第3章结构面的变形与强度性质
结构面的变形与强度性质
在实际工程中,需要综合考虑结构面的变形和强度性质,合 理设计工程结构以确保其安全性和稳定性。同时,还需要通 过试验和数值模拟等手段深入研究结构面变形与强度的相互 作用机理,为工程实践提供科学依据。
PART 04
结构面稳定性评价
稳定性评价方法
极限平衡法
通过计算结构面上的抗滑力与下滑力之比,即安全系数,来评价结构面的稳定性。该方法 简单易行,但忽略了结构面的变形和强度性质的非线性特征。
地质环境
描述工程所在地的地形地 貌、地层岩性、地质构造、 水文地质条件等。
结构面发育情况
阐述工程影响范围内结构 面的类型、规模、产状、 组合特征等。
结构面变形与强度性质分析
结构面变形性质
01
分析结构面在受力作用下的变形特征,如弹性变形、塑性变形、
蠕变等。
结构面强度性质
02
探讨结构面的抗剪强度、抗拉强度、抗压强度等力学性质。
影响因素
结构面的强度性质受多种因素影响,如岩性、结构面形态、充填物性质、含水状态、温度等。其中, 岩性和结构面形态是影响结构面强度的内在因素,而充填物性质、含水状态和温度等则是外在因素。 这些因素共同作用,导致结构面强度性质的复杂性和多变性。
PART 03法向刚度和 剪切刚度发生变化,从而影响其
分类
根据结构面的成因、形态和物质组成 等特征,可将其分为原生结构面、构 造结构面和次生结构面三类。不同类 别的结构面具有不同的强度性质。
强度测试方法
直接剪切试验
通过模拟结构面上的剪切作用,测定结 构面的抗剪强度。该方法简单易行,但 难以反映结构面的真实受力状态。
拉伸试验
通过拉伸作用测定结构面的抗拉强度。 由于拉伸试验难以实现,因此实际应 用较少。
第3章岩石结构面、力学性质岩体力学
岩石力学
3.3.1.2 结构面的连续性 结构面的连续性又称为结构面的延展性或贯通性,常用
迹长、线连续性系数和面连续性系数表示。 (1)迹长 结构面与勘测面交线的长度,称为迹长。 国际岩石力学学会(ISRM,1978年) 制订的分级标准(见
3.2.2 岩体结构的类型
在《岩土工程勘察规范(GB 50021-2001)》中,将岩体 结构划分为5大类(见下表)。
岩石力学
岩体结 构
类型 整体状
结构
块状结 构
层状结 构
岩体地质 类型
巨块状 岩浆岩和 变质岩
厚层状 沉积岩, 块状岩浆 岩和变质 岩 多韵律 薄层、中 厚层状沉 积岩,副
结构体 形状
岩石力学
3.1 概述
工程涉及的实际岩体与实验室内测试的岩石试件的力学 性能有着很大的差别,引起这种差别的主要因素有:
(1)岩体的非连续性; (2)岩体的非均质性; (3)岩体的各向异性; (4)岩体的含水性等。 其中最关键的因素是岩体的非连续性。
岩石力学
结构面(亦称弱面):岩体内存在的各种地质界面,
巨块状
块状 柱状
层状 板状
结构面发育情况
以层面和原生、 构造节理为主, 多呈闭合型,间 距大于1.5m,一 般为1~2组,无 危险结构
有少量贯穿性节 理裂隙,结构面 间距0.7~1.5m, 一般为2~3组, 有少量分离体
有层理、片理、 节理,常有层间 错动
岩土工程特 征
岩体稳定, 可视为均质 弹性各项同 性体
岩石力学
当试件沿结构面发生剪切破坏时,作用在结构面上的应力有:
T A
P cos
工程地质学-第三章 岩体的工程地质性质与岩体分类-1-结构面特征与结构面类型
1)产状:结构面的产状常用走向、倾向和倾角三要素 表示。 2)连续性:结构面的连续性反映结构面的贯通程度, 常用线连续性系数、迹长和面连续性系数等表示。 3)密度:结构面的密度反映结构面发育的密集程度, 常用线密度、面密度和间距等指标表示Байду номын сангаас 4)张开度与填充胶结特征:结构面的张开度e是结构 面两壁面间的垂直距离(mm) 5)形态:结构面的形态对岩体的力学性质及水力学性 质存在明显的影响。 6)结构面的组合关系:控制着可能滑岩的岩体的几何 边界条件、形态、规模、滑动方向及滑移破坏类型, 它是工程岩体稳定性预测与评价的基础。
1)原生结构面:是岩体在成岩过程中形成的结构面,其特征与 岩体成因密切相关。因此,又可将其分为沉积结构面、岩浆结 构面和变质结构面三类。原生结构面除部分经风化卸荷作用裂 开外,多具有不同程度的连接力和较高的强度。 (1)沉积结构面
沉积岩的层理、层面、沉积间断面及沉积软弱夹层等都属 于沉积结构面。 (2)火成结构面
在岩体的强度性质中,最重要的是抗剪强度。
它是影响工程安全和造价的重要因素,在岩基抗滑稳 定、边坡岩体稳定和地下硐室围岩稳定性分析与近似 中,岩体的抗剪强度参数是必不可少的。
二、岩体的流变特征
蠕变:指在应力一定的条件下,变形随时间的持续而逐 渐增长的现象; 松弛:变形保持一定时,应力随时间的增长而逐渐减 小的现象。 长期强度:出现蠕变破坏的最低应力值
2.结构面的规格和等级 按结构面延伸长度、切割深度、破碎带宽度及其
力学效应,可将结构面划分为如下五级: Ⅰ级:指大断层或区域性断层。 Ⅱ级:指延伸长而宽度不大的区域性地质界面,如较 大的断层、层间错动、不整合面及原生软弱夹层等。 Ⅲ级:指长度为数十米至数百米的断层、区域性节理、 延伸较好的层面及层间错动等。 Ⅳ级:指延伸较差的节理、层面、次生裂隙、小断层 及较发育的片理、剪理面等。其长度一般为数十米至 二三十米,宽度近于零至数厘米不等,是构成岩块的 边界面。 Ⅴ级:又称微结构面,指隐节理、微层面、微裂隙及 不发育的片理、劈理等,其规模小,连续性差,常包 括在岩块内,主要影响沿块的物理力学性质。
岩体力学第三章PPt 刘佑荣 化学工业出版社1
ห้องสมุดไป่ตู้
法向刚度及其确定方法
(3)经验公式
JCS为结构面的壁岩强度,一般用L型回弹仪在野外测定,确定方法是用试验测得的回弹值R与岩石重度,查图3-9或用式(3-19)计算求得JCS(MPa)
3.2.2结构面的剪切变形性质
⚪大量的实验资料表明,一般结构面的基本摩擦角φu在25°-35°之间,。因此上式第二个式子右边第二项应当就是结构面的基本摩擦角,而第一项的系数取整数2。处理后变为: 再代入上式第一个式子得到巴顿不规则粗糙起伏结构面的抗剪强度公式:
壁岩强度
粗糙度系数
不规则起伏结构面
⚪莱旦依和阿彻姆包特:从理论和实验方法对结构面由剪胀到啃断过程进行全面研究提出经验方程:
古德曼提出双曲线拟合法向应力与闭合面变形间的本构方程:
Goodman方程所给曲线与实验曲线区别 Goodman方程所给曲线的起点不在原点而是在轴左边无穷远处。出现了一个所谓的初始应力σi适用范围:对于那些有一定滑错位移的非合性结构面,大致可以来描述其法向变形本构关系
法向变形本构方程
班迪斯在大量实验的基础上提出的本构方程:
一件含结构面的岩石试块(灰岩)
剪切仪上进行剪切试验。
得到应力应变曲线,如图(3-11)
剪切变形特征
卡尔哈韦方程
τ=△u/(m+n△u)式中,m,n为双曲线的形状系数,m=1/Ksi,n=1/τult,Ksi为初始剪切刚度 (定义为曲线 原点处的切线斜率);τult为水平渐近线在τ轴上的截距。
剪切变形本构方程
将上式与库仑-纳维尔方程(τn =σntanφb)对比:
岩土力学总复习
岩土力学总复习内容与要求第一部分土体力学绪论第1章土体中的应力第2章地基变形计算第3章土压力理论第4章土的抗剪强度与地基承载力第5章土坡稳定性分析第二部分岩体力学绪论第1章岩块、结构面、岩体的地质特性简介第2章岩石(块)的物理、水理与热学性质第3章岩块(石)的变形与强度第4章结构面的变形与强度第5章岩体的力学性质第6章岩体中的天然应力第7章地下洞室围岩稳定性分析第8章岩体边坡稳定性分析符号说明:◆掌握(含记住)▲理解△了解第一部分土体力学绪论◆土力学的研究对象、研究内容、研究任务及土体的工程特性(与一般连续体相比)▲土体在工程建筑中的三种用途第1章土体中的应力§1.1 概述▲地基附加应力σz是引起地基变形破坏的根源§1.2 土体的自重应力(σcz)◆σcz的概念◆σcz的计算方法(含有地下水与不透水层的情况)§1.3 基底压力(p)与基底附加压力(p 0)◆p 、p 0的概念◆影响p 的因素有哪些?◆计算、的已知斜向偏心荷载竖向偏心荷载竖向中心荷载0p p e ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫,P13式1-14要求记住。
