Fir维纳滤波器的Matlab仿真
matlabfir滤波器设计
![matlabfir滤波器设计](https://img.taocdn.com/s3/m/1c6d5d7bff4733687e21af45b307e87101f6f8f6.png)
matlabfir滤波器设计MATLAB是一个高级编程语言和交互式环境,被广泛应用于各种科学和工程问题的数值分析、数据可视化和编程开发等领域。
FIR滤波器是数字信号处理中经常使用的一种滤波器,它是基于有限长冲激响应的滤波器。
在MATLAB平台上,我们可以使用fir1函数来设计FIR滤波器。
一、FIR滤波器设计基础1.1 什么是FIR滤波器FIR滤波器是有限长冲激响应滤波器,由于其具有线性相位特性和可控阶数等优点,在数字信号处理中得到了广泛的应用。
一般来说,FIR滤波器的频率响应特性由滤波器的系数函数确定。
FIR滤波器的设计一般采用窗函数法、最小二乘法、频率抽取法等方法。
窗函数法是最常见的一种方法,大部分情况下选择的是矩形窗、汉宁窗、布莱克曼窗等。
1.3 fir1函数介绍fir1函数是MATLAB中用于FIR滤波器设计的函数,用法为:h = fir1(N, Wn, type)N为滤波器的阶数,Wn是用于指定滤波器截止频率的参数,type指定滤波器类型,可以是低通、高通、带通、带阻等。
二、使用fir1函数设计FIR滤波器2.1 设计要求采样率为300Hz;滤波器阶数为50;截止频率为50Hz。
2.2 实现步骤(1)计算规范化截止频率规范化截止频率是指在数字滤波器设计中使用的无单位量,通常范围为0到1。
在本例中,我们需要将50Hz的截止频率转化为规范化截止频率。
Wn = 2*50/300 = 1/3根据计算出的规范化截止频率和滤波器阶数,我们可以使用fir1函数来进行滤波器设计。
此处滤波器的阶数为50,规范化截止频率为1/3,类型为低通。
(3)绘制滤波器的幅频响应图为了验证设计的低通FIR滤波器是否符合要求,我们需要绘制其幅频响应图。
freqz(h,1,1024,300)经过上述步骤后,我们就得到了一张低通FIR滤波器的幅频响应图,如下图所示:图1.低通FIR滤波器的幅频响应图三、总结通过上述例子,我们可以看出在MATLAB中与fir1函数可以非常方便的进行FIR滤波器的设计。
使用MATLAB设计FIR滤波器
![使用MATLAB设计FIR滤波器](https://img.taocdn.com/s3/m/f498536ca36925c52cc58bd63186bceb19e8ed68.png)
使⽤MATLAB设计FIR滤波器1. 采⽤fir1函数设计,fir1函数可以设计低通、带通、⾼通、带阻等多种类型的具有严格线性相位特性的FIR滤波器。
语法形式:b = fir1(n, wn)b = fir1(n, wn, ‘ftype’)b = fir1(n, wn, ‘ftype’, window)b = fir1(n, wn, ‘ftype’, window, ‘noscale’)参数的意义及作⽤:b:返回的FIR滤波器单位脉冲响应,脉冲响应为偶对称,长度为n+1;n:滤波器的介数;wn:滤波器的截⽌频率,取值范围为0<wn<1,1对应信号采样频率⼀半。
如果wn是单个数值,且ftype参数为low,则表⽰设计截⽌频率为wn的低通滤波器,如果ftype参数为high,则表⽰设计截⽌频率为wn的⾼通滤波器;如果wn是有两个数组成的向量[wn1wn2],ftype为stop,则表⽰设计带阻滤波器,ftype为bandpass,则表⽰设计带通滤波器;如果wn是由多个数组成的向量,则根据ftype的值设计多个通带或阻带范围的滤波器,ftype为DC-1,表⽰设计的第⼀个频带为通带,ftype为DC-0,表⽰设计的第⼀个频带为阻带;window:指定使⽤的窗函数,默认为海明窗;noscale:指定是否归⼀化滤波器的幅度。
⽰例:N=41; %滤波器长度fs=2000; %采样频率%各种滤波器的特征频率fc_lpf=200;fc_hpf=200;fp_bandpass=[200 400];fc_stop=[200 400];%以采样频率的⼀半,对频率进⾏归⼀化处理wn_lpf=fc_lpf*2/fs;wn_hpf=fc_hpf*2/fs;wn_bandpass=fp_bandpass*2/fs;wn_stop=fc_stop*2/fs;%采⽤fir1函数设计FIR滤波器b_lpf=fir1(N-1,wn_lpf);b_hpf=fir1(N-1,wn_hpf,'high');b_bandpass=fir1(N-1,wn_bandpass,'bandpass');b_stop=fir1(N-1,wn_stop,'stop');%求滤波器的幅频响应m_lpf=20*log(abs(fft(b_lpf)))/log(10);m_hpf=20*log(abs(fft(b_hpf)))/log(10);m_bandpass=20*log(abs(fft(b_bandpass)))/log(10);m_stop=20*log(abs(fft(b_stop)))/log(10);%设置幅频响应的横坐标单位为Hzx_f=0:(fs/length(m_lpf)):fs/2;%绘制单位脉冲响应%绘制单位脉冲响应subplot(421);stem(b_lpf);xlabel('n');ylabel('h(n)');subplot(423);stem(b_hpf);xlabel('n');ylabel('h(n)');subplot(425);stem(b_bandpass);xlabel('n');ylabel('h(n)');subplot(427);stem(b_stop);xlabel('n');ylabel('h(n)');%绘制幅频响应曲线subplot(422);plot(x_f,m_lpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(424);plot(x_f,m_hpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(426);plot(x_f,m_bandpass(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(428);plot(x_f,m_stop(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);2. 采⽤fir2函数设计,函数算法是:⾸先根据要求的幅频响应向量形式进⾏插值,然后进⾏傅⾥叶变换得到理想滤波器的单位脉冲响应,最后利⽤窗函数对理想滤波器的单位脉冲响应激进型截断处理,由此得到FIR滤波器系数。
Matlab技术滤波器设计工具
![Matlab技术滤波器设计工具](https://img.taocdn.com/s3/m/abfd1d0f66ec102de2bd960590c69ec3d5bbdb8a.png)
Matlab技术滤波器设计工具概述:滤波器是信号处理中常用的工具,用于去除信号中的噪声或改变信号的频率响应。
Matlab是一个强大的数学工具,提供了丰富的滤波器设计函数和工具,使得滤波器设计变得简单易用。
