希尔伯特23个数学问题7大数学难题全解

合集下载

世界七大数学难题黎曼假设

世界七大数学难题黎曼假设

世界七大数学难题黎曼假设

世界七大数学难题,它们就像一道道亮丽的风景,吸引着世界各国的数学家的注意。世界七大数学难题分别是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想,这七个问题都被悬赏一百万美元。今天我们来介绍一下黎曼假设。

世界七大数学难题:黎曼假设

1、黎曼假设简介

有些数具有不能表示为两个更小的数的乘积的专门性质,例如,2、3、5、7……等等。如此的数称为素数;它们在纯数学及其应用中都起着重要作用。在

所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观看到,素数的频率紧密相关于一个精心构造的所谓黎

曼zeta函数ζ(s)的性态。闻名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点差不多关于开始的1,500,000,000个解验证过。证明它关于每一个有意义的解都成立将为围绕素数分布的许多隐秘带来光明。

2、黎假设的背景

黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努

力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。

3、黎曼猜想的描述

与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得专门远,但它在数学上的

重要性要远远超过这两个大众知名度更高的猜想。黎曼猜想是当今数学界最重要的数学难题。目前有消息指尼日利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决黎曼猜想,然而克雷数学研究所既不证实也不否认伊诺克博士正式解决了这一问题。

Removed_希尔伯特23个问题与21世纪七大数学难题

Removed_希尔伯特23个问题与21世纪七大数学难题

希尔伯特23个问题与21世纪七大数学难题

2009-12-31 12:41:40

希尔伯特23个问题及解决情况

1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。在这具有历史意义的演讲中,首先他提出许多重要的思想:

正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。

希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。”

他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:

清晰性和易懂性;

虽困难但又给人以希望;

意义深远。

同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。

编号问题推动发展的领域解决的情况

1 连续统假设公理化集合论1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。

2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。数学的相容性问题至今未解决。

世界七大数学难题与Hilbert的23个问题

世界七大数学难题与Hilbert的23个问题

世界七大数学难题与Hilbert的23个问题继上文《数学家的猜想错误》提到的七大数学难题和大卫·希尔伯特23个数学难题,今天我们就来详细了解下。世界七大数学难题,这七个“千年大奖问题”是:

NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。千年大奖问题美国麻州的克雷(Clay)

数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得

火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。其中有

一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家

格里戈里·佩雷尔曼破解。我国中山大学朱熹平教授和旅美数学家、清华

大学兼职教授曹怀东做了证明的封顶工作。)“千年大奖问题”公布以来,在世界数学界产生了强烈反响。

这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论

的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为

世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,

“千年大奖问题”将会改变新世纪数学发展的历史进程。01庞加莱猜想1904年,法国数学家亨利·庞加莱(HenriPoincaré)在提出这个猜想:

'任何一个单连通的,封闭的三维流形一定同胚于一个三维的球面。

'

换一种简单的说法就是:一个闭的三维流形就是一个没有边界的三维

空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,

或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这

个空间就一定是一个三维圆球。懵逼中

为了大家便于理解庞加莱猜想,有人给出了一个十分形象的例子:假如在一个完全封闭(足够结实)的球形房子里,有一个气球(皮是无限薄的),现在我们将气球不断吹大,到最后,气球的表面和整个房子的墙壁是完全贴住,没有缝隙。面对这个看似十分简单的猜想,无数位数学家前仆后继,绞尽脑汁,甚至是倾其一生都没能证明这个猜想。希腊数学家帕帕奇拉克普罗斯直到临终前都在为庞加莱猜想的证明而努力,最后只能把一叠厚厚的手稿交给了一位数学家朋友保管。