§1.4 地基中的附加应力(σz )◆布氏解的假设前提及其适用范围◆局部荷载下σz 的影响因素◆矩形基础在⎪⎩⎪⎨⎧竖向梯形荷载竖向三角形荷载竖向均布荷载下σz 的计算其中注意B 边的取法与角点法、等效均布荷载法的应用◆条基均布荷载与三角形荷载下σz 的计算◆圆形基础均布荷载与三角形荷载下σz 的计算(前者r 范围,后者基底投影内)说明:σz 计算中,地基附加应力系数可查表!若遇到,会给出表。
◆非均质地基中的附加应力集中现象与附加应力扩散现象及其概念第2章 地基变形计算§2.1 概述◆地基变形按成因的分类◆地基变形按计算原理的主要方法§2.2 分层总与法(应力比法)◆计算原理与主要计算步骤▲具体计算方法§2.3 规范法◆计算原理与计算步骤▲具体计算方法▲平均附加应力系数的含义△规范法的优点§2.4 相邻荷载对地基变形的影响▲采用分区后叠加法§2.5 e-lg σ法(考虑应力历史法)◆正常固结土、超固结土、欠固结土变形计算中的压缩、再压缩与压缩指数(Cc)、回弹指数(Ce)的应用(公式不需死记)§2.6 弹性力学公式法(三向变形效应法)△一般了解§2.7 饱与粘性土的渗透固结▲渗透固结的影响因素及研究意义▲一维渗透固结理论的基本假设△固结方程的推导过程◆固结度的概念及其应用、固结层厚度(H)的取法第3章土压力理论§3.1 挡土墙上的土压力◆土压力的概念及其影响因素◆土压力的类型p0、p a、p p◆静止土压力的计算§3.2 朗肯土压力理论◆朗肯土压力理论的前提假设◆无粘性土、粘性土的主动土压力与被动土压力的计算方法◆填土分层、有地下水与表面有均布荷载情况下朗肯土压力的计算§3.3 库仑土压力理论◆基本假设◆无粘性土的库仑土压力计算原理△粘性土的库仑土压力计算原理◆坦墙的概念第4章土的抗剪强度与地基承载力§4.1 土的抗剪强度◆土的抗剪强度概念及剪切破坏本质与破坏条件△测定抗剪强度的常用方法◆掌握库仑公式的总应力法与有效应力法的表示方法◆莫尔-库仑强度理论的公式法与图解法◆直剪试验条件对实际排水条件的模拟△孔隙水压力系数A、B的确定方法◆应力路径的概念及正常固结土与超固结土应力路径的不同§4.2 (浅基础)地基承载力概述◆地基破坏的基本模式、阶段与界限荷载◆地基承载力与地基承载力特征值的概念§4.3 地基承载力的理论公式法◆临塑荷载公式法与临界荷载公式法的基本原理◆通过极限承载力通式分析地基承载力的组成及其影响因素§4.4 地基承载力的原位试验法与§4.5 地基承载力的经验法△一般了解第5章土坡稳定性分析§5.1 概述◆影响土坡稳定性的因素§5.2 无粘性土坡稳定性分析◆无粘性土坡稳定性分析方法§5.3 粘性土坡稳定性分析◆(瑞典)圆弧法的计算原理及确定滑弧圆心的技巧△毕肖普(圆弧)条分法的计算原理及设定圆心与分条的技巧◆掌握费伦纽斯法、毕肖普法与简化毕肖普法在计算原理上的区别△不平衡推力传递法与复合型滑面的土坡稳定性计算原理§5.4 土坡稳定性分析中的若干问题△一般了解第二部分岩体力学绪论◆岩体力学的研究对象与任务◆(工程)岩体的概念及其工程特性第1章岩块、结构面、岩体的地质特性简介§1.1 岩块的地质特性◆岩块及其结构的概念§1.2 结构面的地质特性◆结构面、软弱结构面与泥化夹层的概念▲结构面在岩体工程稳定性中的重要作用§1.3 岩体的地质特性◆岩体结构的概念及其分类方案§1.4 岩体的工程分类简介◆岩块的力学强度分类、RQD概念▲巴顿岩体质量(Q)分类中三项指标的含义第2章岩石(块)的物理、水理与热学性质§2.1 岩石的物理性质◆岩石空隙性中的n=n o+n c=(n a+ n b)+n c§2.2 岩石的水理性质◆岩石的吸水率、饱与吸水率、饱水系数、软化系数与抗冻系数的定义及其与空隙性指标的关系§2.3 岩石的热学性质(不作要求)第3章岩块(石)的变形与强度§3.1 概述△岩块力学属性的基本类型§3.2 岩石(块)的变形性质一、单轴压缩下的变形◆岩块的变形阶段、机理及特征指标◆动荷载、蠕变荷载、弹性滞后、应变强化、回滞环、岩石的“记忆”、疲劳破坏与疲劳强度等概念▲荷载条件对岩石变形的影响二、三轴压缩下的变形△一般了解三、岩石的蠕变性◆岩石的蠕变、流动、长期强度、极限长期强度的概念◆蠕变类型、蠕变阶段的划分▲M、K、Bu蠕变模型及其本构方程、本构曲线§3.3 岩石(块)的力学强度◆岩块单轴抗压强度(σc)概念及其影响因素◆岩块三轴抗压强度(σ1m)概念及其影响因素◆岩块单轴抗拉强度(σt)概念◆岩块抗剪强度(τf)概念及其按试验方法的分类§3.4 岩石(块)的破坏判据◆岩石破坏判据与强度理论的概念◆库仑—纳维尔判据与莫尔判据的基本原理◆格列菲斯判据与修正格列菲斯判据的本质及其区别第4章结构面的变形与强度§4.1 结构面的变形性◆结构面的法向刚度与剪切刚度的概念§4.2 结构面的力学强度(τf或c j、φj)△平直无充填结构面、粗糙起伏结构面、非贯通的断续结构面、具有软弱物充填的结构面4类结构面力学强度的主要特征第5章岩体的力学性质◆控制岩体力学性质的主要因素§5.1岩体的变形性质△岩体变形的主要试验△岩体变形参数(E m、E me)的静力载荷试验法的确定原理△岩体变形的组成、类型及其特征◆岩体变形结构效应的概念§5.2 岩体的强度性质◆岩体剪切强度的概念及其分类与主要影响因素◆岩体抗压强度的结构面产状效应:公式法与摩尔图解法▲约翰图解法第6章岩体中的天然应力§6.1 概述◆天然应力与重分布应力的概念▲研究岩体天然应力的意义§6.2 岩体中天然应力的分布特征△一般了解§6.3 岩体天然应力的量测▲量测原理§6.4 岩体中天然应力的估算不作要求第7章地下洞室围岩稳定性分析§7.1 概述◆围岩与围岩应力的概念§7.2 围岩应力的计算◆无压圆形洞室弹性围岩洞壁处应力计算及λ的影响◆无压圆形洞室弹性围岩λ=1.0时围岩应力计算及其分布规律△(其它洞形洞壁处的σθ计算一般了解)◆无压圆形洞室塑性围岩的应力分带及求塑性圈半径的修正芬纳-塔罗勃公式的应用◆掌握有压圆形洞室弹性围岩的应力计算§7.3 围岩的变形与破坏分析△围岩变形破坏的结构效应△弹性围岩与塑性围岩的位移计算▲围岩破坏区范围圈定的原理§7.4 围岩压力计算◆围岩压力的概念及其按形成机理的分类◆形变围岩压力、松动围岩压力、冲击围岩压力的概念◆形变围岩压力的修正芬纳-塔罗勃公式的应用◆岩爆的产生条件§7.5 围岩抗力与围岩极限承载力◆掌握围岩抗力、抗力系数、单位抗力系数与围岩极限承载力的概念第8章岩体边坡稳定性分析§8.1 概述△一般了解§8.2 岩体边坡的应力分布特征◆应力分布特征△影响因素§8.3 边坡岩体的变形与破坏分析简介(定性)▲掌握边坡岩体的变形类型与破坏类型△影响因素§8.4岩体边坡稳定性分析步骤△一般了解§8.5 平面滑动型岩体边坡稳定性计算(平面问题)◆考虑地下水与地震荷载的单滑面岩坡稳定性计算原理与方法▲同向双平面滑动稳定性计算原理(含滑体内有与无结构面的情况)§8.6 楔形体滑动型岩体边坡稳定性计算(空间问题)▲楔形体滑动的稳定性计算原理。
岩体力学课后思考题
绪论1、何谓岩体力学?它的研究对象是什么?是力学的一个分支学科,是研究岩体在各种力场作用下的变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。
研究对象是各类岩体。
2、岩体力学的研究内容和研究方法是什么?内容:○1岩块、岩体地质特征。
○2岩石的物理、水理与热学性质。
○3岩块的基本力学性质。
○4结构面力学性质。
○5岩体力学性质。