本文将介绍Matlab中常用的滤波器设计函数和工具,帮助读者了解如何利用Matlab来设计不同类型的滤波器。
I. 常用滤波器设计函数Matlab提供了多个函数用于滤波器设计,包括FIR滤波器和IIR滤波器。
1. FIR滤波器设计函数FIR(Finite Impulse Response)滤波器是一种常见的线性相位滤波器,其特点是无反馈,具有线性相位和稳定的响应。
Matlab中常用的FIR滤波器设计函数包括fir1、fir2、firpm等。
- fir1函数可以设计标准的低通、高通、带通和带阻滤波器,可以指定截止频率、滤波器类型和滤波器阶数。
- fir2函数可以设计任意的线性相位FIR滤波器,可以指定滤波器的频率响应和频率区间。
- firpm函数可以设计最小最大化滤波器,可以指定滤波器的通带、阻带特性和响应类型。
2. IIR滤波器设计函数IIR(Infinite Impulse Response)滤波器是一种常见的递归滤波器,其特点是具有反馈,可以实现更高阶和更复杂的滤波器。
Matlab中常用的IIR滤波器设计函数包括butter、cheby1、cheby2、ellip等。
- butter函数可以设计巴特沃斯滤波器,可以指定滤波器的阶数和截止频率。
- cheby1和cheby2函数可以设计Chebyshev滤波器,可以指定滤波器的阶数、通带/阻带最大衰减和截止频率。
- ellip函数可以设计椭圆滤波器,可以指定滤波器的阶数、通带/阻带最大衰减和截止频率。
II. 滤波器设计工具除了上述的滤波器设计函数外,Matlab还提供了几个可视化的滤波器设计工具,方便用户通过图形界面进行滤波器设计。
1. FDA工具箱Matlab中的FDA工具箱(Filter Design and Analysis)是一个图形界面工具,用于设计、分析和实现各种滤波器。
维纳滤波matlab代码
![维纳滤波matlab代码](https://img.taocdn.com/s3/m/0b48176f4a73f242336c1eb91a37f111f1850d2d.png)
维纳滤波matlab代码维纳滤波是一种经典的图像复原方法,它可以在图像受到模糊和噪声影响时进行恢复。
在Matlab中,你可以使用以下代码来实现维纳滤波:matlab.% 读取原始图像。
originalImage = imread('input_image.jpg');% 转换为灰度图像。
originalImage = rgb2gray(originalImage);% 显示原始图像。
subplot(1, 2, 1);imshow(originalImage);title('Original Image');% 添加高斯噪声。
noisyImage = imnoise(originalImage, 'gaussian', 0, 0.01);% 显示带噪声的图像。
subplot(1, 2, 2);imshow(noisyImage);title('Noisy Image');% 计算模糊点扩散函数(PSF)。
PSF = fspecial('motion', 21, 11);% 使用逆滤波器和维纳滤波器进行图像复原。
estimated_nsr = 0;wnr3 = deconvwnr(noisyImage, PSF, estimated_nsr);% 显示维纳滤波后的图像。
figure, imshow(wnr3);title('Restored Image using Wiener Filter');在这段代码中,我们首先读取原始图像,然后转换为灰度图像。
接着,我们添加高斯噪声来模拟图像受到的噪声干扰。
然后我们计算模糊点扩散函数(PSF),并使用Matlab内置的`deconvwnr`函数来进行维纳滤波处理。
最后,我们显示经过维纳滤波处理后的图像。
需要注意的是,维纳滤波的参数estimated_nsr需要根据实际情况进行调整,它代表了噪声的方差估计。
基于MATLAB设计FIR滤波器
![基于MATLAB设计FIR滤波器](https://img.taocdn.com/s3/m/3710641d302b3169a45177232f60ddccdb38e658.png)
基于MATLAB设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种数字滤波器,它具有有限的冲激响应长度。
基于MATLAB设计FIR滤波器可以使用signal工具箱中的fir1函数。
fir1函数的语法如下:b = fir1(N, Wn, window)其中,N是滤波器的阶数,Wn是截止频率,window是窗函数。
要设计一个FIR低通滤波器,可以按照以下步骤进行:步骤1:确定滤波器的阶数。
阶数决定了滤波器的截止频率的陡峭程度。
一般情况下,阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。
步骤2:确定滤波器的截止频率。
截止频率是指在滤波器中将信号的频率限制在一定范围内的频率。
根据应用的需求,可以选择适当的截止频率。
步骤3:选择窗函数。
窗函数是为了在时域上窗口函数中心增加频率衰减因子而使用的函数。
常用的窗函数有Hamming、Hanning等。
窗函数可以用来控制滤波器的幅度响应特性,使得它更平滑。
步骤4:使用fir1函数设计滤波器。
根据以上步骤确定滤波器的阶数、截止频率和窗函数,可以使用fir1函数设计FIR滤波器。
具体代码如下:N=50;%设定阶数Wn=0.5;%设定截止频率window = hanning(N + 1); % 使用Hanning窗函数步骤5:使用filter函数对信号进行滤波。
设计好FIR滤波器后,可以使用filter函数对信号进行滤波。
具体代码如下:filtered_signal = filter(b, 1, input_signal);其中,input_signal是输入信号,filtered_signal是滤波后的信号。
以上,便是基于MATLAB设计FIR滤波器的简要步骤和代码示例。
根据具体需求和信号特性,可以进行相应的调整和优化。
维纳滤波器 matlab实现
![维纳滤波器 matlab实现](https://img.taocdn.com/s3/m/1238b0ca4028915f804dc20e.png)
实验报告册数字图形图像处理维纳滤波器matlab实现学院:人民武装学院学院专业:计算机科学与技术班级: 11级计科班学号: 1120070544 学生姓名:苏靖指导教师:维纳滤波的原理及其matlab 实现,以案例的形式展示FIR 维纳滤波的特性。
2.维纳滤波概述维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。
这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。
一个线性系统,如果它的单位样本响应为)(n h ,当输入一个随机信号)(n x ,且)()()(n v n s n x += (1) 其中)(n x 表示信号,)(n v )表示噪声,则输出)(n y 为∑-=mm n x m h n y )()()( (2)我们希望)(n x 通过线性系统)(n h 后得到的)(n y 尽量接近于)(n s ,因此称)(n y 为)(n s 的估计值,用^)(n s 表示,即^)()(n s n y = (3) 则维纳滤波器的输入—输出关系可用下面图1表示。
