SPSS实验报告(一)
spss实验报告,心得体会
spss实验报告,心得体会篇一:SPSS实验报告SPSS应用——实验报告班级:统计0801班学号:1304080116 姓名: 宋磊指导老师:胡朝明2010.9.8一、实验目的:1、熟悉SPSS操作系统,掌握数据管理界面的简单的操作;2、熟悉SPSS结果窗口的常用操作方法,掌握输出结果在文字处理软件中的使用方法。
掌握常用统计图(线图、条图、饼图、散点、直方图等)的绘制方法;3、熟悉描述性统计图的绘制方法;4、熟悉描述性统计图的一般编辑方法。
掌握相关分析的操作,对显著性水平的基本简单判断。
二、实验要求:1、数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。
2、了解描述性统计的作用,并1掌握其SPSS的实现(频数,均值,标准差,中位数,众数,极差)。
3、应用SPSS生成表格和图形,并对表格和图形进行简单的编辑和分析。
4、应用SPSS做一些探索性分析(如方差分析,相关分析)。
三、实验内容:1、使用SPSS进行数据的录入,并保存: 职工基本情况数据:操作步骤如下:打开SPSS软件,然后在数据编辑窗口(Data View)中录入数据,此时变量名默认为var00001,var00002,…,var00007,然后在Variable View窗口中将变量名称更改即可。
具体结果如下图所示:输入后的数据为:将上述的数据进行保存:单击保存即可。
2、读取上述保存文件:选择菜单File--Open—Data;选择数据文件的类型,并输入文件名进行读取,出现如下窗口:选定职工基本情况.sav文件单击打开即可读取数据。
3、对上述数据新增一个变量工龄,其操作步骤为将当前数据单元确定在某变量上,选择菜单Data—Insert Variable,SPSS自动在当前数据单元所在列的前一列插入一2个空列,该列的变量名默认为var00016,数据类型为标准数值型,变量值均是系统缺失值,然后将数据填入修改。
结果如下图所示:篇二:SPSS相关分析实验报告本科教学实验报告(实验)课程名称:数据分析技术系列实验实验报告学生姓名:一、实验室名称:二、实验项目名称:相关分析三、实验原理相关关系是不完全确定的随机关系。
SPSS聚类分析实验报告
SPSS聚类分析实验报告一、实验目的本实验的目的是通过应用SPSS软件进行聚类分析,对样本进行分类和分组,通过群组间的比较来发现变量之间的关系和特征。
通过聚类分析的结果,可以帮助我们更好地理解和解释数据。
二、实验步骤1.数据准备:选择合适的数据集进行分析。
数据集应包含若干个已知变量,以及我们需要进行聚类的目标变量。
2.打开SPSS软件,导入数据集。
3.对数据集进行数据清洗和预处理,包括处理缺失数据、异常值等。
4.进行聚类分析:选择合适的聚类方法和变量,进行聚类分析。
5.对聚类结果进行解释和分析,确定最佳的聚类数目。
6.对不同的聚类进行比较,看是否存在显著差异。
7.结果展示和报告撰写。
三、实验结果及分析在实验过程中,我们选择了学校学生的体测数据作为聚类分析的样本。
数据集共包含身高、体重、肺活量等指标,共有200个样本。
首先,我们进行了数据预处理,包括处理缺失数据和异常值。
对于缺失数据,我们选择用平均值进行填充;对于异常值,我们使用离群值检测方法进行处理。
然后,我们选择了合适的聚类方法和变量,使用K-means聚类算法对样本进行分组。
我们尝试了不同的聚类数目,从2到10进行了分析。
根据轮廓系数和手肘法定量评估了不同聚类数目下聚类效果的好坏。
最终,我们选择了聚类数目为4的结果进行进一步分析。
通过比较不同聚类结果的均值,我们发现不同聚类之间的身高、体重和肺活量等指标存在较大差异。
这说明聚类分析对样本的分类和分组是合理和有效的。
四、实验总结本次实验通过应用SPSS软件进行聚类分析,对样本进行分类和分组,通过群组间的比较来发现变量之间的关系和特征。
通过分析聚类结果,我们发现不同聚类之间存在显著差异,这为进一步研究和探索提供了参考。
聚类分析是一种常用的数据分析方法,可以帮助我们更好地理解和解释数据,对于从大量数据中发现规律和特征具有重要的应用价值。
总之,聚类分析是一种有力的数据分析工具,可以帮助我们更好地理解和解释数据。
SPSS上机实验报告一
1.数据文件的建立。
打开SPSS,在数据编辑器的变量视图中,输入变量的属性特征,如Name,Width,Decinmal等。
以习题一为例,输入为下:返回数据编辑库,数据视图,直接录入数据。
习题一的数据表如下:点击Save,输入文件名将文件保存。
2.数据的整理数据编辑窗口的Date可提供数据整理功能。
其主要功能包括定义和编辑变量、观测量的命令,变量数据变换的命令,观测量数据整理的命令。
以习题一为例,将上图中的数据进行整理,以GDP值为参照,升序排列。
数据整理后的数据表为:整理后的数据,可以直观看出GDP值的排列。
3、频数分析。
以习题一为例(1).单击“分析→描述统计→频率”(2)打开“频率”对话框,选择GDP为变量(3)单击“统计量”按钮,打开“统计量”对话框.选择中值及中位数。
得到如下结果:(4)单击“分析→描述统计→探索”,打开“探索”对话框,选择GDP(亿元),输出为统计量。
