2011年山东省泰安市中考数学试卷详细解析版
2011---2013年泰安市中考数学试卷解析(6)
2011---2013泰安市中考数学考点解析(6)一、考点:1.一次函数的图像与几何变换。
2.一次函数的图像与系数的关系。
3.二次函数的图像和性质。
4.二次函数图像上点的坐标特征。
5.待定系数法求二次函数的解析式。
6.二次函数的应用。
7.反比例函数与一次函数的交点问题。
8.二次函数的综合题。
二、泰安中考题:1.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.42.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.3.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<44.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.5.如图,抛物线y=x 2+bx+c 与y 轴交于点C (0,﹣4),与x 轴交于点A ,B ,且B 点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P 是AB 上的一动点,过点P 作PE ∥AC ,交BC 于E ,连接CP ,求△PCE 面积的最大值.(3)若点D 为OA 的中点,点M 是线段AC 上一点,且△OMD 为等腰三角形,求M 点的坐标.5.二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )6.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--7.二次函数2()y a x m n =++的图象如图,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限8.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>9.如图,一次函数y kx b =+的图象与坐标轴分别交于A ,B 两点,与反比例函数n y x =的图象在第二象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=2,OD=4,△AOB 的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当0x <时,0k kx b x+->的解集.10.如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线2y x bx c =++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB ?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.11..若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当1=x 时,y 的值为( )(A )5 (B )—3 (C )—13 (D )—2712.如图,一次函数b x k y +=1的图像经过)0,1(),2,0(B A -两点,与反比例函数xk y 2=的图像在第一象限内的交点为M ,若△OBM 的面积为2.(1)求一次函数和反比例函数的表达式; (2)在x 轴上是否存在点P ,使AM ⊥MP ?若存在,求出点P 的坐标;若不存在,说明理由。
t泰安市历届中考数学试题及答案
t泰安市历届中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 4答案:C4. 以下哪个表达式的结果不是整数?A. 3 × 4B. 5 ÷ 2C. 6 - 2D. 8 + 1答案:B5. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______或______。
答案:正数;07. 如果一个数的立方等于它本身,那么这个数是______、______或______。
答案:1;-1;08. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是______立方厘米。
答案:249. 一个数的倒数是1/2,那么这个数是______。
答案:210. 一个三角形的内角和是______度。
答案:180三、解答题(共30分)11. 已知一个等腰三角形的两个腰边长为5cm,底边长为6cm,求这个三角形的面积。
解答:首先,我们可以将等腰三角形分成两个直角三角形,每个直角三角形的两直角边分别为3cm和2.5cm(6cm的一半)。
根据勾股定理,我们可以求出高h:h² = 5² - 2.5² = 25 - 6.25 = 18.75h = √18.75 ≈ 4.33cm然后,根据三角形面积公式 S = (底× 高) / 2,我们可以求出面积:S = (6 × 4.33) / 2 ≈ 12.99平方厘米。
12. 一个圆的周长是18.84cm,求这个圆的半径。
解答:根据圆的周长公式C = 2πr,我们可以求出半径r:18.84 = 2πrr = 18.84 / (2π) ≈ 3cm。
2011年山东省泰安市中考数学试卷―解析版
2011年山东省泰安市中考数学试卷―解析版2011年山东省泰安市中考数学试卷―解析版一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分) 1、(2011•泰安)的倒数是() A、 B、 C、D、考点:倒数。
专题:计算题。
分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a• =1 (a≠0),就说a(a≠0)的倒数是.解答:解:的倒数是�,故选D.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2、(2011•泰安)下列运算正确的是() A、3a2+4a2=7a4 B、3a2�4a2=�a2 C、3a•4a2=12a2 D、考点:整式的除法;合并同类项;单项式乘单项式。
专题:计算题。
分析:根据单项式除单项式的法则、合并同类项以及整式的除法法则计算即可.解答:解:A、3a2+4a2=7a2,故本选项错误; B、3a2�4a2=�a2,故本选项正确; C、3a•4a2=12a3,故本选项错误; D、(3a2)2÷4a2= a2,故本选项错误;故选B.点评:本题主要考查多项式除以单项式运算、合并同类项以及整式的除法法则,牢记法则是关键. 3、(2011•泰安)下列图形:其中是中心对称图形的个数为() A、1 B、2 C、3 D、4 考点:中心对称图形。
专题:图表型。
分析:根据轴对称图形与中心对称图形的概念求解.解答:解:一图是轴对称图形,二图是中心对称图形,三图是轴对称图形,四图即是中心对称图形,也是周对称图形;所以,中心对称图形的个数为2.故选B.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 4、(2011•泰安)第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人.这个数据用科学记数法表示为()A、134×107人 B、13.4×108人 C、1.34×109人 D、1.34×1010人考点:科学记数法―表示较大的数。
泰安市2011年初中学生学业考试数学样题有答案
2011年泰安市初中学业考试 数学试题(样题)考生须知:1.本试卷分第Ⅰ卷和第 Ⅱ 卷两部分,其中第Ⅰ卷 4 页,60分;第Ⅱ卷6页,60分。
满分120分,考试时间120分钟。
2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
第Ⅰ卷(选择题 共60分)一、 选择题:本大题共20题,每小题3分,共60分.在每小题给出的代号为ABCD 四个选项中,只有一项是符合题目要求的. 1、-5的相反数是 A.5B.-5C.51D.51-2、由四舍五入法得到的近似数8.8×103,下列说法中正确的是A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字3、如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于A.30° B. 40°C. 60° D. 70°4、4的平方根是 A .2 B .2C .±2D .2±5、计算(-2a ²)·3a 的结果是A -6a ² B-6a ³ C12a ³ D6a ³6、下列几何体中,俯视图是三角形的几何体是AC BD E7、把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -8、若分式221-2b-3b b -的值为0,则b 的值为A. 1B. -1C.±1D. 29、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是A .2+10B .2+210C .12D .18 10、二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩11、不等式42-x ≤0的解集在数轴上表示为12、某县为发展教育事业,加强了对教育经费的投入,2008年投入3 000万元,预计2010年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=13、如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形① ② 3 410CDB DM NC AOA BCD 的面积为 A .33cm 2B .6 cm 2C .36cm 2D .12 cm 214、已知反比例函数y =1x ,下列结论不正确...的是 A .图象经过点(1,1) B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大15、如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为A .12B .22C .32D .116、某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大17、如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E , 则下列结论中不成立...的是 A.A D ∠=∠ B.CE DE = C.90ACB ∠=D.CE BD =21世纪教育网 18、有A ,B 两只不透明口袋,每只品袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是A .31 B .41 C .32 D .43 19、如图, 在平面直角坐标系中, 若△ABC 与△A 1B 1C 1关于E 点成中心对称, 则对称中心E 点的坐标是个数 平均 质量(g ) 质量的方差甲厂 50 150 2.6乙厂 50 150 3.1ED O CBAA .(3,-1) B.(0,0) C.(2,-1) D.(-1,3)20、二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是 A .ab <0 B .ac <0C .当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D .二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根[来源:21世纪教育网AOxy12 -1 -2 -3 -11234-4BCA 1C 1B 152xoy2011年泰安市初中学业考试 数学试题(样题) 第Ⅱ卷 (非选择题,共60分)注意事项:1、答题前请填写好密封线内的内容。
2011年泰安市数学中考模拟试题
2011年泰安市数学中考模拟试题时间:120分钟 满分:150一、选择题(本题共10小题,每题4分,共40分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内.)1.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克。
某地今年计划栽插这种超级水稻3000亩,预计该地今年收获这种超级杂交稻的总产量(用科学记数法表示)是( )A .2.5×106千克B . 2.46×106千克C .2.5×105千克D .2.46×105千克2.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )3.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:4 4.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是( )A . 120°B .80°C .60°D .150°5.在下列图形中,既是中心对称图形又是轴对称图形的是 ( )A .等腰三角形B .圆C .梯形D .平行四边形6.把分式方程12121=----xx x 的两边同时乘以(x-2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-27.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )A .21cmB .16cmC .7cmD .27cm(1) A B C DE D C B A8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )(A) (B) (C) (D)9.右图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )A.180万B.200万C.300万D.400万10.如图,ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12、BD=10、AB=m ,那么m的取什范围是A . 2<m <22B .1<m <11C .10<m <12D .5<m <6二、填空题(本题共有5小题,每题4分,共20分.请把结果直接填在题中的横线上.) 11.分解因式:a 3-a= 。
2011黄冈.淄博.泰安数学中考答案-推荐下载
=
1 100
x
602
41
+
99 100
x2
294 5
x 302 1065 ,表明 x=30 时,y 最大且为 1065,那么三年获利最大为 1065×3=3495
万元, 故五年获利最大值为 80+3495-50×2=3475 万元. ⑶有极大的 24.解:⑴b=1
6 号: 84 2 92 3 85 5 86.9 ; 10
∵88.1>86.9>86.4>84.6>84.2>80.8,
∴序号是 3,6 号的选手将被录用. 21.(本题满分 9 分) 解:(1)证明:连接 OE,则 OB=OE.
∵△ABC 是等边三角形, ∴∠ABC=∠C=60°.
∴△OBE 是等边三角形. D
∴∠OEB=∠C =60°.
∴OE∥AC .