图1实际上,式(2)所示的卷积形式可以理解为从当前和过去的观察值)(n x ,)1(-n x ,)2(-n x …)(m n x -,…来估计信号的当前值^)(n s 。
因此,用)(n h 进行过滤问题实际上是一种统计估计问题。
一般地,从当前的和过去的观察值)(n x ,)1(-n x ,)2(-n x …估计当前的信号值^)()(n s n y =成为过滤或滤波;从过去的观察值,估计当前的或者将来的信号值)0)(()(^≥+=N N n s n y 称为外推或预测;从过去的观察值,估计过去的信号值)1)(()(^>-=N N n s n y 称为平滑或内插。
因此维纳滤波器又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓的最佳与最优是以最小均方误差为准则的。
如果我们分别以)(n s 与^)(n s 表示信号的真实值与估计值,而用)(n e 表示他们之间的误差,即)()()(^n s n s n e -= (4) 显然)(n e 可能是正值,也可能是负值,并且它是一个随机变量。
用Matlab设计FIR滤波器的三种方法
![用Matlab设计FIR滤波器的三种方法](https://img.taocdn.com/s3/m/764657afd0d233d4b14e69fc.png)
用MATLAB信号处理工具箱进行FIR滤波器设计的三种方法摘要介绍了利用MATLAB信号处理工具箱进行FIR滤波器设计的三种方法:程序设计法、FDATool设计法和SPTool设计法,给出了详细的设计步骤,并将设计的滤波器应用到一个混和正弦波信号,以验证滤波器的性能。
关键词 MATLAB,数字滤波器,有限冲激响应,窗函数,仿真1 前言数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。
与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。
因此,它在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。
2 FIR滤波器的窗函数设计法 FIR滤波器的设计方法有许多种,如窗函数设计法、频率采样设计法和最优化设计法等。
窗函数设计法的基本原理是用一定宽度窗函数截取无限脉冲响应序列获得有限长的脉冲响应序列,主要设计步骤为:(1) 通过傅里叶逆变换获得理想滤波器的单位脉冲响应hd(n)。
(2) 由性能指标确定窗函数W(n)和窗口长度N。
(3) 求得实际滤波器的单位脉冲响应h(n), h(n)即为所设计FIR滤波器系数向量b(n)。
(4) 检验滤波器性能。
本文将针对一个含有5Hz、15Hz和30Hz的混和正弦波信号,设计一个FIR带通滤波器,给出利用MATLAB实现的三种方法:程序设计法、 FDATool设计法和SPTool设计法。
参数要求:采样频率fs=100Hz,通带下限截止频率fc1=10 Hz,通带上限截止频率fc2=20 Hz,过渡带宽6 Hz,通阻带波动0.01,采用凯塞窗设计。
2 程序设计法MATLAB信号处理工具箱提供了各种窗函数、滤波器设计函数和滤波器实现函数。
维纳自适应滤波器设计及Matlab实现
![维纳自适应滤波器设计及Matlab实现](https://img.taocdn.com/s3/m/862aa622cfc789eb172dc837.png)
维纳自适应滤波器设计及Matlab实现摘要本文从随机噪声的特性出发,分析了传统滤波和自适应滤波基本工作原理和性能,以及滤波技术的现状和发展前景。
然后系统阐述了基本维纳滤波原理和自适应滤波器的基本结构模型,接着在此基础上结合最陡下降法引出LMS算法。
在MSE准则下,设计了一个定长的自适应最小均方横向滤波器,并通过MATLAB 编程实现。
接着用图像复原来验证该滤波器的性能,结果表明图像的质量在MSE 准则下得到了明显的改善。
最后分析比较了自适应LMS滤波和频域维纳递归滤波之间的性能。
本文还对MATLAB里面的自适应维纳滤波函数wiener2进行了简单分析。
关键字:退化图像维纳滤波自适应滤波最陡下降法LMSAbstractThis paper analyses the basic work theory, performance of traditional filter and adaptive filter based on the property of random noise, and introduce the status quo and the foreground of filter technology. Then we explain basic theory of wiener filter and basic structure model of adaptive filter, and combine the method of steepest descent to deduce the LMS. Afterward according to the MSE rule, we design a limited length transversal filter, and implement by MATLAB. And then we validate performance of adaptive LMS filter by restoring images, Test result show that the quality of the degrade images were improved under the rule of MSE. Finally, we compare the performance of adaptive LMS filter and iterative wiener filter.We also simply analyses the wiener2 () which is a adaptive filter in MATLAB. Keywords: degrade image;wiener filter;adaptive filter;ADF;LMS algorithm目录1绪论 (1)1. 1 引言 (1)1. 2 研究目标及现状 (1)1. 2 .1 图像复原技术的目标 (1)1. 2 .2 图像复原技术的研究现状 (1)2理论基础 (3)2. 1 基本自适应滤波器的模块结构 (3)2. 2 基本维纳滤波原理 (4)3自适应滤波原理及算法 (6)3.1 横向滤波结构的最陡下降算法 (7)3.1.1 最陡下降算法的原理 (7)3.1.2 最陡下降算法稳定性 (10)3.2 LMS滤波原理及算法 (11)3.2.1 从最陡下降算法导出LMS算法 (11)3.2.2 基本LMS算法的实现步骤 (11)3.2.3 基本LMS算法的实现流程图 (12)3.2.4 LMS算法的Matlab实现 (12)3.2.5 wiener2()的原理 (12)3.2.6 LMS性能分析——自适应收敛性 (13)4Matlab 实验结果 (14)4.1.LMS滤波器的收敛性 (14)4.2.LMS滤波器和频域迭代维纳滤波器的性能比较 (16)5总结 (18)致谢 (19)参考文献 (20)附录 A (21)附录 B (22)附录 C (27)1 绪论1.1引言人类传递信息的主要媒介是语言和图像。
