第六节时间序列分析

合集下载

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种重要的统计方法,用于研究随时间变化的数据序列。

它可以帮助我们了解数据的趋势、季节性和周期性,预测未来的发展趋势,以及识别可能存在的异常情况。

本文将介绍时间序列分析的基本概念和步骤,并探讨其在实际应用中的重要性。

时间序列分析的目标是通过对历史数据的分析,找出其中的模式和规律,并将其应用于未来的预测。

在进行时间序列分析之前,首先需要对数据进行收集和整理。

收集的数据应该是按照时间顺序排列的,这样才能准确反映出数据的变化趋势。

整理数据的过程包括去除异常值、缺失值和季节性因素等。

时间序列分析的第一步是绘制数据的图表,以便直观地观察数据的变化趋势。

常用的图表类型包括折线图和柱状图。

接下来,需要对数据进行平稳性检验。

平稳性是指数据的均值和方差在整个时间范围内保持不变。

如果数据不平稳,需要对其进行差分处理,以消除趋势和季节性。

平稳性处理完成后,下一步是确定模型。

根据数据的特点和模式,选择合适的时间序列模型。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归移动平均滑动平均模型(ARIMA)和季节性自回归移动平均模型(SARIMA)等。

选择模型时,需要考虑模型的复杂度和适应数据的能力。

确定模型后,需要对模型进行参数估计和模型检验。

参数估计是根据历史数据来估计模型中的参数值,以使模型能够最好地拟合数据。

模型检验是通过对残差进行检验,检查模型是否能够很好地解释和预测数据。

常用的模型检验方法包括图形检验和统计检验。

最后,使用已经确定并验证的模型进行预测。

根据历史数据和模型的参数,可以预测未来一段时间内的数据情况。

在预测时,需要注意预测结果的置信区间和可靠性,并及时调整模型和预测方法。

时间序列分析在实际应用中具有广泛的应用价值。

它可以帮助政府和企业进行长期规划和决策,预测经济、销售和市场的发展趋势,优化资源配置和生产计划。

同时,时间序列分析也对个人金融投资有着重要的指导作用,可以帮助投资者了解市场动态和行业走势,制定合理的投资策略。

时间序列分析

时间序列分析

时间序列分析⼀、定义时间序列(或称动态数列)是指将同⼀统计指标的数值按其发⽣的时间先后顺序排列⽽成的数列。

时间序列分析的主要⽬的是根据已有的历史数据对未来进⾏预测。

经济数据中⼤多数以时间序列的形式给出。

根据观察时间的不同,时间序列中的时间可以是年份、季度、⽉份或其他任何时间形式。

时间序列简单的说就是各时间点上形成的数值序列。

时间序列分析并不是关于时间的回归,它主要是研究⾃⾝的变化规律的(这⾥不考虑含外⽣变量的时间序列)。

对时间序列进⾏观察,研究,寻找它变化发展的规律,预测它将来的⾛势,就是时间序列分析。

⼆、构成要素:长期趋势,季节变动,循环变动,不规则变动。

1)长期趋势( T )现象在较长时期内受某种根本性因素作⽤⽽形成的总的变动趋势。

2)季节变动( S )现象在⼀年内随着季节的变化⽽发⽣的有规律的周期性变动。

3)循环变动( C )现象以若⼲年为周期所呈现出的波浪起伏形态的有规律的变动。

4)不规则变动(I )是⼀种⽆规律可循的变动,包括严格的随机变动和不规则的突发性影响很⼤的变动两种类型。

三、作⽤1. 反映社会经济现象的发展变化过程,描述现象的发展状态和结果。

2. 研究社会经济现象的发展趋势和发展速度。

3. 探索现象发展变化的规律,对某些社会经济现象进⾏预测。

4. 利⽤时间序列可以在不同地区或国家之间进⾏对⽐分析,这也是统计分析的重要⽅法之⼀。

四、变量特征⾮平稳性(nonstationarity,也译作不平稳性,⾮稳定性):即时间序列变量⽆法呈现出⼀个长期趋势并最终趋于⼀个常数或是⼀个线性函数。

波动幅度随时间变化(Time-varying Volatility):即⼀个时间序列变量的⽅差随时间的变化⽽变化。

这两个特征使得有效分析时间序列变量⼗分困难。

平稳型时间数列(Stationary Time Series)系指⼀个时间数列其统计特性将不随时间之变化⽽改变。

五、时域分析的经典步骤1.考察序列的特征,检验是否具有平稳性2.根据序列特征选择拟合的模型3.确定模型的⼝径4.检验、优化模型5.利⽤拟合的模型进⾏预测以下为转载————————————————版权声明:本⽂为CSDN博主「Python⾦融量化」的原创⽂章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原⽂出处链接及本声明。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。

