2018年江苏高考数学二轮复习课件:第2部分+八大难点突破+难点8 函数最值、恒成立及存在性问题

合集下载

2018年高考数学(理)二轮专题复习课件:第二部分 专题八 客观压轴题2

2018年高考数学(理)二轮专题复习课件:第二部分 专题八  客观压轴题2

以上 n-1 个式子相加可得 an-a1=4+6+… +2n= 解得 an=n(n+1),∴
1
(������ -1)(4+2������ ) 2 1
,
1 2 018
∴������ + ������ +… +������
1 2
1
1
1
������ ������
=
1 ������ (������ +1) 1 2 1
=2 017=2 016.
=2 016+
������ 2 017
核心知识
bn=6,a1=b1=0,则an=3n2-9n+6(n∈N*)
.(用n表示)
解析: 由题意,������������ ������������ +1 =(1,an+1-an),������������ ������������ =(-1,-bn).由向量������������ ������������ +1 与向 量������������ ������������ 共线,得 an+1-an=bn.
由bn+1-bn=6,a1=b1=0,得数列{bn}是公差为6的等差数列,所以 bn=6(n-1), an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=0+0+6+12+…+6(n-2)
=
(������ -2)(6������ -12+6) 2
=3n2-9n+6.
核心知识
考点精题
= −
2 3
1
1
∴2 017

(江苏专版)18年高考数学二轮复习第2部分八大难点突破难点7函数零点、单调性、极值等综合问题学案

(江苏专版)18年高考数学二轮复习第2部分八大难点突破难点7函数零点、单调性、极值等综合问题学案

难点七 函数零点、单调性、极值等综合问题(对应学生用书第73页)函数零点、单调性、极值都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与导数是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数思想的运用是我们解决问题的重要手段,而导数是我们解决问题的一个行之有效的工具. 1.函数零点函数零点问题主要是研究函数与方程问题,方程f (x )=0的解就是函数y =f (x )的图象与x 轴的交点的横坐标,即零点.函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的. 许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.在高考中重点考查函数零点个数、零点范围以及与零点有关的范围问题,有时添加函数性质进去会使得此类问题难度加大.【例1】 (2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.【导学号:56394108】[解] (1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0.又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .(3)由(1)知,f (x )的极值点是x 1,x 2, 且x 1+x 2=-23a ,x 21+x 22=4a 2-6b9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab 9+2=0.记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].【例2】 已知函数f (x )=a x -1x2-b +ln x (a ,b ∈R ).(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围; (2)若a =3,函数f (x )有3个零点,求实数b 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=-a x2+2x3+1x.由题意可得f ′(x )≥0在(0,+∞)上恒成立,即-a x2+2x3+1x≥0,所以a x2≤2x3+1x,因为x >0,所以x 2>0,故a ≤2x+x .由基本不等式可得2x +x ≥22(当且仅当2x=x ,即x =2时等号成立),故实数a 的取值范围为(-∞,22].(2)当a =3时,f (x )=3x -1x2-b +ln x ,函数f (x )的定义域为(0,+∞),f ′(x )=-3x 2+2x 3+1x =x 2-3x +2x3=x -x -x3.由f ′(x )=0,解得x 1=1,x 2=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:极小值为f (2)=32-122-b +ln 2=54-b +ln 2.要使函数f (x )有3个零点,则⎩⎪⎨⎪⎧2-b >0,54-b +ln 2<0,解得54+ln 2<b <2.故实数b 的取值范围为⎝ ⎛⎭⎪⎫54+ln 2,2. 2.利用函数的单调区间和极值点研究函数零点函数f (x )的零点,即f (x )=0的根,亦即函数f (x )的图象与x 轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题).【例3】 (2016-2017学年度江苏苏州市高三期中调研考试)已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f x ,f xg x ,gx ,f x <g x ,(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数. [解] (1)∵函数f (x )=ax 3-3x 2+1, ∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∵a >0,∴x 1<x 2,列表如下:∴f (x )的极大值为f (0)=1,极小值为f ⎝ ⎛⎭⎪⎫a=a2-a 2+1=1-a2.(2)g (x )=xf ′(x )=3ax 3-6x 2,∵存在x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x在x ∈[1,2]上有解,设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∵y ′=-3x 2-3x4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x 在x ∈[1,2]上单调递减,∴当x =1时,y =1x 3+3x的最大值为4,∴2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫2a=1-4a2,①当1-4a2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∴h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.②当1-4a2=0即a =2时,f (x )min =f (1)=0,又g (1)=0,∴h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点.③当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1),∵φ′(x )=3ax 2-6x -1x <6x (x -1)-1x<0,∴φ(x )在(0,1)上单调递减,又φ(1)=a -2<0,φ⎝ ⎛⎭⎪⎫1e =a e 3+2e 2-3e 2>0,∴存在唯一的x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得φ(x 0)=0,Ⅰ.当0<x ≤x 0时,∵φ(x )=f (x )-g (x )≥φ(x 0)=0,∴h (x )=f (x )且h (x )为减函数,又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0,f (0)=1>0,∴h (x )在(0,x 0)上有一个零点;Ⅱ.当x >x 0时,∵φ(x )=f (x )-g (x )<φ(x 0)=0, ∴h (x )=g (x )且h (x )为增函数,∵g (1)=0, ∴h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(x 0,+∞)上有两个零点, 综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点;当a >2时,h (x )无零点.【例4】 (2017·江苏省南京市迎一模模拟)已知函数f (x )=12ax 2+ln x ,g (x )=-bx ,其中a ,b ∈R ,设h (x )=f (x )-g (x ). (1)若f (x )在x =22处取得极值,且f ′(1)=g (-1)-2,求函数h (x )的单调区间; (2)若a =0时,函数h (x )有两个不同的零点x 1,x 2. ①求b 的取值范围; ②求证:x 1x 2e2>1.【导学号:56394109】[解] (1)由已知得f ′(x )=ax +1x(x >0),所以f ′⎝⎛⎭⎪⎫22=22a +2=0,所以a =-2. 由f ′(1)=g (-1)-2, 得a +1=b -2, 所以b =1.所以h (x )=-x 2+ln x +x (x >0).则h ′(x )=-2x +1x +1=2⎝ ⎛⎭⎪⎫x +12x --x(x >0),由h ′(x )>0得0<x <1,h ′(x )<0得x >1. 所以h (x )的减区间为(1,+∞),增区间为(0,1). (2)①由已知h (x )=ln x +bx (x >0). 所以h ′(x )=1x+b (x >0),当b ≥0时,显然h ′(x )>0恒成立,此时函数h (x )在定义域内递增,h (x )至多有一个零点,不合题意.当b <0时,令h ′(x )=0得x =-1b >0,令h ′(x )>0得0<x <-1b;令h ′(x )<0得x >-1b.所以h (x )极大=h ⎝ ⎛⎭⎪⎫-1b =-ln(-b )-1>0,解得-1e <b <0. 且x →0时,ln x <0,x →+∞时,ln x >0.所以当b ∈⎝ ⎛⎭⎪⎫-1e ,0时,h (x )有两个零点.②证明:由题意得⎩⎪⎨⎪⎧ln x 1+bx 1=0,ln x 2+bx 2=0,即⎩⎪⎨⎪⎧e -bx 1=x 1, ①e -bx 2=x 2, ②①×②得e -b (x 1+x 2)=x 1x 2. 因为x 1,x 2>0, 所以-b (x 1+x 2)>0, 所以e -b (x 1+x 2)=x 1x 2>1. 因为0<-b <1e ,所以e -b<1,所以x 1x 2>e -2b x 1x 2>e2x 1x 2>e 2,所以x 1x 2e2>1.【例5】 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. (2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.[解] (1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x -x +x-x -xx +2=x 2e xx +2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0. (2)证明:g ′(x )=x -x+a x +x3=x +2x 3(f (x )+a ). 由(1)知,f (x )+a 单调递增.对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈(0,2],使得f (x a )+a =0, 即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为于是h (a )=e x ax a +2. 由⎝ ⎛⎭⎪⎫e x x +2′=x +xx +2>0,得y =exx +2单调递增, 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 【例6】 设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. [解] (1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f=2e +2,f =e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞). [方法总结] ①函数性质与方程综合时,要先将函数性质剖析清楚,尤其是单调性和对称性,然后再研究函数零点问题;②函数与不等式综合时,重点是要学会构造函数,利用函数单调性、最值进行研究;③函数、方程与不等式综合在一起时,要注意利用导数这个有利工具进行解答.。