基于Matlab的FIR滤波器设计与实现
![基于Matlab的FIR滤波器设计与实现](https://img.taocdn.com/s3/m/c72884354a35eefdc8d376eeaeaad1f347931158.png)
基于Matlab的FIR滤波器设计与实现⼀、摘要 前⾯⼀篇⽂章介绍了通过FDATool⼯具箱实现滤波器的设计,见“”,这⾥通过⼏个例⼦说明采⽤Matlab语⾔设计FIR滤波器的过程。
⼆、实验平台 Matlab7.1三、实验原理 以低通滤波器为例,其常⽤的设计指标有:1. 通带边缘频率f p(数字频率为Ωp)2. 阻带边缘频率f st (数字频率为Ωst)3. 通带内最⼤纹波衰减δp=-20log10(1-αp),单位为 dB4. 阻带最⼩衰减αs=-20log10(αs),单位为 dB5. 阻带起伏αs6. 通带峰值起伏αp 其中,以1、2、3、4条最为常⽤。
5、6条在程序中估算滤波器阶数等参数时会⽤到。
数字频率 = 模拟频率/采样频率四、实例分析例1 ⽤凯塞窗设计⼀FIR低通滤波器,通带边界频率Ωp=0.3pi,阻带边界频率Ωs=0.5pi,阻带衰减δs不⼩于50dB。
⽅法⼀:⼿动计算滤波器阶数N和β值,之后在通过程序设计出滤波器。
第⼀步:通过过渡带宽度和阻带衰减,计算滤波器的阶数B和β值。
第⼆步:通过程序设计滤波器。
程序如下:b = fir1(29,0.4,kaiser(30,4.55));[h1,w1]=freqz(b,1);plot(w1/pi,20*log10(abs(h1)));axis([0,1,-80,10]);grid;xlabel('归⼀化频率/p') ;ylabel('幅度/dB') ;波形如下:⽅法⼆:采⽤[n,Wn,beta,ftype] = kaiserord(f,a,dev)函数来估计滤波器阶数等,得到凯塞窗滤波器。
这⾥的函数kaiserord(f,a,dev)或者kaiserord(f,a,dev,f s): f为对应的频率,f s为采样频率;当f⽤数字频率表⽰时,f s则不需要写。
a=[1 0]为由f指定的各个频带上的幅值向量,⼀般只有0和1表⽰;a和f长度关系为(2*a的长度)- 2=(f的长度) devs=[0.05 10^(-2.5)]⽤于指定各个频带输出滤波器的频率响应与其期望幅值之间的最⼤输出误差或偏差,长度与a相等,计算公式:阻带衰减误差=αs,通带衰减误差=αp,可有滤波器指标中的3、4条得到。
FIR滤波器的MATLAB设计与实现
![FIR滤波器的MATLAB设计与实现](https://img.taocdn.com/s3/m/e6c533987e192279168884868762caaedc33ba71.png)
FIR滤波器的MATLAB设计与实现FIR滤波器(Finite Impulse Response Filter)是一种数字滤波器,其特点是其响应仅由有限长度的序列决定。
在MATLAB中,我们可以使用信号处理工具箱中的函数来设计和实现FIR滤波器。
首先,需要明确FIR滤波器的设计目标,包括滤波器类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的增益等。
这些目标将决定滤波器的系数及其顺序。
在MATLAB中,我们可以使用`fir1`函数来设计FIR滤波器。
该函数的使用方式如下:```matlabh = fir1(N, Wn, type);```其中,`N`是滤波器长度,`Wn`是通带边缘频率(0到0.5之间),`type`是滤波器的类型('low'低通、'high'高通、'bandpass'带通、'stop'带阻)。
该函数会返回一个长度为`N+1`的滤波器系数向量`h`。
例如,如果要设计一个采样频率为10kHz的低通滤波器,通带截止频率为2kHz,阻带频率为3kHz,可以使用以下代码:```matlabfc = 2000; % 通带截止频率h = fir1(50, fc/(fs/2), 'low');```上述代码中,`50`表示滤波器的长度。
注意,滤波器的长度越大,滤波器的频率响应越陡峭,但计算成本也更高。
在设计完成后,可以使用`freqz`函数来分析滤波器的频率响应。
例如,可以绘制滤波器的幅度响应和相位响应曲线:```matlabfreqz(h);```除了使用`fir1`函数外,MATLAB还提供了其他函数来设计FIR滤波器,如`fir2`、`firpm`、`firls`等,具体使用方式可以参考MATLAB的文档。
在实际应用中,我们可以将FIR滤波器应用于音频处理、图像处理、信号降噪等方面。
例如,可以使用FIR滤波器对音频信号进行去噪处理,或者对图像进行锐化处理等。
IIR滤波FIR滤波及维纳滤波简介、程序及仿真结果
![IIR滤波FIR滤波及维纳滤波简介、程序及仿真结果](https://img.taocdn.com/s3/m/5c029121482fb4daa58d4b5f.png)
IIR 滤波器、FIR 滤波器与维纳滤波器所谓数字滤波器,是指输入、输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的器件。
数字滤波器从实现的网络结构或者从单位脉冲响应分类,可以分为无限脉冲响应(IIR )滤波器和有限脉冲响应(FIR )滤波器。
它们的系统函数分别为:1.1n N n z n h z H --=∑=10)()( 1.21.1中的H(z)成为N 阶IIR 滤波器,1.2中的H(z)称为(N-1)阶FIR 滤波器函数,这两种类型的设计方法有很大的区别。
IIR 数字滤波器的设计既可以从模拟滤波器的设计入手来进行,也可以直接利用指标参数,通过调用滤波器设计子程序或函数来进行。
可以利用脉冲响应不变法来设计IIR 数字低通滤波器,按照技术要求设计一个模拟低通滤波器,得到模拟低通滤波器的传输函数,再按一定的转换关系将传输函数转换成数字低通滤波器的系统函数H(z)。
设模拟滤波器的传输函数是s H a (),相应的单位冲激响应是)(t h a ,对)(t h a 进行等间隔采样,采样间隔为T ,得到)(nT h a ,将h(n)= )(nT h a 作为数字滤波器的单位取样响应,那么数字滤波器的系统函数便是h(n)的z 变换,因此脉冲响应不变法是一种时域上的转换方法,它使h(n)在采样点上等于)(t h a∑=-=Ni iia s s A s H 1)( 1.3 ∑=--=Ni T s iz eA z H i 111)( 1.4 将s H a ()在s 平面上沿虚轴按照周期2pi/T 延括后,再按标准映射关系sT e z =,映射到z 平面上,就得到了H(z)。
脉冲响应不变法的优点是频率坐标变化时线性的,如果不考虑频率混叠现象,用这种方法设计的数字滤波器会很好的重现模拟滤波器的频率特性。