结果如下:4、探索分析以习题2为例子:(1)单击“分析→统计描述→频率”,打开“频率”对话框,选择“身高”变量。
(2)选择统计量,分别选择百分数,均值,标准差,单击图标。
的如下结果:(3)单击“分析→统计描述→探索”,选择相应变量变量,单击“绘制”,选择如下图表,的如下结果:从上述图标可以看出,除了个别极端点以外,数据都围绕直线上下波动,可以看出,该组数据,在因子水平下符合正态分布。
4.交叉列联表分析:以习题3,原假设是吸烟与患病无关备择假设是吸烟与患病有关操作如下:单击“分析→统计描述→交叉表”,打开“交叉表”对话框,选择相应变量变量,单击精确,并选择“统计量”按钮,选择“卡方”作为统计量检验,然后单击“单元格”按钮,选择“观测值”和“期望值”进行计数。
得出分析结果如下:分析得出卡方值为7.469,,自由度是1,P值为0.004<0.05拒绝原假设,故有大于95%的把握认为吸烟和换慢性气管炎有关。
习题4:原假设是性别与安全性能的偏好无关备择假设是性别与安全性能的偏好有关操作如下:单击“分析→统计描述→交叉表”,打开“交叉表”对话框,选择相应行列变量然后选择“统计量”按钮,以“卡方”作为统计量检验.单击“单元格”按钮,选择“观测值”和“期望值”进行计数单击“确定”,得出分析结果如下:分析得出卡方值为19自由度是4,P值为0.001<0.05拒绝原假设,故有99.9%的把握认为性别与安全性能的偏好有关5实验作业补充。
统计学原理SPSS实验报告
实验一:用SPSS绘制统计图实验目的:掌握基本的统计学理论,使用SPSS实现基本统计功能(绘制统计图)对SPSS的理解:它是一款社会科学统计软件包,同时也广泛应用于经济,金融,商业等各个领域,基本功能包括数据管理,统计分析,图表分析,输出管理等。
实验算法:掌握SPSS的基本输入输出方法,并用SPSS绘制相应的统计图(例如:直方图,曲线图,散点图,饼形图等)操作过程:步骤1:启动SPSS。
单击Windows 的[开始]按钮(如图1-1所示),在[程序]菜单项[SPSS for Windows]中找到[SPSS 13.0 for Windows]并单击,得到如图1-2所示选择数据源界面。
图1-1 启动SPSS图1-2 选择数据源界面步骤2 :打开一个空白的SPSS数据文件,如图1-3。
启动SPSS 后,出现SPSS 主界面(数据编辑器)。
同大多数Windows 程序一样,SPSS 是以菜单驱动的。
多数功能通过从菜单中选择完成。
图1-3 空白的SPSS数据文件步骤3:数据的输入。
打开SPSS以后,直接进入变量视图窗口。
SPSS的变量视图窗口分为data view和variable view两个。
先在variable view中定义变量,然后在data view里面直接输入自定义数据。
命名为mydata并保存在桌面。
如图1-4所示。
图1-4 数据的输入步骤4:调用Graphs菜单的Bar过程,绘制直条图。
直条图用直条的长短来表示非连续性资料(该资料可以是绝对数,也可以是相对数)的数量大小。
选择的数据源见表1。
步骤5:数据准备。
激活数据管理窗口,定义变量名:年龄标化发生率为RATE,冠心病临床型为DISEASE,血压状态为BP。
RATE按原数据输入,DISEASE按冠状动脉机能不全=1、猝死=2、心绞痛=3、心肌梗塞=4输入,BP按正常=1、临界=2、异常=3输入。
步骤6:选Graphs菜单的Bar...过程,弹出Bar Chart定义选项框(图1-5)。
spss实验报告
SPSS实验报告
一、实验目的
明确SPSS提供了哪几种参数检验方法,掌握SPSS单样本t检验、两独立样本t检验和两配对样本t检验的基本思想,能够利用概率P-值以及置信区间进行统计决策,并掌握其数据组织方式和具体操作。
二、实验题目
1、在某年级随机抽取35名大学生,调查他们每周的上网时间情况,得到的数据如下(单位:小时):
(1)请利用SPSS对上表数据进行描述统计,并绘制相关的图形。
(2)基于上表数据,请利用SPSS给出大学生每周上网时间平均值的95%的置信区间。
2、如果将第2章第9题的数据看做来自总体的随机样本,试分析男生和女生的课程平均分是否存在显著差异。
三、实验步骤
1、将数据输入数据窗口
(1)Analyze Descriptive Statistics Frequencies,在弹出的Frequencies对话框中进行操作。
(2)Analyze Compare Means One-Sample T test
2、Transform Compute,在弹出的对话框中进行如下操作,运行得到学生的课程平均分;
Analyze Compare Means Independent-Samples T test,在弹出的对话框中进行如下操作,对男女生的课程平均分进行检验。
3、Analyze Compare Means Paired-Samples T test
四、实验结果
1、(1)
(2)
2、
3、。
spss数据文件的预处理实验报告
spss数据文件的预处理实验报告spss实习报告一、教学实验时间与地点:时间:年 1月9日至年1月13日地点:二、实训目的:SPSS统计数据软件教学实验课就是在我们在自学《统计学》理论课程之后所开办的一门课堂教学课。
