页(P312-319)【作者】王科江;李雪森【作者单位】西南医科大学基础医学院肿瘤医学研究所【正文语种】中文【中图分类】R392【相关文献】1.乳腺癌微环境中CXC趋化因子治疗靶点和预后标志物的综合生物信息学分析2.基于生物信息学分析核糖体蛋白S7与乳腺癌预后和免疫浸润的关系3.基于生物信息学分析UBE2C与乳腺癌患者预后及免疫治疗反应的关系4.基于生物信息学筛选并分析与浸润性乳腺癌免疫浸润有关的预后基因因版权原因,仅展示原文概要,查看原文内容请购买。
利用Logistic曲线预测二氧化碳累计封存量和注入速度增长率——以英国地区为例
利用Logistic曲线预测二氧化碳累计封存量和注入速度增长率——以英国地区为例田雨桐【期刊名称】《中外能源》【年(卷),期】2024(29)6【摘要】英国提出了净零目标,计划到2050年二氧化碳排放量降为零,实现75~175Mt/a的二氧化碳注入速度。
以英国为研究对象,利用逻辑模型预测其二氧化碳累计封存量和注入速度增长率。
由于没有历史注入数据来进行逻辑增长曲线的拟合,所以采用地质封存量和目标注入速度作为模型的约束条件。
英国地区很早就进行了二氧化碳地质封存潜力评价,所有相关地质数据均可在二氧化碳封存数据库(CO_(2)Stored)中获取。
模拟结果表明,从2026年起,注入速度以每年3.8%的速度增长,可满足净零目标75Mt/a的最低注入速度要求,2050年累计封存量2.62Gt。
如果在2035年将注入速度年增长率由3.8%提高至4.6%,虽然可以封存更多的二氧化碳,但无法在2050年达到175Mt/a的注入速度目标。
如果英国的二氧化碳捕获和储存项目晚于2026年开始,则需要更高的注入速度增长率来满足净零目标。
【总页数】5页(P98-102)【作者】田雨桐【作者单位】中国石化上海海洋油气分公司勘探开发研究院【正文语种】中文【中图分类】F42【相关文献】1.利用测井曲线划分滇东地区煤体结构以及预测煤层渗透率2.Logistic曲线模型在经济预测中的应用——以重庆市城镇居民收入预测为例3.空间统计模型在土地利用与覆被变化模拟与预测中的应用——以Logistic-CA-Markov模型为例4.基于Logistic增长模型和相关性分析的疫情预测——以英国为例5.基于logistic曲线的快速城市化地区耕地变化人文驱动力建模——以深圳市为例因版权原因,仅展示原文概要,查看原文内容请购买。
不同盐渍条件下海滨锦葵光合-光响应模型
不同盐渍条件下海滨锦葵光合-光响应模型温黎明;赵秀梅;董轲;崔冰;高小淇;殷晓晓;王菊;范海【期刊名称】《山东科学》【年(卷),期】2018(031)005【摘要】采用CIRAS-3便携式光合作用测定仪测定了不同盐渍条件下海滨锦葵在不同光强下的净光合速率.通过非直角双曲线模型、直角双曲线模型、指数模型和直角双曲线修正模型对光合参数和拟合曲线进行比较,探讨盐胁迫下海滨锦葵的光响应过程.结果表明,随着盐浓度的升高,海滨锦葵的净光合速率表现出先增高后降低的趋势.另外,从相对误差和决定系数来看,除了指数模型,其他3个模型在不同盐胁迫的海滨锦葵中均适用;发现随着盐浓度的升高,表观量子效率明显降低.对照条件下直角双曲线模型的拟合度最高,100 mmol·L-1和300 mmol · L-1 NaCl处理条件下直角双曲线修正模型为海滨锦葵的最适模型,200 mmol·L-1NaCl处理条件下非直角双曲线模型的拟合度最高.【总页数】8页(P81-88)【作者】温黎明;赵秀梅;董轲;崔冰;高小淇;殷晓晓;王菊;范海【作者单位】山东师范大学,山东省逆境植物重点实验室,山东济南250014;山东师范大学,山东省逆境植物重点实验室,山东济南250014;山东师范大学,山东省逆境植物重点实验室,山东济南250014;山东师范大学,山东省逆境植物重点实验室,山东济南250014;山东师范大学,山东省逆境植物重点实验室,山东济南250014;山东师范大学,山东省逆境植物重点实验室,山东济南250014;山东师范大学,山东省逆境植物重点实验室,山东济南250014;山东师范大学,山东省逆境植物重点实验室,山东济南250014【正文语种】中文【中图分类】Q945.78【相关文献】1.不同水肥条件下达乌里胡枝子的光合-光响应曲线特征 [J], 吴爱姣;徐伟洲;郭亚力;陈吉;李帅;徐炳成2.不同土壤水分条件下珍珠油杏的光合光响应特征 [J], 陈志成;王志伟;王荣荣;张永涛;杨吉华;耿兵3.不同灌水和光强条件下小粒咖啡叶片光响应及光合生理特征 [J], 万梦丹;刘小刚;徐航;吴昊;齐韵涛;王露;杨启良4.不同坡向条件下小叶杨光合光响应曲线研究 [J], 王富刚;徐伟洲;亢福仁;尚爱军;张静5.不同水分条件下水稻光合作用的光响应模型的比较 [J], 于艳梅;徐俊增;彭世彰;卫琦;张剑刚因版权原因,仅展示原文概要,查看原文内容请购买。
