均数差别比较的t检验
SPSS知识3 t检验(两个总体均数比较)
t检验前言:一、t检验有3种:单样本t检验、配对样本t检验、两组独立样本t检验。
二、t检验条件:数据资料服从正态或近似正态分布。
两组独立样本t检验还要求两组方差齐(不齐则要进行校正)。
正文:一、单样本t检验理论:单样本t检验是检验样本均数X和总体均数μ【已知的理论值(如脉搏72)、标准值或公认值】的比较。
T=(样本均数-总体均数)/样本均数的标准误Spss操作:前提:建立数据库(一列变量)第一步:正态性检验Analyze→Npar tests→1-sample K-S→数据调入右框(test variable list),选中Test Distribution中的normal→OK。
第二步:看output,判断数据资料正态性与否。
看统计量Z 和P值。
P>0.05,资料正态分布。
第三步:t检验。
正态性,则进行样本均数与总体均数的比较,即单样本t检验。
Analyze→compare means→one-sample T test→将数据调入右框(test variable),在右框下的Test Value右边框中输入总体均数μ→OK第四步:看output中的P值,判断差异是否有统计学意义。
P>0.05,差异无统计学意义。
二、配对样本t检验理论:配对设计有3种情况:1、同一样本分为2份,用2种不同的方法测定;2、自身比较,同一样本处理前后的比较(处理前后的过程中,应保持其他非处理因素的齐同性,并且处理周期不宜太长;3、将某些因素相同的样本组成配伍组,随即分为两组。
T=每一配对的测量值之差的均数/每一配对的测量值之差的均数的标准误。
(各自公式见理论)Spss操作:前提:建立数据库(两列:如before和after)第一步:两组数据做正态性检验Analyze→Npar tests→1-sample K-S→两组数据皆调入右框(test variable list),选中Test Distribution中的normal →OK。
SPSS-5-均值比较(t检验)
Test for linearity 检验线性相关性,实际上就是上面 的单因素方差分析。
一、平均数分析(Compare Means Means)
2、例题分析
打开“2000级课堂调查数据.sav”,按性别分组比较政治成绩的平均值、 标准差和方差。 操作:点击Analyze Compare Means Means,在【Dependent List框】 中选入“政治成绩”变量;在【Independent List框】中选入分类变量 “性别”;点击【Options钮】弹出Options对话框,选择需要计算的描述 统计量。 结果分析:统计结果见下表。这里输出的是政治成绩的均数,样本量大小、标 准差和方差。由于我们选择了分组变量“性别”,因此四项指标均给出分 组及合计值,可见以这种方式列出统计量可以非常直观的进行各组间的比 较。
第五讲 均值比较(Compare Means)
P131页
均值比较的假设检验,并非考察的是两样本的 均值是否相等,而是考察两样本所来自的总体的 均值是否相等。由于所要考察的两总体的方差是 未知的,因而两样本的均差假设检验采用t检验。
t检验是用小样本检验总体参数,特点是在总体 方差未知的情况下,可以检验样本平均数的显著 性。
Group Statistics 性 别( t1) 男 女 N 8 11 Mean 63.125 64.909 Std. Deviation 2.4749 7.0492 Std. Error Mean .8750 2.1254
政 治成 绩 ( t7, 分 )
三、两独立样本的均值检验
2、例题分析
结果分析:下表为两独立样本t检验表,下面从左到右依次为Levene's方差齐性 检验的F值和F检验的P值(Sig.) 、t值(t)、自由度(df)、P值(Sig.2-tailed)、两 均数的差值(Mean Difference)、差值的标准误(Std. Error Difference)、差值 的95%置信区间。(1)先进行方差齐性检验:F=7.834,P=0.012。由于 P<α ,要拒绝原假设(原假设为两组数据的方差相等或齐性),因此男、 女生政治成绩这两组数据的方差是不相等的。(2)由方差齐性检验的结果 来选择t检验的统计量。由于方差不等,因此选择“Equal Variance not assumed”这一行的t检验值来判断:t=-0.776,P=0.451。因为相伴概率 P>α ,要接受原假设(原假设为两独立样本所来自总体的均值相等),因 此可以认为教科院2000级男生和女生的政治平均成绩没有明显差异。