∵EF⊥AC,
………3 分
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2011年山东省泰安市中考数学试题及答案
泰安市2009年高中段学校招生考试数学试题注意事项:1、 本试题分第1卷和第2卷两部分,第1卷3页为选择题,36分;第2卷8页为非选择题,84分;共120分,考试时间120分。
2、 答第1卷前务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束、试题和答题卡一并收回。
3、 第1卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的序号标号(ABCD )涂黑如有改动,必须先用橡皮擦干净,在涂改其他答案,不能答在试卷上。
第Ⅰ卷(选择题 共36分)一、选择题(本大题共12分,在每小题给出的四个选项中,只有一个是正确的,请把正确的答案选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分) 1、 下列各式,运算结果为负数的是(A ))3()2(---- (B ))3()2(-⨯- (C )2)2(-- (D )3)3(--2、 光的传播速度约为300000km/s ,太阳光照射到地球上大约需要500s ,则太阳到地球的距离用科学记数法可表示为 (A )km 71015⨯ (B )km 9105.1⨯(C )km 8105.1⨯ (D )km 81015⨯ 3、 抛物线1822-+-=x x y 的顶点坐标为(A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9)4、 如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为(A )30° (B )60°(C )30°或150° (D )60°或120° 5、 若的值为则2y-x 2,54,32==yx(A )53 (B )-2(C )553 (D )56 6、 如图,是一个工件的三视图,则此工件的全面积是(A )85πcm 2 (B )90πcm 2 (C )155πcm 2 (D )165πcm 27、 如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 的长是 (A )2 (B )3 (C )25(D )4 8、 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C )18%20160400160=-+x x (D )18%)201(160400400=+-+xx 9、 在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为 (A )km 3310 (B )km 335 (C )km 25 (D )km 3510、 某校为了了解七年级学生的身高情况(单位:cm ,精确到1cm ),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在 (A )第二组 (B )第三组 (C )第四组 (D )第五组11、 如图,在△ABC 中,AD 是BC 边的中线,∠ADC=30°,将△ADC 沿AD 折叠,使C 点落在C ’的位置,若BC=4,则BC ’的长为 (A )32 (B )22 (C )4 (D )3 12、 如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
2011——2019泰安市中考真题《反比例函数》汇编
2011——2019泰安市中考真题《反比例函数》汇编1、(2011•泰安)如图,一次函数y=k 1x+b 的图象经过A (0,﹣2),B (1,0)两点,与反比例函数的图象在第一象限内的交点为M ,若△OBM 的面积为2. (1)求一次函数和反比例函数的表达式;(2)在x 轴上是否存在点P ,使AM△MP ?若存在,求出点P 的坐标;若不存在,说明理由.2、(2012泰安)如图,一次函数y kx b =+的图象与坐标轴分别交于A ,B 两点,与反比例函数n y x=的图象在第二象限的交点为C ,CD △x 轴,垂足为D ,若OB=2,OD=4,△AOB 的面积为1. (1)求一次函数与反比例的解析式; (2)直接写出当0x <时,0kkx b x+->的解集.3、(2013泰安)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,﹣3),反比例函数y=的图象经过点C ,一次函数y=ax+b 的图象经过点C ,一次函数y=ax+b 的图象经过点A , (1)求反比例函数与一次函数的解析式;(2)求点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求P 点的坐标.4、(2014泰安)(8分)如图①,△OAB 中,A (0,2),B (4,0),将△AOB 向右平移m 个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数xk=y 的图象经过点A′,一次函数y=ax+b 的图象经过A′、B′两点.求反比例函数及一次函数的表达式; (2)若反比例函数xk=y 的图象经过点A′及A′B′的中点M ,求m 的值.5、(本小题满分8分) 一次函数y=kx+b 与反比例函数y=mx图象相交于A (-1,4),B (2,n )两点,直线AB 交x 轴于点D 。
(1)求一次函数与反比例函数的表达式;(2)过点B 作BC△y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S 。
山东省泰安市中考数学试卷含答案解析版
2017年山东省泰安市中考数学试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(3分)下列四个数:﹣3,﹣√3,﹣π,﹣1,其中最小的数是( ) A .﹣πB .﹣3C .﹣1D .﹣√32.(3分)下列运算正确的是( ) A .a 2?a 2=2a 2B .a 2+a 2=a 4C .(1+2a )2=1+2a+4a 2D .(﹣a+1)(a+1)=1﹣a 2 3.(3分)下列图案其中,中心对称图形是( ) A .①②B .②③C .②④D .③④4.(3分)“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”,将数据3万亿美元用科学记数法表示为( )A .3×1014美元B .3×1013美元C .3×1012美元D .3×1011美元5.(3分)化简(1﹣2x−1x 2)÷(1﹣1x 2)的结果为( ) A .x−1x+1 B .x+1x−1 C .x+1x D .x−1x6.(3分)下面四个几何体:其中,俯视图是四边形的几何体个数是( ) A .1B .2C .3D .47.(3分)一元二次方程x 2﹣6x ﹣6=0配方后化为( ) A .(x ﹣3)2=15 B .(x ﹣3)2=3 C .(x+3)2=15 D .(x+3)2=38.(3分)袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .129.(3分)不等式组{2x +9>6x +1x −k <1的解集为x <2,则k 的取值范围为( ) A .k >1B .k <1C .k ≥1D .k ≤110.(3分)某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( ) A .10000x ﹣10=14700(1+40%)x B .10000x +10=14700(1+40%)xC .10000(1−40%)x ﹣10=14700xD .10000(1−40%)x +10=14700x11.(3分)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A ,B ,C ,D 四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是( )A .本次抽样测试的学生人数是40B .在图1中,∠α的度数是126°C .该校九年级有学生500名,估计D 级的人数为80D .从被测学生中随机抽取一位,则这位学生的成绩是A 级的概率为12.(3分)如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2α B.2α C.90°+αD.90°﹣α13.(3分)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<014.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095C.965D.25315.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x﹣1 0 1 3y﹣3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有()A.1个B.2个C.3个 D.4个16.(3分)某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:金额/元5102050100人数4161596则他们捐款金额的中位数和平均数分别是()A.10,B.20,C.10,D.20,17.(3分)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD 所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20°B.35°C.40°D.55°18.(3分)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°19.(3分)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.420.(3分)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC 向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm2二、填空题(本大题共4小题,每小题3分,共12分)21.(3分)分式7x−2与x2−x的和为4,则x的值为.22.(3分)关于x的一元二次方程x2+(2k﹣1)x+(k2﹣1)=0无实数根,则k 的取值范围为.23.(3分)工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为.24.(3分)如图,∠BAC=30°,M为AC上一点,AM=2,点P是AB上的一动点,PQ⊥AC,垂足为点Q,则PM+PQ的最小值为.三、解答题(本大题共5小题,共48分)25.(8分)如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=12,OB=2√5,反比例函数y=kx的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.26.(8分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?27.(10分)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.28.(11分)如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=32x+32的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.29.(11分)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.2017年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(3分)(2017?泰安)下列四个数:﹣3,﹣√3,﹣π,﹣1,其中最小的数是()A.﹣πB.﹣3 C.﹣1 D.﹣√3【考点】2A:实数大小比较.【分析】将四个数从大到小排列,即可判断.【解答】解:∵﹣1>﹣√3>﹣3>﹣π,∴最小的数为﹣π,故选A.【点评】本题考查实数的大小比较,记住任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(3分)(2017?泰安)下列运算正确的是()A.a2?a2=2a2B.a2+a2=a4C.(1+2a)2=1+2a+4a2D.(﹣a+1)(a+1)=1﹣a2【考点】4F:平方差公式;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据整式的乘法、加法法则及完全平方公式和平方差公式逐一计算可得.【解答】解:A、a2?a2=a4,此选项错误;B、a2?a2=2a2,此选项错误;C、(1+2a)2=1+4a+4a2,此选项错误;D、(﹣a+1)(a+1)=1﹣a2,此选项正确;故选:D.【点评】本题主要考查同底数幂的乘法、整式的加法及完全平方公式和平方差公式,熟练掌握整式的运算法则是解题的关键.3.(3分)(2017?泰安)下列图案其中,中心对称图形是()A.①②B.②③C.②④D.③④【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:①不是中心对称图形;②不是中心对称图形;③是中心对称图形;④是中心对称图形.故选:D.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017?泰安)“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”,将数据3万亿美元用科学记数法表示为()A.3×1014美元B.3×1013美元C.3×1012美元D.3×1011美元【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:3万亿=3 0000 0000 0000=3×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.(3分)(2017?泰安)化简(1﹣2x−1x 2)÷(1﹣1x2)的结果为( )A .x−1x+1B .x+1x−1C .x+1xD .x−1x【考点】6C :分式的混合运算. 【专题】11 :计算题;513:分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【解答】解:原式=x 2−2x+1x 2÷x 2−1x 2=(x−1)2x 2?x 2(x+1)(x−1)=x−1x+1,故选A【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)(2017?泰安)下面四个几何体:其中,俯视图是四边形的几何体个数是( ) A .1B .2C .3D .4【考点】U1:简单几何体的三视图.【分析】根据俯视图是分别从物体上面看,所得到的图形进行解答即可. 【解答】解:俯视图是四边形的几何体有正方体和三棱柱, 故选:B .【点评】本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.(3分)(2017?泰安)一元二次方程x 2﹣6x ﹣6=0配方后化为( ) A .(x ﹣3)2=15 B .(x ﹣3)2=3 C .(x+3)2=15 D .(x+3)2=3【考点】A6:解一元二次方程﹣配方法.【专题】11 :计算题;521:一次方程(组)及应用. 【分析】方程移项配方后,利用平方根定义开方即可求出解. 【解答】解:方程整理得:x 2﹣6x=6, 配方得:x 2﹣6x+9=15,即(x ﹣3)2=15, 故选A【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2017?泰安)袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .12【考点】X6:列表法与树状图法. 【专题】11 :计算题.【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解. 【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5, 所以成的两位数是3的倍数的概率=516.故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率..9.(3分)(2017?泰安)不等式组{2x +9>6x +1x −k <1的解集为x <2,则k 的取值范围为( ) A .k >1B .k <1C .k ≥1D .k ≤1【考点】CB :解一元一次不等式组.【分析】求出每个不等式的解集,根据已知得出关于k 的不等式,求出不等式的解集即可.【解答】解:解不等式组{2x +9>6x +1x −k <1,得{x <2x <k +1. ∵不等式组{2x +9>6x +1x −k <1的解集为x <2,∴k+1≥2, 解得k ≥1. 故选:C .【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集和已知得出关于k 的不等式,难度适中.10.(3分)(2017?泰安)某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=14700(1+40%)xB .10000x +10=14700(1+40%)xC .10000(1−40%)x ﹣10=14700xD .10000(1−40%)x +10=14700x【考点】B6:由实际问题抽象出分式方程.【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可. 【解答】解:设第一批购进x 件衬衫,则所列方程为:10000x +10=14700(1+40%)x. 故选:B .【点评】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.11.(3分)(2017?