甜叶悬钩子苷对脊髓损伤小鼠运动功能障碍和神经炎症的改善作用及其机制
甜叶悬钩子苷对脊髓损伤小鼠运动功能障碍和神经炎症的改善作用及其机制杨爽;许娜;张剑旭;孙成彪;王燕;董明鑫;刘文森【期刊名称】《吉林大学学报(医学版)》【年(卷),期】2024(50)2【摘要】目的目的:探讨甜叶悬钩子苷(RUB)对小鼠脊髓损伤(SCI)和神经炎症的影响,并阐明其作用机制。
方法方法:将48只雌性昆明小鼠随机分为假手术组、SCI组、SCI+低剂量RUB组和SCI+高剂量RUB组,每组12只;采用脊髓损伤行为学(BBB)评分法评估SCI小鼠后肢运动功能,脊髓组织含水量法检测SCI小鼠脊髓水肿情况,实时荧光定量PCR(RT-qPCR)法检测各组小鼠促炎细胞因子环氧化酶2(COX-2)、白细胞介素1β(IL-1β)和肿瘤坏死因子α(TNF-α)mRNA表达水平,ELISA法检测各组小鼠血清中炎症因子水平,HE染色观察各组小鼠脊髓组织病理形态学,免疫荧光法检测各组小鼠脊髓组织中小胶质细胞活化情况,Western blotting法检测SCI小鼠脊髓组织中相关蛋白表达水平。
结果结果:BBB评分,与假手术组比较,SCI组小鼠评分低至0分;与SCI组比较,SCI+低剂量RUB组和SCI+高剂量RUB组小鼠BBB 评分逐步升高。
脊髓组织含水量法检测,与假手术组比较,SCI组小鼠脊髓组织含水量明显升高(P<0.01);与SCI组比较,SCI+低剂量RUB组和SCI+高剂量RUB组小鼠脊髓组织含水量明显降低(P<0.01)。
RT-qPCR法检测,与假手术组比较,SCI组小鼠脊髓组织中COX-2、IL-1β和TNF-αmRNA表达水平明显升高(P<0.001);与SCI组比较,SCI+低剂量RUB组和SCI+高剂量RUB组小鼠脊髓组织中COX-2、IL-1β和TNF-αmRNA表达水平明显降低(P<0.001)。
ELISA法检测,与假手术组比较,SCI组小鼠血清中IL-1β(P<0.01)和TNF-α(P<0.001)水平升高;与SCI组比较,SCI+低剂量RUB组和SCI+高剂量RUB组小鼠血清中IL-1β和TNF-α水平降低(P<0.001);Western blotting法检测,与假手术组比较,SCI组小鼠脊髓组织中核因子κB(NF-κB)抑制因子α(IκB-α)、磷酸化IκB-α(p-IκB-α)、磷酸化p65(p-p65)、p-65、磷酸化p38(p-p38)、磷酸化细胞外调节蛋白激酶(p-ERK)和磷酸化c-Jun氨基末端激酶(p-JNK)蛋白表达水平明显升高(P<0.05或P<0.001);与SCI 组比较,SCI+低剂量RUB组和SCI+高剂量RUB组小鼠脊髓组织中IκB-α、p-IκB-α、p-p65、p-65、p-p38、p-ERK和p-JNK蛋白表达水平明显降低(P<0.001)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Engineering Science and Technology
December 2011, Vol. 6(6)
Coupling NORSOK CO2 Corrosion Prediction Model
711
An example of the corrosion prediction model of pipelines is the Ohio model which couples a dynamic model for flow regime prediction to mechanistic and semi-empirical models for corrosion prediction [6-7]. In this paper an empirical model developed by NORSOK Norwegian standard [8] for prediction of CO2 corrosion in straight pipes has been coupled to selected models for pipelines thermal/hydraulic calculations to simulate CO2 corrosion rate along oil pipelines.