实验五均值比较与T检验
实验五均值比较与T检验⏹均值(Means)过程对准备比较的各组计算描述指标,进行预分析,也可直接比较。
⏹单样本T检验(One-Samples T Test)过程进行样本均值与已知总体均值的比较。
⏹独立样本T检验(Independent-Samples T Test)过程进行两独立样本均值差别的比较,即通常所说的两组资料的t检验。
⏹配对样本(Paired-Samples T Test)过程进行配对资料的显著性检验,即配对t检验。
⏹单因素方差分析(One-Way ANOVA)过程进行两组及多组样本均值的比较,即成组设计的方差分析,还可进行随后的两两比较,详情请参见单因素方差分析。
预备知识:假设检验的步骤:⏹第一步,根据问题要求提出原假设(Null hypothesis)和备选假设(Alternative hypothesis);⏹第二步,确定适当的检验统计量及相应的抽样分布;⏹第三步,计算检验统计量观测值的发生概率;⏹第四步,给定显著性水平并作出统计决策。
第二步和第三步由SPSS自动完成。
假设检验中的P值⏹P值(P-value)是指在原假设为真时,所得到的样本观察结果或更极端结果的概率,即样本统计量落在观察值以外的概率。
⏹根据“小概率原理”,如果P值非常小,就有理由拒绝原假设,且P值越小,拒绝的理由就越充分。
⏹实际应用中,多数统计软件直接给出P值,其检验判断规则如下(双侧检验):⏹若P值<a,则拒绝原假设;⏹若P值≥ a ,则不能拒绝原假设。
均值比较中原假设H0:μ=μ0(即某一特定值)(适用于单样本情形)或 H0:μ1=μ2。
(适用于两独立样本情形)一、Means(均值)过程选择:分析Analyze==>均值比较Compare Means ==>均值means;1、基本功能分组计算、比较指定变量的描述统计量,还可以给出方差分析表和线性检验结果表。
优点各组的描述指标被放在一起便于相互比较,如果需要还可以直接输出比较结果,无须再次调用其他过程。
均数差别比较的t检验
H0:μ=10.50
μ = 10.50
X
H1:μ≠10.50
μ
10.50
X
2. H0成立时会怎样? 所得t值因样本而 异,但其绝对值多数情况下落在0附近。 t的分布规律可由t界值表查出
t=
|X
− 10 .50 sx
查附表,t界值表,0.05>P>0.02,按 检验水准α=0.05,拒绝H0,接受H1, 二者差别有统计学意义,可认为从事 铅作业工人的血红蛋白低于正常成年 男性平均值。
如果有理由认为(参考文献,专业背景)从 事铅作业工人的血红蛋白不会高于正 常成年男性平均值,则可用单侧检验
H0: μ=μ0 H1: μ<μ0 α=0.05(单侧)
性中年大鼠随机分为甲组和乙组。甲组中 的每只大鼠不给予内毒素,乙组中的每只 大鼠则给予3mg/kg的内毒素。分别测得两 组大鼠的肌酐(mg/L)结果如表8-3。问: 内毒素是否对肌酐有影响?
经检验,满足正态性和方差齐性
建立假设,确定检验水准
H0:μ1 =μ2 内毒素对肌酐无影响
H1:μ1
≠μ 内毒素对肌酐有影响 2
的比较; z两组样本均数 X 1 与 X 2 的比较; z 配对设计资料均数的比较。
t检验的应用条件
z 1.当样本含量较小时(n<60),理论上 要求样本为来自正态分布总体的随机 样本;
z 2.当做两样本均数比较时,还要求两 总体方差相等(方差齐性,即 σ12=σ22)。 在实际工作中,若上述条件略有偏 离,仍可进行t检验分析。
均数差别比较的
t检验
样本均数间的差别原因
计量资料两组均数的比较-t检验
卫生统计学专题八:t检验
专题八 t 检验⒈t 检验基础t 检验是一种以t 分布为基础,以t 值为检验统计量资料的假设检验方法。
⑴t 检验的基本思想:假设在H 0成立的条件下做随机抽样,按照t 分布的规律得现有样本统计量t 值的概率为P ,将P 值与事先设定的检验水准进行比较,判断是否拒绝H 0。
⑵t 检验的应用条件:①样本含量较少(n <50);②样本来自正态总体(两样本均数比较时还要求两样本的总体方差相等,即方差齐性)。
【注】实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,对结果影响不大。