泰安)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A ,B ,C ,D 四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是( )A .本次抽样测试的学生人数是40B .在图1中,∠α的度数是126°C .该校九年级有学生500名,估计D 级的人数为80D .从被测学生中随机抽取一位,则这位学生的成绩是A 级的概率为【考点】X4:概率公式;V5:用样本估计总体;VB :扇形统计图;VC :条形统计图.【分析】利用扇形统计图以及条形统计图分别分析得出总人数以及结合α的度数、利用样本估计总体即可.【解答】解:A 、本次抽样测试的学生人数是:12÷30%=40(人),正确,不合题意; B 、∵40−8−12−640×360°=126°,∠α的度数是126°,故此选项正确,不合题意;C、该校九年级有学生500名,估计D级的人数为:500×840=100(人),故此选项错误,符合题意;D、从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为:840=,正确,不合题意;故选:C.【点评】此题主要考查了概率公式以及利用样本估计总体、扇形统计图与条形统计图等知识,由图形获取正确信息是解题关键.12.(3分)(2017?泰安)如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2α B.2α C.90°+αD.90°﹣α【考点】M5:圆周角定理.【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC的度数.【解答】解:∵连接OC,∵△ABC内接于⊙O,∠A=α,∴∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB=180°−∠BOC2=90°﹣α.故选D.【点评】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.13.(3分)(2017?泰安)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<0【考点】F5:一次函数的性质.【分析】由一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交且函数值y随自变量x的增大而减小,可得出k﹣2<0、﹣m<0,解之即可得出结论.【解答】解:∵一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y 随自变量x的增大而减小,∴k﹣2<0,﹣m<0,∴k<2,m>0.故选A.【点评】本题考查了一次函数的性质,根据一次函数的性质找出k﹣2<0、﹣m <0是解题的关键.14.(3分)(2017?泰安)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME 交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095C.965D.253【考点】S9:相似三角形的判定与性质;KQ:勾股定理;LE:正方形的性质.【分析】先根据题意得出△ABM∽△MCG,故可得出CG的长,再求出DG的长,根据△MCG∽△EDG即可得出结论.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°. ∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG ,∠B=∠C=90°, ∴△ABM ∽△MCG ,∴AB MC =BM CG ,即127=5CG ,解得CG=3512, ∴DG=12﹣3512=10912.∵AE ∥BC ,∴∠E=CMG ,∠EDG=∠C , ∴△MCG ∽△EDG ,∴MC DE =CG DG ,即7DE=351210912,解得DE=1095. 故选B .【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.15.(3分)(2017?泰安)已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x ﹣1 0 1 3 y﹣3131下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx+c=0有一个根大于4,其中正确的结论有( )A .1个B .2个C .3个D .4个【考点】HA :抛物线与x 轴的交点;H3:二次函数的性质.【分析】根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x=0+32=32,再由图象中的数据可以得到当x=32取得最大值,从而可以得到函数的开口向下以及得到函数当x <32时,y 随x 的增大而增大,当x >32时,y 随x 的增大而减小,然后跟距x=0时,y=1,x=﹣1时,y=﹣3,可以得到方程ax 2+bx+c=0的两个根所在的大体位置,从而可以解答本题. 【解答】解:由表格可知,二次函数y=ax 2+bx+c 有最大值,当x=0+32=32时,取得最大值, ∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=32,故②错误,当x <32时,y 随x 的增大而增大,故③正确,方程ax 2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误, 故选B .【点评】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.16.(3分)(2017?泰安)某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:金额/元 5 10 20 50 100 人数4161596则他们捐款金额的中位数和平均数分别是( ) A .10,B .20,C .10,D .20,【考点】W4:中位数;VA :统计表;W2:加权平均数.【分析】根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数;根据平均数公式求出平均数即可. 【解答】解:共有50个数,∴中位数是第25、26个数的平均数, ∴中位数是(20+20)÷2=20;平均数=150(5×4+10×16+20×15+50×9+100×6)=;故选:D.【点评】此题考查了中位数与平均数公式;熟记平均数公式,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).17.(3分)(2017?泰安)如图,圆内接四边形ABCD的边AB过圆心O,过点C 的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20°B.35°C.40°D.55°【考点】MC:切线的性质;M6:圆内接四边形的性质.【分析】由圆内接四边形的性质求出∠ADC=180°﹣∠ABC=125°,由圆周角定理求出∠ACB=90°,得出∠BAC=35°,由弦切角定理得出∠MCA=∠ABC=55°,由三角形的外角性质得出∠DCM=∠ADC﹣∠AMC=35°,即可求出∠ACD的度数.【解答】解:∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,∵过点C的切线与边AD所在直线垂直于点M,∴∠MCA=∠ABC=55°,∠AMC=90°,∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC﹣∠AMC=35°,∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°;故选:A.【点评】本题考查了圆内接四边形的性质、圆周角定理、三角形的外角性质、弦切角定理等知识;熟练掌握圆内接四边形的性质和圆周角定理是解决问题的关键.18.(3分)(2017?泰安)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°【考点】R2:旋转的性质.【分析】根据题意确定旋转中心后即可确定旋转角的大小.【解答】解:如图:显然,旋转角为90°,故选C.【点评】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.19.(3分)(2017?泰安)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】LA:菱形的判定与性质;KG:线段垂直平分线的性质;L5:平行四边形的性质.【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点评】此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.20.(3分)(2017?泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s 的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm2【考点】H7:二次函数的最值.【分析】在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t ≤4),则PC=(6﹣t)cm,CQ=2tcm,利用分割图形求面积法可得出S四边形PABQ=t2﹣6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解.【解答】解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴AC=√AB2−BC2=6cm.设运动时间为t(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm,∴S四边形PABQ =S△ABC﹣S△CPQ=12AC?BC﹣12PC?CQ=12×6×8﹣12(6﹣t)×2t=t2﹣6t+24=(t﹣3)2+15,∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故选C.【点评】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法找出S四边形PABQ=t2﹣6t+24是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)21.(3分)(2017?泰安)分式7x−2与x2−x的和为4,则x的值为 3 .【考点】B3:解分式方程.【专题】17 :推理填空题.【分析】首先根据分式7x−2与x2−x的和为4,可得:7x−2+x2−x=4,然后根据解分式方程的方法,求出x 的值为多少即可.【解答】解:∵分式7x−2与x 2−x 的和为4, ∴7x−2+x 2−x=4, 去分母,可得:7﹣x=4x ﹣8解得:x=3经检验x=3是原方程的解,∴x 的值为3.故答案为:3.【点评】此题主要考查了解分式方程问题,要熟练掌握,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.22.(3分)(2017?泰安)关于x 的一元二次方程x 2+(2k ﹣1)x+(k 2﹣1)=0无实数根,则k 的取值范围为 k >54 . 【考点】AA :根的判别式.【分析】根据判别式的意义得到△=(2k ﹣1)2﹣4(k 2﹣1)<0,然后解不等式即可.【解答】解:根据题意得△=(2k ﹣1)2﹣4(k 2﹣1)<0,解得k >54. 故答案为k >54. 【点评】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.23.(3分)(2017?泰安)工人师傅用一张半径为24cm ,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为 2√119cm .【考点】MP :圆锥的计算.【分析】直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【解答】解:由题意可得圆锥的母线长为:24cm ,设圆锥底面圆的半径为:r,则2πr=150π×24180,解得:r=10,故这个圆锥的高为:√242−102=2√119(cm).故答案为:2√119(cm).【点评】此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.24.(3分)(2017?泰安)如图,∠BAC=30°,M为AC上一点,AM=2,点P是AB 上的一动点,PQ⊥AC,垂足为点Q,则PM+PQ的最小值为√3.【考点】PA:轴对称﹣最短路线问题.【分析】本题作点M关于AB的对称点N,根据轴对称性找出点P的位置,如图,根据三角函数求出MN,∠N,再根据三角函数求出结论.【解答】解:作点M关于AB的对称点N,过N作NQ⊥AC于Q交AB于P,则NQ的长即为PM+PQ的最小值,连接MN交AB于D,则MD⊥AB,DM=DN,∵∠NPB=∠APQ,∴∠N=∠BAC=30°,∵∠BAC=30°,AM=2,∴MD=12AM=1,∴MN=2,∴NQ=MN?cos∠N=2×√32=√3,故答案为:√3.【点评】本题考查含30°直角三角形的性质、轴对称﹣﹣最短路线问题及三角函数,正确确定P点的位置是解题的关键.三、解答题(本大题共5小题,共48分)25.(8分)(2017?泰安)如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=12,OB=2√5,反比例函数y=kx的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征;T7:解直角三角形.【分析】(1)过点B作BD⊥OA于点D,设BD=a,通过解直角△OBD得到OD=2BD.然后利用勾股定理列出关于a的方程并解答即可;(2)欲求直线AM的表达式,只需推知点A、M的坐标即可.通过解直角△AOB 求得OA=5,则A(5,0).根据对称的性质得到:OM=2OB,结合B(4,2)求得M (8,4).然后由待定系数法求一次函数解析式即可.【解答】解:(1)过点B作BD⊥OA于点D,设BD=a ,∵tan ∠AOB=BD OD =12, ∴OD=2BD .∵∠ODB=90°,OB=2√5,∴a 2+(2a )2=(2√5)2,解得a=±2(舍去﹣2),∴a=2.∴OD=4,∴B (4,2),∴k=4×2=8,∴反比例函数表达式为:y=8k; (2)∵tan ∠AOB=12,OB=2√5, ∴AB=12OB=√5, ∴OA=√OB 2+AB 2=√(2√5)2+(√5)2=5,∴A (5,0).又△AMB 与△AOB 关于直线AB 对称,B (4,2),∴OM=2OB ,∴M (8,4).把点M 、A 的坐标分别代入y=mx+n ,得{5m +n =08m +n =4, 解得{m =43n =−203, 故一次函数表达式为:y=43x ﹣203.【点评】本题考查了解直角三角形,待定系数法求一次函数解析式,反比例函数图象上点的坐标特征,解题时,注意“数形结合”数学思想的应用.26.(8分)(2017?泰安)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得:{200x +200y =8000y −x =20, 解得:{x =10y =30,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥,答:大樱桃的售价最少应为元/千克.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.27.(10分)(2017?泰安)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.【考点】S9:相似三角形的判定与性质.【分析】(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.【解答】(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∴∠BDC=∠PDC;(2)解:过点C 作CM ⊥PD 于点M ,∵∠BDC=∠PDC ,∴CE=CM ,∵∠CMP=∠ADP=90°,∠P=∠P ,∴△CPM ∽△APD , ∴CM AD =PC PA , 设CM=CE=x ,∵CE :CP=2:3,∴PC=32x , ∵AB=AD=AC=1,∴x 1=32x 32x+1, 解得:x=13, 故AE=1﹣13=23.【点评】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出△CPM ∽△APD 是解题关键.28.(11分)(2017?泰安)如图,是将抛物线y=﹣x 2平移后得到的抛物线,其对称轴为x=1,与x 轴的一个交点为A (﹣1,0),另一个交点为B ,与y 轴的交点为C .(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=32x+32的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【考点】HF:二次函数综合题.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=32x+32,即可求解.【解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,。
2011年中考数学考试试题答案
1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。
山东省泰安市中考数学试卷含答案解析版