2018年江苏省高考数学第2轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题

2018年江苏省高考数学第2轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题
△ABC 中,由正弦定理可得 sin∠BAC=sin 3120°= 63, ∴∠BAC=17°,
∴缉私艇应向北偏东 47°方向追击, △ABC 中,由余弦定理可得 cos 120°=16+B8CB2C-AC2,∴BC≈1.686 15. B 到边界线 l 的距离为 3.8-4sin 30°=1.8, ∵1.686 15<1.8, ∴能用最短时间在领海内拦截成功.
若 P 是△ABC 内的一点,BA→→PP==tλ||BB→→AA→ →AABB||++||BB→→AA→ →CCCC||,,tλ>>00
⇒P 是△ABC 的内心; 若 D、E 两点分别是△ABC 的边 BC、CA 上的中点,且
D→P·P→B=D→P·P→C E→P·P→C=E→P·P→A
2 所以 tan 2B=1-2tatnanB2B=1-3132=34.
4.实际应用中的三角形问题 在实际生活中往往会遇到关于距离、角度、高度的测量问题,可以借助平面图 形,将上述量放在一个三角形中,借助解三角形知识达到解决问题的目的.
【例 4】 (2017·江苏省淮安市高考数学二模)一缉私艇巡 航至距领海边界线 l(一条南北方向的直线)3.8 海里的 A 处,发现在其北偏东 30°方向相距 4 海里的 B 处有一走 私船正欲逃跑,缉私艇立即追击,已知缉私艇的最大航 速是走私船最大航速的 3 倍,假设缉私艇和走私船均按 直线方向以最大航速航行.
(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领 海内拦截成功;(参考数据:sin 17°≈ 63, 33≈5.744 6) (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明 理由.
[解] (1)设缉私艇在 C 处与走私船相遇(如图),则 AC=3BC.