通过教学实验,并使学生在掌控了理论知识的基础上,能够具体内容的运用所学的统计数据方法展开统计分析并化解实际问题,努力做到理论联系实际并掌控统计数据软件SPSS的采用方法。
通过对SPSS软件的自学和运用,增进对统计学科学知识的介绍和运用及对课程内容的认知,培育学生的自我非政府能力和动手能力。
三、实训的内容与要求教学实验的内容包含两个方面:个人教学实验和小组教学实验。
1、个人实训:(1)个人教学实验内容学习SPSS软件文件的建立、管理以及统计数据的录入;学习结合统计数据进行统计分组并会制作统计图和统计表;学习结合统计数据进行初步统计描述分析、计算相关指标;学习结合统计数据运用统计分析软件对一元线性回归模型进行分析并能解释输出结果。
每天记录实训日志、实训结束后撰写一篇实训报告。
(2)小组教学实验任务小组通过查找自己感兴趣的研究资料并经过讨论确定实训的题目和方向,自己动手实训变量,选择反映社会经济现象发展趋势的数据作为该实训的基础内容,能应用SPSS软件对所选题目进行统计分析并完成专题分析报告。
2、教学实验建议:围绕实训课题和统计方法的要求,有目的、有步骤的进行调查研究,获取统计资料,并加以整理;对所收集与整理的资料,运用选好的统计数据方法加以分析,建议资料整理、排序与叙述均在计算机上操作方式顺利完成;实训报告以书面形式完成,字数不少于字,要求文字分析、数据计算与运用、统计图或统计表相结合,图文并茂。
四、教学实验的过程:经过这几天的实训,我基本明白了SPSS软件的基本操作流程,也掌握了如何利用SPSS处理数据并绘制图表;学会了如何计算定基发展速度、环比发展速度等动态数列的计算;了解了如何进行频数分析、描述分析、探索分析以及作图分析;其中我最大的收获是学会了如何运用SPSS软件对变量进行相关分析、回归分析和计算平均值、T检验和假设性检验。
spss统计学软件实验报告
西安邮电大学统计软件实习报告书系部名称:经济与管理学院营销策划系学生姓名:陈志强专业名称:商务策划管理时间:2012年5月21日至2012年5月25日实习内容:熟悉和学习SPSS软件,包括1.基本统计实验(均值、中位数、众数、全距、方差与标准差、四分位数、十分位数、频数、峰度、偏度);2均值比较和T检验(均值比较、单一样本T检验、两独立样本T检验和两配对样本T检验);3.相关分析(二元定距变量的相关分析、二元定序变量的相关分析、偏相关分析、距离相关分析);4.回归分析(一元线形回归和多元线形回归)。
实习目的:掌握SPSS基本的统计描述方法,可以对要分析的数据的总体特征有比较准确的把握,从而为以后实验项目选择其他更为深入的统计分析方法打下基础。
实习过程:实验1:二元定距变量的相关分析★研究问题:某工厂生产多种产品,分别对其进行两标准评分,评分结果如下表,现在要研究这两个标准之间是否具有相关性。
★实现步骤『步骤1』在“Analyze”菜单“Correlate”中选择Bivariate命令,如图3-1所示。
图3-1 选择Bivariate Correlate 菜单『步骤2』在弹出的如图3-2所示Bivariate Correlate对话框中,从对话框左侧的变量列表中分别选择“标准1”和“标准2”变量,单击按钮使这两个变量进入Variables框。
在Correlation Coefficients框中选择相关系数,本例选用Pearson项。
在Test of significance框中选择相关系数的双侧(Two-tailed)检验,检验两个变量之间的相关取向,也就是从结果中来得到是正相关还是负相关。
图3-2 Bivariate Correlate对话框选中Flag significations correlations选项,则相关分析结果中将不显示统计检验的相伴概率,而以星号(*)显示。
一个星号表示当用户指定的显著性水平为0.05时,统计检验的相伴概率值小于等于0.05,即总体无显著性相关的可能性小于等于0.05;两个星号表示当用户指定的显著性水平为0.01时,统计检验的相伴概率值小于等于0.01,即总体无显著线形相关的可能性小于等于0.01。
SPSS聚类分析实验报告
SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。
二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。
2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。
3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。
4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。
三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。
下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。
2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。
-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。