以下为用matlab 仿真的一个IIR 低通滤波器: % IIR Lowpass Use Butterworth % copyright by Etual clear;fs=20;fpass=4;fstop=5;∑∑=-=--=Nk kk Mk k k z a z b z H 101)(Ap=0.5;As=10;wp=2*pi*fpass/fs;ws=2*pi*fstop/fs;omegap=tan(wp/2);omegas=tan(ws/2);ep=sqrt(10^(Ap/10)-1);es=sqrt(10^(As/10)-1);N=ceil(log(es/ep)/log(omegas/omegap));omega0=omegap/ep^(1/N);K=floor(N/2);for i=1:Ktheta(i)=pi*(N-1+2*i)/(2*N);endfor i=1:KG(i)=omega0^2/(1-2*omega0*cos(theta(i))+omega0^2);endfor i=1:Ka1(i)=2*(omega0^2-1)/(1-2*omega0*cos(theta(i))+omega0^2);endfor i=1:Ka2(i)=(1+2*omega0*cos(theta(i))+omega0^2)/(1-2*omega0*cos(theta(i))+omeg a0^2);endif K<(N/2)G0=omega0/(omega0+1);a0=(omega0-1)/(omega0+1);endw=0:pi/300:pi;Hw2=1./(1+(tan(w/2)/omega0).^(2*N));plot(w/pi,Hw2);grid;图一IIR滤波器频谱图IIR数字滤波器能保留一些典型模拟滤波器优良的幅度特性,但设计中只考虑了幅度特性,没考虑相位特性,所设计的滤波器相位特性一般是非线性的。
FIR滤波器的MATLAB设计与实现
![FIR滤波器的MATLAB设计与实现](https://img.taocdn.com/s3/m/72ae070f10a6f524ccbf855e.png)
时钟 输入模拟信号 输出模拟信号
DSP (TMS32 0C5410)
同步 FIFO
同步 FIFO
D/A 转换
A/D 转换
JTAG 接口
FLASE
RS232 接口 图3 系统总体框图
6
SRAM
JTAG(Joint Test Action Group) 联合测试行动小组)是一种国际标准测试协议 (IEEE 1149.1 兼容) ,主要用于芯片内部测试。基本原理是在器件内部定义一个 TAP(Test Access Port�测试访问口)通过专用的 JTAG 测试工具对内部节点进 行测试。JTAG 测试允许多个器件通过 JTAG 接口串联在一起,形成一个 JTAG 链, 能实现对各个器件分别测试。 FLASE 存储器具有性价比高,体积小,功耗低,可电擦写,使用方便等优点。 在 DSP 应用系统中采用 Flash 存储器和固定数据是一种比较好的选择。 SRAM 静态存储器,读写速度快,但价格较高。适合于外部存放需要经常访问 或更新的临时数据。 RS232 电平转换模块,将外部电平转换为适合 DSP 芯片内部要求的电平。 图3是系统的总体框图。主要包括输入信号缓冲及调理电路、A/D 变换器、输 入缓冲 FIFO、DSP及外围电路、输出缓冲FIFO、D/A变换器等几部分。其中DSP及 外围电路包括程序存储器、串行口、显示及键盘接口等。串行口用于实现和PC机 的通信,可以通过PC机对滤波器的控制。 假定输入模拟信号为带限信号。该信号经缓冲和调理后经A/D变换进入输入缓 冲FIFO,当 FIFO中的数据达到一定数量时产生中断,DSP将数据读入内存中并进 行计算和处理,这里DSP主要实现FIR滤波运算。处理后的数据写入输出FIFO中, 之后通过D/A变换后输出模拟信号。输出的信号是低通滤波后的结果。 4.3 用DSP实现FIR滤波器的关键问题 4.3.1 定点数的定标 在滤波器的实现过程中,DSP所要处理的数可能是整数,也可能是小数或混合 小数;然而,DSP在执行算术运算指令时,并不知道当前所处理的数据是整数还是 小数,更不能指出小数点的位置在哪里。因此,在编程时必须指定一个数的小数 点处于哪一位,这就是定标。通过定标,可以在16位数的不同位置上确定小数点, 从而表示出一个范围大小不同且精度也不同的小数。 4.3.2 误差问题 因为在用定点DSP实现时,所有的数据都是定长的,运算也都是定点运算,因 而会产生有限字长效应。所产生的误差主要包括:数模转换引起的量化误差、系 数量化引起的误差以及运算过程中的舍入误差。在用定点DSP时,产生误差是不能 避免的。
matlabfir滤波器设计
![matlabfir滤波器设计](https://img.taocdn.com/s3/m/92f3e9e3c0c708a1284ac850ad02de80d4d80698.png)
matlabfir滤波器设计由于滤波器设计的复杂性,在matlab中完成滤波器设计过程可以减少大量的计算工作,下面将介绍在matlab中的FIR滤波器的设计。
一、matlab入口1. matlab工作环境:(1)安装matlab软件,在matlab中运行“dspstart”,启动数字信号处理的工作环境,包括了一些常用处理的函数和示例程序,在这种环境下可以进行滤波器设计的研究。
(2)matlab可以完成离散时间信号处理,因此,滤波器的设计需要在离散时间信号领域完成,即用离散时间信号的算法来完成滤波器设计。
2. matlab工具箱:(1)安装滤波器设计工具箱,这是一个专门用于滤波器设计的matlab库,包括了四种基本滤波器:抗谐波滤波器(notched filter),低通滤波器(low pass filter),带阻滤波器(band stop filter),以及带通滤波器(band pass filter)。
(2)安装滤波器设计高级工具箱,这是一个高级的matlab 库,可以支持滤波器的更复杂的设计,包括滤波器的参数优化,非线性滤波器,以及多种滤波器结构的数字滤波器。
3. matlab辅助性的工具:(1)安装滤波器设计助手,这是一个滤波器设计的可视化工具,可以帮助滤波器的初学者快速上手,了解滤波器设计的基本思想,并运行滤波器的例子及示例程序。
(2)安装滤波器设计指南,这是一个matlab脚本文件,可以帮助滤波器的更高级的使用者了解滤波器设计的原理,以及各种滤波器的不同之处,可以大大提高滤波器的设计效率。
二、 matlab 滤波器设计思路1. FIR滤波器的设计:(1)首先要明确滤波器的工作频率范围,记录滤波器的输入信号精度以及输出精度。
(2)设计滤波器的类型,选择适用于该频率范围内的滤波器类型,如低通滤波器,带阻滤波器等。
(3)定义滤波器的功率频谱,根据滤波器的类型,定义滤波器的功率频谱,包括最大值,超调因数以及滤波器的边带幅度。
维纳滤波器的设计及Matlab仿真实现
![维纳滤波器的设计及Matlab仿真实现](https://img.taocdn.com/s3/m/266e8caabd64783e08122b4a.png)
10 9
rz (1)
a2,1rz (0) 1 a2 ,2
5 9
由此确定 z( n)的自相关矩阵为 Rz
10 5
进而有 Rx Rz
2 v
I
99 5 10
99
10 5
99 5 10
99
10
1.21 0.56
0.1 [
]
01
0.56 1.21
期望响应 d( n) = s ( n),接下来,求 rxd ( k ) 。