(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点8函数最值、恒成立及存在性问题学案

(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点8函数最值、恒成立及存在性问题学案

难点八 函数最值、恒成立及存在性问题(对应学生用书第75页)恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理. F (x )>a :⎩⎪⎨⎪⎧恒成立⇔f x min >a 有解⇔f x max >a无解⇔f x max ≤a具体方法为将已知恒成立或存在性的不等式或等式由等价原理把参数和变量分离开,转化为一元已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则.参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.【例1】 (2017·盐城市滨海县八滩中学二模)设f (x )=e x-a (x +1).(1)若a >0,f (x )≥0对一切x ∈R 恒成立,求a 的最大值;(2)设g (x )=f (x )+ae x ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围;(3)是否存在正整数a ,使得1n +3n +…+(2n -1)n <e e -1(an )n对一切正整数n 都成立?若存在,求a 的最小值;若不存在,请说明理由.【导学号:56394112】[解] (1)∵f (x )=e x-a (x +1),∴f ′(x )=e x-a , ∵a >0,f ′(x )=e x -a =0的解为x =ln a . ∴f (x )min =f (ln a )=a -a (ln a +1)=-a ln a .∵f (x )≥0对一切x ∈R 恒成立,∴-a ln a ≥0,∴a ln a ≤0,∴a max =1. (2)∵f (x )=e x-a (x +1), ∴g (x )=f (x )+ae x =e x+ae x -ax -a .∵a ≤-1,直线AB 的斜率恒大于常数m , ∴g ′(x )=e x-aex -a ≥2e x·⎝ ⎛⎭⎪⎫-a e x -a=-a +2-a =m (a ≤-1),解得m ≤3,∴实数m 的取值范围是(-∞,3].(3)设t (x )=e x-x -1,则t ′(x )=e x-1,令t ′(x )=0得:x =0. 在x <0时t ′(x )<0,f (x )递减;在x >0时t ′(x )>0,f (x )递增. ∴t (x )最小值为t (0)=0,故e x≥x +1,取x =-i 2n ,i =1,3,…,2n -1,得1-i 2n ≤e-i 2n ,即⎝ ⎛⎭⎪⎫2n -i 2n n ≤e-i 2,累加得⎝ ⎛⎭⎪⎫12n n +⎝ ⎛⎭⎪⎫32n n +…+⎝ ⎛⎭⎪⎫2n -12n n <e -2n -12+e -2n -32+…+e -12=e -121-e-n1-e -1<ee -1. ∴1n+3n+…+(2n -1)n<e e -1·(2n )n, 故存在正整数a =2.使得1n+3n+…+(2n -1)n<e e -1·(an )n. 【例2】 (2017·江苏省无锡市高考数学一模)已知函数f (x )=(x +1)ln x -ax +a (a 为正实数,且为常数).(1)若f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若不等式(x -1)f (x )≥0恒成立,求a 的取值范围.[解] (1)f (x )=(x +1)ln x -ax +a ,f ′(x )=ln x +1x+1-a ,若f (x )在(0,+∞)上单调递增,则a ≤ln x +1x+1在(0,+∞)恒成立(a >0),令g (x )=ln x +1x +1(x >0),g ′(x )=x -1x2,令g ′(x )>0,解得:x >1,令g ′(x )<0,解得:0<x <1, 故g (x )在(0,1)递减,在(1,+∞)递增, 故g (x )min =g (1)=2, 故0<a ≤2;(2)若不等式(x -1)f (x )≥0恒成立,即(x -1)[(x +1)ln x -ax +a ]≥0恒成立, ①x ≥1时,只需a ≤(x +1)ln x 恒成立, 令m (x )=(x +1)ln x (x ≥1), 则m ′(x )=ln x +1x+1,由(1)得:m ′(x )≥2,故m (x )在[1,+∞)递增,m (x )≥m (1)=0,故a ≤0,而a 为正实数,故a ≤0不合题意; ②0<x <1时,只需a ≥(x +1)ln x , 令n (x )=(x +1)ln x (0<x <1),则n ′(x )=ln x +1x+1,由(1)知n ′(x )在(0,1)递减,故n ′(x )>n ′(1)=2,故n (x )在(0,1)递增,故n (x )<n (1)=0, 故a ≥0,而a 为正实数,故a >0.【例3】 (2017·江苏省淮安市高考数学二模)已知函数f (x )=1e x ,g (x )=ln x ,其中e为自然对数的底数.(1)求函数y =f (x )g (x )在x =1处的切线方程;(2)若存在x 1,x 2(x 1≠x 2),使得g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)]成立,其中λ为常数,求证:λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立,求实数a 的取值范围.【导学号:56394113】[解] (1)y =f (x )g (x )=ln xe x ,y ′=1x -ln xex, x =1时,y =0,y ′=1e,故切线方程是:y =1e x -1e;(2)证明:由g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)], 得:g (x 1)+λf (x 1)=g (x 2)+λf (x 2), 令h (x )=g (x )+λf (x )=ln x +λe x (x >0),h ′(x )=e x-λxx e x,令ω(x )=e x-λx ,则ω′(x )=e x-λ, 由x >0,得e x >1,①λ≤1时,ω′(x )>0,ω(x )递增, 故h ′(x )>0,h (x )递增,不成立;②λ>1时,令ω′(x )=0,解得:x =ln λ, 故ω(x )在(0,ln λ)递减,在(ln λ,+∞)递增, ∴ω(x )≥ω(ln λ)=λ-λln λ,令m (λ)=λ-λln λ(λ>1), 则m ′(λ)=-ln λ<0,故m (λ)递减, 又m (e)=0,若λ≤e,则m (λ)≥0,ω(x )≥0,h (x )递增,不成立, 若λ>e ,则m (λ)<0,函数h (x )有增有减,满足题意, 故λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立, 即ln xex -a (x -1)≤0在(0,1]恒成立, 令F (x )=ln xe x -a (x -1),x ∈(0,1],F (1)=0,F ′(x )=1x -ln x e x-a ,F ′(1)=1e-a , ①F ′(1)≤0时,a ≥1e,F ′(x )≤1x -ln x -ex -1ex递减,而F ′(1)=0,故F ′(x )≥0,F (x )递增,F (x )≤F (1)=0,成立,②F ′(1)>0时,则必存在x 0,使得F ′(x )>0,F (x )递增,F (x )<F (1)=0不成立,故a ≥1e.【例4】 设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).[解] (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=ex -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0, 即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.[点评] 综合构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.。

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:第二篇 填空题的解法技巧 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:第二篇 填空题的解法技巧 精品

3 例2 (1)cos2α+cos2(α+120°)+cos2(α+240°)的值为___2_____. 解析 令α=0°, 则原式=cos20°+cos2120°+cos2240°=32.
解析答案
(2) 如 图 , 在 三 棱 锥 O—ABC 中 , 三 条 棱 OA , OB , OC 两 两 垂 直 , 且 OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体 积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为_S_3_<_S_2<_S_1_.
例4 如图,已知球O的球面上有四点A,B,C,D,DA⊥平面ABC, AB⊥BC,DA=AB=BC= 2,则球O的体积等于____6_π___.
思维升华
解析
答案
跟踪演练 4
(1)1e64 ,2e55 ,3e66 (其中
e
e4 e5 e6
为自然对数的底数)的大小关系是_1_6_<_2_5_<_3_6_.
所以 CD=1,AD=2 2,
所以 tan C=2 2,tan A=tan B= 2,
所以ttaann CA+ttaann CB=4.
解析答案
(2)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增 函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4, 则x1+x2+x3+x4=__-__8____. 解析 根据函数特点取 f(x)=sinπ4x, 再由图象可得(x1+x2)+(x3+x4)=(-6×2)+(2×2)=-8.
思维升华
解析答案
跟踪演练3 (1)(2015·湖南)若函数f(x)=|2x-2|-b有两个零点,则实数b 的取值范围是__(_0_,_2_) __. 解析 由f(x)=|2x-2|-b=0, 得|2x-2|=b. 在同一平面直角坐标系中画出y=|2x-2|与y=b 的图象,如图所示. 则当0<b<2时,两函数图象有两个交点,从而函 数f(x)=|2x-2|-b有两个零点.