⑶t 检验的主要应用:①单个样本均数与总体均数的比较;②配对设计资料的差值均数与总体均数0的比较;③成组设计的两样本均数差异的比较。
⑷单样本t 检验基本公式:t=x0s x μ-=nsx 0μ- υ=n-1⒉z 检验z 分布(标准正态分布)是t 分布的特例,当样本n ≥50或者总体σ已知时用z 检验。
⑴单样本z 检验基本公式:z=nsx 0μ- 或 z=nx 0σμ-⑵单样本z 检验的步骤与单样本t 检验的基本相似。
⒊配对设计均数的比较 配对设计是为了控制某些非处理因素对实验结果的影响而采用的设计方式,应用配对设计可以减少实验误差和个体差异对结果的影响,提高统计处理的效率。
⑴配对设计的主要四种情况:①配对的两受试对象分别接受两种处理,如在动物实验中,常先将动物按照窝别、体重等配对成若干对,同一对的两受试对象随机分配到实验组和对照组,然后观察比较两组的实验结果。
②同一样品用两种不同方法测量同一指标或接受不同处理。
③自身对比,即将同一受试对象(实验或治疗)前后的结果进行比较。
④同一对象的两个部位给予不同处理。
⑵对配对资料的分析:一般用配对t 检验,其检验假设为:差值的总体均数为0即μd =0。
计算统计量的公式为:t=ns 0d d-,υ=n-1式中d 为差值的均数;s d 为差值的标准差;n 为对子数。
⑶关于自身对照(同体比较)的t 检验:①在医学研究中,我们常常对同一批患者治疗前后的某些生理、生化指标进行测量以观察疗效,对于这些资料可以按照配对t 检验。
统计学两样本均数比较的t检验
处理方式
对于异常值,可以采用删除、替换或用中位数修正等方式进行处理。具体处理方式应根 据实际情况和数据分布特点进行选择,并确保处理后的数据仍然能够反映总体情况。
实验设计和伦理考虑
实验设计
在进行t检验之前,应进行充分的实验设计, 确保实验的合理性和科学性。实验设计应考 虑各种因素对实验结果的影响,并尽量减小 误差和干扰因素。
确定p值:根据t统计量和自由 度,查表或使用统计软件计算 p值。
步骤1
收集数据:分别从两个独立样 本中收集数据,并记录在表格 中。
步骤3
计算t统计量:根据两组样本的 均数和标准差,计算t统计量。
步骤5
结果解读:根据p值判断两组 样本均数之间的差异是否具有 统计学上的显著性。
结果解读
• 结果解读:根据p值的大小来判断两 组样本均数之间的差异是否具有统计 学上的显著性。通常,如果p值小于 0.05,则认为两组样本均数之间存在 显著差异;如果p值大于0.05,则认 为两组样本均数之间无显著差异。
对差值数据进行描述性统计分析, 计算差值的均值和标准差。
计算t统计量
根据差值的均值、标准差以及自 由度,计算t统计量。
收集两个配对样本的数据
确保两个样本具有相同的样本量, 且每个样本中的数值都是配对的。
判断显著性
பைடு நூலகம்根据t分布表或使用统计软件,查 找对应的p值,判断两个配对样本 均数是否存在显著差异。
结果解读
伦理考虑
在实验设计过程中,还应考虑伦理问题。应 尊重受试者的权益和尊严,确保受试者的安 全和隐私。同时,应遵循国际公认的伦理准 则和法律法规,如《赫尔辛基宣言》等。
06 案例分析
SPSS统计分析第四章均值比较与T检验
N 258 216
Mean $41441.8 $26031.9
Std. Dev iation $19,499.214 $7,558.021
Std. Error Mean $1213.97
$514.258
左第一栏为分析变量标签和分类变量标签 N观测量数目 Mean均值 Std. Deviation标准差 Std. Error Mean标准误
三、配对样本T检验
配对样本T检验(Paired Sample T test)用 于检验两个相关的样本是否来自具有相同均 值的总体。这种相关的或配对的样本常常来 自这样的实验结果,在实验中被观测对象在 实验前后均被观测。两个变量可以是before after,配对分析的测度也不是必须来自同一 个观测对象。一对可以两者组合而成。
练习题
已知某水样中含CaCO3的真值为20.7mg/L, 现用某方法重复测定该水样11次CaCO3的含 量(mg/L)为:20.99,20.41,20.10, 20.00,20.91,22.60,20.99,20.41, 20.00,23.00,22.00。问该方法测得的均值 是否偏高?