它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。

本文将介绍时间序列分析的基本概念、常见的方法和应用领域。

一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。

它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。

时间序列的分析要求数据点之间存在一定的相关性和规律性。

二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。

趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。

三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。

常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。

2. 平稳性检验平稳性是时间序列分析的基本假设。

平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。

常见的平稳性检验方法有单位根检验和ADF检验。

3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。

常用的时间序列模型有ARIMA模型、AR模型和MA模型等。

通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。

4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。

常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。

根据诊断结果,我们可以对模型进行改进,提高预测的准确性。

四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。

在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。

在金融学中,它可以帮助我们预测股票价格和利率走势。

在气象学中,时间序列分析可以用于预测天气变化和自然灾害。

在市场营销中,它可以帮助我们预测销售量和用户行为。

什么是时间序列分析

什么是时间序列分析

什么是时间序列分析关键信息项:1、时间序列分析的定义2、时间序列分析的目的3、时间序列分析的常用方法4、时间序列数据的特点5、时间序列分析的应用领域6、时间序列分析的步骤7、时间序列分析的局限性11 时间序列分析的定义时间序列分析是一种用于研究数据随时间变化规律的统计方法。

它通过对一系列按时间顺序排列的数据点进行分析,以揭示数据中的趋势、季节性、周期性和随机性等特征。

时间序列分析在经济学、金融学、气象学、工程学等多个领域都有广泛的应用。

111 时间序列数据的特点时间序列数据具有以下几个主要特点:1111 顺序性:数据是按照时间顺序依次记录的,时间顺序对于分析结果具有重要影响。

1112 相关性:相邻时间点的数据之间往往存在一定的相关性。

1113 趋势性:数据可能呈现出长期的上升、下降或稳定的趋势。

1114 季节性:某些数据在一年内的特定时间段内会表现出相似的模式,如销售数据在节假日期间的增加。

1115 随机性:数据中还包含了一些无法预测的随机波动。

12 时间序列分析的目的时间序列分析的主要目的包括:121 预测未来值:通过对历史数据的分析,预测未来一段时间内数据的可能取值,为决策提供依据。

122 理解数据的动态特征:揭示数据的趋势、季节性和周期性等模式,帮助人们更好地理解数据产生的机制。

123 监测和控制:用于监测系统的运行状态,及时发现异常情况并采取相应的控制措施。

124 评估政策和干预的效果:在政策实施或干预措施执行后,通过时间序列分析评估其对相关数据的影响。

13 时间序列分析的常用方法常用的时间序列分析方法包括:131 移动平均法:通过计算一定时期内数据的平均值来平滑数据,消除随机波动。

132 指数平滑法:对历史数据进行加权平均,给予近期数据更高的权重,以更好地反映数据的最新变化。

133 自回归模型(AR):利用数据自身的滞后值来预测当前值。

134 移动平均自回归模型(ARMA):结合自回归和移动平均的特点进行建模。

第六章时间序列分析

第六章时间序列分析

第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。

这种数据称为时间序列数据。

时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。

时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。

表现了现象在时间上的动态变化,故又称为动态数列。

一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。

同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。

研究时间数列的意义:了解与预测。

[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。

知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。

在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。

几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。

二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。

第六章 时间序列分析

第六章 时间序列分析
6 - 46
统计学
长期趋势分析方法
数列修匀法:
• 时距扩大法(平均数扩大和总数扩 大法)
• 移动平均法(简单和加权移动平均 法)
趋势模型法
6 - 47
统计学
时距扩大法
时距扩大法
• 平均数扩大法 • 总数扩大法
优缺点
• 简单明了 • 损失的信息过多,不便于进一步分
析例题
6 - 48
6 - 11
统计学
序时平均数的计算
序时平均数的计算
总量指标数列
相对数和平均数数列
时期数列 时点数列
连续登记 间断登记
间隔相等
间隔不等
6 - 12
统计学 时期数列序时平均数
时期数列序时平均数的计算公式例题
a a1 a2 ... an1 an
ai
n
n
有时以持续的时间长度为权数(加权算 术平均法)
6 - 20
统计学
平均增长量
平均增长量

各逐期增长量之和 增长量个数
累计增长量 原数列项数-1
6 - 21
统计学
时间序列的速度指标
6 - 22
统计学
发展速度
发展速度

报告期水平 基期水平
6 - 23
统计学
发展速度分类
定基发展速度
a1 / a0 , a2 / a0 ,..., an / a0
3. 排列的时间可以是年份、季度、月份或 其他任何时间形式例题
6-6
统计学
时间序列的种类
一、总量指标时间数列 1.时期数列 2.时点数列 二、相对指标时间数列 三、平均指标时间数列
6-7
统计学 编制时间序列的原则