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题二 函数与导数 第2讲 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题二 函数与导数 第2讲 精品

解析
答案
(2)已知函数 f(x)=efxx,-x1≤,1,x>1, g(x)=kx+1,若方程 f(x)-g(x)=0 有 两个不同的实根,则实数 k 的取值范围是_(_e_-2__1_,__1_)∪__(_1_,__e_-__1_]_.
思维升华
解析
答案
跟踪演练2 (1)已知函数f(x)=ex-2x+a有零点,则a的取值范围是 _(_-__∞_,__2_l_n_2_-__2_]___.
专题二 函数与导数
第2讲 函数的应用
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
1 23 4
1.(2016·天津改编)已知函数 f(x)=sin2ω2x+12sin ωx-12 (ω>0,x∈R).若 f(x) 在区间(π,2π)内没有零点,则 ω 的取值范围是__0_,__18__∪__14_,__58____.
返回
热点分类突破
热点一 函数的零点 1.零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有 f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b) 使得f(c)=0,这个c也就是方程f(x)=0的根. 2.函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图 象与函数y=g(x)的图象交点的横坐标.
解析答案
1 23 4
4.某项研究表明:在考虑行车安全的情况下,某路段车流量 F(单位时间内经 过测量点的车辆数,单位:辆/时)与车流速度 v (假设车辆以相同速度 v 行驶, 单位:米/秒),平均车长 l(单位:米)的值有关,其公式为 F=v2+76180v0+0v20l. (1)如果不限定车型,l=6.05,则最大车流量为_1__9_0_0___辆/时;

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题八 系列4选讲 第1讲 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题八 系列4选讲 第1讲 精品

1 23
解析答案
(2)△BCD∽△GBD. 证明 因为FG∥BC,故GB=CF. 由(1)可知BD=CF,所以GB=BD, 所以∠BGD=∠BDG. 由BC=CD知∠CBD=∠CDB, 又因为∠GDB=∠DBC,所以∠DGB=∠DCB, 所以△BCD∽△GBD.
1 23
解析答案
返回
例 1 如图所示,在△ABC 中,∠CAB=90°,AD⊥BC 于 D,BE 是∠ABC 的平分线,交 AC 于 E,交 AD 于 F,求证:DAFF=AEEC.
思维升华
解析答案
跟踪演练1 如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D, 且AD∶BD=9∶4,求AC∶BC的值.
解析答案
例3 如图,AB是圆O的直径,弦CA,BD的延长线 相交于点E,EF垂直BA的延长线于点F,连结FD. 求证:∠DEA=∠DFA.
证明 连结AD,∵AB是圆O的直径, ∴∠ADB=90°,∴∠ADE=90°, 又∵EF⊥FB,∴∠AFE=90°, 所以A,F,E,D四点共圆, ∴∠DEA=∠DFA.
热点二 相交弦定理、切割线定理的应用
1.圆的切线的性质定理 圆的切线垂直于经过切点的半径. 2.圆的切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线. 3.弦切角定理 弦切角等于它所夹的弧所对的圆周角.
4.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等. 5.切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条 线段长的比例中项.
解析答案
12 3
3.(2016·课标全国甲)如图,在正方形ABCD中,E,G分
别在边DA,DC上(不与端点重合),且DE=DG,过D点

2018年高考数学理科江苏专版二轮专题复习与策略课件:

2018年高考数学理科江苏专版二轮专题复习与策略课件:

模板1| 三角函数的周期性、单调性及最值问题 【例1】 (满分 3 14分)设函数f(x)= 2 - 3sin2ωx-sin ωxcos ωx(ω>0),且y
π =f(x)图象的一个对称中心到最近的对称轴的距离为4.
3π (1)求ω的值;(2)求f(x)在区间π, 2 上的最大值和最小值.
AB=2CD [解题指导] (1)M是AB中点,四边形ABCD是等腰梯形 ――→ ⇒▱AMC1D1→C1M∥平面A1ADD1 (2)CA,CB,CD1两两垂直→建立空间直角坐标系,写各点坐标→求平面 ABCD的法向量→将所求两个平面所成的角转化为两个向量的夹角
——————————
[规范解答示例]
——————
—————————
2C 2A
[规范解答示例] ————————
1+cos C 1+cos A 3 (1)证明:因为acos 2 +ccos 2 =a· 2 +c· 2 =2b, 所以a+c+(acos C+ccos A)=3b,4分
2 2 2 a2+b2-c2 b + c - a 故a+c+ +c· 2bc =3b,整理得a+c=2b, a· 2ab
[解题指导] 围→求f(x)的最值
化简变形→f(x)=Asin(ωx+φ)→根据周期求ω→确定ωx+φ的范
————
[规范解答示例] ————
3 (1)f(x)= 2 - 3sin2 ωx-sin ωxcos ωx 1-cos 2ωx 1 3 = 2 - 3· -2sin 2ωx2分 2 3 1 = 2 cos 2ωx-2sin 2ωx
因此M 3 1 , , 0 , 2 2
8分
3 1 3 1 → → → 所以MD1=- ,- , 3,D1C1=MB=- , ,0 . 10分 2 2 2 2

2018年高考数学(理)二轮专题复习课件:第二部分 专题八 客观压轴题1

2018年高考数学(理)二轮专题复习课件:第二部分 专题八  客观压轴题1
������ =1 i=1 ������ =1
核心知识
考点精题
-6-
������ 2 + ������,������ < 0, 4.(2017河北石家庄二中模拟,理10)设函数f(x)= -������ 2 ,������ ≥ 0, g(x) 为定义在R上的奇函数,且当x<0时,g(x)=x2-2x-5,若f(g(a))≤2,则实 数a的取值范围是( A )
与 y=f(x)图象的 )
B
A.0
B.m
������ +1 ������ 1 ������
C.2m D.4m
1 ������
解析: 由f(-x)=2-f(x),得f(x)的图象关于点(0,1)对称.
而 y=
=1+ 的图象是由 y= 的图象向上平移一个单位长度得到
的, ������ +1 故 y= 的图象关于点(0,1)对称 .
������
则函数 y=
������
������ +1 ������
与 y=f(x)图象的交点也关于点(0,1)对称,且每一组对称
m ������ ������ 2 ������ 2
点 (xi,yi),(x'i,y'i)(i=1,2,… ,m)满足 xi+x'i=0,yi+y' i=2, 所以 ∑ (xi+yi)= ∑ xi+ ∑ yi= ×0+ ×2=m.
1 2 1 2 1 2
解析: ∵x0为函数f(x)=sin πx的零点,∴sin πx0=0,即πx0=kπ,k∈Z,
则 x0=k,若 k 是偶数 ,则 f ������0 + 若 k 是奇数 ,则 f ������0 + 的取值有 9 个 ;