% Transmit and add a noise A2 = [1 -0.85]; z = filter(1, A2, s); v = sqrt(0.1)*randn(N,1)ring y = filter([0.9052 -0.8656], 1, x);
2. 设计思路
下面我们通过具体的例子来说明 Wiener 滤波器的设计方法:
考 虑 如 下 图 所 示 的 简 单 通 信 系 统 。 其 中 , 产 生 信 号 S(n) 所 用 的 模 型 为
H 1( z) 1 /(1 0.95z 1 ) ,激励信号为 w(n) ~ WGN (0,0.3) 。信号 s(n) 通过系统函数为
v(n) 信道
w(n) H1(z) s(n) H2(z) z(n)
x(n) 最优滤波器
d(n)
-
y(n)
e(n)
解: s( n)是一个 AR(1)过程,在 x( n) = z( n)+ v(n)中, z( n)是一个二阶 AR(2) 过程。 由 于 白 噪 声 产 生 z ( n ) 的 系 统 函 数 相 当 于 H( z ) = H1 ( z ) H2 ( z ), 因 此
从而有 rxd
matlab滤波器设计命令
![matlab滤波器设计命令](https://img.taocdn.com/s3/m/7542646b7275a417866fb84ae45c3b3567ecddea.png)
matlab滤波器设计命令Matlab滤波器设计命令滤波器是数字信号处理中常用的工具,用于去除信号中的噪声、频率干扰或其他不需要的成分。
Matlab提供了一系列有用的滤波器设计命令,使用户能够轻松设计并应用各种类型的滤波器。
在本文中,我们将详细介绍Matlab中常用的滤波器设计命令,包括滤波器设计函数、滤波器类型和设计过程。
I. Matlab中常用的滤波器设计函数在Matlab中,有几种函数可用于设计滤波器,其中最常用的函数是`designfilt`函数和`fir1`函数。
1. designfilt函数`designfilt`函数是Matlab中最灵活和功能强大的滤波器设计函数之一,可用于设计各种类型的IIR和FIR滤波器。
它的基本语法如下:`filt = designfilt(FilterType, 'PropertyName', PropertyValue, ...)`其中,`FilterType`代表滤波器类型,包括低通滤波器(Lowpass)、高通滤波器(Highpass)、带通滤波器(Bandpass)、带阻滤波器(Bandstop)等。
`PropertyName`和`PropertyValue`是可选的参数,用于设置滤波器的各种属性,如阶数(Order)、截止频率(CutoffFrequency)、通带和阻带的最大衰减(MaximumAttenuation)等。
下面是一个使用`designfilt`函数设计低通滤波器的例子:Fs = 1000; 采样频率Fpass = 20; 通带截止频率Fstop = 30; 阻带截止频率designfilt('lowpassiir', 'FilterOrder', 4, 'PassbandFrequency', Fpass, 'StopbandFrequency', Fstop, 'SampleRate', Fs)该命令将设计一个4阶的低通IIR滤波器,其通带截止频率为20Hz,阻带截止频率为30Hz,采样频率为1000Hz。
Matlab中的滤波器设计方法详解
![Matlab中的滤波器设计方法详解](https://img.taocdn.com/s3/m/6203bffd59f5f61fb7360b4c2e3f5727a4e92472.png)
Matlab中的滤波器设计方法详解滤波器在信号处理中起着至关重要的作用,能够对信号进行去噪、去除干扰、增强所需频谱等操作。
Matlab作为一种强大的数学计算工具,提供了丰富的滤波器设计方法。
本文将详细介绍Matlab中常用的滤波器设计方法,包括FIR和IIR滤波器的设计原理和实现步骤。
一、FIR滤波器的设计方法FIR滤波器全称为有限脉冲响应滤波器,其特点是具有线性相位和稳定性。
在Matlab中,常用的FIR滤波器设计方法有窗函数法、最小二乘法和频率抽取法。
1. 窗函数法窗函数法是最简单直观的FIR滤波器设计方法。
它的基本思想是,在频域上用一个窗函数乘以理想滤波器的频率响应,再进行频域到时域的转换,得到滤波器的冲激响应。
常用的窗函数有矩形窗、汉宁窗、汉明窗等。
Matlab中,我们可以使用fir1函数进行窗函数法滤波器设计。
该函数的输入参数包括滤波器阶数、归一化截止频率和窗函数类型。
通过设计不同阶数和不同窗函数的滤波器,可以得到不同性能的滤波器。
2. 最小二乘法最小二乘法是一种优化方法,通过最小化滤波器的输出与目标响应之间的均方误差来设计滤波器。
在Matlab中,我们可以使用fir2函数进行最小二乘法滤波器设计。
该函数的输入参数包括滤波器阶数、频率向量和响应向量。
通过调整频率向量和响应向量,可以实现对滤波器的精确控制。
3. 频率抽取法频率抽取法是一种有效的FIR滤波器设计方法,能够实现对特定频带的信号进行滤波。
在Matlab中,我们可以使用firpm函数进行频率抽取法滤波器设计。
该函数的输入参数包括滤波器阶数、频率向量、增益向量和权重向量。
通过调整频率向量、增益向量和权重向量,可以实现对滤波器的灵活控制。
二、IIR滤波器的设计方法IIR滤波器全称为无限脉冲响应滤波器,其特点是具有非线性相位和多项式系数。
在Matlab中,常用的IIR滤波器设计方法有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。
1. 巴特沃斯滤波器巴特沃斯滤波器是一种最常用的IIR滤波器,其特点是具有最平滑的通带和最陡峭的阻带。
matlab 维纳滤波代码
![matlab 维纳滤波代码](https://img.taocdn.com/s3/m/4f98a69dcf2f0066f5335a8102d276a20029608e.png)
一、维纳滤波简介维纳滤波是一种经典的信号处理算法,主要用于图像去噪和恢复。
它基于最小均方误差准则,通过滤波器对输入信号进行处理,以减少噪声的影响并尽可能恢复原始信号的特征。
在 MATLAB 中,可以使用内置的函数或自行编写代码来实现维纳滤波。
二、维纳滤波的数学模型1. 维纳滤波的基本原理是利用频域上的滤波器对信号进行处理,其数学模型可以表示为:$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$其中,$G(u,v)$ 是观测到的带噪声的图像的频谱,$H(u,v)$ 是系统的频率响应,$F(u,v)$ 是原始图像的频谱,$N(u,v)$ 是添加到图像中的噪声的频谱。
2. 根据维纳滤波的原理,可以通过以下公式计算维纳滤波器 $W(u,v)$: $$W(u,v) =\frac{1}{H(u,v)}\frac{|H(u,v)|^2}{|H(u,v)|^2+\frac{S_N(u,v)}{S_F(u,v )}}$$其中,$S_N(u,v)$ 是噪声功率谱,$S_F(u,v)$ 是原始图像功率谱。
三、MATLAB 中的维纳滤波函数MATLAB 提供了丰富的信号处理工具箱,其中包括了维纳滤波函数,可以方便地对图像进行去噪和恢复操作。