2017年山东省泰安市中考数学试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(3分)下列四个数:﹣3,﹣√3,﹣π,﹣1,其中最小的数是( ) A .﹣π B .﹣3 C .﹣1 D .﹣√3 2.(3分)下列运算正确的是( ) A .a 2?a 2=2a 2B .a 2+a 2=a 4C .(1+2a )2=1+2a +4a 2D .(﹣a +1)(a +1)=1﹣a 2 3.(3分)下列图案其中,中心对称图形是( ) A .①②B .②③C .②④D .③④4.(3分)“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”,将数据3万亿美元用科学记数法表示为( )A .3×1014美元B .3×1013美元C .3×1012美元D .3×1011美元5.(3分)化简(1﹣2x−1x )÷(1﹣1x)的结果为( )A .x−1x+1B .x+1x−1C .x+1xD .x−1x6.(3分)下面四个几何体:其中,俯视图是四边形的几何体个数是( ) A .1B .2C .3D .47.(3分)一元二次方程x 2﹣6x ﹣6=0配方后化为( ) A .(x ﹣3)2=15B .(x ﹣3)2=3C .(x +3)2=15D .(x +3)2=38.(3分)袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516 C .716 D .129.(3分)不等式组{2x +9>6x +1x −k <1的解集为x <2,则k 的取值范围为( )A .k >1B .k <1C .k ≥1D .k ≤110.(3分)某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.10000x﹣10=14700(1+40%)xB.10000x+10=14700(1+40%)xC.10000(1−40%)x﹣10=14700xD.10000(1−40%)x+10=14700x11.(3分)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A,B,C,D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是()A.本次抽样测试的学生人数是40B.在图1中,∠α的度数是126°C.该校九年级有学生500名,估计D级的人数为80D.从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为12.(3分)如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α13.(3分)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<014.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095C.965D.25315.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x﹣1013y﹣3131下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y 随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有()A .1个B .2个C .3个D .4个16.(3分)某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:金额/元 5 10 20 50 100 人数4161596则他们捐款金额的中位数和平均数分别是( ) A .10,B .20,C .10,D .20,17.(3分)如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若∠ABC=55°,则∠ACD 等于( ) A .20° B .35° C .40° D .55°18.(3分)如图,在正方形网格中,线段A′B′是线段AB 绕某点逆时针旋转角α得到的,点A′与A 对应,则角α的大小为( )A .30°B .60°C .90°D .120°19.(3分)如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC=EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论: ①BE 平分∠CBF ;②CF 平分∠DCB ;③BC=FB ;④PF=PC ,其中正确结论的个数为( ) A .1B .2C .3D .420.(3分)如图,在△ABC 中,∠C=90°,AB=10cm ,BC=8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为( ) A .19cm 2 B .16cm 2 C .15cm 2 D .12cm 2二、填空题(本大题共4小题,每小题3分,共12分)21.(3分)分式7x−2与x 2−x的和为4,则x 的值为 .22.(3分)关于x 的一元二次方程x 2+(2k ﹣1)x +(k 2﹣1)=0无实数根,则k 的取值范围为 .23.(3分)工人师傅用一张半径为24cm ,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为 .24.(3分)如图,∠BAC=30°,M 为AC 上一点,AM=2,点P 是AB 上的一动点,PQ ⊥AC ,垂足为点Q ,则PM +PQ 的最小值为 . 三、解答题(本大题共5小题,共48分) 25.(8分)如图,在平面直角坐标系中,Rt △AOB的斜边OA 在x 轴的正半轴上,∠OBA=90°,且tan ∠AOB=12,OB=2√5,反比例函数y=kx的图象经过点B .(1)求反比例函数的表达式;(2)若△AMB 与△AOB 关于直线AB 对称,一次函数y=mx +n 的图象过点M 、A ,求一次函数的表达式.26.(8分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?27.(10分)如图,四边形ABCD 中,AB=AC=AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD . (1)证明:∠BDC=∠PDC ;(2)若AC 与BD 相交于点E ,AB=1,CE :CP=2:3,求AE 的长. 28.(11分)如图,是将抛物线y=﹣x 2平移后得到的抛物线,其对称轴为x=1,与x 轴的一个交点为A (﹣1,0),另一个交点为B ,与y 轴的交点为C . (1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC ⊥NC ,求点N 的坐标;(3)点P 是抛物线上一点,点Q 是一次函数y=32x +32的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.29.(11分)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F 是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.2017年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(3分)(2017?泰安)下列四个数:﹣3,﹣√3,﹣π,﹣1,其中最小的数是()A.﹣πB.﹣3 C.﹣1 D.﹣√3【考点】2A:实数大小比较.【分析】将四个数从大到小排列,即可判断.【解答】解:∵﹣1>﹣√3>﹣3>﹣π,∴最小的数为﹣π,故选A.【点评】本题考查实数的大小比较,记住任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(3分)(2017?泰安)下列运算正确的是()A.a2?a2=2a2B.a2+a2=a4C.(1+2a)2=1+2a+4a2 D.(﹣a+1)(a+1)=1﹣a2【考点】4F:平方差公式;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据整式的乘法、加法法则及完全平方公式和平方差公式逐一计算可得.【解答】解:A、a2?a2=a4,此选项错误;B、a2?a2=2a2,此选项错误;C、(1+2a)2=1+4a+4a2,此选项错误;D、(﹣a+1)(a+1)=1﹣a2,此选项正确;故选:D.【点评】本题主要考查同底数幂的乘法、整式的加法及完全平方公式和平方差公式,熟练掌握整式的运算法则是解题的关键.3.(3分)(2017?泰安)下列图案其中,中心对称图形是()A.①②B.②③C.②④D.③④【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:①不是中心对称图形;②不是中心对称图形;③是中心对称图形;④是中心对称图形.故选:D.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017?泰安)“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”,将数据3万亿美元用科学记数法表示为()A.3×1014美元B.3×1013美元C.3×1012美元D.3×1011美元【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3万亿=3 0000 0000 0000=3×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017?泰安)化简(1﹣2x−1x)÷(1﹣1x)的结果为()A.x−1x+1B.x+1x−1C.x+1xD.x−1x【考点】6C:分式的混合运算.【专题】11 :计算题;513:分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=x2−2x+1x2÷x2−1x2=(x−1)2x2?x2(x+1)(x−1)=x−1x+1,故选A【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)(2017?泰安)下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.4【考点】U1:简单几何体的三视图.【分析】根据俯视图是分别从物体上面看,所得到的图形进行解答即可.【解答】解:俯视图是四边形的几何体有正方体和三棱柱,故选:B.【点评】本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.(3分)(2017?泰安)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3【考点】A6:解一元二次方程﹣配方法.【专题】11 :计算题;521:一次方程(组)及应用.【分析】方程移项配方后,利用平方根定义开方即可求出解.【解答】解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选A【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2017?泰安)袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为()A.14B.516C.716D.12【考点】X6:列表法与树状图法. 【专题】11 :计算题.【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解. 【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5, 所以成的两位数是3的倍数的概率=516.故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率..9.(3分)(2017?泰安)不等式组{2x +9>6x +1x −k <1的解集为x <2,则k 的取值范围为( ) A .k >1B .k <1C .k ≥1D .k ≤1【考点】CB :解一元一次不等式组.【分析】求出每个不等式的解集,根据已知得出关于k 的不等式,求出不等式的解集即可.【解答】解:解不等式组{2x +9>6x +1x −k <1,得{x <2x <k +1.∵不等式组{2x +9>6x +1x −k <1的解集为x <2,∴k +1≥2, 解得k ≥1. 故选:C .【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集和已知得出关于k 的不等式,难度适中.10.(3分)(2017?泰安)某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=14700(1+40%)x B .10000x +10=14700(1+40%)x C .10000(1−40%)x ﹣10=14700x D .10000(1−40%)x +10=14700x【考点】B6:由实际问题抽象出分式方程.【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可. 【解答】解:设第一批购进x 件衬衫,则所列方程为: 10000x +10=14700(1+40%)x . 故选:B .【点评】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键. 11.(3分)(2017?泰安)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A ,B ,C ,D 四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是( )A .本次抽样测试的学生人数是40B .在图1中,∠α的度数是126°C .该校九年级有学生500名,估计D 级的人数为80D .从被测学生中随机抽取一位,则这位学生的成绩是A 级的概率为【考点】X4:概率公式;V5:用样本估计总体;VB :扇形统计图;VC :条形统计图. 【分析】利用扇形统计图以及条形统计图分别分析得出总人数以及结合α的度数、利用样本估计总体即可.【解答】解:A 、本次抽样测试的学生人数是:12÷30%=40(人),正确,不合题意;B 、∵40−8−12−640×360°=126°,∠α的度数是126°,故此选项正确,不合题意;C 、该校九年级有学生500名,估计D 级的人数为:500×840=100(人),故此选项错误,符合题意;D 、从被测学生中随机抽取一位,则这位学生的成绩是A 级的概率为:840=,正确,不合题意; 故选:C .【点评】此题主要考查了概率公式以及利用样本估计总体、扇形统计图与条形统计图等知识,由图形获取正确信息是解题关键.12.(3分)(2017?泰安)如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α【考点】M5:圆周角定理.【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC的度数.【解答】解:∵连接OC,∵△ABC内接于⊙O,∠A=α,∴∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB=180°−∠BOC2=90°﹣α.故选D.【点评】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.13.(3分)(2017?泰安)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<0【考点】F5:一次函数的性质.【分析】由一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交且函数值y随自变量x 的增大而减小,可得出k﹣2<0、﹣m<0,解之即可得出结论.【解答】解:∵一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,∴k﹣2<0,﹣m<0,∴k<2,m>0.故选A.【点评】本题考查了一次函数的性质,根据一次函数的性质找出k﹣2<0、﹣m<0是解题的关键.14.(3分)(2017?泰安)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME 交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095C.965D.253【考点】S9:相似三角形的判定与性质;KQ:勾股定理;LE:正方形的性质.【分析】先根据题意得出△ABM ∽△MCG ,故可得出CG 的长,再求出DG 的长,根据△MCG ∽△EDG 即可得出结论.【解答】解:∵四边形ABCD 是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME ⊥AM ,∴∠AME=90°,∴∠AMB +∠CMG=90°.∵∠AMB +∠BAM=90°,∴∠BAM=∠CMG ,∠B=∠C=90°,∴△ABM ∽△MCG ,∴AB MC =BM CG ,即127=5CG ,解得CG=3512, ∴DG=12﹣3512=10912. ∵AE ∥BC ,∴∠E=CMG ,∠EDG=∠C ,∴△MCG ∽△EDG ,∴MC DE =CG DG ,即7DE =351210912,解得DE=1095. 故选B .【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.15.(3分)(2017?泰安)已知二次函数y=ax 2+bx +c 的y 与x 的部分对应值如下表: x﹣1 0 1 3 y ﹣3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c=0有一个根大于4,其中正确的结论有( )A .1个B .2个C .3个D .4个【考点】HA :抛物线与x 轴的交点;H3:二次函数的性质.【分析】根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x=0+32=32,再由图象中的数据可以得到当x=32取得最大值,从而可以得到函数的开口向下以及得到函数当x <32时,y 随x 的增大而增大,当x >32时,y 随x 的增大而减小,然后跟距x=0时,y=1,x=﹣1时,y=﹣3,可以得到方程ax 2+bx +c=0的两个根所在的大体位置,从而可以解答本题.【解答】解:由表格可知,二次函数y=ax 2+bx +c 有最大值,当x=0+32=32时,取得最大值, ∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=32,故②错误, 当x <32时,y 随x 的增大而增大,故③正确, 方程ax 2+bx +c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误,故选B .