2018年高考数学文科江苏专版二轮专题复习与策略课件:专题二 函数的图象与性质 精品

2018年高考数学文科江苏专版二轮专题复习与策略课件:专题二 函数的图象与性质 精品
a
且 a≠1),则实数 a 的取值范围是________.
【导学号:91632004】
[解题指导]
(1)f
-52

f
9 2
―f―x―在―周[-―期1―,为―12,―上―已―知→
建立a的等量关系 ―→ 求a ―→ 求f5a
(2)
fx=x3+2x
奇――偶→性
fx为奇函数
f1+flog13>0 ――――――a ――→
1.已知函数 f(x)=e1x--kk,x+x≤k,0,x>0 是 R 上的增函数,则实数 k 的取值范 围是________.
12,1 [由 f(x)为 R 上的增函数,则 f(x)在(0,+∞)上为增函数,1-k>0, k<1.同时,k≥e0-k=1-k,即 k≥21,从而 k∈12,1.]
2.(2016·南京三模)已知 f(x)是定义在 R 上的偶函数,当 x≥0 时,f(x)=2x -2,则不等式 f(x-1)≤2 的解集是________.
【名师点评】 1.应用函数周期性和奇偶性求值的关键是借助函数的性质将 待求函数值的自变量向已知函数的定义域进行转化.
2.关于周期性的常用结论,若对于函数 fx的定义域内任意一个自变量的值 x 都有 fx+a=-fx或 fx+a=f1x 或 fx+a=-f1x a 是常数且 a≠0,则 fx 是以 2a 为一个周期的周期函数.
(2)∵f(x)=x3+2x,∴f(-x)=-x3-2x=-f(x), ∴f(x)为 R 上的奇函数,∴f(1)+f(loga13)>0 等价于 f(1)>f(loga3). 又 f′(x)=3x2+2>0,∴f(x)在 R 上单调递增, ∴loga3<1, 当 a>1 时,由 loga3<1 得 a>3, 当 0<a<1 时,由 loga3<1 得 0<a<1. 综上可知,a∈(0,1)∪(3,+∞).]

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题一 集合与常用逻辑用语、不等式 第2

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题一 集合与常用逻辑用语、不等式 第2
解析答案
考情考向分析
1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题 是高考的热点; 2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和 参数的取值范围; 3.利用不等式解决实际问题.
返回
热点分类突破
热点一 不等式的解法 1.一元二次不等式的解法 先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+ c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定 一元二次不等式的解集.
∴x2-x<2, 即x2-x-2<0,解得-1<x<2.
解析答案
热点二 基本不等式的应用
利用基本不等式求最大值、最小值,其基本法则是:(1)如果 x>0,y>0, xy=p(定值),当 x=y 时,x+y 有最小值 2 p(简记为:积定,和有最小值); (2)如果 x>0,y>0,x+y=s(定值),当 x=y 时,xy 有最大值14s2(简记为: 和定,积有最大值).
4.若不等式 x2+2x<ab+1a6b对任意 a,b∈(0,+∞)恒成立,则实数 x 的取 值范围是_(_-__4_,2_)__.
押题依据 “恒成立”问题是函数和不等式交汇处的重要题型,可综 合考查不等式的性质,函数的值域等知识,是高考的热点.
押题依据
解析
答案
返回
押题依据
解析
答案
1 23 4
x-2y+4≥0, 3x-y-3≤0, 3.已知实数 x,y 满足x≥12, y≥1,
5 则 z=x+2y 的最小值为___2_____.
押题依据 线性规划的实质是数形结合思想的应用,利用线性规划的方 法求一些线性目标函数的最值是近几年高考的热点.

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题八 系列4选讲 第2讲 精品

2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题八 系列4选讲 第2讲 精品

解析答案
(2)求矩阵A-1的特征值以及属于每个特征值的一个特征向量. 解 矩阵 A-1 的特征多项式为 f(λ)=λ--12 λ- -12=λ2-4λ+3=(λ-1)(λ-3), 令f(x)=0,得矩阵A-1的特征值为λ1=1或λ2=3,
所以
1 ξ1=-1是矩阵
A-1
的属于特征值
λ1=1
的一个特征向量,
. 1
12 3
解析答案
(2)求矩阵C,使得AC=B. 解 由AC=B得(A-1A)C=A-1B,
3 故 C=A-1B=2
-21
-2
1
1
0
-11=32-2
2 .
-3
12 3
解析答案
考情考向分析
本讲从内容上看,主要考查二阶矩阵的基本运算,考查矩阵的逆运算 及利用系数矩阵的逆矩阵求点的坐标或曲线方程等,一般以基础题目 为主,难度不大.又经常与其他知识结合,在考查基础知识的同时, 考查转化与化归等数学思想,以及分析问题、解决问题的能力.
专题八 系列4选讲
第2讲 矩阵与变换
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
12 3
1.(2016·江苏)已知矩阵 A=10 矩阵 AB.
-22,矩阵
B
的逆矩阵
B-1=1 0
-12,求 2

2 B=(B-1)-1=2
0 2
1 1222=01
1 41.
2
1 ∴AB=0
-14 -41
xy00.
∴x=43x0-14y0, y=-14x0-41y0.
∴xy00= =-x-xy-,3y.
代入直线方程2x+y-5=0,得2(x-y)-(x+3y)-5=0, 即x-5y-5=0,即为所求的直线方程.