1. 在 MATLAB 中使用维纳滤波可以通过以下函数实现:```matlabJ = wiener2(I,[m n],noise_var);```其中,I 是输入图像,[m n] 是局部窗口的大小,noise_var 是噪声的方差。
2. 除了 wiener2 函数外,MATLAB 还提供了 imnoise 函数用于向图像中添加指定类型的噪声,可以配合维纳滤波进行实验和比较。
四、自行编写维纳滤波代码除了使用 MATLAB 提供的函数外,我们还可以根据维纳滤波的数学原理自行编写代码来实现算法。
1. 我们需要读取原始图像并将其转换为频域表示:```matlabI = imread('original.png');F = fft2(double(I));F = fftshift(F);```2. 计算噪声功率谱和原始图像功率谱:```matlabN = abs(fftshift(F_noise)).^2;S_f = abs(F).^2;```3. 接下来,根据维纳滤波的公式计算滤波器:```matlabWiener = (1./H).*(abs(H).^2./(abs(H).^2+(N./S_f)));```4. 将滤波器应用到输入图像的频谱上,并进行逆变换得到恢复图像: ```matlabF_restored = F .* Wiener;I_restored = ifft2(ifftshift(F_restored));```五、维纳滤波的应用场景维纳滤波在数字图像处理领域有着广泛的应用,尤其适用于受到高斯噪声影响的图像去噪和恢复。
matlab的fir滤波器设计
![matlab的fir滤波器设计](https://img.taocdn.com/s3/m/45391cf5a48da0116c175f0e7cd184254b351b14.png)
matlab的fir滤波器设计FIR(Finite Impulse Response)滤波器是指响应有限长度序列输入的数字滤波器,它可以用于信号去噪、信号滤波和信号重构等领域。
MATLAB软件是目前应用广泛的数学软件工具箱,它可以实现数字信号处理、信号滤波和滤波器设计等功能。
下面我们来分步骤解析如何利用MATLAB完成FIR滤波器设计。
第一步,确定滤波器参数要设计FIR滤波器,需要明确设计的目的,例如信号去噪还是信号滤波。
同时,需要确定滤波器的参数,包括滤波器的采样率、通带边界、阻带边界等。
第二步,调用MATLAB工具箱并加载数据打开MATLAB软件,选择Digital Signal Processing Toolbox,调用fir1函数,该函数用于设计一般的低通、高通、带通和带阻FIR 滤波器。
加载需要滤波的数据,并将其存储在一个变量中。
第三步,进行滤波器设计在MATLAB命令行窗口中输入以下命令,来进行FIR滤波器的设计。
h = fir1(N, Wn, 'type');其中,N是滤波器的阶数,Wn是正规化的截止频率值,type是滤波器的类型,可以是低通、高通、带通和带阻滤波器。
例如,我们要设计一个30阶的低通滤波器,带通频带为0.3至0.7,采样率为1000Hz,输入以下命令:N = 30;Wn = [0.3 0.7];Btype = 'low';FIR_filter = fir1(N, Wn, Btype);第四步,使用FIR滤波器进行滤波使用filter函数,可以将设计好的FIR滤波器应用到加载的数据上,进行滤波操作。
Y_filtered = filter(FIR_filter, 1, X);其中,FIR_filter是设计好的FIR滤波器,X是加载的待滤波数据,Y_filtered是经过滤波器处理后的数据。
第五步,可视化输出结果通过绘制函数将滤波器的输入和输出信号进行可视化处理,观察滤波效果。
matlabfir参数获取
![matlabfir参数获取](https://img.taocdn.com/s3/m/a5efab32854769eae009581b6bd97f192279bf2a.png)
matlabfir参数获取概述在MATLAB中,fir函数是用于设计和分析数字滤波器的重要工具。
滤波器是信号处理中一种常用的工具,用于去除信号中的噪声或者选择感兴趣的频率成分。
fir函数可以根据给定的参数生成一个FIR(有限脉冲响应)滤波器。
FIR滤波器简介FIR滤波器是一种线性相位滤波器,其响应取决于滤波器的冲击响应或其频率响应。
与IIR滤波器不同,FIR滤波器具有稳定性和线性相位等优点,在许多应用中被广泛使用。
FIR滤波器的设计通常涉及到确定系数的过程。
设计FIR滤波器在MATLAB中,fir函数可以用于设计FIR滤波器,其语法如下:b = fir(N, F, W)其中,N是滤波器的阶数(即长度),F是滤波器的频率响应,W是权重向量。
参数说明1.阶数(N):阶数决定了滤波器的复杂程度和频率响应的形状。
较高的阶数通常意味着更多的滤波器系数和更精确的频率响应。
选择合适的阶数需要根据具体的应用需求和计算能力来进行权衡。
太高的阶数可能会导致计算量过大,而太低的阶数可能无法满足滤波要求。
2.频率响应(F):频率响应可以通过提供一个一维向量来指定。
该向量定义了所要设计的滤波器的幅度响应的频率点。
通常情况下,频率响应是一个0到1之间的一维向量。
3.权重(W):权重向量用于指定滤波器频率响应的不同频率点的相对重要性。
权重可以控制频率响应的衰减或增益。
FIR滤波器设计示例步骤1:确定滤波器参数首先,需要确定所要设计的FIR滤波器的阶数、频率响应和权重。
假设我们需要设计一个阶数为100的FIR低通滤波器,截止频率为0.2,希望在0到0.2的频率范围内达到最小的衰减。
阶数:N = 100 频率响应:F = [0 0.2] 权重:W = [1 1]步骤2:使用fir函数设计滤波器根据给定的参数,可以使用fir函数来设计滤波器。
b = fir(100, [0 0.2], [1 1]);步骤3:查看滤波器频率响应设计好滤波器后,我们可以使用freqz函数来查看其频率响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FIR维纳滤波器的Matlab仿真
1、问题描述 产生一个随机信号w(n),通过系统H(z)=1/(1-0.9/z)后,得到原始 信号s(n)。对原始信号s(n)添加高斯白噪声noise。设计一个FIR维纳 滤波器,从被干扰后的信号中尽可能恢复s(n)。
仿真结果及分析 仿真结果(信号长度N=256,阶数M=8)-->mse=0. 3215
仿真结果及分析 仿真结果(信号长度N=256,阶数M=8)-->mse=0. 3215
仿真结果及分析 仿真结果(信号长度N=512,阶数M=8)-->mse=0.3326
仿真结果及分析 仿真结果(信号长度N=512,阶数M=8)-->mse=0.3326
y(n) h(m) x(n m)
m
最优线性滤波器
h(n)后得到的 y (n) 尽量接近于s(n) ,因此称 我们希望 x(n)通过线性系统 ^ ^ y (n)为 s(n) 的估计值,用 s(n) 表示,即 y (n) s (n) 则维纳滤波器的输入—输出关系可用下面图表示。
பைடு நூலகம்