Greek Symbols Viscosity, Pa.s µ Density, kg/m3 ρ Subscripts m o t w
Mixture Oil Total Water
of the parameters are to be predicted to set the critical values of every parameter; and then the process should be operated below these critical values. Efforts have been made to predict and control corrosion in many oil fields worldwide. As a result, many models and measurement techniques have been proposed [1-4]. Nešić et al. [5] developed a comprehensive model for internal corrosion prediction in mild steel pipelines. The effects of many factors contribute to corrosion rate such as H2S, water entrainment in multiphase flow, corrosion inhibition by crude oil components and localized attack have been taken into account in the model. Internal corrosion of pipelines is affected by two groups of parameters. The first group includes the parameters that influence flow dynamics inside the pipeline such as flow characteristics (velocity, density, and viscosity) and pipeline characteristics (internal diameter and wall roughness). The second group includes the parameters that influence the corrosion initiation and growth such as concentration of the corrosive component, temperature, pH, and steel composition.11,源自2Abstract
Pipelines transporting oil and gas are vulnerable to internal corrosion when water forms a part of the transported fluids. The presence of carbon dioxide (CO2) in the fluid accelerates the corrosion rate due to its reaction with water which results in forming carbonic acid, and hence, water pH is reduced. The corrosion rate prediction is an important task needed to manage and control the corrosion. The prediction can be carried on by selecting one of many empirical and mechanistic models that developed for corrosion rate prediction. One of these models is NORSOK model, an empirical model developed by NORSOK Norwegian standard for CO2 corrosion prediction in straight pipes. In this paper NORSOK model has been coupled to thermal and hydraulic models to predict CO2 corrosion rate along pipelines. Keywords: Corrosion, CO2, pipeline, NORSOK.
2. Simulation of Corrosion Rate along Oil Pipelines
During oils transportation, temperature gradually decreases from the inlet temperature (at 0 km distance) due to heat transfer from the heated oil to the surroundings. In isothermal pipelines (where no intermediate heating stations are installed), the temperature will eventually decline to the surrounding temperature some kilometers after the inlet point depending on many factors such as the surrounding temperature, the overall heat transfer coefficient, velocity, and fluid heat capacity. The temperature at distance L along the pipeline can be calculated using the following equation [9]:
709
710
M. E. Mohyaldin et al.
Nomenclatures
c D fCO2 f(pH)t G g Kt Ktot L PCO2 pf Rc Re S SG T Ti TL To V Heat capacity of fluid, J/kgºC Pipe diameter, m Fugacity of CO2 (Eq. 2), bar pH factor at a temperature T (Eq. 2) API gravity Gravidity acceleration, m/s2 Temperature dependent constant (Eq. 2) Overall heat transfer coefficient, W/m2ºC Distance, m CO2 partial pressure, bar Friction pressure, Pa Corrosion rate, mm/year Reynolds number Wall shear stress, Pa Specific gravity Temperature, ºC Inlet temperature, ºC Temperature at distance L along pipeline, ºC Pipeline surrounding temperature, ºC Fluid velocity, m/s
1. Introduction
Internal and external corrosion is a common problem in pipelines transporting oil and gas containing corrosive components such as CO2 and H2S. In many mature oil wells, the water cut and CO2 content may reach high level which forms a suitable environment for initiation and growth of corrosion. To avoid the consequences of corrosion, process parameters should always be controlled within safe operating limits. To do so, corrosion rates at various values