○6岩体中天然应力分布规律及其测量的理论与方法。
○7边坡岩体、地基岩体及地下洞室围岩等工程岩体的稳定性。
○8岩体性质的改善与加固技术。
○9各种新技术、新方法与新理论在岩体力学中的应用。
○10工程岩体的模型、模拟试验及原位监测技术。
方法:○1工程地质研究法。
○2试验法。
○3数学力学分析法。
○4综合分析法。
一、岩体地质与结构特征1、何谓岩块、岩体?试比较岩块与岩体,岩体与土有何异同点?岩块是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体。
岩体是指在地质历史过程中形成的,由岩石单元体和结构面网络组成的,具有一定的结构并赋存于一定的天然应力状态和地下水等地质环境中的地质体。
岩块岩体都是由岩石组成,但岩体包含若干不连续结构面,岩块不含显著结构面。
岩块是岩体的组成物质,岩体是岩块和结构面的统一体。
岩石露在地表部分被风化和淋滤后形成的不溶于水的物质,残留在原地的形成土。
矿物,岩石,岩体都可以形成土。
组成岩体的岩石的矿物颗粒间具有牢固的连接而土没有。
2、岩石的矿物组成是怎样影响岩块的力学性质的?岩石是天然产出的具稳定外型的矿物或玻璃集合体,按照一定的方式结合而成。
力学性质主要取决于组成岩块的矿物成分及其相对含量。
矿物硬度大则强度大,反之则小。
3、何谓岩块的结构?它是怎样影响岩块的力学性质的?岩块的结构是指岩石内矿物颗粒的大小、形式和排列方式及微结构面发育情况与粒间连接方式等反应在岩块构成上的特征。
力学性质主要取决于矿物颗粒连接及微结构面的发育特征。
4、为什么说基性岩和超基性岩最容易风化?可能与其二氧化硅的含量有关。
3.3 结构面的强度特性
§3.3 结构面的强度性质•结构面强度分为抗拉强度和抗剪强度。
•结构面的抗拉强度非常小,常可忽略不计,所以一般认为结构面是不能抗拉的。
•在工程荷载作用下,岩体破坏常沿某些软弱结构面的滑动破坏。
•在岩体力学中,重点研究结构面的抗剪强度。
•一、平直无充填的结构面 •二、粗糙起伏无充填的结构面•三、非贯通断续的结构面 •四、碎块岩体结构面强度•五、具有充填物的软弱结构面一、平直无充填的结构面•平直无充填的结构面包括剪应力作用下形成的剪性破裂面,如剪节理、剪裂隙等,发育较好的层理面与片理面。
•特点是面平直、光滑,只具微弱的风化蚀变。
坚硬岩体中的剪破裂面还发育有镜面、擦痕及应力矿物薄膜等。
•这类结构面的抗剪强度大致与人工磨制面的摩擦强度接近,即:jj C tg +=φστ二、粗糙起伏无充填结构面的强度σττ自然界中,大多数结构面的表面波状起伏,与平直结构面相比错动时具有剪胀作用,产生一个附加强度,称作楔效应。
这种楔效应可分为规则齿状结构面摩擦和不规则齿状结构面摩擦。
(一)规则齿状结构面的楔效应摩擦强度对规则齿状结构面的强度,帕顿(Patton)和勒单尼(Ladanyi)研究得出的强度公式最为经典。
1.帕顿提出的结构面强度公式当作用在结构面上的正应力较小时岩体具有剪胀现象。
如下图所示,取一齿面分析,见下面右图。
ββββcos sin sin cos T N T T N N '+'='-'=ββββTcon N T T N N +-='+='sin sin cos 改变函数形式,则齿状结构面法向力N ,切向力T 为:若齿状结构面水平,作用在齿状结构面法向力为N ,切向力为T ;齿面倾角为β,则齿面上的法向力和剪力为:(3-a )(3-b )设齿面上的摩擦角为φj ,沿齿面剪切达到极限平衡时有:j j tg N T N T tg ϕϕ⋅'='''=,设齿状结构面内摩擦系数为tg υ,试件若要产生剪切破坏,则作用在试件有的法向力和剪力必须满足以下条件:(3-c )(3-d )ββββϕsin cos cos sin T N T N N T tg '-''+'==将式(3-d )代如(3-c )则得:)cos()sin(sin sin cos cos cos sin sin cos sin cos cos sin βϕβϕβϕβϕβϕβϕβϕββϕβϕ++=-+='-''+'==j j j j j j j j tg N N tg N N N T tg βϕϕβϕϕ+=+=j j tg tg ,)(即:结论:具有齿面倾角为β角的规则齿状结构面,在较低的正应力作用下,结构面表现出爬坡效应的破坏特征。
岩石力学ppt课件第三章 岩体力学性质
含软弱夹层的层状岩体及裂隙岩体 (3)上凸型(弹-塑性岩体)
结构面发育且有泥质充填的岩体。
(4)复合型:阶梯或“S”型(塑-弹-塑性岩体)
20结21/8构/17面发育不均或岩性不均匀的岩体。
23
(二)剪切变形特征:
(a)沿软弱结 构面剪切
(b)沿粗糙结构面、 软弱岩体及强风
化岩体剪切
(c)坚硬岩体 受剪切
峰前变形平均斜 率小,破坏位移 大;峰后强度损 失小。
2021/8/17
峰前变形平均斜 率较大,峰值强 度较高;峰后有 明显应力降。
峰前变形斜率大,
峰值强度高,破坏
位移小;峰后残余 强度较低。
24
(三)各向异性变形特征:(P101蔡)
岩石的全部或部分物理、力学特性随方向不同而 表现出差异的现象称为岩石的各向异性。
2021/8/17
2
§3.1 概述
岩体=结构面(弱面)+结构体(岩石块体) 结构面:断层、褶皱、节理……统称
影响岩体力学性质的基本因素:
结构体(岩石)力学性质、结构面力学性质、岩体 结构力学效应和环境因素(特别是水和地应力的作用)
2021/8/17
3
§3.2岩体结构的基本类型 (地质学、复习、了解)
36
孔隙静水压力作用
(三)力学作用:
孔隙动水压力作用
当多孔连续介质岩土体中存在孔隙地下水时, 未充满孔隙的地下水使岩土体的有效应力增加:
p
σα有效应力,σ 总应力,p 孔隙静水水压力
当地下水充满多孔连续介质岩土体时,使有效 应力减小:
p
2021/8/17
σα,σ ,p : 含义同上
37
岩石力学张永兴答案
岩石力学张永兴答案【篇一:《岩体力学》教学大纲】t> 撰写人:学院审批:审批时间:年月日一.课程基本信息开课单位:土木工程与建筑学院课程编号: 01z20044b英文名称: rock mass mechanics学时:总计 32 学时,其中理论授课32 学时,实验(含上机)0 学时学分: 2.0学分面向对象: 2008 级及以后年级的土木工程与工程管理本科专业学生先修课程:《高等数学》、《土木工程概论》、《材料力学》、《普通地质学》、《弹性力学》、《工程地质》、《计算机文化基础》等。
教材:《岩体力学》,沈明荣,陈建峰编著,上海:同济大学出版社, 2006 年 07 月,第三版。
主要教学参考书或资料:1.《岩体力学》,阳生权,阳军生编著,北京:机械工业出版社,2008 年 09 月,第一版。
2. 《岩石力学》,徐志英编著,北京:水利水电出版社,2007 年 07 月,第三版。
3. 《岩石力学》,张永兴编著,北京:中国建筑工业出版社,2008 年 03 月,第二版。
4.gb 50218 —94 工程岩体分级标准.5.gb 50021 —2001 岩土工程勘察规范.6.《岩土工程手册》,岩土工程手册编委会编著,北京:中国建筑工业出版社, 1999 。
二.教学目的和任务岩体力学是一门应用型基础学科,是属土木工程专业任选课。
本课程的教学目的是通过课堂教学,使学生掌握岩石、岩体的基本概念,掌握地下洞室、岩质边坡和地基工程的稳定性分析方法及其基本的设计方法,并了解岩体力学的新理论新方法,掌握常用试验、测试的原理与方法。
三.教学目标和要求通过本课程的学习,充分理解并掌握岩石基本参数的概念,影响因素,试验方法;掌握莫尔强度理论和格里菲斯强度理论;对工程中一般岩体力学问题具有一定的分析和计算能力,如洞室围岩稳定性分析、岩质边坡稳定性分析、坝基稳定性分析等.同时,学生具有正确进行数字计算的能力,掌握测量岩石主要参数的操作能力,具有分析试验数据和编写报告的能力。
结构面的变形与强度性质.