【点评】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.16.(3分)(2017?泰安)某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:金额/元5 10 20 50 100 人数 4 16 15 9 6则他们捐款金额的中位数和平均数分别是( )A .10,B .20,C .10,D .20,【考点】W4:中位数;VA :统计表;W2:加权平均数.【分析】根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数;根据平均数公式求出平均数即可.【解答】解:共有50个数,∴中位数是第25、26个数的平均数,∴中位数是(20+20)÷2=20;平均数=150(5×4+10×16+20×15+50×9+100×6)=; 故选:D .【点评】此题考查了中位数与平均数公式;熟记平均数公式,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).17.(3分)(2017?泰安)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20°B.35°C.40°D.55°【考点】MC:切线的性质;M6:圆内接四边形的性质.【分析】由圆内接四边形的性质求出∠ADC=180°﹣∠ABC=125°,由圆周角定理求出∠ACB=90°,得出∠BAC=35°,由弦切角定理得出∠MCA=∠ABC=55°,由三角形的外角性质得出∠DCM=∠ADC﹣∠AMC=35°,即可求出∠ACD的度数.【解答】解:∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,∵过点C的切线与边AD所在直线垂直于点M,∴∠MCA=∠ABC=55°,∠AMC=90°,∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC﹣∠AMC=35°,∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°;故选:A.【点评】本题考查了圆内接四边形的性质、圆周角定理、三角形的外角性质、弦切角定理等知识;熟练掌握圆内接四边形的性质和圆周角定理是解决问题的关键.18.(3分)(2017?泰安)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°【考点】R2:旋转的性质.【分析】根据题意确定旋转中心后即可确定旋转角的大小.【解答】解:如图:显然,旋转角为90°,故选C.【点评】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.19.(3分)(2017?泰安)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】LA:菱形的判定与性质;KG:线段垂直平分线的性质;L5:平行四边形的性质.【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点评】此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.20.(3分)(2017?泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm2【考点】H7:二次函数的最值.【分析】在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm,利用分割图形求面积法可得出S四边形PABQ=t2﹣6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解.【解答】解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴AC=√AB2−BC2=6cm.设运动时间为t(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm,∴S四边形PABQ =S△ABC﹣S△CPQ=12AC?BC﹣12PC?CQ=12×6×8﹣12(6﹣t)×2t=t2﹣6t+24=(t﹣3)2+15,∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故选C.【点评】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法找出S四边形PABQ=t2﹣6t+24是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)21.(3分)(2017?泰安)分式7x−2与x2−x的和为4,则x的值为3.【考点】B3:解分式方程.【专题】17 :推理填空题.【分析】首先根据分式7x−2与x2−x的和为4,可得:7x−2+x2−x=4,然后根据解分式方程的方法,求出x的值为多少即可.【解答】解:∵分式7x−2与x2−x的和为4,∴7x−2+x2−x=4,去分母,可得:7﹣x=4x﹣8解得:x=3经检验x=3是原方程的解,∴x的值为3.故答案为:3.【点评】此题主要考查了解分式方程问题,要熟练掌握,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.22.(3分)(2017?泰安)关于x的一元二次方程x2+(2k﹣1)x+(k2﹣1)=0无实数根,则k的取值范围为k>54.【考点】AA:根的判别式.【分析】根据判别式的意义得到△=(2k﹣1)2﹣4(k2﹣1)<0,然后解不等式即可.【解答】解:根据题意得△=(2k﹣1)2﹣4(k2﹣1)<0,解得k>5 4.故答案为k>5 4.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.23.(3分)(2017?泰安)工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为2√119cm.【考点】MP:圆锥的计算.【分析】直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【解答】解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2πr=150π×24180,解得:r=10,故这个圆锥的高为:√242−102=2√119(cm).故答案为:2√119(cm).【点评】此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.24.(3分)(2017?泰安)如图,∠BAC=30°,M为AC上一点,AM=2,点P是AB上的一动点,PQ⊥AC,垂足为点Q,则PM+PQ的最小值为√3.【考点】PA :轴对称﹣最短路线问题.【分析】本题作点M 关于AB 的对称点N ,根据轴对称性找出点P 的位置,如图,根据三角函数求出MN ,∠N ,再根据三角函数求出结论.【解答】解:作点M 关于AB 的对称点N ,过N 作NQ ⊥AC 于Q 交AB 于P , 则NQ 的长即为PM +PQ 的最小值,连接MN 交AB 于D ,则MD ⊥AB ,DM=DN ,∵∠NPB=∠APQ ,∴∠N=∠BAC=30°,∵∠BAC=30°,AM=2,∴MD=12AM=1, ∴MN=2,∴NQ=MN?cos ∠N=2×√32=√3, 故答案为:√3.【点评】本题考查含30°直角三角形的性质、轴对称﹣﹣最短路线问题及三角函数,正确确定P 点的位置是解题的关键.三、解答题(本大题共5小题,共48分)25.(8分)(2017?泰安)如图,在平面直角坐标系中,Rt △AOB 的斜边OA 在x 轴的正半轴上,∠OBA=90°,且tan ∠AOB=12,OB=2√5,反比例函数y=k x的图象经过点B . (1)求反比例函数的表达式;(2)若△AMB 与△AOB 关于直线AB 对称,一次函数y=mx +n 的图象过点M 、A ,求一次函数的表达式.【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征;T7:解直角三角形.【分析】(1)过点B 作BD ⊥OA 于点D ,设BD=a ,通过解直角△OBD 得到OD=2BD .然后利用勾股定理列出关于a 的方程并解答即可;(2)欲求直线AM 的表达式,只需推知点A 、M 的坐标即可.通过解直角△AOB 求得OA=5,则A (5,0).根据对称的性质得到:OM=2OB ,结合B (4,2)求得M (8,4).然后由待定系数法求一次函数解析式即可.【解答】解:(1)过点B 作BD ⊥OA 于点D ,设BD=a ,∵tan ∠AOB=BD OD =12, ∴OD=2BD .∵∠ODB=90°,OB=2√5,∴a 2+(2a )2=(2√5)2,解得a=±2(舍去﹣2),∴a=2.∴OD=4,∴B (4,2),∴k=4×2=8,∴反比例函数表达式为:y=8k; (2)∵tan ∠AOB=12,OB=2√5, ∴AB=12OB=√5, ∴OA=√OB 2+AB 2=√(2√5)2+(√5)2=5,∴A (5,0).又△AMB 与△AOB 关于直线AB 对称,B (4,2),∴OM=2OB ,∴M (8,4).把点M 、A 的坐标分别代入y=mx +n ,得{5m +n =08m +n =4, 解得{m =43n =−203, 故一次函数表达式为:y=43x ﹣203. 【点评】本题考查了解直角三角形,待定系数法求一次函数解析式,反比例函数图象上点的坐标特征,解题时,注意“数形结合”数学思想的应用.26.(8分)(2017?泰安)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得:{200x +200y =8000y −x =20, 解得:{x =10y =30, 小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a 元/千克,(1﹣20%)×200×16+200a ﹣8000≥3200×90%,解得:a ≥,答:大樱桃的售价最少应为元/千克.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.27.(10分)(2017?泰安)如图,四边形ABCD 中,AB=AC=AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD .(1)证明:∠BDC=∠PDC ;(2)若AC 与BD 相交于点E ,AB=1,CE :CP=2:3,求AE 的长.【考点】S9:相似三角形的判定与性质.【分析】(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC ;(2)首先过点C 作CM ⊥PD 于点M ,进而得出△CPM ∽△APD ,求出EC 的长即可得出答案.【解答】(1)证明:∵AB=AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD +∠BDC=90°,∵AC=AD ,∴∠ACD=∠ADC ,∴∠ADC +∠BDC=90°,∴∠BDC=∠PDC ;(2)解:过点C 作CM ⊥PD 于点M ,∵∠BDC=∠PDC ,∴CE=CM ,∵∠CMP=∠ADP=90°,∠P=∠P ,∴△CPM ∽△APD ,∴CM AD =PC PA, 设CM=CE=x ,∵CE :CP=2:3,∴PC=32x , ∵AB=AD=AC=1,∴x 1=32x 32x+1, 解得:x=13, 故AE=1﹣13=23. 【点评】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出△CPM ∽△APD 是解题关键.28.(11分)(2017?泰安)如图,是将抛物线y=﹣x 2平移后得到的抛物线,其对称轴为x=1,与x 轴的一个交点为A (﹣1,0),另一个交点为B ,与y 轴的交点为C .(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=32x+32的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【考点】HF:二次函数综合题.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=32x+32,即可求解.【解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,。
山东省十三地市2011年中考数学试卷汇编(共8份有详解)
2011年烟台市初中学生学业考试数 学 试 题说明:1.本试题分为Ⅰ卷和Ⅱ卷两部分,第Ⅰ卷为选择题,第Ⅱ卷为非选择题.考试时间120分钟,满分150分.2.答题前将密封线内的项目填写清楚.3.考试过程中允许考生进行剪、拼、折叠等实验.第Ⅰ卷注意事项:请考生将自己的姓名、准考证号、考试科目涂写在答题卡上.每小题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑,如要改动,必须用橡皮擦干净,再选涂其它答案.一、选择题(本题共12个小题,每小题4分,共48分)每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的......... 1. (2011山东烟台,1,4分) (-2)0的相反数等于( )A.1B.-1C.2D.-2【答案】B【思路分析】(-2)0=1,1的相反数是-1,故选B.【方法规律】此题考查实数的基础知识. 任何非零数的零次幂为1;互为相反数两数符号相反,绝对值相同.【易错点分析】对零次幂的意义把握不牢,可致错. 【关键词】实数:零次幂,相反数 【难度】★☆☆☆☆ 【题型】常规题2. (2011山东烟台,2,4分) 从不同方向看一只茶壶,你认为是俯视效果图的是( )【答案】A【思路分析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.AB CD【方法规律】此题考查三视图的判断. 试题选材生活,给试卷平添亮点,具有一定的吸引力.解此类题需具有将立体图形与平面图形相互转化的能力. 画物体的三视图时,应遵循这样的画图规则:“主、俯两图长对正,主、左两图高平齐,左、俯两图宽相等”.另外要注意看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.【易错点分析】易忽略应有的轮廓线.【关键词】三视图【难度】★☆☆☆☆【题型】常规题,新题3.(2011山东烟台,3,4分)下列计算正确的是()A.a2+a3=a5B. a6÷a3=a2C. 4x2-3x2=1D.(-2x2y)3=-8 x6y3【答案】D【思路分析】A不能合并;B结果应为a3;C 结果应为x2;D正确. 故选D【方法规律】此题考查整式运算的基础知识,需全面掌握合并同类项、幂的运算等整式运算的基础知识.【易错点分析】A、B、C三个选项都有可能误选.【关键词】整式运算:合并同类项,幂的运算性质.【难度】★☆☆☆☆【题型】常规题4. (2011山东烟台,4,4分)不等式4-3x≥2x-6的非负整数解有()A.1 个B. 2 个C. 3个D. 4个【答案】C【思路分析】解不等式得x≤2,其非负整数解为0,1,2,故选C.【方法规律】此题考查一元一次不等式的解法及特殊解的判断. 需会解一元一次不等式,会判断其特殊解.【易错点分析】易忽略0,误选B.【关键词】一元一次不等式解法,特殊解【难度】★☆☆☆☆【题型】常规题5. (2011山东烟台,5,4分)如果2(21)12a a-=-,则()A.a<12B. a≤12C. a>12D. a≥12【答案】B【思路分析】因为二次根式具有非负性,所以1-2a≥0,解得a≤12,故选B.【方法规律】此题考查二次根式性质及其应用,同时考查不等式的解法. 当a≥0时,2a=a;当a<0时,2a=-a.此题可直接利用非负性列不等式求解. 具有非负思想是解此类题的关键.【易错点分析】对知识掌握不灵活,错列不等式,误选B.【关键词】二次根式的非负性【难度】★★☆☆☆【题型】常规题,易错题6. (2011山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点. 已知两底差是6,两腰和是12,则△EFG 的周长是( )A.8B.9C.10D.12【答案】B【思路分析】连BF 与DC 相交,易证EF 等于两底差的一半;由三角形中位线定理,可得EG +FG 等于两腰和的一半. 这样可得△EFG 的周长是9,故选B.【方法规律】此题考查三角形中位线定理,及梯形知识. 灵活添加辅助线,得到“两对角线中点的连线是两底差的一半”是解此题关键,另外具有整体思想,也是解此类题所必不可少的思想方法.【易错点分析】因不会解致错. 【关键词】三角形中位线,梯形 【难度】★★☆☆☆ 【题型】常规题7. (2011山东烟台,7,4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A2m B.3m C.6m D.9m【答案】C 【思路分析】此题可转化为求三角形内切圆的半径. 由勾股定理可得斜边为10,设内切圆半径为r ,则利用面积法可得:12r(6+8+10)=12×6×8,解得r=2. 从而管道为2×3=6(m ),故选C.O(第7题图)A B CDEFG(第6题图)【方法规律】命题者独具匠心,试题设计新颖别致,为试卷又一亮点. 解此题需具有一定的数学功底,能够进行数学建模,并巧用面积法解题,或利用切线长定理解决.【易错点分析】因不会致错.【关键词】三角形内切圆,勾股定理【难度】★★☆☆☆【题型】新题8. (2011山东烟台,8,4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,,则这组数据的中位数和极差分别是()A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.2【答案】D【思路分析】将数据按顺序排列:1.0,1.3,1.6,1.8,2.0,2.2,易判断中位数为1.6 1.82=1.7;极差为2.2-1.0=1.2. 