-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。
3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。
这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。
五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。
spss实验报告---方差分析
实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。
学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。
二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。
零假设:各水平下总体方差没有显著差异。
相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。
从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。
2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。
(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。
不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。
说明不同广告和不同地区对汽车销量都有显著性影响。
广告对于销量的影响略大于地区对销量的影响。
从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。
SPSS聚类分析实验报告
SPSS聚类分析实验报告摘要:本实验旨在利用SPSS软件进行聚类分析,并通过实验结果分析数据的分布情况,揭示数据中的隐含规律。
通过聚类分析,我们将数据样本划分为不同的类别,以便更好地理解数据的特征、相似性以及群组之间的差异。
实验结果表明,SPSS软件在聚类分析方面具有较高的可靠性和准确性,能够有效地提取数据的特征和隐含信息,为数据分析提供有力支持。
1.引言2.实验方法2.1数据收集与准备本实验使用到的数据集是从公开渠道获取的一份包含各个地区收入、消费、教育等特征的数据集。
为了保护数据安全和隐私,将被分析的数据进行了匿名化处理。
2.2SPSS操作步骤(1)导入数据集:将数据集导入SPSS软件,并进行数据检查和处理,确保数据的完整性和准确性。
(2)选择合适的聚类算法:根据实验目的和数据特点选择适合的聚类算法,这里选择了k-means算法作为聚类算法。
(3)设置聚类参数:设置聚类的类别数、迭代次数等参数,以得到最优的聚类结果。
(4)进行聚类分析:运行聚类分析模块,观察聚类结果和聚类中心的分布情况。
(5)结果解释与分析:根据聚类结果,对不同类别的数据进行特征分析和差异比较,以更好地理解数据的特点和分布规律。
3.实验结果与分析通过SPSS软件进行聚类分析,得到了数据样本的聚类结果。
根据平均轮廓系数和间隔分析等指标,确定了最优的聚类类别数,并得到了每个类别的聚类中心和分布情况。
3.1聚类类别数的确定为了确定合适的聚类类别数,使用平均轮廓系数方法和间隔分析方法进行评估。
通过计算不同聚类类别数下的平均轮廓系数和间隔分析值,选择具有最大平均轮廓系数和最小间隔分析值的类别数作为最优的聚类类别数。
经过计算分析,确定了聚类类别数为33.2聚类结果与分析根据聚类类别数为3的聚类结果,将数据样本分为了三组。
分别对每组数据进行了特征分析和差异比较。
3.2.1类别1:高收入、高教育水平、低消费该类别的个体具有较高的收入水平和教育水平,但消费水平较低。
spss对数据进行相关性分析实验报告
spss对数据进行相关性分析实验报告SPSS数据相关性分析实验报告一、引言数据相关性分析是一种用统计方法来研究变量之间关系的方法。
SPSS作为一种常用的统计软件,具有丰富的功能和灵活性,能够对数据进行多角度的分析和解读。
本报告旨在利用SPSS对一组样本数据进行相关性分析,并通过报告的形式详细介绍分析的步骤和结果。
二、实验设计和数据采集本次实验选取了一个包括X变量和Y变量的数据集,通过观察这两个变量之间的相关关系,探究它们之间是否存在一定的线性关系。
三、数据清洗与统计描述在进行相关性分析之前,需要对数据进行清洗和统计描述。
首先,通过观察数据的分布情况,检查是否存在异常值。
如果出现异常值,可以采取删除或者替换的方式进行处理。
其次,计算数据的均值、标准差、最大值、最小值等统计指标,了解数据的基本特征。
四、Pearson相关系数分析Pearson相关系数是一种常用的衡量两个变量之间的相关性的方法。
它的取值范围在-1到1之间,接近于1表示正相关,接近于-1表示负相关,接近于0则表示无相关性。
在SPSS中,进行Pearson相关系数分析非常简便。
五、Spearman相关系数分析Spearman相关系数是一种非参数检验方法,用于观察变量之间的单调关系。
相比于Pearson相关系数,它对于异常值的鲁棒性更强。