时间序列分析法

时间序列分析法

时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。

时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。

时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。

时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。

均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。

移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。

2. 趋势分析趋势分析用于识别时间序列中的长期趋势。

常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。

这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。

3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。

常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。

这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。

4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。

AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。

ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。

5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。

ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。

差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。

以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。

在实际应用中,根据具体情况选择合适的方法进行分析和预测。

时间序列分析

时间序列分析

时间序列分析时间序列数据的特点是观测值之间存在时间上的依赖关系,即一个观测值的取值可能与之前的多个观测值存在相关性。

时间序列分析主要考虑以下几个方面:1. 趋势分析:时间序列数据中存在的长期增长或下降趋势可以通过趋势分析来判断。

趋势分析可以采用移动平均法、指数平滑法等方法来拟合趋势线,从而预测未来的趋势。

2. 季节性分析:时间序列数据中的季节性波动是一种按照固定的季节循环出现的规律变动。

季节性分析可以通过季节性指数、分解法等方法来对季节性波动进行分析和预测。

3. 周期性分析:周期性是指时间序列数据中存在的较长周期的波动。

周期性分析可以通过傅里叶分析、自相关函数等方法来分析和预测周期性波动。

4. 随机性分析:时间序列数据中的随机变动是指除趋势、季节性、周期性之外的不可预测的波动。

随机性分析可以通过残差项的分析来判断数据中是否存在随机波动。

时间序列分析的方法包括统计方法和经典时间序列分析方法。

统计方法主要包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

经典时间序列分析方法主要包括指数平滑法、趋势法、季节性指数法等。

时间序列分析的应用领域广泛。

在经济学中,时间序列分析可以用来预测经济指标的变动趋势,为政府决策提供依据。

在金融学中,时间序列分析可以用来预测股市的走势,帮助投资者制定投资策略。

在气象学中,时间序列分析可以用来预测天气变化,为农民和旅行者提供参考。

在医学中,时间序列分析可以用来预测疾病的传播趋势,为疾病防控提供支持。

然而,时间序列分析也存在一些挑战和限制。

首先,时间序列数据的质量和可靠性对分析结果的影响很大,因此数据的采集、清洗和处理是很重要的。

其次,时间序列数据的非线性和非平稳性使得分析方法的选择和应用更为复杂。

此外,时间序列数据同时受到多种因素的影响,如外部环境、政策变化等,这些因素需要合理地加以考虑。

总的来说,时间序列分析是一种重要的统计分析方法,可以用来揭示时间序列数据内部的潜在规律和特征,并通过对过去数据的观察和分析来预测未来的趋势。

时间序列分析(统计分析学概念)

时间序列分析(统计分析学概念)
时间序列分析(统计分析学概 念)
统计分析学概念
01 基础知识
03 分类 05 主要用途
目录
02 性质特点 04 具体方法
时间序列分析(Time-Series Analysis)是指将原来的销售分解为四部分来看——趋势、周期、时期和不 稳定因素,然后综合这些因素,提出销售预测。强调的是通过对一个区域进行一定时间段内的连续遥感观测,提 取图像有关特征,并分析其变化过程与发展规模。当然,首先需要根据检测对象的时相变化特点来确定遥感监测 的周期,从而选择合适的遥感数据。
主要用途
时间序列分析常用在国民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水 文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。主要包括从 以下几个方面入手进行研究分析。
系统描述 根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。 系统分析 当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解 给定时间序列产生的机理。 预测未来 一般用ARMA模型拟合时间序列,预测该时间序列未来值。 决策和控制 根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必 要
特点:简单易行,便于掌握,但准确性差,一般只适用于短期预测。
分类
时间序列依据其特征,有以下几种表现形式,并产生与之相适应的分析方法: 1.长期趋势变化:受某种基本因素的影响,数据依时间变化时表现为一种确定倾向,它按某种规则稳步地增 长或下降。使用的分析方法有:移动平均法、指数平滑法、模型拟和法等。 2.季节性周期变化:受季节更替等因素影响,序列依一固定周期规则性的变化,又称商业循环。采用的方法: 季节指数。 3.循环变化:周期不固定的波动变化。 4.随机性变化:由许多不确定因素引起的序列变化。 时间序列分析主要有确定性变化分析和随机性变化分析。其中,确定性变化分析包括趋势变化分析、周期变 化分析、循环变化分析。随机性变化分析:有AR、MA、ARMA模型等。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种用来研究时间相关数据的统计方法。