千禧七大数学问题

千禧七大数学问题

千禧七大数学问题

千禧七大数学问题

千禧七大数学问题

2000年美国克雷数学促进研究所提出。为了纪念百年前希尔伯特提出的23问题。每一道题的赏金均为百万美金。

1、黎曼猜想。

黎曼猜想,即素数的分布最终归结为所谓的黎曼ζ函数的零点问题。

黎曼在1859年在论文《在给定大小之下的素数个数》中做出这样的猜想:ζ(z)函数位于0≤x≤1之间的全部零点都在ReZ=1/2之上,即零点的实部都是1/2,这至今仍是未解决的问题。

黎曼猜想是说:

素数在自然数中的分布问题在纯粹数学和应用数学上都是很重要的问题。素数在自然数域中分布并没有一定规则。黎曼(1826--1866)发现素数出现的频率与所谓黎曼ζ函数紧密相关。

现在已经验证了最初的1,500,000,000个解,猜想都是正确的。但是否对所有解是正确的,却没有证明,随着费马最后定理的获证,黎曼猜想作为最困难的数学问题的地位更加突出。

透过此猜想,数学家认为可以解决素数分布之谜。这个问题是希尔伯特23个问题中还没有解决的问题。透过研究黎曼猜想数学家们认为除了能解开质数分布之谜外,对於解析数论、函数理论、椭圆函数论、群论、质数检验等都将会有实质的影响。

2、杨-密尔斯理论与质量漏洞猜想(Yang-Mills Theory and Mass Gap Hypothesis)

西元1954 年杨振宁与密尔斯提出杨-密尔斯规范理论,杨振宁由

数学开始,提出一个具有规范性的理论架构,后来逐渐发展成为量子

物理之重要理论,也使得他成为近代物理奠基的重要人物。

杨振宁与密尔斯提出的理论中会产生传送作用力的粒子,而他们

世界七大数学难题

世界七大数学难题

世界七大数学难题

难题的提出

20世纪是数学大开展的一个世纪。数学的许多严重难题失掉完美处置,如费马大定理的证明,有限单群分类任务的完成等,从而使数学的基本实际失掉绝后开展。

计算机的出现是20世纪数学开展的严重成就,同时极大推进了数学实际的深化和数学在社会和消费力第一线的直接运用。回首20世纪数学的开展,数学家们深切感谢20世纪最伟大的数学巨匠大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特效果在过去百年中激起数学家的智慧,指引数学行进的方向,其对数学开展的影响和推进是庞大的,无法估量的。

效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的开展指明方向。这些数学家知名度是高的,但他们的这项举动并没有惹起世界数学界的共同关注。

2021年终美国克雷数学研讨所的迷信顾问委员会选定了七个〝千年大奖效果〞,克雷数学研讨所的董事会决议树立七百万美元的大奖基金,每个〝千年大奖效果〞的处置都可取得百万美元的奖励。克雷数学研讨所〝千年大奖效果〞的选定,其目的不是为了构成新世纪数学开展的新方向,而是集

中在对数学开展具有中心意义、数学家们念念不忘而等候处置的严重难题。

2021年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖取得者伽沃斯以〝数学的重要性〞为题作了演讲,其后,塔特和阿啼亚发布和引见了这七个〝千年大奖效果〞。克雷数学研讨所还约请有关研讨范围的专家对每一个效果停止了较详细的论述。克雷数学研讨所对〝千年大奖效果〞的处置与获奖作了严厉规则。每一个〝千年大奖效果〞取得处置并不能立刻得奖。任何处置答案必需在具有世界声誉的数学杂志上宣布两年后且失掉数学界的认可,才有能够由克雷数学研讨所的迷信顾问委员会审查决议能否

世界上最难的数学题,世界七大数学难题难倒了全世界(美国克雷数学研究所公

世界上最难的数学题,世界七大数学难题难倒了全世界(美国克雷数学研究所公

世界上最难的数学题,世界七大数学难题难倒了全世界(美国克

雷数学研究所公

世界七大数学难题:

1、P/NP问题(P versus NP)

2、霍奇猜想(The Hodge Conjecture)

3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。

4、黎曼猜想(The Riemann Hypothesis)

5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)

6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)

7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)