• 一、平直无充填的结构面 • 平直无充填的结构面包括剪应力作用下形 成的剪性破裂面,如剪节理、剪裂隙等, 发育较好的层理面与片理面。其特点是面 平直、光滑,只具微弱的风化蚀变。坚硬 岩体中的剪破裂面还发育有镜面、擦痕及 应力矿物薄膜等。这类结构面的抗剪强度 大致与人工磨制面的摩擦强度接近,即: •
• (1) 开始时随着法向应力增加,结构面闭合变形迅速增长, σn-ΔV 及 σn-ΔVj 曲线均呈上凹型。当 σn 增到一定值时, σnΔVt曲线变陡,并与σn-ΔVr曲线大致平行。说明结构面已基 本上完全闭合,其变形主要是岩块变形贡献的。这时ΔVj 则 趋于结构面最大闭合量Vm。 • (2)初始压缩阶段,含结构面的岩块变形 ΔVt主要是由结构面 的闭合造成的。试验表明,当σn=1MPa时, ΔVt/ΔVr可达 5~30,说明ΔVt占了很大一部分。 • (3) 法向应力 σn 大约从 σc/3 处开始,含结构面的岩块变形由 以结构面的闭合为主转为以岩块的弹性变形为主。 • 结构面加载、卸载的应力-变形关系曲线如下图。
第一节 概述
• 在工程荷载范围内(一般小于10MPa),工程 岩体常常是沿软弱结构面失稳破坏。这方面 的工程实例很多。
• 在工程荷载作用下,结构面及其充填物的变形是岩 体变形的主要组分,控制着工程岩体的变形特性。 • 结构面是岩体渗透水流的主要通道。在、 应力分布及其强度。因此,预测工程荷载作用下岩 体渗透性的变化,必须研究结构面的变形性质及其 本构关系。 • 工程荷载作用下,岩体中应力分布受结构面及其力 学性质的影响。
• 巴顿(Barton)对8种不同粗糙起伏的结构面 进行了试验研究,提出了剪胀角的概念并用 以代替起伏角,剪胀角 αd 的定义为剪切时剪 切位移的轨迹线与水平线的夹角,即:
岩石力学-结构面的力学性质
三、抗剪强度
库仑准则:
c n tan
式中:c / ——结构面上的粘结力 / 摩擦角
剪切刚度
2)剪切刚度Kt:弹性区内单位变形内的应力梯度。
剪切刚度:
Kt
t
1974年Goodman提出:
Kt
Kt0
1
s
式中:Kt0-初始剪切刚度 ts-产生较大剪力位移时的剪应力渐近值
剪胀现象
1)剪胀现象与剪断现象
①岩石强度↑,爬坡角i↓,法向力N↓,发生剪胀现象。 ②岩石强度↓,爬坡角i↑,法向力N↑,发生剪断现象。
2.4 结构面的力学性质
结构面的力学性质主要包括三个方面:
法向变形、 剪切变形、 抗剪强度。
一、法向变形
层面点、线接触,受压点挤压劈裂,层面间距 减小,压力增高,塑性变形导致层面间距继续 减小(减小速率降低),接触面积扩大(约达 40—70%)
结构面法向变形曲线
法向变形刚度
2)法向刚度kn :结构面产生单位法向变形 的法向应力梯度。
2
Kn
Kn0
Kn0max n Kn0max
式中Kn0:结构面的初始刚度二、剪切变形2.4.2 剪切变形与剪切刚度 a.粗糙结构面(无充填物),
剪应力上升较快,当剪应 力达到峰值后抗剪能力下 降较大,并产生不规则的 峰后变形或滞滑现象。 b.平坦结构面(有充填物), 初始阶段剪切变形曲线斜 率逐渐减小,曲线没有明 显的峰值出现,最恒定。
结构面的变形与强度性质
第三章 结构面的变形与强度性质
• §3.1 概述 • §3.2 结构面的变形性质
§ 3.2 结构面的变形性质
一、法向变形性质
1. 法向变形特征
Δ Vt
Δ Vr
Δ Vj
Δ Vj=Δ Vt-Δ Vr
应力-变形关系曲线
A B C
应力-变形关系曲线特征
• 1)σn增加,结构面闭合变 形迅速增长,σn-ΔV、σnΔVj曲线上凹。 增到一定值, σ n-ΔV t 变 陡,与 σ n-ΔV r 近平行。 说明结构面已基本上完 全闭合,其变形主要是 岩块变形贡献。这时, ΔV j 趋于结构面最大闭 合量Vm。
D
壁岩强度JCS
lg(JCS ) 0.00088 R 1.01
岩石重度;
R 回弹值。
几种结构面的抗剪参数表
岩体结构面直剪试验结果表
便携式直剪仪
二、结构面的剪切变形性质 1、剪切变形特征 • 脆性变形型 • 塑性变形型 • 结构面变形与风化程 度有关 • 结构面的剪切刚度, 随法向应力增大而增 大,随结构面规模增 大而降低。
A B C
应力-变形关系曲线特征
2)初始压缩阶段,ΔVt主要 由结构面闭合造成。 σn=1MPa时, ΔVt/ΔVr达5~30, 即ΔVj占很大一部分。 • σn约从σc/3处开始,含结 构面的岩块变形由以结 构面的闭合为主转为以 岩块的弹性变形为主。 A B C
第三章 岩体结构控制论
第三章 岩体结构控制论
3.1 概述 3.2 岩体结构的物质基础 3.3 岩体结构 3.4 岩体结构的力学效应
• 二、工程地质岩组与工程地质岩组划分
工程地质岩组划分
• 工程地质岩组:把工程地质性质相近的岩层组合 体划归到一起构成工程地质评价的独立单元。
• 工程地质岩组划分:在对地层岩性进行系统研究
及分析岩性岩相变化特征的基础上,对岩体及其 组成单元进行工程地质分类的工作。其主要目的 是为工程设计、施工人员应用。 • 岩石(体)工程地质性质分类:普氏系数和RQD • 工程地质岩组划分的学术思路(转下页):
2、结构面的几何形态
• (1)平直型 包括一般的岩层面、片理、劈理、剪节 理、原生节理等。 • (2)波状起伏型 如具波痕的层理、轻度揉曲的片理、 沿走向或倾向呈舒缓波状的破裂结构面等。 • (3)曲折型 一般呈锯齿状或不规则的弯曲状,如具 交错层理和具龟裂纹的岩层面、缝合线、沉积间断 面,以及沿已有裂隙而发育的次生结构面等。 • 波浪型尤其是曲折型结构面,抗剪切滑移的能力较 大,具有重要的工程意义。
3.1 概述
• 问题:
• 什么是岩体?什么是岩体结构?为什么说 岩体结构控制岩体的变形、破坏和力学性 质?岩体结构控制论的基本思想是什么?