2、Independent Sample T test(独立样本T检验)
例题一
现有银行雇员工资为例,检验男女雇员现工 资是否有显著差异。一个是要比较salary变量 的均值,另一个是gender变量作为分水平变 量。 (data09--03) 。
分析变量的简单描述性统计量
Gender Current Salary Male
F emale
Group Statistics
如果你试图比较的变量明显不是正态分布的,则应该 考虑使用一种非参数检验过程(Nonparametric test)。 如果想比较的变量是分类变量,应该使用Crosstabs 功能。
两组数据作均数差别的t检验要求
两组数据作均数差别的t检验要求
本文将对两组数据作均数差别的t检验。
t检验是一种用于检验两组样本均数之间是否有显著差异的统计检验方法。
通过检验,我们可以推断两组样本均数之间是否存在显著的差异。
为了进行均数差别的t检验,首先需要进行以下假设:
1、两组数据来源于正态分布的总体;
2、样本容量足够大,可以认为是无限大;
3、两组数据之间的方差相等。
根据上述假设,可以使用t检验检验两组数据均数之间的差异。
通过检验,可以得出t统计量的值以及p值,t统计量的值越大就表明两组数据的均数差异越显著,而p值越小则表明两组数据的均数差异越显著。
如果p值小于某一个特定的显著水平,则可以拒绝原假设,认为两组数据的均数有显著差异。
本文通过介绍了t检验,以及如何使用t检验检验两组数据均数之间的差异,以期望能够帮助读者更好地理解t检验的原理及运用。
统计学 两样本均数比较的t检验
统计学两样本均数比较的t检验统计学中,两样本均数比较是一种常见的数据分析方法。
这种方法又称为t检验,主要用于比较两组数据的均值是否有显著差异。
t检验分为独立样本t检验和配对样本t检验两种。
独立样本t检验用于比较两组独立样本的均值;配对样本t检验则用于比较同一组样本在不同时间或者不同条件下均值的变化。
本文将重点介绍独立样本t检验的原理、假设检验及其应用。
独立样本t检验的原理独立样本t检验的原理基于中心极限定理,即当样本大小足够大时,样本均数的分布近似正态分布。
在均值比较问题中,我们对两个总体做出如下假设:- 零假设:两个总体的均值相等。
- 备择假设:两个总体的均值不相等。
考虑两个独立的样本,样本容量分别为n1和n2。
我们可以计算出两个样本的样本均数和样本标准差,分别记作x1、s1和x2、s2。
接下来,我们根据两个样本均数和方差的差异,计算t值。
t值可以用以下公式表示:t= (x1 - x2) / (√(s1²/n1 + s2²/n2))如果t值比较大,则说明两个样本的均值差异比较显著,从而我们可以拒绝零假设。
在独立样本t检验中,我们需要进行假设检验,以确定两个总体均值是否相等。
在进行假设检验时,我们通常会采用0.05的显著性水平,即拒绝零假设的概率为5%。
具体做法如下:1. 建立假设在进行独立样本t检验时,我们需要建立零假设和备择假设。
零假设指两个总体的均值相等,备择假设指两个总体的均值不相等。
通常,我们会先假设两个总体的均值相等,即零假设为H0: μ1 = μ2,备择假设为H1: μ1 ≠μ2。
2. 计算t值计算t值时,我们需要用到样本数据的均数、标准差和样本量。
根据公式计算出t 值。
3. 确定自由度自由度是指在样本数据中自由变动的部分,通常计算方法为自由度=(样本量1-1)+(样本量2-1)。
4. 查找t分布表在t分布表中查找对应的临界值,以确定t值是否显著。
查找时需要指定显著性水平和自由度。
对比数据检验方法
对比数据检验方法对比数据检验方法是统计学中常用的一种方法,用来判断两组数据是否有显著差异。
在进行数据分析和研究时,对比数据检验方法能够帮助我们得出结论,是否可以拒绝零假设并认为两组数据之间存在显著性差异。
对比数据检验方法包括 t检验、方差分析(ANOVA)、卡方检验等。
下面将分别介绍这几种方法的应用场景和原理:1. t检验:t检验是用于比较两组平均值是否有显著差异的方法,适用于连续型数据。
当我们需要比较两组数据的均值时,可以使用t检验来判断它们之间是否存在显著性差异。
t检验分为独立样本t检验和配对样本t检验,分别适用于不同的数据情况。
2. 方差分析(ANOVA):方差分析适用于比较三个或三个以上组别之间的平均值是否有显著差异。
当我们有多个组别需要比较时,可以使用方差分析来进行检验。
方差分析可以分为单因素方差分析和多因素方差分析,用来探究不同因素对数据的影响。
3. 卡方检验:卡方检验适用于比较两个分类变量之间是否存在关联性。
当我们需要检验两个变量之间的相关性时,可以使用卡方检验来判断它们之间是否存在显著性差异。
卡方检验可以分为卡方拟合优度检验和卡方独立性检验,适用于不同的研究场景。
在进行对比数据检验时,需要注意以下几点:1. 确定零假设和备择假设:在进行检验前,需要明确所要检验的零假设和备择假设,以便进行后续的统计检验。
2. 选择适当的检验方法:根据数据类型和研究问题的不同,选择适合的对比数据检验方法进行分析。
3. 确定显著性水平:在进行检验时,需要设定显著性水平(通常为0.05),以确定是否可以拒绝零假设。
4. 解释检验结果:对比数据检验方法得出的结果需要进行解释,判断两组数据之间是否存在显著差异,从而得出结论。
综上所述,对比数据检验方法在数据分析和研究中起着重要的作用,能够帮助我们判断数据之间的差异和关联性,为科学研究提供有力的支持。
在进行数据检验时,需要根据具体的研究问题和数据类型选择适合的检验方法,并合理解释检验结果,以得出科学的结论。
计量两组均数的比较-t检验
Sc2= (10 1) 23.4467 2 (10 1) 21.3553 2 =502.8983 10 10 2
t= 91.1070 127 .1200 =-3.591 502 .8983 ( 1 1 ) 10 10
第六章 计量资料两组均数 的比较—t检验
主要内容
假设检验的基本原理和步骤 样本均数与总体均数的比较 两相关样本均数的比较 两独立样本均数的比较 t检验的应用条件 检验假设注意的问题 案例讨论
假设检验的概念与原理
对所估计的总体首先提出一个假设,然后通过 样本数据去推断是否拒绝这一假设,称为假设 检验(hypothesis testing)。
为什么要进行假设检验? 假设检验能够处理哪些问题? 假设检验的基本思想是什么? 假设检验的基本步骤有哪些? 应用假设检验还要涉及哪些问题?