2018年高考数学文科江苏专版二轮专题复习与策略课件:

2018年高考数学文科江苏专版二轮专题复习与策略课件:

+2a4 得 a2q6=a2q4+2a2q2,消去 a2q2,得到关于 q2 的一元二次方程(q2)2-q2-2 =0,解得 q2=2,a6=a2q4=1×22=4. (2)根据题意易知 a1=2,a2= 2,a3=1, 2 所以{an}构成以 a1=2 为首项,以 q= 为公比的等比数列, 2 所以 a7=a1q
图 111
(3)设等比数列{an}的前 n 项和为 Sn,若 a4,a3,a5 成等差数列,且 Sk=33, Sk+1=-63,其中 k∈N*,则 Sk+2 的值为________.
(1)4
1 (2) (3)129 [(1)因为 a8=a2q6,a6=a2q4,a4=a2q2,所以由 a8=a6 4
[解题指导]
等差数列定义 an+1-an=bn (1) bn+1-bn=1 ――→ 求bn ――→ 求an
构造法 an与Sn的关系 (2) Sn+1=2Sn+1 ――→ 求Sn ――→ 求an
n2-11n+26 (1) 2 -a3=-2.
2, (2) n-2 2 , 3·
n=1, n≥2
【名师点评】 等差比数列基本运算中的关注点 1.基本量. 在等差比数列中,首项 a1 和公差 d公比 q是两个基本量. 2.解题思路. 1求公差 d公比 q:常用公式 an=am+n-mdan=amqn-m; 2列方程组: 若条件与结论的联系不明显时, 常把条件转化为关于 a1 和 dq 的方程组求解,但要注意消元及整体计算,以减少计算量.
热 点 题 型 · 探 究
专题十一
等差数列与等比数列
专 题 限 时 集 训
题型一| 数列的概念及其表示
(1)(2016· 无锡期末)对于数列{an},定义数列{bn}满足:bn=an+1- an(n∈N*),且 bn+1-bn=1(n∈N*),a3=1,a4=-1,则 an=________. (2)已知数列{an}的首项 a1=2,其前 n 项和为 Sn.若 Sn+1=2Sn+1,则 an= ________.

2018年江苏高考数学二轮复习教师用书:第2部分 八大难点突破 难点6 数列中的证明、探索性和存在性

2018年江苏高考数学二轮复习教师用书:第2部分 八大难点突破 难点6 数列中的证明、探索性和存在性

前者必须加上“n ≥2”,否则 n =1 时 a 0 无意义;在等比数列中一样有:①n ≥2 时,有 a n +1a nnn (2)由(1)知 3 a n =1+(n -1)·(-2)=3-2n ,所以 a n =(3-2n ) ⎪ , 1 2 3 n 所以 S n =1· ⎪ +(-1)· ⎪ +(-3)· ⎪ +…+(3-2n )· ⎪ ,2 3 n n +1所以 S n =1· ⎪ +(-1)· ⎪ +…+(5-2n )· ⎪ +(3-2n )· ⎪ ,2 3 n 两式相减得 S n = -2⎢ ⎪ + ⎪ +…+ ⎪ ⎥ ⎛1⎫n +1-(3-2n )· ⎪a 1= ,a n +1= a n -1难点六 数列中的证明、探索性和存在性、不定方程的解等综合问题(对应学生用书第 72 页)近几年的高考试卷中经常出现以数列为载体的证明、探索等综合问题,这类问题不仅考查学生的分析问题解决问题的能力,以及探索能力,而且给学生提供了创新思维的空间.1.等差数列、等比数列的证明问题有关证明、判断数列是等差(等比)数列的主要证明方法有:定义法、性质法.定义法:用定义法判断一个数列是等差数列,常采用的两个式子 a n -a n -1=d 和 a n +1-a n =d 有差别,a n a n -1=…=q (常数 q ≠0);②n ∈N *时,有 =…=q (常数 q ≠0).性质法:a n +a n +2=2a n +1⇔{a n }是等差数列,a n a n +2=(a n +1)2(a n ≠0)⇔{a n }是等比数列,这是证明数列{a n }为等差(等比)数列的另一种主要方法.【例 1】 (苏北四市淮安、宿 迁、连云港、徐州)2017 届高三上学期期中)在数列{a n }中,已知1 2 3 3 3n +1,n ∈N *,设 S n 为{a n }的前 n 项和.(1)求证:数列{3n a n }是等差数列; (2)求 S n ;(3)是否存在正整数 p ,q ,r (p <q <r ),使 S p ,S q ,S r 成等差数列?若存在,求出 p ,q ,r的值;若不存在,说明理由.1 2[解](1)证明:因为 a n +1=3a n -3n +1,n ∈N *,所以 3n +1a n +1-3n a n =-2,1又因为 a 1=3,所以 31·a 1=1,所以{3n a n }是首项为 1,公差为-2 的等差数列.⎛1⎫ ⎝3⎭⎛1⎫ ⎛1⎫ ⎛1⎫ ⎛1⎫ ⎝3⎭ ⎝3⎭ ⎝3⎭⎝3⎭1 ⎛1⎫ ⎛1⎫ ⎛1⎫ ⎛1⎫ 3 ⎝3⎭ ⎝3⎭ ⎝3⎭ ⎝3⎭2 1 ⎡⎛1⎫ ⎛1⎫ ⎛1⎫ ⎤3 3 ⎣⎝3⎭ ⎝3⎭ ⎝3⎭ ⎦⎝3⎭⎢1×⎝3⎭ ⎥+(2n -3)·⎛ ⎝1⎫⎪⎭ ⎣91 331-⎦⎛1⎫ n +1=2n · ⎪n +1,⎪3p 3r由于当 n ≥2 时,a n =(3-2n ) ⎪n <0,所以数列{S n }单调递减. q -1 ≥⎡1-⎛1⎫n -1⎤1= -23⎝3⎭n所以 S n =3n .2q (3)假设存在正整数 p ,q ,r (p <q <r ),使 S p ,S q ,S r 成等差数列,则 2S q =S p +S r ,即3q =p r+ .⎛1⎫ ⎝3⎭p q -1又 p <q ,所以 p ≤q -1 且 q 至少为 2,所以3p ≥ 3q -1 ,q -1 2q q -33q -1 - 3q = 3q .p q -1 2q r ①当 q ≥3 时,3p ≥ 3 3q ,又3r >0,p r 2q所以3p +3r > 3q ,等式不成立.②当 q =2 时,p =1,4 1 r r 1所以9=3+3r ,所以3r =9,所以 r =3({S n }单调递减,解唯一确定).综上可知,p ,q ,r 的值为 1,2,3.2.数列中探索与存在性问题数列探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.而要确定范围内的数值,则往往涉及不定方程的正整数解问题.【例 2】 (2017·江苏省盐城市高考数学三模)已知数列{a n },{b n }都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列{c n }.(1)设数列{a n },{b n }分别为等差、等比数列,若 a 1=b 1=1,a 2=b 3,a 6=b 5,求 c 20; (2)设{a n }的首项为 1,各项为正整数,b n =3n ,若新数列{c n }是等差数列,求数列{c n }的前 n 项和 S n ;(3)设 b n =q n -1(q 是不小于 2 的正整数),c 1=b 1,是否存在等差数列{a n },使得对任意的 n ∈N *,在 b n 与 b n +1 之间数列{a n }的项数总是 b n ?若存在,请给出一个满足题意的等差数列⎩ 当 n ≥4 时,解得 d = 2<1,不满足各项为正整数;由 3n =2m -1,得 m = ,3n 是奇数,3n +1 是正偶数,m 有正整数解,⎪⎩b n +1>ab 1+b 2+…+b n , 2⎧⎪b n <a 1+q +…+qn -2+1 ⎩{a n };若不存在,请说明理由.【导学号:56394105】[解] (1)设等差数列{a n }的公差为 d ,等比数列{b n }的公比为 q ,⎧⎪1+d =q 2由题意得,⎨⎪1+5d =q 4,解得 d =0 或 3,因数列{a n },{b n }单调递增,所以 d >0,q >1,所以 d =3,q =2,所以 a n =3n -2,b n =2n -1.因为 a 1=b 1=1,a 2=b 3,a 6=b 5,b 7>a 20. ∴c 20=a 17=49.(2)设等差数列{c n }的公差为 d ,又 a 1=1,且 b n =3n , 所以 c 1=1,所以 c n =dn +1-d .因为 b 1=3 是{c n }中的项,所以设 b 1=c n ,即 d (n -1)=2.n -1当 b 1=c 3=3 时,d =1,此时 c n =n ,只需取 a n =n ,而等比数列{b n }的项都是等差数列{a n }中的项,所以 S n =n n +1;当 b 1=c 2=3 时,d =2,此时 c n =2n -1,只需取 a n =2n -1,3n +1 2所以等比数列{b n }的项都是等差数列{a n }中的项,所以 S n =n 2.n n +1综上所述,数列{ c n }的前 n 项和 S n = 2 或 S n =n 2.(3)存在等差数列{a n },只需首项 a 1∈(1,q ),公差 d =q -1.下 证 b n 与 b n + 1 之 间 数 列 {a n } 的 项 数 为 b n , 即 证 对 任 意 正 整 数 n , 都 有⎧⎪b n <ab 1+b 2+…+b n -1+1,⎨即⎨⎪b n +1>a 1+q +…+qn -1成立.由 b n -a 1+q +…+qn -2+1=q n -1-a 1-(1+q +…+q n -2)(q -1)=1-a 1<0, b n +1-a 1+q +…+qn -1=q n -a 1-(1+q +…+q n -1-1)(q -1)=q -a 1>0. 所以首项 a 1∈(1,q ),公差 d =q -1 的等差数列{a n }符合题意.。