故选D.【方法规律】此题考查统计量的计算. 掌握中位数、极差的概念即可获解.【易错点分析】易忽略将数据按大小顺序排列,误选A.【关键词】统计量:中位数,极差【难度】★☆☆☆☆【题型】常规题9. (2011山东烟台,9,4分)如果△ABC中,sin A=cos B=22,则下列最确切的结论是()A. △ABC是直角三角形B. △ABC是等腰三角形C. △ABC是等腰直角三角形D. △ABC是锐角三角形【答案】C【思路分析】因为sin A=cos B=22,所以∠A=∠B=45°,所以△ABC是等腰直角三角形.故选C.【方法规律】此题考查特殊角的三角函数,及三角形的分类. 掌握特殊角的三角函数值即可获解.【易错点分析】易判断不全面,可能误选A或B.【关键词】特殊角的三角函数,三角形分类.【难度】★☆☆☆☆【题型】常规题10. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是()A.m=n,k>h B.m=n ,k<hC.m>n,k=h D.m<n,k=h【答案】A 【思路分析】由两抛物线的解析式可判断其顶点坐标,再根据坐标意义即可判断答案选A【方法规律】此题主要考查二次函数的基础知识,会根据顶点式判断出顶点坐标便易获解.【易错点分析】有可能混淆横、纵坐标,误选D. 【关键词】二次函数 【难度】★☆☆☆☆ 【题型】常规题11. (2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A. 1 个B. 2 个C.3 个D. 4个【答案】C【思路分析】利用图象可判断①②④正确,③错误,故选C.【方法规律】此题赋常规题以新背景,体现了数学与现实生活的紧密联系性. 试题考查函数图象的识别. 解题关键是能够将实际问题情境与函数图象相互转换,能够从图象的横、纵两个方向分别获取信息,判断相应的实际意义.【易错点分析】误判①错误,从而错选B. 【关键词】函数图象 【难度】★☆☆☆☆ 【题型】常规题12. (2011山东烟台,12,4分) 如图,六边形ABCDEF 是正六边形,曲线2乙甲乙甲815105 1.510.5Ox /时y/千米(第11题图)20FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )A.20112πB. 20113πC. 20114πD. 20116π【答案】B【思路分析】可以发现规律:每段弧的度数都等于60°,1n n K K -的半径为n ,所以l 2 011 =602011180π⨯=20113π.【方法规律】此题考查弧长计算,正六边形知识,以及规律探索的能力,为本卷亮点试题. 从简单的特殊情形中探索得到变化规律是解此类题的关键.【易错点分析】规律归纳错误 【关键词】弧长计算,规律探索 【难度】★☆☆☆☆【题型】新题,规律探索题第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分).13. (2011山东烟台,13,4分)微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为 平方毫米.【答案】7×10-7【思路分析】0.000 000 7=7×10-7,故填7×10-7.【方法规律】此题考查科学记数法. 此类试题一般背景新颖,与时俱进,解题需掌握科学记数法的形式10n a ⨯,及a 的取值范围,n 的确定方法.【易错点分析】可能忽略指数中的负号,误写成7×107 【关键词】实数:科学记数法 【难度】★☆☆☆☆ 【题型】常规题14. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 .【答案】4或6(第12题图)A B CD EF K 1 K 2K 3K 4K 5K 6K 7【思路分析】此题应分两种情况讨论,4可能为底边,也可能为腰长,且两种情况都成立.【方法规律】此题考查等腰三角形的概念,三角形三边关系,及分类讨论思想. 解题关键明确此类题需分类讨论,且注意检验各情况是否成立.【易错点分析】忽略4是底边的情况,只填6. 【关键词】等腰三角形,三角形三边关系. 【难度】★☆☆☆☆ 【题型】常规题15. (2011山东烟台,15,4分)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .【答案】12【思路分析】易判断黑色部分的面积为大圆的一半,故填12. 【方法规律】此题考查概率的简单计算. 对于此类几何概型问题,按照公式:()A P A 事件所有可能结果所组成的图形面积所有可能结果所组成的图形面积计算即可.【易错点分析】一般不会出错. 【关键词】概率 【难度】★☆☆☆☆ 【题型】常规题16. (2011山东烟台,16,4分)如图,△ABC 的外心坐标是__________.【答案】(-2,-1)【思路分析】三角形的外心为三边垂直平分线的交点,观察图形,画出AB 、BC 的垂直平分线,即可获解.【方法规律】此题综合考查三角形外心、平面直角坐标系等的知识. 解题关键是掌握三角形的外心为三边(任选两边)垂直平分线的交点,能利用网格特点,画出两边的垂直平分线.【易错点分析】对外心概念不掌握致错. 【关键词】三角形的外心 【难度】★☆☆☆☆ 【题型】操作题17. (2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是.(第15题图)O xyB CA (第16题图)【答案】2【思路分析】正方形为旋转对称图形,绕中心旋转每90°便与自身重合. 可判断每个阴影部分的面积为正方形面积的14,这样可得答案填2.【方法规律】此题考查正方形的旋转对称性. 解题关键是掌握正n 边形旋转360n︒与自身重合.【易错点分析】不掌握其中规律,不会做. 【关键词】正方形 【难度】★★★☆☆ 【题型】运动变换题18. (2011山东烟台,18,4分)通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.【答案】【思路分析】观察图形,可发现规律:每个图形都是由两个英文大写字母构成的轴对称图形,且按顺序排列,其中奇数位置上下对称,偶数位置为左右对称.【方法规律】此题同12题,都是典型题变式而来,都属规律探索题. 考查规律探索能力,及轴对称的知识. 发现其中变化规律是解题关键.【易错点分析】因发现不了其中规律,或归纳规律不全面而致错. 【关键词】探索规律 轴对称 【难度】★★★★☆ 【题型】探索规律三、解答题(本大题共8各小题,满分78分). 19. (2011山东烟台,19,6分)先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根. 【解】原式=2(1)(1)21(1)x x x x x x x +--+÷+=21(1)x x x x -⋅-=11x -. 解方程得2220x x --=得, 1130x =+>,2130x =-<.(第17题图) O 2O 1所以原式=1131+-=13(或33). 【思路分析】应先进行分式的化简运算,再解一元二次方程,求出其正解,最后代值计算.【方法规律】此题综合考查分式计算,一元二次方程的解法,代数式的求值. 掌握相关计算方法即可获解.【易错点分析】“-”号处理错误,导致分式化简,解方程错误. 最易出错是21x x x --的化简.【关键词】分式计算,解一元二次方程,代数式求值 【难度】★★☆☆☆ 【题型】计算题20. (2011山东烟台,20,8分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米 ,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?【解】设平路有x 米,坡路有y 米 10,608015.6040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩解这个方程组,得 300,400.x y =⎧⎨=⎩所以x +y =700.所以小华家离学校700米.【思路分析】由题目中的两个等量关系“从家里到学校需10分钟,从学校到家里需15分钟”可列二元一次方程组求解.【方法规律】此题考查利用列方程解决实际问题. 找到等量关系,并明确基础数量关系:时间=路程/速度,便可列出方程组解决.【易错点分析】不会列方程组 【关键词】二元一次方程组的应用 【难度】★★☆☆☆ 【题型】实际应用题21. (2011山东烟台,21,8分)综合实践课上,小明所在小组要测量护城河的宽度。
山东省泰安市中考数学试题(word版 解析版)
泰安市初中学业水平考试数学试题一.选择题(本大题共12个小题,在每小题给出四个选项中,只有一个是正确,请把正确选项选出来,每小题选对3分,选错.不选或选出答案超过一个,均记零分)1. 计算:结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数概念.零指数幂运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查是零指数幂运算,掌握任何非零数零次幂等于1是解题关键.2. 下列运算正确是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则.同底数幂乘.除法法则.积乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查是合并同类项.同底数幂乘法.积乘方.同底数幂除法,掌握它们运算法则是解题关键.3. 如图是下列哪个几何体主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图观察角度结合结合几何体形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体形状是解题关键.4. 如图,将一张含有角三角形纸片两个顶点叠放在矩形两条对边上,若,则大小为()A. B. C. D.【答案】A【解析】分析:依据平行线性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线性质以及三角形外角性质运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级8名同学在一次排球垫球测试中成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据中位数.平均数分别是()A. 42.42B. 43.42C. 43.43D. 44.43【答案】B【解析】分析:根据中位线概念求出中位数,利用算术平均数计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查是中位数确定.算术平均数计算,掌握中位数概念.算术平均数计算公式是解题关键.6. 夏季来临,某超市试销.两种型号风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问.两种型号风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.7. 二次函数图象如图所示,则反比例函数与一次函数在同一坐标系内大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b取值范围,进而结合反比例函数以及一次函数性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一.三象限,一次函数y=ax+b经过第一.二.三象限.故选C.点睛:本题主要考查了二次函数.一次函数.反比例函数图象,正确得出a,b取值范围是解题关键.8. 不等式组有3个整数解,则取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组解为:4<x≤2﹣a,由关于x不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式解得出关于a不等式是解题关键.9. 如图,与相切于点,若,则度数为()A. B. C. D.【答案】A【解析】分析:连接OA.OB,由切线性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA.OB.∵BM是⊙O切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.10. 一元二次方程根情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程解法,正确解方程是解题关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,半径为2,圆心坐标为,点是上任意一点,,且.与轴分别交于.两点,若点.点关于原点对称,则最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上中线等于斜边一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线性质以及两点间距离公式.解题关键是利用直角三角形斜边上中线等于斜边一半把AB长转化为2OP.二.填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值<1时,n是负数;n绝对值等于第一个非零数前零个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.14. 如图,是外接圆,,,则直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O直径为4.故答案为:4.点睛:本题主要考查了三角形外接圆以及圆周角定理运用,三角形外接圆圆心是三角形三条边垂直平分线交点,叫做三角形外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若延长线恰好过点,则值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题关键.16. 如图,在中,,,,点是边上动点(不与点重合),过作,垂足为,点是中点,连接,设,面积为,则与之间函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB面积S等于△BDE 面积一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题函数解析式,解题关键是设法将BE与DE都用含有x代数式表示.17. 《九章算术》是中国传统数学最重要著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天话说,大意是:如图,是一座边长为200步(“步”是古代长度单位)正方形小城,东门位于中点,南门位于中点,出东门15步处有一树木,求出南门多少步恰好看到位于处树木(即点在直线上)?请你计算长为__________步.【答案】【解析】分析:由正方形性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形应用.解题关键是证明△CKD∽△DHA.三.解答题(本大题共7小题,满分66分.解答应写出文字说明.证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将m值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式化简求值,解题关键是掌握分式混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲.乙两种图书进价分别为每本20元.14元,甲种图书每本售价是乙种图书每本售价1.4倍,若用1680元在文美书店可购买甲种图书本数比用1400元购买乙种图书本数少10本.(1)甲乙两种图书售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书本数比用1400元购买乙种图书本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数应用,分式方程应用,一元一次不等式应用,理解题意找到题目蕴含相等关系或不等关系是解应用题关键.20. 为增强学生安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供信息,完成下列问题:(1)请估计本校初三年级等级为学生人数;(2)学校决定从得满分3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生概率.【答案】(1)估计该校初三等级为学生人数约为125人;(2)恰有2名女生,1名男生概率为. 【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B.C.D人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人所有等可能结果,再从中找到恰好抽到2名女生和1名男生结果数,根据概率公式计算可得.详解:(1)∵所抽取学生总数为8÷20%=40人,∴该班级等级为A学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A学生人数为1000×=125人;(2)设两位满分男生记为A1.A2.三位满分女生记为B1.B2.B3,从这5名同学中选3人所有等可能结果为:(B1,B2,B3).(A2,B2,B3).(A2,B1,B3).(A2,B1,B2).(A1,B2,B3).(A1,B1,B3).(A1,B1,B2).(A1,A2,B3).(A1,A2,B2).(A1,A2,B1),其中恰好有2名女生.1名男生结果有6种,所以恰好抽到2名女生和1名男生概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形两边.长分别为3.8,是中点,反比例函数图象经过点,与交于点.(1)若点坐标为,求值及图象经过.两点一次函数表达式;(2)若,求反比例函数表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A.E坐标,即可得出m值和一次函数函数解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为中点,∴.