它可以帮助我们了解时间序列的趋势、周期性和季节性,以及预测未来的发展趋势。

在此,我将介绍时间序列分析的基本原理、常用模型和实际应用。

时间序列分析的基本原理可以总结为以下几个步骤:收集时间序列数据、检验序列的平稳性、拟合适当的模型、进行模型诊断、进行预测和模型评估。

首先,收集时间序列数据是进行时间序列分析的前提。

时间序列数据是按照时间顺序排列的一组观测值,例如经济指标、股票价格或气温记录等。

接下来,我们需要检验时间序列的平稳性。

平稳性是指时间序列在统计特征上不随时间变化而变化的性质。

平稳时间序列的均值和方差是恒定的,并且自相关系数不随时间而变化。

然后,我们可以选择适当的时间序列模型来拟合数据。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性自回归积分移动平均模型(SARIMA)等。

在拟合模型之后,我们需要进行模型诊断来检验模型的拟合优度。

模型诊断的目标是检查模型的残差是否符合模型假设。

常用的诊断方法包括检查残差的自相关性、偏自相关性和正态性等。

最后,我们可以利用拟合好的模型进行预测。

预测是时间序列分析中最常用的应用之一,可以帮助我们预测未来的发展趋势。

常用的预测方法包括滚动预测和动态预测等。

时间序列分析具有广泛的应用领域。

在经济学中,时间序列分析被广泛应用于金融市场的预测、货币政策的研究以及宏观经济的分析等。

在气象学中,时间序列分析可以帮助我们预测天气的变化和气候的长期趋势。

在医学领域,时间序列分析可以用来研究疾病的发展趋势和预测疾病的传播范围。

总之,时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据的特征,预测未来的发展趋势,并从中获得有用的信息。

在实际应用中,研究人员需要根据具体问题选择合适的模型和方法,并进行模型诊断和评估。

通过深入研究时间序列分析,我们将能够更好地理解时间序列的本质,为实际问题提供更准确的预测和决策支持。

时间序列分析

时间序列分析
一次指数平滑所得的计算结果可以在数据集范围之外进行扩展,因此也就可以用来进行预测。预测也非常简单:
其中,是最后一个已经算出来的值。也就是说,一次指数平滑法得出的预测在任何时候都是一条直线。
刚刚描述的一次指数平滑法适用于没有总体趋势的时间序列。如果用来处理有总体趋势的序列,平滑值将往往滞后于原始数据,除非的值接近1,但这样一来就会造成不够平滑。
最后一个问题是如何选择拌合参数/。我的建议是反复试验。先试试0.2和0.4之间的几个值(非常粗略地),然后看看会得到什么结果。或者也可以为(实际数据和平滑算法的结果之间的)误差定义一个标准,再使用一个数值优化过程来将误差最小化。就我的经验而言,一般没有必要弄得这么麻烦,原因至少有两个:数值优化是一个不能保证收敛的迭代过程,最终你可能还需要花非常多时间将算法设计成收敛的。此外,任何这样的数值优化都受限于你选对误差进行最小化的表达式。问题是使误差最小化的参数值可能并不能满足在解决方案中你想要看到的其他特性(也就是近似值的精确性和结果曲线的平滑程度之间的平衡),那么,到最后你才会发现,手动的计算方法往往更好。不过,如果你要预测很多序列,花些精力构建一个能自动决定最优参数值的系统也是值得的,但要实现这个系统恐怕也并不容易。
设n个测量值的误差为ε1.ε2……εn,则这组测量值的标准误差σ等于:
数理统计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。MSE是衡量“平均误差”的一种较方便的方法, MSE可以评价数据的变化程度, MSE的值越小,说明预测模型描述实验数据具有更好的精确度。与此相对应的,还有均方根误差RMSE、平均绝对百分误差等等。
趋势描述的是时间序列的整体走势,比如总体上升或者总体下降。下图所示的时间序列是总体上升的:
季节性描述的是数据的周期性波动,比如以年或者周为周期,如下图:

关于时间序列分析

关于时间序列分析

关于时间序列分析时间序列分析是一种用于分析时间序列数据的统计方法。

时间序列数据是按照时间顺序排列的观测结果,可以是连续的或离散的。

时间序列分析是一种重要的技术,可以用于很多领域,例如经济学、金融学、气象学等。

它可以揭示时间序列数据的变化规律、趋势和季节性,为预测未来发展趋势提供依据。

时间序列分析的目标是研究时间序列数据的内在结构,以便进行预测和解释。

其核心是确定数据中的趋势、周期和随机成分。

趋势表示时间序列的长期变化趋势,周期表示时间序列的短期变化趋势,随机成分表示时间序列的无规律波动。

时间序列分析包括多种方法和技术,其中最常用的有平滑法和回归分析。

平滑法通过移动平均、指数平滑等方法消除数据中的波动,以便更好地观察趋势。

回归分析则通过建立数学模型,以自变量对因变量的影响程度来解释时间序列数据。

平滑法在时间序列分析中有多种实现方式。

移动平均是一种常见的平滑方法,它通过计算一定时间窗口内的平均值来平滑时间序列数据。

指数平滑是另一种常见的平滑方法,它给予近期数据更大的权重,以反映出时间序列的变化趋势。

回归分析是一种常用的时间序列分析方法。

它通过建立数学模型来描述自变量与因变量之间的关系,并用于预测未来值。

回归分析可以分为线性回归和非线性回归两种。

线性回归假设自变量和因变量之间存在线性关系,而非线性回归则放宽了这一假设。

时间序列分析还包括一些其他技术,例如自相关分析和谱分析。

自相关分析用于分析时间序列数据中的自相关性,即随着时间的推移,观测值之间的关联程度。

谱分析则用于分析时间序列数据中的周期性和频率特征。

时间序列分析在实际应用中具有广泛的价值。

在经济学领域,它可以用于预测股票价格、通货膨胀率等变量的未来走势。

在气象学领域,它可以用于预测气温、降雨量等变量的未来变化。

在金融学领域,它可以用于分析股票价格、汇率等金融指标的波动规律。

总之,时间序列分析是一种重要的统计方法,可以用于分析时间序列数据的变化规律和趋势。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据的模式、趋势和周期性。

它可以帮助我们了解随着时间推移,数据如何变化,并预测未来的发展趋势。

本文将介绍时间序列分析的基本概念、常用方法和实际应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据点。

它可以是连续的,例如每天的股票价格,也可以是离散的,例如每个月的销售量。

时间序列分析旨在通过观察数据中的模式和趋势,揭示数据背后的规律和关系。

二、时间序列分析的常用方法1. 描述统计法描述统计法用于计算数据的统计指标,如平均值、标准差和相关系数。

这些指标可以帮助我们了解数据的分布情况和相关性。

2. 组件分析法组件分析法将时间序列分解为趋势、季节和随机成分。

趋势表示长期的变化趋势,季节表示重复出现的周期性变化,随机成分表示无法通过趋势和季节解释的随机波动。

通过对组成部分的分析,可以更好地理解时间序列的内在规律。

3. 平稳性检验法平稳性是时间序列分析的基本假设之一。

平稳时间序列的统计特性不随时间变化而改变。

平稳性检验可以通过观察时间序列的趋势、自相关图和单位根检验等方法进行。

4. 预测方法时间序列分析的一个重要应用是预测未来的数值。

常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。

这些方法基于过去的数据,通过建立模型来预测未来的趋势和周期性。

三、时间序列分析的实际应用时间序列分析在各个领域都有广泛的应用。

在金融领域,它可以用于股票价格的预测和风险管理;在经济学领域,它可以用于 GDP 的预测和经济政策制定;在气象学领域,它可以用于天气预报和气候变化研究。

除了上述领域外,时间序列分析还用于交通流量预测、销售预测、生态学研究等。

通过对历史数据的分析,我们可以更好地理解和预测未来的发展趋势,为决策提供依据。

结论时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据中的模式和趋势。

通过对数据的描述统计、组件分析和预测,我们可以揭示数据背后的规律,并用于实际问题的解决。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种经过时间排序的统计数据分析方法,它是指对同一时间观测到的数据的分析,包括自然界和社会现象等范畴。

时间序列分析可用于预测未来趋势、分析周期性变化、发现非线性关系、判断相关性等,广泛应用于经济、金融、气象、地震预测、健康等领域。

时间序列分析中常见的数据主要包括三种类型:趋势、季节性和周期性。

趋势是一种长期观测到的数据变化趋势,它可以是线性的、非线性的、上升的或下降的。

例如,一家公司的销售额随着时间的推移而逐渐上升是一种典型的趋势。

季节性是指短期内重复出现的周期性变化,通常是因为季节变化、传统节日等原因引起的。

例如,零售行业的销售额在圣诞节和冬季假期期间通常会增加,而在夏季会下降。

周期性是一种存在于相对较长时间内的、定期重复的变化。

例如,经济周期性波动,股票价格的周期性变动等都是周期性变化的例子。

对于时间序列分析,常见的方法有时域方法和频域方法两种。

时域方法是指直接对观测数据进行建模和预测,常见的模型有移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)和自回归积分移动平均模型(ARIMA)等。