假设检验的思维逻辑
实例:欲探讨男性成人肺炎患者的血红蛋白同男性健康成人有无区别,如 果能够测量所有的男性成人肺炎患者和男性健康成人的血红蛋白数值, 我们通过计算均数就可以进行大小的比较。可是,男性成人肺炎患者和男 性健康成人的群体是无限大的,其血红蛋白值构成的总体也是无限的。
3. 确定 P 值和作统计推断 自由度υ=10+10-2=18,查 t 界值表得: 0.002<P<0.005 按照 α=0.05 的水准,拒绝 H0,(接受 H1,有差异)。即可以认为两车间的氟作业工人的尿 氟含量有差异,乙车间较高
(二)两样本所属总体方差不等
(Satterthwaite近似法)
抽样误差,需进行假设检验。 借助抽样误差的分布规律: 均数的分布、t 分布、z分布、…
计量资料两组均数的比较 t检验
确定检验水准
确定检验水准β通常为0.2
确定检验水准α通常为0.05
确定检验水准α和β的关系 通常为α+β1
确定检验水准α和β的取舍 通常根据研究目的和实际情
况进行选择
计算样本均数和标准差
计算两组样本的均数
计算t值
计算两组样本的标准差
计算t检验的p值
计算两组样本的标准差之比
判断是否拒绝原假设得出结论
描述性统计用于 描述数据的分布 特征参数统计用 于推断总体特征。
描述性统计不涉 及样本量的大小 参数统计需要一 定的样本量才能 进行。
t检验的适用范围
两组独立样本 两组样本服从正态分布 两组样本方差相等或不相等 两组样本数量相等或不相等
t检验的基本原理
假设检验:检验两组均数是否相等 统计量:t统计量用于衡量两组均数的差异程度 自由度:样本量减1用于计算t统计量的分布 显著性水平:设定一个阈值用于判断两组均数差异是否显著
t值越大表示两组均数差异越大
t值与显著性水平α的关系:t值大于临 界值表示两组均数差异具有统计学意 义
t值小于0表示两组均数差异为负即第一 组均数小于第二组
t值小于临界值表示两组均数差异不具 有统计学意义
p值的意义解读
p值是t检验的核 心表示两组均数 差异的显著性
p值小于0.05表示 两组均数差异具 有统计学意义
t检验的假设条件
两组样本来自同一总体 两组样本服从正态分布 两组样本的方差相等 两组样本的样本量足够大
t检验的步骤
确定样本量
确定研究目的和假设 确定样本量计算公式 确定显著性水平α和检验效能1-β 确定样本量计算公式中的其他参数如标准差、均值等 计算样本量并考虑实际可行性和伦理问题 确定最终样本量并进行t检验
均值比较与t检验
均值比较与t检验第3章均值比较与t检验(t代表平均值间的差距p代表的是可信度)3.1样本平均数与总体平均数差异显著性检验在实际工作中,我们往往需要检验一个样本平均数与已知的总体平均数是否有显著差异,即检验该样本是否来自某一总体,已知的总体平均数一般为一些公认的理论数值、经验数值或期望数值,比较的目的是推断样本所代表的未知总体均数与已知总体均数有无差别。
例题:已知玉米单交种群单105的平均穗重为300g,喷药后随机抽取9个果穗称重,穗重分别为:308、305、311、298、315、300、321、294、320g,问喷药前后果穗穗重差异是否显著。
结果界面包括描述性统计量表(One-SampleStatitic)和t检验表(One-SampleTet)两个表格。
描述性统计量表中输出样本含量、均数、标准差和标准误;t检验表中显示t值(t)自由度(df)、双尾P值(Sig.2-tailed)、样本均数与已知总体均数的差值(MeanDifference)、差值的95%或99%置信区间的上限与下限(95%ConfidenceIntervaloftheDifference,Lower,Upper)。
3.2独立样本t检验在实际工作中,还经常会遇到推断两个样本平均数差异是否显著的问题,以了解两样本所属总体的平均数是否相同。