• 要点:
• 一、岩体和岩体结构
• 二、岩体结构控制论的基本思想
一、岩 体和岩体结构
• 岩体是在地质历史时期形成的具有一定组分 和结构的地质体。 • 岩体结构是岩体结构单元在岩体内的排列、 组合形式。
节理面的力学性质
21
16
岩石力学
三、抗剪强度
ntg[ JRCl g(
JCS
n
) b ]
式中,JCS是结构面的抗压强度,φ b是岩石 表面的基本摩擦角,JRC为结构面粗糙性系 数,根据10种典型剖面对比确定,目前可根 据分形几何理论定量确定。
17
岩石力学
三、抗剪强度
JRC值根据结构 面的粗糙性在 0~20间变化, 平坦近平滑结 构面为5,平坦 起伏结构面为 10。粗糙起伏 结构面为20
20
岩石力学
三、抗剪强度
5、结构面充填物的影响 结构面内充填物的厚度小于主力凸台高度 时,结构面的抗剪性能与非充填时的力学特 性相类似; 结构面充填厚度大于主力凸台高度时,结 构面的抗剪强度取决于充填材料,充填物的 厚度、颗粒大小与级配、矿物组分和含水程 度都会对充填结构面的力学性质有不同程度 的影响。
19
岩石力学
三、抗剪强度
4、变形历史的影响 第一次进行新鲜结构面剪切试验时,试样具 有很高的抗剪强度,沿同一方向重复进行到第7 次剪切试验时,试样还保留峰值与残余值的区 别,当进行到第15次时,已看不出峰值与残余 值的区别,说明在重复剪切过程中结构面上凸 台被剪断、磨损,岩粒、碎屑的产生与迁移, 使结构面的抗剪力学行为逐渐由凸台粗糙度和 起伏度控制转化为由结构面上碎岩屑的力学性 质所控制。
岩石力学
18
三、抗剪强度
3、结构面力学性质的尺寸效应 Barton等(1982)用不同尺寸的结构面的试验 结果表明,当结构面的试块长度从5~6cm增加 到36~40cm时,平均峰值摩擦角降低8~12°。 随试块面积增加,平均峰值剪切应力呈减少趋 势。尺寸效应还体现在以下几个方面:①随结 构面尺寸增大,达到峰值强度时的位移量增大 ②由于尺寸增加,剪切破坏形式由脆性破坏向 延性转化;③随尺寸加大,峰值剪胀角减小; ④随结构面粗糙度减小,尺寸效应也在减小。
岩体力学 复习资料
第二章1、颗粒密度(ρs)ρs= ms/Vs2、块体密度(ρ)ρ=m/V注意:(1)ρs 与ρ的区别 (ρs>ρ)(2)ρs 与ρ的单位 (g/cm3 kg/m3)(3)测试方法(ρs---比重瓶法;ρ--量积法或蜡封法)干密度 饱和密度 6、水理性质1.吸水率(Wa):岩石试件在大气压力和室温条件下自由吸入水的质量(mw1)与岩样干质量(ms)之比,用百分数表示2.饱和吸水率Wp是指岩石试件在高压(一般压力为15MPa)或真空条件下吸入水的质量(mw2)与岩样干质量(ms)之比,用百分数表示,即 反映岩石总开空隙的发育程度。
可间接判定岩石的抗风化能力和抗冻性饱水系数岩石的吸水率(Wa)与饱和吸水率(Wp)之比,称为饱水系数。
它反映了岩石中大、小开gργ=V m s d =ρ(108℃烘24h ) V V m v s s at ωρρ+=(浸水48h ) %1001⨯=sw a m m W %1002⨯=s w p m m W %100d d 00W p W V V n w p V ρρρ==⨯= %100d d a w a Vb b W W V V n ρρρ==⨯=饱水系数越大,说明常压下吸水后余留的空隙越少,岩石越易被冻胀破坏,抗冻性差4.软化系数(KR)为岩石试件的饱和抗压强度(σcw)与干抗压强度(σc)的比值岩石中含有较多的亲水性和可溶性矿物,大开空隙较多,岩石的软化性较强,软化系数较小。
KR >0.75,岩石的软化性弱,工程地质性质较好KR <0.75,岩石软化性较强,工程地质性质较差 抗冻系数(Rd):反复冻融后与冻融前干抗压强度之比,用百分数表示 质量损失率(Km):冻融试验前后干质量之差(ms1-ms2)与试验前干质量(ms1)之比,以百分数表示 Rd >75%,Km <2%,抗冻性高吸水率Wa <5%、软化系数KR >0.75,饱水系数小于0.8的岩石,抗冻性高。
7.岩石的透水性:在一定的水力梯度或压力差作用下,岩石能被水透过的性质,称为透水性。
结构面的基本性能
降低岩体强度
岩体结构要素 结 结 (构 构 单 坚 面 软 板 体 块 元硬 弱 状 状 )结 结 结 结干 构 夹 构 构 构净 面 泥 面 体 体 的 的 ( ( 于 , 长 1短 5的 夹 厚 轴) 层 比 的大 )
岩体强度=岩块强度+节理强度
WUST
图1 节理岩体的强度特征与岩石强度的区别 Ⅰ-岩石;Ⅱ-节理化岩体:Ⅲ-节理
2、剪性结构面是剪应力形成的,破裂面两侧岩体产生相对滑 移,如逆断层、平移断层以及多数正断层等。
❖ 特点:连续性好,面较平直,延伸较长并有擦痕镜面等。
WUST
二、结构面的规模
❖ Ⅰ级 指大断层或区域性断层。控制工程建设地区的地壳稳定 性,直接影响工程岩体稳定性;
❖ Ⅱ级 指延伸长而宽度不大的区域性地质界面。
变质结 1片理 构面 2片岩软弱夹层
产状与岩层或构 造方向一致
构造结构面
1节理(X型节理、张节 理) 2断层(冲断层、捩断 层、横断层) 3层间错动 4羽状裂隙、劈理
产状与构造线呈 一定关系,层间 错动与岩层一致
片理短小,分布极密, 片岩软弱夹层延展较 远,具固定层次
结构面光滑平直,片理在岩层深部 往往闭合成隐蔽结构面,片岩软弱 夹层具片状矿物,呈鳞片状
国内外较大的坝基滑动及滑坡很多由此 类结构面所造成的,如奥斯汀、圣·弗 朗西斯、马尔帕塞坝的破坏,瓦依昂水 库附近的巨大滑坡
接触面延伸较远,比 较稳定,而原生节理 往往短小密集
与围岩接触面可具熔合及破碎两种 不同的特征,原生节理一般为张裂 面,较粗糙不平
一般不造成大规模的岩体破坏,但有时 与构造断裂配合,也可形成岩体的滑移, 如有的坝肩局部滑移
在变质较浅的沉积岩,如千枚岩等路堑 边坡常见塌方。片岩夹层有时对工程及 地下洞体稳定也有影响
第三章 1 岩石的强度
第三章岩石的强度一、概述1.岩石强度岩石强度是指岩石的破坏形式以及岩石抵抗外力破坏的能力。
大坝建在岩基上,岩基是否能承受外加的荷载呢?高边坡陡峻耸立,它会不会发生坍塌呢?在岩体内开挖地下洞室,围岩是否会破坏?所有这些都与岩石强度密切相关。
主要问题就是外力多大时,以怎样的方式破坏。
2. 岩石强度的基本特点岩石强度:岩块强度和岩体强度。
岩块强度是岩体强度的基础,结构面则是对完整岩块强度的削弱。
因此,结构面的发育程度及产状和形态对岩体强度起重要影响作用。
岩性坚硬未风化的岩体:岩块强度很高,而结构面的强度则很低,这时岩体的强度主要取决于结构面的强度及产状;岩性软弱的(风化、破碎)岩体:其岩块强度很低,结构面的作用就不显著,这时岩体的强度就决定于岩石的强度。
有多条裂隙、并有地应力和渗流等作用时,岩体强度就产生较大变化。
因此,岩体的强度就变得十分复杂。
岩块强度与岩石性质的关系:完整岩块>节理岩块(裂隙结构面上)结晶岩块>碎屑岩(成因类型)结构致密>非致密岩石(孔隙度)浅色矿物岩石>深色矿物岩石(物质组成)细颗粒的结晶岩>粗颗粒的结晶岩(岩石结构)3. 岩石的破坏形式岩石的破坏形式有以下几种:1).脆性破坏:在荷载作用下没有显著的变形就突然破坏。