频域方法则是将时间序列转换为频率域,进行分析和模型设计,常用的方法有傅里叶变换、功率谱分析等。

在实际应用中,时间序列分析常常需要处理的问题包括序列平稳性、季节型、异常值等。

序列平稳是指序列的统计性质在时间上的不变性,如果序列不平稳,则需要进行差分处理以达到平稳的要求。

在季节性分析中,需要使用季节性分解的方法来区分季节性和趋势成分。

异常值指的是在序列中出现的短期内极端高或者极端低的值,这些异常值对分析的结果产生影响,因此需要进行处理。

总之,时间序列分析是一种广泛应用的统计分析方法,对于理解和预测时间序列的趋势、季节型和周期性变化具有重要意义。

统计学课件第六章_时间序列分析

统计学课件第六章_时间序列分析

统计学课件第六章_时间序列分析第一章统计总论第二章统计调查第三章统计数据的整理与显示第四章统计指标第五章统计指数第六章时间序列分析第七章抽样推断第八章相关与回归分析第九章统计预测第十章统计的综合评价统计学概论内容第六章时间序列分析本章内容安排§6.1 时间序列编制及分析指标§6.2 时间序列的分解分析学习目标1. 时间序列及其分析指标的计算2. 时间序列的分解分析一、时间序列的编制二、时间序列的水平指标三、时间序列的速度指标§6.1 时间序列的编制及分析指标时间序列的编制1.同一现象(指标)在不同时间上的相继观察值排列而成的数列2.形式上由现象所属的时间和现象在不同时间上的观察值两部分组成3.排列的时间可以是年份、季度、月份或其他任何时间形式如将我国历年的某产品产量发展情况按时间先后顺序排列起来就是一个动态数列。

如表6—1所示。

由表6—1可看出,时间数列由两个基本要素构成:一是被研究现象所属的时间;二是反映现象在各个时间上的发展水平,亦称动态水平。

动态平均数时间序列静态平均数时间序列平均数时间序列由一个时期序列和一个时点序列对比形成的相对数时间序列由两个时点序列对比而成的相对数时间序列由两个时期序列对比而成的相对数时间序列相对数时间序列派生数列时点序列时期序列总量指标时间序列基本序列时间序列的种类时间序列的种类总量指标时间序列是指将反映某种社会经济现象的一系列总量指标按时间的先后顺序排列而形成的序列。

总量指标时间序列反映了社会经济现象总量在各个时期所达到的绝对水平及其发展变化过程。

有时期序列和时点序列之分.1、时期序列。

是指由时期总量指标编制而成的序列。

在时期序列中,每个指标都反映某社会经济现象在一定时期内发展过程的总量。

(一)总量指标(绝对数)时间序列如表6-2所列的1990年—2001年我国税收基本情况就是一个时期序列。

时期序列的特点:(l)序列中每一个指标,都是表示社会经济现象在一定时期内发展过程的总量。

6时间序列分析

6时间序列分析
绝对数时间数列 相对数时间数列 平均数时间数列
返回本节首页
㈠绝对数时间数列
总量指标按时间先后顺序排列而成 分: 时期数列 时点数列
1、时期数列
数列中的各项指标反映某现象在一段时期 内发展过程的总量。特点: ⑴各项数值可以相加 ⑵指标值大小与时期长短有关 ⑶每个指标数值通过连续登记而得
2、时点数列
日期 6月30日 7月31日 8月31日 9月30日 人数 2510 2590 2614 2608 (人) (y0 ) (y1 ) (y2 ) (y3 )
计算:7、8、9各月平均职工人数和 第三季度平均每月职工人数
假设:①已知上月末值即为本月初值 ②月平均值=(月初+月末)÷2
y7
y0
2
y1
2510 2590 2
数列中的各项指标反映某现象在某一时点 上的状况。特点: ⑴各项数值不能相加 ⑵指标值大小与时期长短无关 ⑶每个指标通过间断登记得到
㈡ 相对数动态数列
将一系列相对指标按时 间先后顺序排列而成。
如1990年至1998年我 国GDP的增长速度:
年份
1990 1991 1992 1993 1994 1995 1996 1997 1998
平均工资
1634 1879 2287 2939 3923 4854 5576 6053 6307
三、动态数列的编制原则
要遵循可比性原则:即数列中的各个指标值可以 相互比较。 为此要求数列中的每个指标要符合以下4 个要求: 1、时间长短要统一 :注意“间隔”的概念 2、总体范围应一致 3、指标的经济内容、计算口径、计算方法、计算
能不能用一个商场前12个月的销售情况来预测其 下一个月的销售额?
能不能用过去5年的月度物价指数来预测明年的 物价指数?