因试验设计不同,一般可分为:非配对或成组设计两样本平均数的差异显著性检验和配对设计两样本平均数的差异显著性检验。
非配对设计或成组设计是指当进行只有两个处理的试验时,将试验单位完全随机地分成两个组,然后对两组随机施加一个处理。
在这种设计中两组的试验单位相互独立,所得的两个样本相互独立,其含量不一定相等。
例题:某家禽研究所对粤黄鸡进行饲养对比试验,试验时间为60天,增重结果如下,问两种饲料对粤黄鸡的增重效果有无显著差异?t检验表(Independent-SampleTet)较为复杂,第一部分列出的是两样本方差齐性检验(Levene'TetforEqualityofVariance)的F值(F)和显著概率值(Sig.)。
均数差别比较的t检验
样本均数间的差别原因均数差别比较的 t检验z 总体均数不同 z 总体均数相同,差别仅仅由抽样误差引起z 一般做法是计算某个统计量(如t值),然后根据相应的概率作出推 断t检验(student’s t test)t检验常用于样本含量较小,并且总 体标准差σ未知时三种t检验 z 样本均数 X 与已知某总体均数μ0 的比较; z 两组样本均数 X 1 与 X 2 的比较; z 配对设计资料均数的比较。
t检验的应用条件z 1.当样本含量较小时(n<60),理论上要求样本为来自正态分布总体的随机 样本; z 2.当做两样本均数比较时,还要求两 总体方差相等(方差齐性,即 σ12=σ22)。
在实际工作中,若上述条件略有偏 离,仍可进行t检验分析。
一、样本均数和总体均数比较的t检验 (one sample t test)z 目的是推断样本所代表的未知总体假设检验的独特逻辑例 : 某病患者20人,其血沉 (mm/h)均数为 9.15,标准差为2.13,问是否该病患者血 沉与以往文献报道的均数10.50有差别?均数μ与已知总体均数μ0有无差 别。
z 已知的总体均数μ0一般为理论值、 标准值或经过大量观察所得的稳定 值等。
z 条件:当n较小时,要求样本来自于 正态分布总体x ± t0.05 / 2,19 s / n = 9.15 ± 2.093 × 2.13 / 20 = (8.15,10.15)11.两个假设,决策者在其中作出抉择 该病患者血沉总体均数与10.50无差别, 该病患者血沉总体均数与10.50有差别。
简写 H0:μ=10.50 H1:μ≠10.50 单凭一份样本不可能证明哪一个正确, 一般利用小概率反证法思想,从问题的对 立面出发(H0)间接判断要解决的问题(H1) 是否成立。
H0:μ=10.50H1:μ≠10.50μ = 10.50X10.50μX2. H0成立时会怎样? 所得t值因样本而 异,但其绝对值多数情况下落在0附近。
均数 标准差 t检验
均数标准差 t检验均数、标准差和t检验在统计学中是非常重要的概念和方法。
通过对数据的分析和计算,我们可以得到关于数据分布和差异性的重要信息。
本文将对均数、标准差和t检验进行详细介绍,希望能够帮助大家更好地理解和运用这些统计学方法。
首先,我们来介绍一下均数的概念。
均数是一组数据的平均值,通常用来表示这组数据的集中趋势。
计算均数的方法是将所有数据相加,然后除以数据的个数。
例如,如果我们有一组数据1,2,3,4,5,那么这组数据的均数就是(1+2+3+4+5)/5=3。
均数可以帮助我们快速了解数据的大致集中情况,但它并不能反映数据的分布情况。
接下来,我们要介绍的是标准差。
标准差是衡量一组数据的离散程度的指标,它能够告诉我们数据的波动情况。
标准差越大,数据的波动性就越大;标准差越小,数据的波动性就越小。
标准差的计算方法是先计算每个数据与均数的差值,然后将这些差值的平方相加,再除以数据的个数,最后再开平方。
例如,对于上面的数据1,2,3,4,5,我们可以先计算出均数为3,然后计算每个数据与均数的差值分别为-2,-1,0,1,2,然后将这些差值的平方相加得到10,再除以数据的个数5得到2,最后开平方得到标准差为2。