在SPSS中,可以选择Spearman相关系数分析来研究数据集中的变量之间的关系。
六、结果分析与讨论经过Pearson相关系数和Spearman相关系数的分析,我们得出如下结论:X变量与Y变量之间存在显著的正相关关系。
通过相关系数的计算,结果显示相关系数为0.8,说明二者之间具有较强的线性相关性。
这一结果与我们的研究假设相吻合,证明了X变量对Y变量的影响。
七、实验结论通过SPSS对数据进行相关性分析,我们得出结论:X变量与Y变量之间存在显著的正相关关系。
这一结论进一步加深了对于变量之间关系的理解,为后续的研究提供了参考。
SPSS实验报告(20200623015657)
统计分析软件课程期末案例分析作业性别及职称对工资的影响因素分析--- 基于有序选择模型的实证分析员兵帅学院商学院、专业:会计学、学号:20133150144、邮箱: yunbingshuai@一、研究背景亚当斯密《国富论》中说:“一国国民每年的劳动,本来就是供给他们每年消费的一切生活必需品和便利的源泉。
”一个劳动者的工资,要用来养家糊口,因此对于它的研究至关重要。
职工工资的增长逐渐成为一个热点话题,在百度中输入“职工工资”,你会得到非常多相关报道,工资协商制、工资拖欠、工资保障机制也成为学术界人士争相研究的焦点。
而也是随着职工工资的增长,其他的一些问题,诸如个税征收、社会保障机制改革等接踵而来。
因此,研究好职工工资的影响因素,对于预测工资走向,安排生产生活,体制改革等有积极意义。
影响工资的因素有很多,在此我们主要选性别和职称这两个因素来研究,从该研究中发现更深层次的原因,这就是本问研究的主要目的二、研究方法、数据来源和变量选择本文选取了不同员工的性别、职称、工资等数据,以分析性别、职称对职工员工工资的影响,三、实验描述及实验过程(一)实验描述一、针对数据职工数据•绘制统计图1•生成年龄和基本工资的统计图2•生成职称和基本工资的统计图3•生成文化程度和基本工资的统计图二、针对数据职工数据•求出描述性统计量(如均值,方差,标准差等)三、进行一元回归分析四、进行多元回归分析㈡实验过程(一)利用SPSS绘制统计图1、打开“职工数据.sav”,调用Graphs菜单的Bar功能,绘制直条图。
直条图用直条的长短来表示非连续性资料的数量大小。
弹出Bar Chart定义选项。
2、在定义选项框的下方有一数据类型栏,大多数情形下,统计图都是以组为单位的形式来体现数据的。
在定义选项框的上方有3种直条图可选:Simple为单一直条图、Clustered为复式直条图、Stacked为堆积式直条图,本实验选单一直条图。
3、点击 Define 钮,弹出 Define Clustered Bar: Summaries for groups of cases 对话框,在左侧的 变量列表中选基本工资点击按钮使之进入 Ba 申-Represan 栏的Othe 頑'summary fun ction4、点击Titles 钮,弹出Titles 对话框,在Title 栏内输入“不同性别的基本工资状况”/ “不同职称的基本工资状况”/ “不同文化程度的基本工资状况”,点击 Continue 钮返回DefineClustered Chart: Summaries for groups of cases 对话框,再点击 OK 钮即完成。
《市场调研》SPSS上机实验报告
《市场调研》SPSS上机实验报告市场调研的SPSS上机实验报告一、实验目的本实验旨在通过SPSS(社会科学统计软件包)对市场调研数据进行统计分析,从而了解市场状况、消费者需求和行为特征,为企业的市场决策提供数据支持。
二、实验数据实验数据来源于某次市场调研,包括被调查者的基本信息、购买行为、品牌评价等相关数据。
数据共包含500份有效问卷,其中男性被调查者250人,女性被调查者250人。
三、实验步骤1、打开SPSS软件,导入实验数据。
2、对数据进行描述性统计分析,包括均值、标准差、最大值、最小值等指标。
3、进行独立样本T检验,分析男性和女性被调查者在购买行为和品牌评价方面是否存在显著差异。
4、进行相关性分析,探究被调查者基本信息、购买行为和品牌评价之间的相关关系。
5、利用因子分析法,提取影响消费者购买决策的主要因素。
6、根据分析结果,提出针对性的市场策略建议。
四、实验结果1、描述性统计分析结果通过对实验数据进行描述性统计分析,我们得到了被调查者在购买行为和品牌评价方面的基本情况。
具体数据如下:(1)购买行为方面:被调查者在过去一年内购买该类产品的次数集中在1-3次之间,平均每次消费金额集中在50-100元之间。
(2)品牌评价方面:被调查者对目标品牌的认知度较高,平均得分在70-80分之间,对其他竞品的认知度相对较低,平均得分在60-70分之间。
2、独立样本T检验结果在实验数据中,我们将被调查者按照性别进行分类,利用独立样本T检验分析男性和女性在购买行为和品牌评价方面是否存在显著差异。
结果显示,男女在购买行为和品牌评价方面均无显著差异。
21、相关性分析结果通过相关性分析,我们发现被调查者基本信息(如年龄、收入等)与购买行为和品牌评价之间存在一定的相关关系。
具体如下:(1)年龄与购买行为:随着年龄的增长,被调查者购买该类产品的次数逐渐增加。
(2)收入与购买行为:随着收入的增加,被调查者购买该类产品的次数和每次消费金额均有所增加。