∵反比例函数图象过点,∴.设图象经过.两点一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形性质以及反比例函数一次函数解析式.解题关键是求出点A.E.F坐标. 22. 如图,中,是上一点,于点,是中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析.【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD中点,FG∥AE,即可得到FG是线段ED垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF 是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD中点,FG∥AE,∴H是ED中点,∴FG是线段ED垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形判定.全等三角形判定和性质,线段垂直平分线判定与性质以及含30°角直角三角形性质综合运用,利用全等三角形对应边相等,对应角相等是解决问题关键.23. 如图,在平面直角坐标系中,二次函数交轴于点.,交轴于点,在轴上有一点,连接.(1)求二次函数表达式;(2)若点为抛物线在轴负半轴上方一个动点,求面积最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点坐标,若不存在请说明理由.【答案】(1)二次函数解析式为;(2)当时,面积取得最大值;(3)点坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0).B(2,0),C(0,6),∴,解得:,所以二次函数解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE面积取得最大值为.(3)y=对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数综合问题,会求抛物线解析式,会运用二次函数分析三角形面积最大值,会分类讨论解决等腰三角形顶点存在问题时解决此题关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA垂线,交DA延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似三角形,并证明;(3)BF延长线交CD延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形性质,对称性,相似三角形判定和性质,判断出△EOA∽△AGB是解答本题关键.。
山东省泰安市中考数学试题版.doc
泰安市2011年初中学生学业考试数 学 试 题本试题第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至4页,第Ⅱ卷5至10页,共120分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答第卷Ⅰ前,考试务必将自己的姓名.准考证号.考试科目.试卷类型用2B 铅笔涂.写在答题卡上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。
3.考试结束后,监考人员将本体试卷和答题卡一并收回。
一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.54-的倒数是 (A )54 (B )45 (C )54- (D )45-2.下列运算正确的是(A )422743a a a =+ (B )22243a a a -=- (C )221243a a a =∙ (D )2222434)3(a a a =÷ 3.下列图形:其中是中心对称图形的个数为(A )1 (B )2 (C )3 (D )4 4.第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人。
这个数据用科学记数法表示为(A )710134⨯人 (B )8104.13⨯人 (C )91034.1⨯人 (D )101034.1⨯人 5.下列等式不成立的是(A ))4)(4(162+-=-m m m (B ))4(42+=+m m m m (C )22)4(168-=+-m m m (D )22)3(93+=++m m m30=+y x 4001612=+y x30=+y x4001216=+y x6.下列几何体:其中,左视图是平行四边形的有(A )4个 (B )3个 (C )2个 (D )1个 7.下列运算正确的是(A )525±= (B )12734=-(C )9218=÷(D )62324=∙8.如图,m l //,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=20°,则∠α的度数为(A )25° (B )30° (C )20° (D )35° 9. 某校篮球班21名同学的身高如下表 身高cm 180186188192208人数(个)4 65 4 2则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm ) (A )186,186(B )186,187(C )186,188(D )208,18810.如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6则⊙O 的半径为(A )2 (B )22 (C )22 (D )26 11.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是(A ) (B )(C ) (D )12.若点A 的坐标为(6,3)O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到O A ′,则点A ′的坐标是(A )(3,-6) (B )(-3,6) (C )(-3,-6)(D )(3,6)13.已知一次函数2-+=n mx y 的图像如图所示,则m 、n 的取值301216=+y x 400=+y x 301216=+y x400=+y xx -3>0 62334x x -〉+ 范围是(A )m >0,n <2(B )m >0,n >2(C )m <0,n <2(D )m <0,n >2 14.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是 (A )5π (B )4π (C )3π (D )2π 15.如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线与点E ,则下列结论错误..的是 (A )AB DF EA ED= (B )FB EFBC DE = (C )BE BF DEBC =(D )AEBCBE BF = 16.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的的编号相同的概率为 (A )91 (B )61 (C )31 (D )21 17.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为21,S S ,则21S S +的值为(A )16 (B )17 (C )18 (D )1918.不等式组 的最小整数解为(A )0 (B )1 (C )2 (D )1-19.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为(A )32 (B )232 (C )3 (D )6 20.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:x —7 —6 —5 —4 —3 —2 y—27—13—3353则当1=x 时,y 的值为(A )5 (B )—3 (C )—13 (D )—27泰安市2011年初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共60份)成绩统计题号 二 三总分 25 26 27 28 29 得分注意事项:1. 第Ⅱ卷用蓝、黑钢笔或中性笔直接答在试卷中(除题目有特殊要求外)。
2011---2013年泰安市中考数学考点解析
2011---2013年泰安市中考数学试卷考点解析(5)一、考点:1.扇形面积的计算;弧长的计算。
2.圆与圆的位置关系。
3.锐角三角函数的定义。
4.解直角三角形的应用。
二、泰安市中考题:1.如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为()A.8 B.4 C.4π+4 D.4π﹣42.如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D 在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).3.如图,为测量某物体AB的高度,在在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()米A.B.10米C.D.34.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠ABC=120°,OC=3,则的长为( )A .πB .2πC .3πD .5π三、山东部分市区中考题:5.一个人由山底爬到山顶,需先爬45 的山坡200m ,再爬30 的山坡300m ,求山的高度(结果可保留根号)6.如图,扇形AOB 的半径为1,∠AOB =90°,以AB积为 A .14π B .π12- C .12 D .1142π+ 7.如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( )A. a πB. 2a πC. 12a π D. 3a 8.某校研究性学习小组测量学校旗杆AB 的高度,如图在教学楼一楼C 处测得旗杆顶部的仰角为60︒,在教学楼三楼D 处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为 米.9.(3分)(2013•莱芜)将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )B C DB 上的观测点进行观测,从A 岛测得渔船在南偏东37°方向C 处,B 岛在南偏东66°方向,A 第6题 图从B 岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A 岛上维修船的速度为每小时20海里,B 岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)11.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为则AB 的长为( )米.A .12 B. C. D.12.已知一个扇形的半径为60厘米,圆心角为0150.用它围成一个圆锥的侧面,那么圆锥的底面半径为_____________厘米.13.(本题满分8分)如图,一只猫头鹰蹲在一颗树AC 的点B 处,发现一只老鼠躲进短墙DF 的另一侧,猫头鹰的视线被短墙遮住.为了寻找这只老鼠,猫头鹰向上飞至树顶C 处.已知点B 在AC 上,DF=4米,短墙底部D 与树的底部A 的距离AD=2.7米,猫头鹰从C 点观察F 点的俯角为053,老鼠躲藏处M 距D 点3米,且点M 在DE 上.(参考数据:000sin 370.60,cos370.80,tan 370.75≈≈≈). ⑴猫头鹰飞至C 处后,能否看到这只老鼠?为什么? ⑵要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?14.如图,在△ABC 中,∠ACB=90°,E 为BC 上一点,以CE 为直径作⊙O ,AB 与⊙O 相切于点D ,连接CD ,若BE=OE=2.(1)求证:∠A=2∠DCB ;(2)求图中阴影部分的面积(结果保留π和根号).A B C G FA ECD B15.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_____________.16.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为点E ,AO=1.(1)求∠C 的大小;(2)求阴影部分的面积.四、备考题:17.一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时18.为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.(1)求y 与x 之间的函数解析式;(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的31?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年山东省泰安市中考数学试卷一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.(3分)的倒数是()A.B.C.D.2.(3分)下列运算正确的是()A.3a2+4a2=7a4B.3a2﹣4a2=﹣a2C.3a•4a2=12a2 D.3.(3分)下列图形:其中是中心对称图形的个数为()A.1 B.2 C.3 D.44.(3分)第六次全国人口普查公布的数据表明,登记的全国人口数量约为1 340 000 000人.这个数据用科学记数法表示为()A.134×107人B.13.4×108人 C.1.34×109人 D.1.34×1010人5.(3分)下列等式不成立的是()A.m2﹣16=(m﹣4)(m+4)B.m2+4m=m(m+4)C.m2﹣8m+16=(m﹣4)2D.m2+3m+9=(m+3)26.(3分)下列几何体:其中,左视图是平行四边形的有()A.4个 B.3个 C.2个 D.1个7.(3分)下列运算正确的是()A.B.C. D.8.(3分)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为()A.25°B.30°C.20°D.35°9.(3分)某校篮球班21名同学的身高如下表身高cm180186188192208人数(个)46542则该校篮球班21名同学身高的众数和中位数分别是(单位:cm)()A.186,186 B.186,187 C.186,188 D.208,18810.(3分)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.11.(3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则列方程正确的是()A.B.C.D.12.(3分)若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6)D.(3,6)13.(3分)已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2 B.m>0,n>2 C.m<0,n<2 D.m<0,n>214.(3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π15.(3分)如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.16.(3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.B.C.D.17.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1918.(3分)不等式组的最小整数解为()A.0 B.1 C.2 D.﹣119.(3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.620.(3分)若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为()x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353A.5 B.﹣3 C.﹣13 D.﹣27二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)23.(3分)方程2x2+5x﹣3=0的解是.24.(3分)化简:的结果为.25.(3分)如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA 上一点,若∠ABC=32°,则∠P的度数为.26.(3分)甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数被污损.第1次第2次第3次第4次第5次甲9088879392乙848785989■则乙的平均成绩高于甲的平均成绩的概率是.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)27.(8分)某工厂的甲车间承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天加工零件各多少个?28.(10分)如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.29.(10分)已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG 是菱形.30.(10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为每件30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?31.(10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E 是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.2011年山东省泰安市中考数学试卷参考答案与试题解析一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.