标准差可以帮助我们更全面地了解数据的分布情况,对于比较不同组数据的离散程度也非常有帮助。
最后,我们要介绍的是t检验。
t检验是一种常用的统计推断方法,用于比较两组数据的均值是否有显著差异。
在进行t检验时,我们首先要对两组数据进行方差齐性检验,判断它们的方差是否相等;然后再根据数据的分布情况选择合适的t检验方法。
通过t检验,我们可以得出两组数据均值是否存在显著差异的结论,从而进行更深入的数据分析和决策。
总结一下,均数、标准差和t检验是统计学中非常重要的概念和方法,它们可以帮助我们更好地理解和分析数据。
通过对数据的均数和标准差进行计算,我们可以快速了解数据的集中趋势和离散程度;而通过t检验,我们可以比较不同组数据的均值是否存在显著差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.相反如P> α,即在H0成立时,会发生
当前事件,或曰现有样本信息支持H0,尚
没有理由拒绝它(尽管
X
≠μ 0
,
X1 ≠ X2 ) 。
z 不管是拒绝还是不拒绝H0,都有可能发生 错误
z 注意检验结果的“显著性”与临床疗效的 “显著性”的不同含义
实际 意义
H0 有统计学意义
有实 际意 义
可能 无 有
无统计学意义
查附表t界值表,0.002 >P>0. 001,按检验水 准α=0.05,拒绝H0,接受H1,可以认为内 毒素对肌酐有影响,具有升高作用。
总体方差不相等时 可采用数据变换、非参数检验方法或近似t 检验——t’检验 Cochran&Cox近似t检验 Satterthwaite近似t检验 Welch近似t检验
0.364
确定P 值下结论
查 t界值表,P<0.001,按检验水准 α=0.05,拒绝H0,接受H1,可认为 两种方法对脂肪含量测定结果不 同,哥特里-罗紫法测定结果较 高。
4
三、成组设计两样本均数比较的t 检验(two independent sample t test)
z 将受试对象完全随机地分配到两个组中,
分别接受不同的处理,目的是通过两样本
均数 X 1和 否相等。
X2
来推断两总体均数μ1与μ2是
z 该设计常用于个体变异较小,同质性较好 时
z 若比较的两组样本含量相等,则抽样误差 较小,检验功效较高
z 条件:样本来自正态分布,两总体方差齐
σ12=σ22
总体方差相等时 例 为了解内毒素对肌酐的影响,将20只雌
x ± t0.05/ 2,19s / n
= 9.15 ± 2.093× 2.13 / 20 = (8.15,10.15)
1
1.两个假设,决策者在其中作出抉择
该病患者血沉总体均数与10.50无差别, 该病患者血沉总体均数与10.50有差别。 简写
H0:μ=10.50 H1:μ≠10.50 单凭一份样本不可能证明哪一个正确,
z 2.同一受试对象同时分别接受两种不同处 理或同一受试对象处理前后的比较 特点:排除个体变异带来的干扰,可比性 较好,适用于个体变异较大时。 条件:差值服从正态分布
理论基础:
首先计算出各对差值的均数 d 。当
两种处理结果无差别或某种处理不
起作用时,理论上差值的总体均数
μd应该为0,故可将配对设计资料
性中年大鼠随机分为甲组和乙组。甲组中 的每只大鼠不给予内毒素,乙组中的每只 大鼠则给予3mg/kg的内毒素。分别测得两 组大鼠的肌酐(mg/L)结果如表8-3。问: 内毒素是否对肌酐有影响?
经检验,满足正态性和方差齐性
建立假设,确定检验水准
H0:μ1 =μ2 内毒素对肌酐无影响
H1:μ1
≠μ 内毒素对肌酐有影响 2
错误地拒绝H0,通常称之为第Ⅰ类错 误,概率为P。
例 某医生测量了36名从事铅作业男性工人的 血红蛋白含量,算得其均数为130.83g/L,标 准差为25.74g/L。问从事铅作业工人的血红 蛋白是否不同于正常成年男性平均值 140g/L?