SPSS实验报告册
《SPSS统计软件应用》实验报告册20 - 20 学年第学期班级:学号:姓名:授课教师:实验教师:实验学时:实验组号:目录实验一SPSS的数据管理 (3)实验二描述性统计分析 (5)实验三均值检验 (6)实验四相关分析 (7)实验五因子分析 (8)实验六聚类分析 (11)实验七回归分析 (13)实验八判别分析 (14)实验一SPSS的数据管理一、实验目的1.熟悉SPSS的菜单和窗口界面,熟悉SPSS各种参数的设置;2.掌握SPSS的数据管理功能。
二、实验内容及步骤:1、定义spss数据结构。
下表是某大学的一个问卷调查,要求将问卷调查结果表示成spss可识别的数据文件,利用spss软件进行分析和处理。
练习:创建数据文件的结构,即数据文件的变量和定义变量的属性。
表1 大学教师基本情况调查表1.定义spss数据结构。
下表是某大学的一个问卷调查,要求将问卷调查结果表示成spss可识别的数据文件,利用spss软件进行分析和处理。
练习:创建数据文件的结构,即数据文件的变量和定义变量的属性。
实验步骤:(1)、打开定义变量的界面启动SPSS,进入主界面,单击图6-2所示的屏幕左下角的“Variable View”选项卡,打开定义变量的表格。
(2)、输入变量名,符合变量的命名规则在“Name”列的第一个单元格输入第一个变量名,如:“xm”。
(3)、确定变量类型,单击“Type”列的第一个单元格,如图6-3所示,SPSS的默认变量类型为数值型。
单击数值型变量后的“···”,弹出如图6-4所示的对话框,用户可以从该对话框中选择其他的变量类型。
(4)、设置字段值(5)、依次按要求输入完毕即可实验结果:实验分析:本实验,主要是按照要求一步一步来设置条件即可完满完成实验。
2 、高校提前录取名单的确定某高校今年对部分考生采取单独出题、提前录取的招生模式。
现有20名来自国内不同省市的考生报考该校,7个录取名额。
SPSS实验报告
CENTRAL SOUTH UNIVERSITYSPSS实验报告学生姓名王强学号**********指导教师邵留国学院商学院专业工商1101实验一、数据集实验目的:掌握基本的统计学理论,学会使用SPSS录入数据,建立SPSS数据集。
实验内容:1.3:三十名儿童身高、体重样本数据如下表所示。
建立SPSS数据集。
三十名儿童身高、体重样本数据实验步骤:步骤一:启动SPSS。
步骤二:选择文件,新建,数据,如图。
步骤三:切换到变量视图,定义变量。
其中,性别变量需要设置值标签。
如图所示。
步骤四:切换到数据视图,按照次序依次输入数据。
步骤五:保存数据.实验结果:实验二:统计量描述实验目的:(1)结合图表描述掌握各种描述性统计量的构造原理及其应用.(2)熟练掌握运用SPSS进行统计描述的基本技能。
实验内容:大学生在校期间的各门课程考试成绩,尽管在学生与学生之间、院系之间、男女生之间以及不同的课程之间,都存在着各种各样的差异,但整体上的分布状况还是有规律可循的.今有两个学院共1040名男女生的统计学和经济学期末考试成绩数据,储存在SPSS数据文件中,文件名:lytjcj。
sav。
试运用图表描述与统计量描述的方法,对此数据展开尽可能全面和深入的描述与分析。
实验步骤:步骤一:打开SPSS数据,文件名:lytjcj.sav。
如图。
步骤二:点击“分析"中的“描述统计",选择“频率",如图所示。
步骤三:弹出一个“频率"对话框,如图。
步骤四:将“统计成绩”和“经济成绩”拖入“变量"框中,点击确定。
实验结果:实验三:参数估计实验目的:(1)掌握单样本总体均值区间估计。
(2)掌握总体均值差区间估计.(3)熟练掌握相关的SPSS操作。
实验内容:某地区的一位针对老年人市场的电视节目赞助商,希望了解老年人每周看电视的时间,因为这个信息对电视节目设计以及广告策略和广告数量的制定有着重要的参考价值。
聚类分析实验报告SPSS
聚类分析实验报告SPSS一、实验目的:1.掌握聚类分析的基本原理和方法;2.了解SPSS软件的使用;3.通过实际数据分析,探索样本数据的聚类结构。
二、实验步骤:1.数据预处理:a.收集并导入样本数据;b.对数据进行初步探索和了解,包括数据描述统计、缺失值处理等;2.聚类分析:a.选择合适的变量进行聚类分析;b.选择聚类算法和相似性度量方法;c.进行聚类分析,得到聚类结果;d.检验聚类结果的稳定性和合理性;3.结果解释:a.对聚类结果进行解释和描述,给出每个聚类的特点和含义;b.使用图表展示聚类结果,以便更直观地理解;c.对聚类结果进行验证和评估,如通过交叉验证等方法;4.结论:a.总结分析结果,给出对样本数据的聚类结构的总体认识;b.提出有关样本数据的进一步探索方向和建议。
三、实验结果与分析:1.数据预处理:样本数据包括了多个变量,我们首先对这些变量进行初步的探索和分析,了解它们的分布情况和特点。
同时,对于缺失值的处理,我们采取了删除或插补的方法,以保证后续分析的准确性和完整性。
2.聚类分析:在选择变量时,我们考虑到了变量之间的相关性,以及对聚类结果的解释性。
通过SPSS软件,我们选择了合适的聚类算法和相似性度量方法,进行了聚类分析。
3.结果解释:根据聚类结果,我们将样本数据划分为多个聚类群组。
对于每个聚类群组,我们进行了详细的解释和描述,给出了其特点和含义。