大多数坚硬岩石在一定条件下都表现出脆性破坏的性质。
脆性破坏结果是产生裂缝,如,岩体的断层、裂隙等都属于脆性破坏。
2).延性破坏:岩石在破裂之前的变形很大,且没有明显的破坏荷载,表现出显著的塑性变形、流动或挤出。
塑性变形是岩石内结晶晶格错位的结果。
在一些软弱岩石中,这种破坏较为明显。
如洞底部及两侧围岩向洞内鼓胀。
坚硬岩石在高温影响下,也能产生延性破坏。
3).剪切破坏:由于岩层中存在裂隙、层理、软弱夹层等软弱结构面,岩体的整体性受到破坏。
在荷载作用下,这些软弱结构面上的剪应力大于该面上的强度时,岩体就发生沿着弱面的剪切破坏。
岩基和岩坡沿裂隙及软弱结构面滑动破坏均属此例,。
《岩体力学》教学大纲
岩体力学一、课程说明课程编号:010214Z10课程名称(中/英文):岩体力学/Rock Mass Mechanics课程类别:专业教育课程学时/学分:48/3先修课程:弹性力学、材料力学适用专业:地质工程教材、教学参考书:刘佑荣、唐辉明主编,岩体力学,化学工业出版社,2009沈明荣,陈建峰编著,岩体力学,同济大学出版社,2006二、课程设置的目的意义《岩体力学》是高等学校本科学生的一门必修的专业技术基础课程,它是应用必要的力学知识研究岩体力学性态、变形和稳定性问题,是地质工程所必需的基础理论知识,因此本课程是为培养我国社会主义现代化建设所需的高级工程专业人才服务的。
通过本课程的学习,要使学生掌握:岩石的基本物理、力学性质;原岩应力及重分布应力的确定方法;围岩应力分析,位移的计算、稳定性分析、岩体力学试验方法等基本知识。
具有解决岩体工程(包括:地下工程、岩质边坡、地基工程)实践问题的基本技能,并了解岩石力学学科发展的当前动态。
三、课程的基本要求知识:掌握岩体力学的基本概念,建立具体工程实践之间的关系。
把握岩石和岩体力学具体评价指标,岩石强度理论分析,掌握原岩地应力的计算方法,边坡稳定性分析方法,围岩应力状态及变形计算方法,地下载荷计算方法。
能力:岩体力学课程是一门理论性和应用性较强的专业技术基础课程,为帮助学生掌握好课堂教学内容、训练岩体力学问题的思维方式、计算分析和解决岩体力学中的一些实际问题的能力。
在教学活动过程中,需结合具体的工程实例进行与岩体力学相关的分析计算,提高应用岩体力学基本理论解决实际工程问题的能力。
素质:加强力学理论-数学模型-实际应用之间的关联的把握,通过课程中对岩体力学基础理论的学习,建立由具体的力学模型到具体实践的应用转换,深化对力学知识的理解和发展,提升个人自主学习和理论应用意识,形成对基础理论不断消化吸收应用的发展素质。
四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求岩石的基本物理、水理性质实验,掌握岩石基本性质的实验过程和具体操作。
岩体力学
0绪论1岩石力学:力学的一个分支学科,是研究岩体在各种应力场条件下的变形与破坏规律的理论及其应用的科学,是一门应用性基础学科。
2研究内容:●岩块岩体地质特征的研究●岩石的物理,水理,力学性质的研究●结构面的力学性质研究●岩体力学性质研究●天然应力分布及其量测的理论方法的研究●岩体分类及其方法的研究●岩体变性破坏机理及其本构方程与破坏判据的研究●边坡岩体,地基岩体,地下洞室围岩等工程岩体的稳定性研究3研究方法●工程地质研究法●实验法●数学力学分析法●综合分析法1岩体性质与结构特征1岩体:在地质历史过程中形成的,由岩块和结构面网络形成的,具有一定结构并赋存在一定的天然应力状态和地下水等地质坏镜中的地质体,是岩体力学研究的对象。
2岩块:不含显著结构面的岩石块体,时构成岩体的最小岩石单元体3岩块结构:岩石内矿物颗粒的大小,性准过,排列方式和颗粒间的连接方式以及微结构面的发育情况等反映在岩块构成上的特征4联结方式●结晶联结结晶越细越均匀非晶质越少岩石强度越高●胶结联结胶结物成分硅质>钙质铁质>泥质胶结类型基底式>孔隙式>接触式5微结构面:存在与矿物颗粒内部或颗粒间的软弱面或缺陷6岩块的构造:矿物集合体之间及其与其他组分之间的排列组合方式7结构面:地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相随较小的地质界面或带7结构面分类●原生结构面沉积结构面⏹层理层面⏹软弱夹层⏹不整合面,假整合面⏹沉积间断面岩浆结构面⏹侵入体与围岩接触面⏹岩浆岩墙接触面⏹原声冷凝节理变质结构面⏹片理⏹片岩软弱夹层⏹片麻理⏹板理千枚理●构造结构面节理断层层间错动羽状裂隙,霹理●次生结构面卸荷裂隙风化裂隙风华夹层泥化夹层次生夹泥层8结构面规模与分级延伸:破碎带宽Ⅰ级公里至数十公里米至数十米乃至数百米Ⅱ级百米至数千米数十厘米至数米Ⅲ级十米至百米厘米至1米Ⅳ级数十厘米至20-30米0至数厘米Ⅴ级9结构面特征●产状(走向倾向倾角)●连续性线连续性系数(K1):沿结构面延伸方向上,结构面各段长度之和与测线长度的比值迹长:结构面与露头面交线的长度面连续性系数●密度线密度(Kd):结构面法线方向单位侧线长度上交切结构面的条数间距(d):同一组结构面法线方向上相邻两结构面的平均距离●张开度:结构面两壁面间的垂直距离●形态侧壁起伏形态粗糙度(粗糙度系数JRC)●结构面组合关系10软弱结构面:岩体中具有一定厚度的软弱带(层),与两盘岩体相比具有高压缩性何地轻度的特征,在产状上多数缓倾角结构面11泥化夹层:含泥质的软弱夹层经一系列的地质作用演化而成的12泥化夹层特性●由超固结状态变成泥质散状结构或泥质定向结构●黏粒含量高●含水量接近宿限,密度比原岩小●强度低,压缩性高●抗冲刷能力差易产生渗透变形13结构体:由结构面网络所围成的岩石块体14岩体结构:岩体中结构体和结构面的排列组合特征15岩体结构类型划分●整体状结构●块状结构●层状结构●碎裂状结构●散体状结构2岩体的物理力学性质1研究岩块的意义●岩体性质接近岩块性质时,可通过岩块的力学性质外推岩体力学性质●岩块是岩体的组成部分研究岩体是不能忽略岩块性质的研究●评价石材性能时必须研究岩块的相关性质●评价岩体的可钻性和可破碎性时必须研究岩块的相关性质●工程岩体分类时岩块强度和变形模量作为分类目标必须研究岩块的相关性质2岩块的物理性质●岩石密度颗粒密度(ps):岩石中固体相部分的质量与体积的比值块体密度:岩石单位体积内的质量⏹干密度()⏹饱和密度⏹天然密度●岩石的空隙性总空隙率(n)总开空隙率(no)大开空隙率(nb)小开空隙率(na)闭空隙率(nc)3岩石的水理性质●吸水性:岩石在一定条件下吸收水分的能力吸水率*(Wa):岩石试件在大气压力和室温下吸入水的质量和岩样干质量之比 饱和吸水率(Wp):岩石试件在高压或真空条件下吸入水的质量和岩样干质量之比 饱水系数:岩石吸水率和饱和吸水率之比●软化性:岩石浸水饱和后强度降低的性质软化系数(KR):岩石试件的饱和抗压强度和干抗压强度的比值●抗冻性:岩石抵抗冻融破坏的能力抗冻系数(Rd):岩石试件在反复冻融后的干抗压强度和冻融前的干抗压强度的比值质量损失率(Km):冻融实验前后干质量的差值和冻融前干质量的比值●透水性:在一定水力梯度和压力差作用下,岩石被水透过的性质渗透系数(K):表征岩石被水透过能力的重要指标●膨胀性:岩石浸水后体积增大的性质自由膨胀率(V):岩石试件在无任何约束条件下进水后膨胀变形与原尺寸的比值 