第六讲时间序列分析

第六讲时间序列分析
❖ 严平稳
严平稳是一种条件比较苛刻的平稳性定义,它认为只有 当序列所有的统计性质都不会随着时间的推移而发生变 化时,该序列才能被认为平稳。
❖ 宽平稳
宽平稳是使用序列的特征统计量来定义的一种平稳性。 它认为序列的统计性质主要由它的低阶矩决定,所以只 要保证序列低阶矩平稳(二阶),就能保证序列的主要 性质近似稳定。
的置信水平下无法拒绝原假设,即不能显著 拒绝序列为纯随机序列的假定
第六讲时间序列分析
例2.4:
标准正态白噪声序列纯随机性检验
样本自相关图
第六讲时间序列分析
检验结果
延迟
延迟6期 延迟12期
Q LB 统计量检验 Q LB 统计量值
2.36 5.,所以该序列不能拒绝
第六讲时间序列分析
统计时序分析
❖ 频域分析方法 ❖ 时域分析方法
第六讲时间序列分析
频域分析方法
❖ 原理 假设任何一种无趋势的时间序列都可以分 解成若干不同频率的周期波动
❖ 特点 非常有用的动态数据分析方法,但是由于 分析方法复杂,结果抽象,有一定的使用 局限性
第六讲时间序列分析
时域分析方法
❖ 原理
第六讲时间序列分析
时域分析方法的分析步骤
❖ 考察观察值序列的特征 ❖ 根据序列的特征选择适当的拟合模型 ❖ 根据序列的观察数据确定模型的口径 ❖ 检验模型,优化模型 ❖ 利用拟合好的模型来推断序列其它的统
计性质或预测序列将来的发展
第六讲时间序列分析
1.4 时间序列分析软件
❖ 常用软件
SPSS, Matlab, Eviews ,SAS, S-plus/R和TSP,
例题
❖例2.1 检验1964年——1999年中国纱年 产量序列的平稳性

第6章时间序列分析

第6章时间序列分析
5月份a33002680299(0件) 2
6月份a 26802800274(0件) 2
第二季度平均库 1存 (31量502990274)0296(0件) 3
上面计算可合 :并简化为
30030303030206820682080
第二季度平均库 2 存量 2
2
3
31520992074029(6件 0) 3
三、增长量
说明某种现象在一定时期内所增长的绝对数量。
增长 报 量 告期 基水 期平 水平
前一时期 因为基期有两种
某一固定时期
增长量 累计增长量:ai a0
逐期增长量:ai ai1
n
(ai ai1)ana0
i1
四、平均增长量
说明社会现象在一段时期内平均每期增加的 绝对数量。
平 均 增 长 量 逐 逐 期 期 增 增 长 长 量 量 个 之 数 和 动 态 累 数 计 列 增 项 长 数 量 1
定基增长速度 环比增长速度
无关系
增长1%的绝对值
增长量 增长百分比
前一时期水平 100
或 基期水平 100

某省2000-2005年某工业产品产量
单位:万台
年份
2000 2001 2002 2003 2004 2005
发展水平: 产量 1104.3 1351.1 1707.0 2215.5 2872.4 3301.0
2001
4950.8 4
2002
5408.7 6
2003
6250.8 1
2004
7450.27
2005
9143.95
时间序列由两个基本要素构成:
① 时间,即现象所属的时间;
② 不同时间上的统计指标数值,即不同时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序 列
发展过程进行分析研究。时间数列分析,能反
分 映事物的发展变化,能揭示事物随时间演变的
析 趋势和规律。
2020/6/19
统计学 statistics
4
精品
山东工商学院
课程
分析


发展水平分析

平均发展水平
水平分析
增长水平 (量)

平均增长水平 (量)



发展速度分析
分 析
平均发展速度 增长速度

产 值 700 750 820 910 990 1100
间 1.时期数列特点:
序 列
(1)数列中各个时期的指标数值可以相加。
分 (2)数列中指标数值大小与其时期和长短有直接关系。