通过图表的展示,我们能更直观地理解每个聚类群组的分布情况和区别。
4.结论:综合分析结果,我们得出了对样本数据聚类结构的总体认识。
同时,我们提出了进一步探索的方向和建议,以获取更多的知识和信息。
四、实验总结:通过这次实验,我们掌握了聚类分析的基本原理和方法,了解了SPSS软件的使用。
通过实际数据的分析,我们能够更深入地理解样本数据的聚类结构,为进一步的研究和应用提供了基础。
在实验过程中,我们也遇到了一些问题和困难,但通过团队合作和专业指导,我们得以顺利完成实验,并取得了较好的结果。
SPSS实验报告——均值比较
实验报告一、实验目的1、掌握均值比较,用于计算指定变量的综合描述统计量2、掌握独立样本T检验(Independent Samples Test),用于检验两组来自独立总体的样本,企图理综题的均值或中心位置是否一样二、实验步骤第1步数据导入;打开“EG5-2城市和农村学生心理素质测试得分.sav”第2步确定要进行T检验的变量;选择Analyze→ Compare Means →Independent-Samples ,选择“p”变量作为检验变量,移入“Test Variable(s)”框中。
第4步确定分组变量;选择变量“group”作为分组变量,将其移入下图中的“Grouping variable”文本框中,并定义分组的变量值:Group1—1,Group2—2。
三、结果及分析两独立样本T检验的基本描述统计量分析:1、根据结果,方差齐性检验的p值为0.791,大于0.05,故应接受原假设。
2、因为方差相等,两独立样本T检验的结果应该看两独立样本T检验结果报中的Equal variances assumed”一行,第5列为相应的双尾检测概率(Sig.(2-tailed))为0.07,在显著性水平为0.05的情况下,T统计量的概率p值大于0.05,故接受原假设假设,即认为两样本的均值是相等的,在本题中,不能认为两组的成绩有显著性差异。
实验报告一、实验目的1、掌握均值比较,用于计算指定变量的综合描述统计量2、掌握配对样本T检验(Paired Samples Test),用于检验两个相关的样本是否来自具有相同均值的总体。
二、实验步骤第1步数据组织;打开“EG5-1学生培训前后心理测试得分.sav”第2步确定配对分析的变量选择Analyze→ Compare Means →Paired-Samples T Test,将变量“before”和“after”添加到“Paired Variables”框中,作为一对分析的配对变量三、结果及分析分析:表“paired samples test”显示,学生培训前后的平均成绩相差 -0.158,平均成绩差值的标准差为1.5048,差值标准差的标准误为0.4344.在置信水平为95%时平均值差值的置信区间为-1.114~0.798。
SPSS相关分析实验报告_实验报告_
SPSS相关分析实验报告篇一:spss对数据进行相关性分析实验报告实验一一.实验目的掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。
二.实验原理相关性分析是考察两个变量之间线性关系的一种统计分析方法。
更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。
P值是针对原假设H0:假设两变量无线性相关而言的。
一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。
越小,则相关程度越低。
而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。
三、实验内容掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。
(1)检验人均食品支出与粮价和人均收入之间的相关关系。
a.打开spss软件,输入“回归人均食品支出”数据。
b.在spssd的菜单栏中选择点击,弹出一个对话窗口。
C.在对话窗口中点击ok,系统输出结果,如下表。
从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。
人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。
(2)研究人均食品支出与人均收入之间的偏相关关系。
读入数据后:A.点击系统弹出一个对话窗口。
B.点击OK,系统输出结果,如下表。
从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。
武汉理工大学实验报告:spss上机实验
SPSS上机考试姓名:班级:学号:实验一:聚类分析一、实验问题某校从高中二年级女生中随机抽取16名,测得身高和体重数据如下表:试分别利用最短距离法、最长距离法、重心法、类平均法、中间距离法将它们聚类(分类统计量采用绝对距离),并画出聚类图。
二、实验步骤1、1.数据处理:在SPSS中的Data View中导入数据,并在Variable View中定义变量。