侧性约束膨胀率(VHp)具有侧向约束的岩石试件浸水后产生的轴向变形与原尺寸的比值膨胀压力:岩石试件浸水后使试件保持原有体积所施加的最大压力:●崩解性:岩石与水相互作用后失去黏性,并变成完全丧失强度的松散物质的性能4岩块的变形性质●单轴压缩条件下的变形性质连续加载下的变形性质⏹应力-应变全过程曲线✧孔隙裂隙压密阶段原有张开性结构面和微裂隙闭合✧弹性变形和微破裂稳定发展阶段弹性极限屈服极限✧非稳定破裂发展阶段峰值强度✧破坏后阶段残余轻度⏹变形参数✧变形模量(E):单轴压缩条件下,轴向应力和轴向应变的比值✧弹性模量:当岩石应力应变曲线为直线时,变形模量为一常量,数值上等于直线斜率,由于其变形为弹性变形称为✧初始模量(Ei):曲线原点出的切线斜率✧切线模量(Et):曲线上任一点的切线斜率✧割线模量(Es):曲线上某特定点和圆点连线的斜率,通常取一半的单轴抗压强度处的点✧泊松比(u):单轴压缩条件下横向应变与轴向应变之比循环荷载下的变性特征⏹弹性后效(弹性滞后):循环荷载作用下,多数岩石的大部分弹性变形能在卸载后很快恢复,而小部分须经一段时间后才能恢复,应变回复总是落后应力恢复的现象⏹岩石记忆:逐级一次循环加载条件下,应力应变曲线与连续加载条件下的曲线基本一致,说明加卸载过程并没改变岩快变形的基本习性,这种现象称⏹回滞环:在循环荷载条件下,每次的加卸载曲线都不重合,且围成一环型面积⏹疲劳强度:●三轴压缩条件下的岩块变形性质三轴实验真假围岩对岩块变性破坏的影响⏹破坏前岩块的应变随围压的增加而增加⏹随围压的增大,岩块的塑性增大,由脆性破坏转为延性破坏✧应变硬化现象:试件的承载力随围压的增长稳定增长的现象✧转化压力:岩石由脆性变化转化为延性的临界围压✧延性度:岩石破坏前的总应变,是区分脆性破坏和岩性破坏的指标●岩块的蠕变性质流变:在外部条件不变的情况下,岩石的变形或应力随时间变化的现象蠕变:岩石在恒定荷载作用下,变形随时间而逐渐增大的性质流变:岩石在变形不变的条件下,应力随时间二变化的现象弹性后效:蠕变曲线特征⏹初始蠕变阶段曲线下凹应变率随时间增大较快⏹等速蠕变阶段近直线⏹加速蠕变阶段曲线上凹应变率随时间迅速增加长期强度:影响蠕变的因素岩性应力温度湿度5岩块的强度性质●抗压强度单轴抗压强度:在单向压缩条件下,岩块能承受的最大压应力三轴压缩强度:时间在三向压力作用下能抵抗的最大轴向应力●单轴抗拉强度:岩块试件在单向拉伸时能承受的最大拉应力直接拉伸法间接拉伸法⏹劈裂法⏹点荷载试验⏹抗弯法●剪切强度:在剪切荷载作用下,岩块抵抗剪切破坏的最大剪应力抗剪断强度:在一定法向应力作用下,沿预定剪切面剪断时的最大剪应力抗切强度:法向应力为零时沿预定剪切面剪断时的最大剪应力抗剪强度(摩擦强度):在一定法向应力作用下,沿已有破裂面剪断时的最大剪应力方法⏹直剪试验⏹变角板剪切试验⏹三轴实验6影响岩块变形与强度的因素●实验条件加载方式与加载速率试件的形状和尺寸,断面条件●岩体本身性质●环境因素(温度,湿度,水)3结构面的变形与强度性质1研究意义●工程岩体的失稳破坏有相当一部分是沿软弱结构面破坏的●结构面及其填充物的变形是岩体变形的主要组分●结构面试岩体中渗透水流的主要通道●岩体中的应力分布也受结构面极其力学性质的影响2结构面的变形性质●法向变形性质开始时变形迅速增长当法向应力到一定值时雨岩块的变形曲线大致平行初始阶段的变形主要是结构面闭合大约在1/3 处以岩块的变形为主以为渐近线最大闭合量小于结构面的张开度●循环荷载下的变形性质仍以为渐近线卸载刚度比加载刚度大随循环次数增加变形曲线整体左移,且能显示滞后和非弹性变形每次循环载荷曲线形状相似●结构面法向刚度:在法向作用力下,结构面产生单位变形所需要的应力室内压缩试验现场压缩试验(中心孔承压板法)●结构面剪切变形性质剪切变形特征⏹均为非线性曲线塑性变形:无明显的峰值强度和应力降,且峰值强度和残余强度相差很小,曲线斜率连续变化脆性变形:有明显的峰值强度和应力降,开始时剪切变形随应力增加缓慢,峰值后剪切变形增加较快⏹结构面峰值位移受风化程度影响⏹同类结构面而言,风化的结构面剪切刚度比未风化的小⏹剪切刚度有明显尺寸效应⏹剪切刚度随法向应力增大而增大剪切刚度:室内剪切实验现场剪切试验4结构面的强度性质●平直无填充结构面●粗糙起伏无填充结构面规则锯齿形结构面不规则起伏结构面剪胀角:剪切位移的轨迹线与水平线的夹角非贯通断续结构面具有填充物的软弱结构面5结构面抗剪强度参数的确定●实验法●参数反演法●工程地质类比法4岩体力学性质1岩体的变形性质●岩体变形实验静力法⏹承压板法⏹钻孔变形法⏹狭缝法动力法声波法地震波法2影响岩体变形性质因素岩性结构面发育特征载荷条件,试验尺寸,试验方法温度湿度水6岩体天然应力1天然应力:人类活动之前存在于岩体中的应力2天然应力分布规律●主应力以压应力为主,方向基本垂直和水平●天然应力场是一个相对稳定的非稳定应力场●垂直天然应力随深度线性增长●水平天然应力分布复杂以压应力为主水平应力大于垂直应力两个水平应力不相等单薄山体,谷坡附近及未受构造变动的岩体中水平应力小于垂直应力●天然应力比值系数随深度减小●相对大的区域内最大主应力方向基本稳定●区域构造场常决定局部点的主应力●天然应力为三维状态3天然应力的测量●应力恢复法●套心法●水压致裂法4影响天然应力分布的因素:●地形起伏●地表剥蚀●结构面●岩体性质●地下水●地温5高地应力的特征●岩芯饼化现象●地下洞室施工过程中出现岩爆,剥离●边坡上出现错动台阶●原位变形曲线的变化●软弱夹层内物质被挤出,节理闭合7岩体本构关系与强度理论1岩体本构关系:岩体在外力作用下,应力或应力速率与其应变或应变速率的关系2岩体强度理论:研究岩石在一定假说条件下在各种应力状态下的强度准则的理论3岩体破坏机制:张破坏剪破坏结构体沿软弱结构面滑动结构体转动倾倒溃屈弯折。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• §3.1 概述 • §3.2 结构面的变形性质 • § 3.3 结构面的强度性质
第3章 结构面的变形与强度性质
§3.1 概 述
• 在工程荷载(一般小于10MPa)范围内,工程岩体 常常是沿软弱结构面失稳破坏。如马尔帕塞坝溃 坝、瓦依昂库岸滑坡等。
• 在工程荷载作用下,结构面及其充填物的变形是岩体变 形的主要组分,控制着工程岩体的变形特性。
• 结构面是岩体渗透水流的主要通道。在工程荷载作用下 结构面的变形又将极大地改变岩体的渗透性、应力分布 及其强度。因此,预测工程荷载作用下岩体渗透性的变 化,必须研究结构面的变形性质及其本构关系。
• 工程荷载作用下,岩体中应力分布受结构面及其力学性 质的影响。
工程实例
工程实例
秭归县千将坪滑坡
2003年7月13日零时20分
K1>30%时; 则: Cj=Cjg
j= jg K1<30%时; 则: Cj=Cjc+(Cjg- Cjc)x/30
4) 参数反演法
j= jc+(jg-jc) x/30
应力-变形关系曲线
AB
应力-变形关系曲线特征
• 开始时随着法向应力增加,
结构面闭合变形迅速增长。当σn增到一定值时,σnΔVt曲线变陡,并与σn-ΔVr曲线大致平行。说明 结构面已基本上完全闭合,其变形主要是岩块变形贡献 的。这时ΔVj则趋于结构面最大闭合量Vm。