(3)时期数列具有连续统计的特点。
2020/6/19
统计学 statistics
11
精品 课程
山东工商学院
§1. 时间数列的编制
688.5 179.01
696 183.75
比重%
19.80 21.20 23.00 24.80 26.00 26.40
2020/6/19
统计学 statistics
13
精品 课程
第 六 章
时 间 序 列 分 析
山东工商学院
§1. 时间数列的编制
表6 -4
D-Dazhon职工平均月薪资料表
单位:人民币元
303
257
248
263
284
平均库存(万元) 商品流转次数
105
96
120
129
105
136
2.29 3.16 2.14 1.92 2.5 2.09
2020/6/19
统计学 statistics
14
精品 课程
山东工商学院
§1. 时间数列的编制
第 六
特殊强调时
章 表6-6 我国各时期钢铁产量
单位:万吨
§1. 时间数列的编制
(二) 相对指标时间数列数列和平均指标时间数列数列:
表6-3 某地区1998-2003年从业人员表
年份
1998
1999
2000
2001
2002
2003
从业人员数 (万人)
第三产业 (万人)
655.54 129.79
663.73 140.71
671.99 154.56
679.47 168.51
年份
1998 1999 2000 2001 2002 2003 2004
A组
644 803 812 836 865 1034 1213
B组
505 624 642 671 698 811 968
表6-5 某企业2004年1-6月份 平均商品库存及流转速度表
月份
1月
2月
3月
4月
5月
6月
商品销售额(万元) 240

发展变化的数量特征。

(二) 揭示社会经济现象的数量变化趋势,进一步研

究确定是否有规律性。
列 分
(三) 对某些社会经济现象进行动态趋势预测。
析 (四) 利用不同的动态数列进行对比。
2020/6/19
统计学 statistics
9
精品 课程
山东工商学院
§1. 时间数列的编制
第 六
二、时间数列的种类
时 间
时间
1900-1949 1953-1957 1981-1985 1986-1990 (49年) (5年) (5年) (5年)

钢产量
760
1666.7 20304 27372
列 分 析
时间
1991-1995 1996-2000 2002
第 2.时点数列

表6-2
全国1993-2004年总人数
单位:万人

年 份 1993 1994 1995 1996 1997 1998
时 间 序
年末总人数 年份 年末总人数
几个特点:
118517 1999 125786
119850 2000 126743
121121 2001 127627
122389 2002 128453
课程
本章内容



§1.时间序列的编制
时 间
§2.时间序列分析指标
序 列
§3.时间序列的分解分析


2020/6/19
统计学 statistics
3
精品 课程
山东工商学院
关于时间序列



任何事物都是处于运动和发展变化之中。
人们要完整地认识和了解事物,不能只停留在

间 对事物的静态认识上,还必须对事物的运动和
精品课 统计学
时间序列分析
精品
ቤተ መጻሕፍቲ ባይዱ
山东工商学院
课程
学习要求



通过对本章的学习,了解时间数列的作

用、种类;明确编制时间数列的一般要求;
间 序
学会时间数列分析中的常见指标的计算;

掌握测定长期趋势、季节变动的一般方法,
分 析
并能进行简单的预测。
2020/6/19
统计学 statistics
2
精品
山东工商学院
2002 1100
序 列
两个基本要素: 现象所属时间(t)
各个时间所对应的统计指标值(Y)。

析 两个数列构成: 现象所属时间(t)
统计指标变化数列。
2020/6/19
统计学 statistics
8
精品 课程
山东工商学院
§1. 时间数列的编制
第 六 2.编制时间数列的主要目的

(一) 反映社会经济现象的发展变化状况,揭示现象

时间数列



绝 对数序列 相 对数序列 平 均数序列



时期序列
时点序列
2020/6/19
统计学 statistics
10
精品 课程
山东工商学院
§1. 时间数列的编制
第 (一)总量指标时间数列

表是6-由1 总量指某标公按司历时年间销顺售序产排值列资而料成的数单列位:。万元

年 份 1997 1998 1999 2000 2001 2002
123626 2003 129227
117171 2004 129988

(1)数列中指标数值不能相加。
分 析
(2)数列中数值大小与其时间隔长短没有直接联系。
(3)时点数列指标值不具有连续统计的特点。
2020/6/19
统计学 statistics
12
精品 课程
第 六 章
时 间 序 列 分 析
山东工商学院
序 列
三、时间数列的编制


2020/6/19
统计学 statistics
7
精品 课程
山东工商学院
§1. 时间数列的编制
第 六 章
一、时间数列的概念、作用
1.概念:
表将6反-1 映社会某经公济司现历象年数销量售特产值 征资 的料统计指标单值位:按万时元 间
时 间
的年 产先份 值后顺序179排0907列所形17959成08 的数18列92909,又称29010动00 态数29列09001。
速度分析
平均增长速度
2020/6/19
统计学 statistics
5
精品 课程
预测



长期变动趋势测定


序 列
季 节 变 动 测定


2020/6/19
统计学 statistics
山东工商学院
预测
ESC6
精品 课程
山东工商学院
§1. 时间数列的编制



一、时间数列的概念及作用
时 间
二、时间数列的种类
相关文档
最新文档