2、点击“Analyze-Classify-Hierarchical Cluster,打开Hierarchical Cluster的对话框,从左侧将2个聚类指标选入Variables栏中,将表示序号(字符串)选入Lable Cases By栏中按“Plots”按钮,在弹出的窗口中选中Dendrogram(谱系图)选项,按“Continue”返回主对话框。
再按“Method”按钮,在Cluster Method,下面就各种方法进行结果输出。
3.结果输出(1)最短距离法分类统计量采用绝对距离Block,采用最短距离法Nearest neighbor返回主对话框后点击“OK”即可得到聚类结果的树形图如下:(2)最长距离法分类统计量采用绝对距离Block,采用最短距离法Furthest neighbor返回主对话框后点击“OK”即可得到聚类结果的树形图如下:(3)重心法分类统计量采用绝对距离Block,采用最短距离法Centroid clustering返回主对话框后点击“OK”即可得到聚类结果的树形图如下:(4)类平均法-组间平均法分类统计量采用绝对距离Block,采用最短距离法Between-groups linkage返回主对话框后点击“OK”即可得到聚类结果的树形图如下:(5)中间距离法分类统计量采用绝对距离Block,采用最短距离法Median clustering返回主对话框后点击“OK”即可得到聚类结果的树形图如下:分析:就以中间聚类法为例,当采用绝对距离时,分为3类的时候分别为:①5 12 13 15 16 1 6 7②4 ③8 11 9 10 2 14基于上述各种聚类方法的分析可知,分为3类的时候各个方法相似度最高,所以将其分为3类最为合适。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS实验报告(一)
湖南涉外经济学院
实验报告
课程名称:应用统计软件分析(SPSS)
专业班级:
姓名
学号:
指导教师:
职称:副研究员
实验日期: 2016.4.19
成绩评定指导教
师
签字
签字
日期
学生实验报告实验序号
一、实验目的及要求
实验目的
通过本次实验,使学生熟练掌握转换菜单和数据菜单的具体功能及操作,熟练应用两个菜单中的计算变量、重新编码、选择个案、个案排序、分类汇总等几个主要过程
实验要求
能够根据相关要求选用正确的过程对变量或者文件进行管理和操作,得到结果,并能对得出的结果进行解释。
二、实验描述及实验过程
实验描述一、下载数据(以下情况选一种):
(一)分地区(31个省市区)环境污染治理投资数据(2014年)
环境污染治理投资总额(亿元),城市环境基础设施建设投资额(亿元) ,城市燃气建设投资额(亿元) ,城市集中供热建设投资额(亿元),城市排水建设投资额(亿元),城市园林绿化建设投资额(亿元),城市市容环境卫生建设投资额(亿元)
工业污染源治理投资(万元)
建设项目“三同时”环保投资额(亿元)
(二)分地区(31个省市区)经济发展总体数据(2014年)
国民总收入,国内生产总值,第一产业增加值,第二产业增加值,第三产业增加值,人均国内生产总值,人口总量,城镇失业率,基尼系数等
(三)各省市房地产开发2014年相关数据
投资额,房地产开发企业个数,从业人员数,收入,税金,利润,资产,负债,平均销售价格,等等。
(四)各省市科技2014年相关数据
包括GDP,研发投入,研发投入强度(研发投入/GDP),R&D研发人员,专利授权数,发明专利授权量。
(五)查找相关行业(钢铁行业、水泥行业、医药制造、工程机械、汽车制造业、旅游酒店行业、航空、电子商务企业等)上市公司2015年度数据。
包括销售收入、利润、固定资产净值、总资产利润率、营业利润率、销售净利率、净资产收益率、流动比率、资产负债率、主营业务收入增长率、营收账款周转率、存货周转
率、流动资产周转率等。
二、分析相关数据,部分无法直接获取的数据,通过compute过程计算相关指标。
三、将某个指标(变量)通过“可视离散化”或“重新编码为不同变量”进行统计分组,将其分成三组;自行练习个案排序和筛选个案的过程。
四、试着分析一部分总量指标进行统计描述,计算其均值、极值、标准差,并进行简单分析。
五、谈谈你对本次数据查找与分析的体会。
要求:
一、数据下载要有数据来源说明,数据的SPSS 分析过程和对话框要有相关截屏图。
二、相关数据以excel形式和实验报告以word 形式提交,同时,实验报告要求打印。
三、第七周上交。
以上宏观数据可以通过国家统计局网站下载,企业数据可以通过resset数据库下载。
实验
1.打开IBM SPSS Statistics 21,在文件—打开电子表格数据,如图
过
程
与
步
2.选择菜单项转换—计算变量,如图骤
3.选择菜单项转换—重新编码为不同变量,如图
4.选择菜单项数据—排序个案
5.选择菜单项数据—选择个案,出现一个窗口,如图
6.选择菜单项数据—分类汇总,出现一个窗口,如图
实验结果与解释得出employee data.Sav 表变量视图和数据视图
心得体会
我觉得spss对我用处非常大。
我练习了写实验方法和步骤,但在写实验感受方面还有所欠缺。
统计学是一门研究随机事件的学科,这类偶然现象是遵循统计规律的,当随机现象出现大量的次数时,就能体现统计平均规律。
我们只有对数据资料作统计处理,才可能发现它们的内在规律,掌握现象的特征,检验研究的
假设才能得出准确的、可靠的研究结果。