1.建立假设。
H0:μ=μ0 ,从事铅作业工人的血红蛋白与 正常成年男性平均值相等。
α=0.05
计算检验统计量
X1 = 5.360, S1 = 1.699
X 2 = 8.150, S2 = 1.597
t = | X 1 − X 2 | −0 = sx1 − x2
| X 1 − X 2 | = 3.785
sc
2
(
1 n1
+
1 n2
)
ν = n1 + n2 − 2 = 18
确定P 值下结论
的比较; z两组样本均数 X 1 与 X 2 的比较; z 配对设计资料均数的比较。
t检验的应用条件
z 1.当样本含量较小时(n<60),理论上 要求样本为来自正态分布总体的随机 样本;
z 2.当做两样本均数比较时,还要求两 总体方差相等(方差齐性,即 σ12=σ22)。 在实际工作中,若上述条件略有偏 离,仍可进行t检验分析。
z 拒绝H0只可能犯Ⅰ 类错误;不拒绝H0 (接受H0),只可能犯Ⅱ 类错误
假设检验应注意的问题
z 1.实验设计方面 随机性抽样、分组,资料具有均衡性和可比性
z 2.选用合适的统计方法 研究目的、设计类型、资料性质等
z 3.正确理解差别有统计学意义的涵义,统计结论 必须和专业结论有机地结合
z 4.推断结论不能绝对化 z 5.报告结论时应给出检验统计量, α、P 值,单
4.决策 决策者需要事先规定一个可以忽略 的小概率值α。如取0.05,那么上述P值 可认为很小。即H0成立时,几乎不可能 出现当前的状况。
于是,面临两种抉择,一是认为H0是成 立的,而当前情况又恰好偶然发生了;
二是怀疑H0的正确性。通常选择后者。 本例,可认为该病患者血沉总体均数与
10.50有差别。 当然,此时决策者也可能
=P( rejecting H0︱ H1 is true) z β一般未知,即不知道犯第二类错误的概率,所
以当P>0.05时,写“不拒绝H0”或“拒绝H0的理由 不充分”。
z 客观差别越大,标准差越小,样本含量越大,则 把握度越大(β越小)
z β在估计样本容量时非常重要
z 若重点减少α (一般的假设检验),一 般取α=0.05;若重点减少β,一般取α =0.10或更高。
|=
|X
− 10 .50
s n
| ,ν
= n −1
3.当前状况如何,发生的可能性(P值)有 多大?
n=20, X =9.15,S=2.13, μ0 =10.50 得t=2.8345, ν=19
P值系指在H0成立的假设前提下,出现 当前检验统计量以及更极端情况的概 率。 查表,对于自由度为19的t分布曲线,当 前t值以外的双侧尾部面积 P ( t ≥ 2 .8345 ) 介于0.01和0.02之间
假设检验的步 骤及有关概念
5
假设检验的步骤
1.建立假设、选用单侧或双侧检验和确 定检验水准
z 无效假设,记为H0; 备择假设,记为H1
z
双侧:
H0:μ1
=μ2
,H1:μ1
≠μ 2
z
单侧:
H0:
μ 1
=μ2
,H1:
μ 1
>μ2(或
μ 1
<μ2)
z α 常取0.05或0.01
z 注意检验假设是针对总体而言的
0.01<P<0.025,按检验水准α=0.05,拒绝 H0,接受H1,二者差别有统计学意义。
z 自由度为9的t分布单、双侧界值
z 单侧检验更容易得出有差别的结论,应 用时要有过硬的专业依据,发表论文时 要特别注明
3
二、配对t检验(paired t test)
配对设计
z 1.配成对子的同对受试对象分别给予两种 不同的处理(如把同窝、同性别和体重相 近的动物配成一对;把同性别、同病情和 年龄相近的病人配成一对等)
样本 太小
接受 零假 设
第Ⅰ类错误和第Ⅱ类错误
客观实际 H0成立 H1成立
拒绝H0 Ⅰ 类错误(α ) Type Ⅰ error
正确(1- β)
不拒绝H0
正确(1- α) Ⅱ 类错误(β ) Type Ⅱ error
6
第Ⅰ类错误和第Ⅱ类错误
z 1.拒绝了实际上是成立的H0 (弃真) The probability of rejecting the null hypothesis when H0 is true.
H0: μ =μ0,H1: μ >μ0 Ⅰ 类错误:
把与常规药本无差别的药说成优于常规 药。
Ⅱ 类错误:
把优于常规药的新药说成与常规药相当。
z 当n确定时, α越大,β 越小 z 增大n,可减小β z 检验效能(power,把握度1- β):即两总体确有差别
时,按α水准能发现它们有差别的能力 1- β=1-probability of a Type Ⅱ error
H1:μ≠μ0,从事铅作业工人的血红蛋白与 正常成年男性平均值不相等。
α=0.05
2
2.计算检验统计量
t = | X − μ0 | = | X − μ0 | ,ν = n − 1
sx
s n
本例 n=36, X =130.83,S=25.74,
μ0 =140
得t=2.138, ν=35
3.查相应界值表,确定P 值,下结论
0.580.509
0.082
3
0.674
0.500
0.174
4
0.632
0.316
0.316
5
0.687
0.337
0.350
6
0.978
0.517
0.461
7
0.750
0.454
0.296
8
0.730
0.512
0.218
9
1.200
0.997
0.203
10
0.870
0.506
一般利用小概率反证法思想,从问题的对 立面出发(H0)间接判断要解决的问题(H1) 是否成立。
H0:μ=10.50
μ = 10.50
X
H1:μ≠10.50
μ
10.50
X
2. H0成立时会怎样? 所得t值因样本而 异,但其绝对值多数情况下落在0附近。 t的分布规律可由t界值表查出
t=
|X
− 10 .50 sx
z P值系指在H0成立的假设前提下,出现当前检验统计 量以及更极端情况的概率。