2018届高考数学文新课标二轮专题复习课件:2-8 数列 精品

2018届高考数学文新课标二轮专题复习课件:2-8 数列 精品
【答案】 n
(2)(2016·福州五校联考)已知数列{an}的前 n 项和为 Sn=pn2 a1+2a2+3a3+…+nan
-2n,n∈N*,bn= 1+2+3+…+n ,若数列{bn}是公差为 2
的等差数列,则数列{an}的通项公式为________.
【解析】 由 Sn=pn2-2n 可知,当 n=1 时,a1=p-2, 当 n≥2 时,an=Sn-Sn-1=2pn-p-2,a1=p-2 适合上式, 因而对任意的 n∈N*,均有 an=2pn-p-2,an+1-an=2p, 因而数列{an}是公差为 2p 的等差数列,a2=3p-2,b1=a1= p-2, b2=a11++22a2=7p- 3 6,b2-b1=7p- 3 6-(p-2)=2,得 p=23, a1=-21.
4.(2016·兰州模拟)已知数列{an},{bn}都是等差数列,Sn,
Tn
分别是它们的前
n
项和,并且Sn=7n+1,则 a2+a5+a17+a22 =
Tn n+3
b8+b10+b12+b16
() 34
A. 5 31
C. 4
B.5 31
D. 5
答案 D 解析 令 Sn=(7n+1)n,Tn=n(n+3),则 an=14n-6,bn= 2n+2,所以ba82++ba150++ab1172++ab2126=2128++6242++22362++33402=351.
(2)(2016·河南六市联考)已知正项数列{an}的前 n 项和为 Sn,
若{an}和{ Sn}都是等差数列,且公差相等,则 a6=( )
11
3
A. 4
B.2
7 C.2
D.1
【 解 析 】 设 {an} 的 公 差 为 d , 由 题 意 得 , Sn = na1+n(n- 2 1)d= d2n2+(a1-d2)n,又{an}和{ Sn}都是