^ e(n)表 如果我们分别以s(n) 与 s(n)表示信号的真实值与估计值,而用 ^ 示他们之间的误差,即 e(n) s(n) s(n) 显然 e(n)可能是正值,也可能是负值,并且它是一个随机变量。因 此,用它的均方误差来表达误差是合理的,所谓均方误差最小即 它的平方的统计期望最小,即: (n) E[e2 (n)] min 采用最小均方误差准则作为最佳过滤准则的原因还在于它的理论 分析比较简单,不要求对概率的描述。
subplot(2,2,2) plot(noise); title('噪声信号'); xlabel('Time(n)'); ylabel('Amplitude'); %axis([0 N -5 5]);
FIR维纳滤波器的Matlab仿真
subplot(2,2,3) plot(out_s); title('维纳滤波后的信号'); %axis([0 N -3 3]);%用来给出x,y轴最小最大值来选择坐标系的取值范围 xlabel('Time(n)'); ylabel('Amplitude');
专业: 电路与系统 学号: 12011001052 姓名: 马园园 指导老师: 杨鉴
主要内容
最优线性滤波器
1.概述 2.维纳滤波器
3.维纳-霍夫方程的求解
FIR维纳滤波器的Matlab仿真
1.问题描述
2.Matlab代码实现
仿真结果及其分析
最优线性滤波器
1、概述 最优线性滤波器和预测器,这里的最优指的是均方误差 (mean square error,MSE)最小。最小均方误差引出了线性滤波 器理论。 在许多实际应用中,人们无法直接得到所需的有用信号,能 够得到的是退化了或失真了的有用信号。为了提取或回复有用的 原始信号,这就需要设计一种滤波器,对得到的信号进行滤波, 使它的输出尽可能逼近原始信号,成为最佳估计,这种滤波器就 称为最优滤波器。
最优线性滤波器
2、维纳滤波器 维纳(Wiener)是用来解决从噪声中提取信号的一种过滤( 或滤波)方法。维纳滤波器是最小均方误差准则在信号滤波、预 测中的具体应用。 维纳滤波器是一个线性时不变系统,通过该系统后,在最小 均方误差准则下给出信号s(n)的尽可能逼近。 一个线性系统,如果它的单位样本响应为h(n) ,当输入一个随 机信号 x(n) , x(n) s(n) v(n) v(n) 表示噪声,则输出为 y (n) s(n) 表示原始信号, 其中
最优线性滤波器
设滤波器冲激响应序列的长度为N ,冲激响应矢量为h [h(0)h(1)....h( N 1)]T 滤波器输入数据矢量为x(n) [ x(n) x(n 1)...x(n N 1)]T ^ 则滤波器的输出为 y(n) s(n) x T (n)h hT x(n) ,这样,标准维纳-霍夫程可 写成 P T h T R 或P Rh,其中P E[ x(n)s(n)] 是s(n)与 x(n) 的互相 关函数,它是一个 N维列矢量;R 是 x(n) 的自相关函数,是N 阶方 阵 R E[ x(n) x T (n)] 1 利用求逆矩阵的方法直接求解式, P T h T R P Rh 得 hopt R P
FIR维纳滤波器的Matlab仿真
2、代码仿真 %************基于最优FIR滤波器线性预测********************** clear; clc;
N=128;%N为原始信号的长度 %N=input('请输入信号长度: '); M=8;%M代表滤波器的阶数 %M=input('输入滤波器阶数 : ');
xx
别定义为
Rxs E[ x(n)s(n m)]
Rxx E[ x(n) x(n m)]
上式称为维纳滤波器的标准方程或维纳-霍夫(Wiener-Hopf)方程 。如果已知 Rxs (m)和 Rxx (m),那么解此方程即可求得维纳滤波器的冲 激响应。
最优线性滤波器
标准方程右端的求和范围,即i 的取值范围没有具体标明,实际 上有三种情况: (1)有限冲激响应(FIR)维纳滤波器,i 从0 到N-1 取得有限个整数 值; (2)非因果无限冲激响应(非因果IIR)维纳滤波器,i 从 到 取 所有整数值; (3)因果无限冲激响应(因果IIR)维纳滤波器,i 从0 到 取正整数 值。 上述三种情况下标准方程的解法不同,本文只描述FIR维纳滤 波器的求解。
FIR维纳滤波器的Matlab仿真
仿真结果分析:
1.维纳滤波的阶数越大,滤波后的信号更接近原始信号,但随之计 算量也增大。 2.保持滤波器阶数不变改变信号样本的长度(点数)可以发现滤波 的效果虽着信号样本的长度的增加而提高。(这是因为信号样本越 长信号的统计特征就越完整。)
subplot(2,2,4) plot(x); title('噪声干扰后的信号'); xlabel('Time(n)'); ylabel('Amplitude'); %axis([0 N -5 5]);
仿真结果及分析 仿真结果(信号长度N=256,阶数M=3)-->mse=0. 0.4045
仿真结果及分析 仿真结果(信号长度N=256,阶数M=3)-->mse=0. 0.4045
FIR维纳滤波器的Matlab仿真
% ******************画图****************** subplot(2,2,1) plot(xd); title('期望信号'); %axis([0 N -3 3]);%给出x,y轴最小最大值来选择坐标系的取值范围 xlabel('Time(n)'); ylabel('Amplitude');
最优线性滤波器
3.维纳-霍夫方程的求解 2 为了按 (n) E[e (n)] min式所示的最小均方误差准则来确定 (n) 对h( j ) 的导数等于零,即可得 维纳滤波器的冲激响应 ,令
Rxs (m) h(i) Rxx (m i), m i Rxs (m) x(n)的自相关函数,分 式中, 是s(n) 与x(n) 的互相关函数, 是 R (m)
FIR维纳滤波器的Matlab仿真
%***产生维纳滤波中x方向上观测信号与期望信号的互相关矩阵**** rxd=xcorr(x,xd); for i=1:M mrxd(i)=rxd(N-1+i); end hopt=inv(mrxx)*mrxd';%由维纳-霍夫方程得到滤波器最优解--FIR维 纳滤波器的冲激响应 out_s=filter(hopt,1,x);%滤波后的输出信号(预测信号) %out_s=conv(x,hopt);%滤波后的输出信号(预测信号) %*********求均方误差****************** fprintf('滤波后的信号相对原信号的统计均方误差:\n'); mse=mean((out_s-s).^2) %滤波后的信号相对原信号的统计均方误差
FIR维纳滤波器的Matlab仿真
%********产生一个原始信号*************** w=sqrt(0.20)*randn(N,1); A=[1 -0.9]; s=filter(1,A,w); %********************************************* noise=sqrt(1.5)*randn(N,1);%用randn函数产生正态分布伪随机数噪声 x=s+noise;%产生噪干扰后的原始信号 %*********产生维纳滤波中加噪信号的自相关矩阵********** rxx=xcorr(x); for i=1:M for j=1:M mrxx(i,j)=rxx(N-i+j); end end xd=s;%原始信号