• 初始压缩阶段,含结构面的岩块变形ΔVt主要由结构 面闭合造成。试验表明,当σn=1MPa时, ΔVt / ΔVr可达5~30,说明ΔVt占了很大一部分。
裂面
岩桥
裂面
岩桥
K1C j (1 K1)C K1tg j (1 K1)tg
C
tgφ
裂面
岩桥
裂面
岩桥
K1C j (1 K1)C K1tg j (1 K1)tg
Cb
tgφb
Cb K1C j (1 K1)C
tgb K1tg j (1 K1)tg
Cb tgb
四、具有充填物的软弱结构面
2
几种结构面的抗剪参数表
岩体结构面直剪试验结果表
便携式直剪仪
二、结构面的剪切变形性质
1、剪切变形特征
• 粗糙结构面,呈脆性变形型 • 平直结构面,呈塑性变形型 • 结构面变形与风化程度有关 • 结构面的剪切刚度,随法向应力的增大而增大,随结构
面的规模增大而降低。
2. 剪切变形本构方程 • 卡尔哈韦( Kalhaway)方程
统计方法求得
d
JRC 2
lg
JCS
tg1.78d 32.88
• 大量的试验资料表明,一般结构面的基本摩擦角u= 25°~35°之间。因此,上式右边的第二项应当
就是结构面的基本摩擦角u ,而第一项的系数取整 数2。经这样处理后,上式变为:
tg2d u
•Barton方程
tg
JRC
lg
• 具有充填物的软弱结构面包括泥化夹层和各种类型的夹泥 层,其形成多与水的作用和各类滑错作用有关。这类结构 面的力学性质常与充填物的物质成分、结构及充填程度和 厚度
软弱结构面强度参数的确定方法:
1)原位试验
2)工程地质类比法
3)地质力学法,如A.M.Rooertson等,1970提出
用泥化夹层泥化部分K1及其性质(Cjg、 jg) 确定其Cj、 j:
• 当很大时,凸起全部被剪断, =AVVs/Au(a=s0,则1 )有,无:剪胀发生,
r tg C
• 从以上讨论可知,阿氏与莱氏 公式是图中曲线3。
三、非贯通断续的结构面
• 这类结构面由裂隙面和非贯通的岩桥组成。在 剪切过程中,一般认为两者都起抗剪作用。
• 通过的裂隙面和岩桥都起抗剪作用。假设沿整 个剪切面上的应力分布是均匀的,结构面的线 连续性系数为K1,则整个结构面的抗剪强度
• 结构面的初始法向刚度是一个与结构面在地质历史时期
的受力历史及初始应力(σi)有关
的量,其定义为σn-Vj曲线原点处的
切线斜率,即:
K ni
n
V
j
Vj 0
卸荷的应力-变形关系曲线
•结 构 面 的 卸 荷 变 形 曲 线 (σn-ΔVj) 仍 为 一 以 ΔVj = Vm 为 渐 近 线 的 非 线 性 曲 线。卸荷后留下很大的残 余变形不能恢复,能恢复 部分称为松胀变形。
所示。剪断凸起的条件为:
C
1 tg( i) tg
b
小结:双直线强度
• tg(b i) (σ<σ1)
tg C (σ≥σ1)
C
1 tg( i) tg
b
2、不规则起伏结构面
• 自然界岩体中绝大多数结构面的粗糙起伏形 态是不规则的,起伏角也不是常数。其强度 包络线不是折线,而是曲线形式。
ntg
J
RClg
JCS
n
r
r 结构面残余强度
§3.3 结构面的强度性质
• 结构面强度分为抗拉强度和抗剪强度。 • 由于结构面的抗拉强度非常小,常可忽略不
计,所以一般认为结构面是不能抗拉的。 • 在工程荷载作用下,岩体破坏常以沿某些软
弱结构面的滑动破坏为主。 • 因此,在岩体力学中一般很少研究结构面的
3)孙广忠方程
n
V j Vm (1 e
Kn )
3.法向刚度及其确定方法
法向刚度Kn(normal stiffness)是指在法向应力 作用下,结构面产生单位法向变形所需要的应力,
在数值上等于σn- Vj曲线上一点的切线斜率。
Kn
n
V j
(MPa/cm)
室内变形试验
确 试验法 定 方
现场变形试验
n sin i cosi n cosi sin i
n
ntg
( b
)
tg(b i)
Patton公式
• (2) 当σ较大时,由于啃断作用,则结构面的 抗剪强度为:
tg C
•式中 ,C分别为结构面壁岩的内摩擦角和内聚力。
上式为法向应力σ≥σ1时,结构 面的抗剪强度,其包络线如图
法 本构方程和经验估算
(1)现场变形试验——中心孔承压板法
Kn
ni1 ni
Vi1 Vi
n
V
(2)经验估算
由Bandis 方程估算
n
K niVmV j Vm V j
V j
nVm K niVm n
Kn
n
(V j )
K ni (1 V j Vm ) 2
Kn
1
K ni
n K niVm n
JCS
u
• Ladanyi & Archambault 提出:
1 aS V tgu aS r 1 1 aS Vtgu
剪断率
aS
AS
A
剪胀率 V V
凸起岩石抗剪强度 r tg C
1 aS V tgu aS r 1 1 aS Vtgu
• 当很小时,凸起不被剪断, =tAgsi=,则>0有(a: s=>0)且tgV(=u Vi)/ u
抗拉强度,重点是研究它的抗剪强度。
• • 二、粗糙起伏无充填的结构面
1、 2、 • • 四、具有充填物的软弱结构面
一、平直无充填的结构面
• 平直无充填的结构面包括剪应力作用下形成的 剪性破裂面,如剪节理、剪裂隙等,发育较好 的层理面与片理面。
• 特点是面平直、光滑,只具微弱的风化蚀变。 坚硬岩体中的剪破裂面还发育有镜面、擦痕及 应力矿物薄膜等。
• 巴顿(Barton,1973)对8种不同粗糙起 伏的结构面进行了试验研究,提出了剪胀 角的概念并用以代替起伏角,剪胀角αd (angle of dilatancy)的定义为剪切时 剪切位移的轨迹线与水平线的夹角,即:
d
tg 1 V
• Barton 方程:Barton 通过大量结构面剪切试验,用
2) Bardis方程
n
V j a bV j
n
1 a / V j
b
1 a b
n V j
当 n 时, V j Vm
b a Vm
K ni
nHale Waihona Puke V jV j 01
a(1 b aV j ) 2 V j 0
1 a
a 1 K ni
n
K niVmV j Vm V j
较适合于未经滑错位移的嵌 合结构面(如层面)的法向变 形特征。
• 这类结构面的抗剪强度大致与人工磨制面的摩 擦强度接近,即:
tg j C j
二、粗糙起伏无充填的结构面
σ
τ
τ
剪切特点:
• ① 当σ较小时,上盘岩块上下运动,产生爬坡效应, 增大了τ
• ②当σ较大时,将剪断凸起而运动,也增大了τ
• 经验值
1、规则锯齿形结构面 (1) 当σ较小时
可概化为图5-14的模型:
u
m nu
m 1 ,n 1
K si
ult
3.剪切刚度及其确定方法
• 剪切刚度KS(shear stiffness) 是反映结构面剪切变形性质的重要 参数,其数值等于峰值前τ-u曲 线上任一点的切线斜率。
Ks
u
确 试验法 室内试验
定
方
现场试验
法 经验估算法(Barton方程)
Ks
100 L
•随着循环次数的增加, σ整n-体ΔV向j曲左线移逐。渐变陡,且
•每次循环荷载所得的曲 线形状十分相似,且其特 征与加荷方式及其受力历 史无关。
2.法向变形本构方程 n f (V j )
(1)Goodman 方程
n
V j Vm V
j
1 i