2018江苏高考数学总复习要点——知识篇(全套)精选课件

2018江苏高考数学总复习要点——知识篇(全套)精选课件
1 数列的有关概念 (A)
六 数列
2 等差数列 (C)
⑴ 相关概念
① 公差d对数列的影响
② 通项公式
若d>0,则为递增数列 若d=0,则为常数数列 若d>0,则为递减数列
ana1(n1)d anam(nm)d
③ 前n项和
Sn
(a1
an)n 2
Sn na1n(n21)d
等差数列的通项an
a x1 x2 2 y1 y2 2 . 这就是平面内两点间的距离公式
3.cos a b .
ab
用于计算向量的夹角
设a x1, y1 , b x2 , y2 , 则cos
4.ab a b
x1x2 y1 y2 x12 y12 x22 y22
二、函数概念与基本初等函数
• 7函数模型及其应用 • (1)实际问题中的自变量取值的合理性
• (2)对函数 y=x+1/x 的认识 • 定义域 (-∞,0)U(0,+ ∞) • 值域 (- ∞,-2]U[2,+ ∞) • 单调性:增区间(-∞,-1),(1,+ ∞)
» • 奇偶性:奇函数
减区间[-1,0),(0,1]
五 平面向量
⑸ 数量积的运算律 ①交换律: abba
②对数乘的结合律: (a)b(ab)a(b)
③分配律: (ab)cacbc
注意: 数量积不满足结合律,即:
(ab)ca(bc)
方向不同
五 平面向量
5 平面向量的平行与垂直(B)
⑴ 平行(即共线)记作: a//b
二、函数概念与基本初等函数
二、函数概念与基本初等函数
• (5)周期性 f(x+T)=f(x) • ①f(x+a)=-f(x) T=2a • ②f(x+a)=1/f(x) T=2a • ③ f(x+a)=[1+f(x)]/[1-f(x)] T=4a • (6)对称性 • ①f(a-x)=f(a+x) 对称轴:x=a • ②f(2a-x)=f(x) 对称轴: x=a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②0<x<1 时,只需 a≥(x+1)ln x, 令 n(x)=(x+1)ln x(0<x<1), 1 则 n′(x)=ln x+ x+1,由(1)知 n′(x)在(0,1)递减, 故 n′(x)>n′(1)=2, 故 n(x)在(0,1)递增,故 n(x)<n(1)=0, 故 a≥0,而 a 为正实数,故 a>0.
具体方法为将已知恒成立或存在性的不等式或等式由等价原理把参数和变量分 离开,转化为一元已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是 参数, 一般遵循“知道谁的范围, 谁是变量; 求谁的范围, 谁是参数”的原则. 参 变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利 用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.
[解]
1 -ln x x ln x (1)y=f (x)g(x)= ex ,y′= ex ,
1 x=1 时,y=0,y′= e, 1 1 故切线方程是:y= x- ; e e
(2)证明:由 g(x1)-g(x2)=λ[f (x2)-f (x1)], 得:g(x1)+λf (x1)=g(x2)+λf (x2), λ 令 h(x)=g(x)+λf (x)=ln x+ x(x>0), e ex-λx h′(x)= , xex 令 ω(x)=ex-λx,则 ω′(x)=ex-λ, 由 x>0,得 ex>1,
难点八 函数最值、恒成立及存在性问题
栏目 导航
专项限时集训
(对应学生用书第 75 页) 恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁, 也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形, 构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理. 恒成立⇔fxmin>a F(x)>a:有解⇔fxmax>a 无解⇔fx ≤a max
累加得 1 -n e - 1 - e 2n-1 1 3 2 n - 1 2 n - 3 2 1 n n+ n+„+ < e- 2 +e - 2 +„ + e- 2= < -1 2 n 2 n 2 n 1-e e . e-1
e ∴1 +3 +„+(2n-1) < · (2n)n, e-1
[解]
1 (1)f (x)=(x+1)ln x-ax+a,f ′(x)=ln x+ +1-a, x
1 若 f (x)在(0,+∞)上单调递增,则 a≤ln x+ +1 在(0,+∞)恒成立(a>0), x x-1 1 令 g(x)=ln x+ x+1(x>0),g′(x)= x2 , 令 g′(x)>0,解得:x>1,令 g′(x)<0,解得:0<x<1, 故 g(x)在(0,1)递减,在(1,+∞)递增, 故 g(x)min=g(1)=2, 故 0<a≤2;
n n n
成立?若存在,求 a 的最小值;若不存在,请说明理由. 【导学号:56394112】
[解]
(1)∵f (x)=ex-a(x+1),∴f ′(x)=ex-a,
∵a>0,f ′(x)=ex-a=0 的解为 x=ln a. ∴f (x)min=f (ln a)=a-a(ln a+1)=-aln a. ∵f (x)≥0 对一切 x∈R 恒成立,∴-aln a≥0,∴aln a≤0,∴amax=1.
n n n
e 故存在正整数 a=2.使得 1 +3 +„+(2n-1) < · (an)n. e-1
n n n
【例 2】 (2017· 江苏省无锡市高考数学一模)已知函数 f (x)=(x+1)ln x-ax+a(a 为正实数,且为常数). (1)若 f (x)在(0,+∞)上单调递增,求 a 的取值范围; (2)若不等式(x-1)f (x)≥0 恒成立,求 a 的取值范围.
(3)设 t(x)=ex-x-1,则 t′(x)=ex-1,令 t′(x)=0 得:x=0. 在 x<0 时 t′(x)<0,f (x)递减;在 x>0 时 t′(x)>0,f (x)递增. ∴t(x)最小值为 t(0)=0,故 ex≥x+1,
2n-i i i i i n 取 x=-2n,i=1,3,„,2n-1,得 1-2n≤e-2n,即 ≤e-2, 2 n
(2)∵f (x)=ex-a(x+1), a a x ∴g(x)=f (x)+ex=e +ex-ax-a. ∵a≤-1,直线 AB 的斜率恒大于常数 m, a ∴g′(x)=e - x-a≥2 e
x
e
x
a - x-a · e
=-a+2 -a=m(a≤-1),解得 m≤3, ∴实数 m 的取值范围是(-∞,3].
1 【例 3】 (2017· 江苏省淮安市高考数学二模)已知函数 f (x)=ex,g(x)=ln x,其中 e 为自然对数的底数. (1)求函数 y=f (x)g(x)在 x=1 处的切线方程; (2)若存在 x1,x2(x1≠x2),使得 g(x1)-g(x2)=λ[f (x2)-f (x1)]成立,其中 λ 为常数, 求证:λ>e; (3)若对任意的 x∈(0,1],不等式 f (x)g(x)≤a(x-1)恒成立,求实数 a 的取值范围. 【导学号:56394113】
(2)若不等式(x-1)f (x)≥0 恒成立,即(x-1)[(x+1)ln x-ax+a]≥0 恒成立, ①x≥1 时,只需 a≤(x+1)ln x 恒成立, 令 m(x)=(x+1)ln x(x≥1), 1 则 m′(x)=ln x+ +1, x 由(1)得:m′(x)≥2, 故 m(x)在[1,+∞)递增,m(x)≥m(1)=0, 故 a≤0,而 a 为正实数,故 a≤0 不合题意;
【例 1】
(2017· 盐城市滨海县八滩中学二模)设 f (x)=ex-a(x+1).
(1)若 a>0,f (x)≥0 对一切 x(x1,y1),B(x2,y2)(x1≠x2)是曲线 y=g(x)上任意两点,若 e 对任意的 a≤-1,直线 AB 的斜率恒大于常数 m,求 m 的取值范围; e (3)是否存在正整数 a,使得 1 +3 +„+(2n-1) < (an)n 对一切正整数 n 都 e-1
相关文档
最新文档