(3分)的倒数是()A.B.C.D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:的倒数是﹣,故选:D.【点评】此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列运算正确的是()A.3a2+4a2=7a4B.3a2﹣4a2=﹣a2C.3a•4a2=12a2 D.【分析】根据合并同类项的法则、单项式乘以单项式的法则、以及整式的混合运算法则计算即可.【解答】解:A、3a2+4a2=7a2,故本选项错误;B、3a2﹣4a2=﹣a2,故本选项正确;C、3a•4a2=12a3,故本选项错误;D、(3a2)2÷4a2=a2,故本选项错误.故选:B.【点评】本题主要考查合并同类项的法则以及整式的运算法则,牢记法则是关键.3.(3分)下列图形:其中是中心对称图形的个数为()A.1 B.2 C.3 D.4【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:一图是轴对称图形,不是中心对称图形;二图是中心对称图形;三图是轴对称图形,不是中心对称图形;四图既是中心对称图形,也是轴对称图形;所以中心对称图形的个数为2.故选:B.【点评】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)第六次全国人口普查公布的数据表明,登记的全国人口数量约为1 340 000 000人.这个数据用科学记数法表示为()A.134×107人B.13.4×108人 C.1.34×109人 D.1.34×1010人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 340 000 000=1.34×109人.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)下列等式不成立的是()A.m2﹣16=(m﹣4)(m+4)B.m2+4m=m(m+4)C.m2﹣8m+16=(m﹣4)2D.m2+3m+9=(m+3)2【分析】由平方差公式,提公因式以及完全平方公式分解因式的知识求解即可求得答案.【解答】解:A、m2﹣16=(m﹣4)(m+4),故本选项正确;B、m2+4m=m(m+4),故本选项正确;C、m2﹣8m+16=(m﹣4)2,故本选项正确;D、m2+3m+9≠(m+3)2,故本选项错误.故选:D.【点评】此题考查了因式分解的知识.注意因式分解的步骤:先提公因式,再用公式法分解,注意分解要彻底.6.(3分)下列几何体:其中,左视图是平行四边形的有()A.4个 B.3个 C.2个 D.1个【分析】左视图是从几何体的左面看所得到的图形.【解答】解:圆柱的左视图是长方形,长方形是一个特殊的平行四边形;圆锥的左视图是三角形;棱柱的左视图是长方形,长方形是一个特殊的平行四边形;长方体的左视图是长方形,长方形是一个特殊的平行四边形;故左视图是平行四边形的有3个,故选:B.【点评】此题主要考查了几何体的三视图,解决此类图的关键是由立体图形得到三视图,以及考查学生空间想象能力.7.(3分)下列运算正确的是()A.B.C. D.【分析】根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.【解答】解:A.∵=5,故此选项错误;B.∵4﹣=4﹣3=,故此选项错误;C.÷==3,故此选项错误;D.∵•==6,故此选项正确.故选:D.【点评】此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.8.(3分)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为()A.25°B.30°C.20°D.35°【分析】根据平角的定义求出∠ACR,根据平行线的性质得出∠FDC=∠ACR=70°,求出∠AFD,即可得到答案.【解答】解:∵∠β=20°,∠ACB=90°,∴∠ACR=180°﹣90°﹣20°=70°,∵l∥m,∠FDC=∠ACR=70°,∴∠AFD=∠FDC﹣∠A=70°﹣45°=25°,∴∠a=∠AFD=25°,故选:A.【点评】本题主要考查对平行线的性质,三角形的外角性质,对顶角、邻补角等知识点的理解和掌握,求出∠AFD的度数是解此题的关键.9.(3分)某校篮球班21名同学的身高如下表身高cm180186188192208人数(个)46542则该校篮球班21名同学身高的众数和中位数分别是(单位:cm)()A.186,186 B.186,187 C.186,188 D.208,188【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【解答】解:众数是:186cm;中位数是:188cm.故选:C.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.(3分)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.【分析】连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD==,OD=,再利用勾股定理即可得出结论.【解答】解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选:A.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.(3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则列方程正确的是()A.B.C.D.【分析】根据甲乙两种奖品共30件,可找到等量关系列出一个方程,在根据甲乙两种奖品的总价格找到一个等量关系列出一个方程,将两个方程组成一个二元一次方程组.【解答】解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共30件,所以x+y=30因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=400由上可得方程组:故选:B.【点评】本题考查根据实际问题抽象出方程组:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.(3分)若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6)D.(3,6)【分析】正确作出A旋转以后的A′点,即可确定坐标.【解答】解:由图知A点的坐标为(6,3),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,点A′的坐标是(3,﹣6).故选:A.【点评】本题考查了图形的旋转,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.13.(3分)已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2 B.m>0,n>2 C.m<0,n<2 D.m<0,n>2【分析】先根据一次函数的图象经过二、四象限可知m<0,再根据函数图象与y轴交于正半轴可知n﹣2>0,进而可得出结论.【解答】解:∵一次函数y=mx+n﹣2的图象过二、四象限,∴m<0,∵函数图象与y轴交于正半轴,∴n﹣2>0,∴n>2.故选:D.【点评】本题考查的是一次函数的图象,即直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.14.(3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π【分析】半圆的面积就是圆锥的侧面积,根据半圆的弧长等于圆锥底面圆的周长,即可求得圆锥底面圆的半径,进而求得面积,从而求解.【解答】解:侧面积是:×π×22=2π.底面的周长是2π.则底面圆半径是1,面积是π.则该圆锥的全面积是:2π+π=3π.故选:C.【点评】本题主要考查了圆锥的计算,正确理解圆锥的底面的周长等于展开图中扇形的弧长是解题的关键.15.(3分)如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选:C.【点评】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.16.(3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.B.C.D.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有9种等可能的结果,两次所取球的编号相同的有3种,∴两次所取球的编号相同的概率为=.故选:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.18.(3分)不等式组的最小整数解为()A.0 B.1 C.2 D.﹣1【分析】首先解不等式组求得不等式的解集,然后确定解集中的最小整数值即可.【解答】解:解第一个不等式得:x<3;解第二个不等式得:x>﹣1故不等式组的解集是:﹣1<x<3.故最小整数解是:0故选:A.【点评】本题主要考查了不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.6【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【解答】解:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.故选:A.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.20.(3分)若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为()x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353A.5 B.﹣3 C.﹣13 D.﹣27【分析】由表可知,抛物线的对称轴为x=﹣3,顶点为(﹣3,5),再用待定系数法求得二次函数的解析式,再把x=1代入即可求得y的值.【解答】解:设二次函数的解析式为y=a(x﹣h)2+k,∵当x=﹣4或﹣2时,y=3,由抛物线的对称性可知h=﹣3,k=5,∴y=a(x+3)2+5,把(﹣2,3)代入得,a=﹣2,∴二次函数的解析式为y=﹣2(x+3)2+5,当x=1时,y=﹣27.故选:D.【点评】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为x=﹣3,顶点为(﹣3,5),是本题的关键.二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)23.(3分)方程2x2+5x﹣3=0的解是.【分析】先把方程化为(x+3)(x﹣)=0的形式,再求出x的值即可.【解答】解:原方程可化为:(x+3)(x﹣)=0,故x1=﹣3,x2=.故答案为:x1=﹣3,x2=.【点评】本题考查的是解一元二次方程的因式分解法,能把原方程化为两个因式积的形式是解答此题的关键.24.(3分)化简:的结果为x﹣6.【分析】先将括号里面的通分合并同类项,然后将除法转换成乘法,约分化简得到最简代数式.【解答】解:原式=×=×=x﹣6故答案为:x﹣6【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.25.(3分)如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA 上一点,若∠ABC=32°,则∠P的度数为26°.【分析】连接OA,则△PAO是直角三角形,根据圆周角定理即可求得∠POA的度数,进而根据直角三角形的性质求解.【解答】解:连接OA.∴∠PAO=90°,∵∠O=2∠B=64°,∴∠P=90°﹣64°=26°.故答案为:26°.【点评】本题主要考查了切线的性质,以及圆周角定理,正确利用定理,作出辅助线求得∠POA的度数是解题的关键.26.(3分)甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数被污损.第1次第2次第3次第4次第5次甲9088879392乙848785989■则乙的平均成绩高于甲的平均成绩的概率是.【分析】首先计算出甲的平均成绩,再根据乙的成绩在97,98,99的时候,平均成绩大于甲的成绩,随机事件概率的求法即可得出结果.【解答】解:甲的平均成绩为:=90,乙的被污损的成绩可能是90,91,92,93,94,95,96,97,98,99共10种可能,乙的成绩为97,98,99的时候,平均成绩大于甲的成绩,乙的平均成绩高于甲的平均成绩的概率是.故答案为:.【点评】本题考查了平均数的求法,以及随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=,难度适中.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)27.(8分)某工厂的甲车间承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天加工零件各多少个?【分析】先设甲车间每天加工零件x个,则乙车间每天加工零件1.5x个,由题意列分式方程即可得问题答案.【解答】解:设甲车间每天加工零件x个,则乙车间每天加工零件1.5x个.根据题意,得,解之,得x=60,经检验,x=60是方程的解,符合题意,1.5x=90.答:甲乙两车间每天加工零件分别为60个、90个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.本题需注意应设较小的量为未知数.28.(10分)如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.【分析】(1)根据一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)可得到关于b、k1的方程组,进而可得到一次函数的解析式,设M(m,n)作MD⊥x 轴于点D,由△OBM的面积为2可求出n的值,将M(m,4)代入y=2x﹣2求出m的值,由M(3,4)在双曲线上即可求出k2的值,进而求出其反比例函数的解析式;(2)过点M(3,4)作MP⊥AM交x轴于点P,由MD⊥BP可求出∠PMD=∠MBD=∠ABO,再由锐角三角函数的定义可得出OP的值,进而可得出结论.【解答】解:(1)∵直线y=k1x+b过A(0,﹣2),B(1,0)两点∴,∴∴一次函数的表达式为y=2x﹣2.(3分)∴设M(m,n),作MD⊥x轴于点D=2,∵S△OBM∴,∴∴n=4(5分)∴将M(m,4)代入y=2x﹣2得4=2m﹣2,∴m=3∵M(3,4)在双曲线上,∴,∴k2=12∴反比例函数的表达式为(2)过点M(3,4)作MP⊥AM交x轴于点P,∵MD⊥BP,∴∠PMD=∠MBD=∠ABO∴tan∠PMD=tan∠MBD=tan∠ABO==2(8分)∴在Rt△PDM中,,∴PD=2MD=8,∴OP=OD+PD=11∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)【点评】本题考查的是反比例函数与一次函数的交点问题,涉及到的知识点为用待定系数法求一次函数与反比例函数的解析式、锐角三角函数的定义,熟知以上知识是解答此题的关键.29.(10分)已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG 是菱形.【分析】(1)由点E是BC的中点,BC=2AD,可证得四边形AECD为平行四边形,即可得△AOE∽△COF;(2)连接DE,易得四边形ABED是平行四边形,又由∠ABE=90°,可证得四边形ABED是矩形,根据矩形的性质,易证得EF=GD=GE=DF,则可得四边形EFDG是菱形.【解答】证明:(1)∵点E是BC的中点,BC=2AD,∴EC=BE=BC=AD,又∵AD∥BC,∴四边形AECD为平行四边形,∴AE∥DC,∴△AOE∽△COF;(2)连接DE,∵AD∥BE,AD=BE,∴四边形ABED是平行四边形,又∠ABE=90°,∴四边形ABED是矩形,∴GE=GA=GB=GD=BD=AE,∴E、F分别是BC、CD的中点,∴EF、GE是△CBD的两条中位线,∴EF=BD=GD,GE=CD=DF,又GE=GD,∴EF=GD=GE=DF,∴四边形EFDG是菱形.【点评】此题考查了相似三角形的判定与性质,平行四边形的判定与性质,矩形与菱形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是要注意数形结合思想的应用.30.(10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为每件30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?【分析】(1)当售价定为30元时,可知每一件赚10元钱,再有售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.可计算出一个月可获利多少元;(2)设售价为每件x元时,一个月的获利为y元,得到y与x的二次函数关系式求出函数的最大值即可.【解答】解:(1)获利:(30﹣20)[105﹣5(30﹣25)]=800;答:当售价定为30元时,一个月可获利800元;(2)设售价为每件x元时,一个月的获利为y元,由题意,得y=(x﹣20)[105﹣5(x﹣25)]=﹣5x2+330x﹣4600=﹣5(x﹣33)2+845,当x=33时,y的最大值为845,故当售价定为33元时,一个月的利润最大,最大利润是845元.【点评】本题主要考查了二次函数的应用,能正确表示出月销售量是解题的关键.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.31.(10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【点评】本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,难度适中.。