所谓世界七大数学难题,其实是美国克雷数学研究所于2000

年5月24日公布的七大数学难题。也被称为千年奖谜题。根据克莱数学研究所制定的规则,所有难题的解答都必须在数学期刊上发表,并经过各方验证。只要他们通过两年的验证期,每解决一个问题的求解者将获得100万美元的奖金。这些问题与德国数学家大卫·希尔伯特在1900年提出的23个历史数学问题遥相呼应。一百年过去了,很多问题都解决了。千年奖谜题的解决很可能带来密码学、航空航天、通信等领域的突破。

一:P/NP问题

P/NP问题是世界上最难的数学题之一。在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年大奖难题之一。P/NP问题中包含了复杂度类P 与NP的关系。1971年史提芬·古克和Leonid Levin相对独立的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。很可能,计算理论最大的未解决问题就是关于这两类的关系的: P和NP相等吗?在2002年对于100研究者的调查,61人相信答案是否定的,9个相信答案是肯定的,22个不确定,而8个相信该问题可能和现在所接受的公理独立,所以不可能证明或证否。对于正确的解答,有一个1百万美元的奖励。 NP-完全问题(或者叫NPC)的集合在这个讨论中有重大作用,它们可以大致的被描述为那些在NP中最不像在P中的(确切定义细节请参看NP-完全理论)。计算机科学家现在相信P, NP,和NPC类之间的关系如图中所示,其中P和NPC类不交。

希尔伯特23个问题及解决情况[修订]

希尔伯特23个问题及解决情况[修订]

希尔伯特23个问题及解决情况[修订] 希尔伯特23个问题及解决情况

1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。在这具有历史意义的演讲中,首先他提出许多重要的思想: 正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。

希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。”

他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:

清晰性和易懂性;

虽困难但又给人以希望;

意义深远。

同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。

编号问题推动发展的领域解决的情况

1 连续统假设公理化集合论 1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统

内判定。 2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。数学的相容性问题至今未解决。

希尔伯特23个数学问题7大数学难题

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题

(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决

的问题”)

一:P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年述的。

二:霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

世界七大数学难题

世界七大数学难题

世界七大数学难题

难题的提出

20世纪是数学大开展的一个世纪。数学的许多重大难题得到完满解决 ,如费马大定理的证明 ,有限单群分类工作的完成等 ,从而使数学的根本理论得到空前开展。

计算机的出现是20世纪数学开展的重大成就 ,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的开展 ,数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧 ,指引数学前进的方向 ,其对数学开展的影响和推动是巨大的 ,无法估量的。

效法希尔伯特 ,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题 ,希冀为新世纪数学的开展指明方向。这些数学家知名度是高的 ,但他们的这项行动并没有引起世界数学界的共同关注。

2019年初美国克雷数学研究所的科学参谋委员会选定了七个“千年大奖问题〞 ,克雷数学研究所的董事会决定建立七百万美元的大奖基金 ,每个“千年大奖问题〞的解决都可获得百万美元的奖励。克雷数学研究所“千年大奖问题〞的选定 ,其目的不是为了形成新世纪数学开展的新方向 ,而是集中在对数学开展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

2019年5月24日 ,千年数学会议在著名的法兰西学院举行。会上 ,98年费尔兹奖获得者伽沃斯以“数学的重要性〞为题作了演讲 ,其后 ,塔

特和阿啼亚公布和介绍了这七个“千年大奖问题〞。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题〞的解决与获奖作了严格规定。每一个“千年大奖问题〞获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可 ,才有可能由克雷数学研究所的

世界七大数学难题

世界七大数学难题

世界七大数学难题

这七个“世界难题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想。这七个问题都被悬赏一百万美元。

中文名

七大数学难题

外文名

Millennium Prize Problems

提出人

克雷数学研究所

时间

2000年5月24日

地点

美国马萨诸塞州剑桥市

目录

1问题提出

2七大难题

1问题提出编辑

数学大师大卫·希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。

20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。

2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得一百万美元的奖励。

克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,97年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。

世界七大数学难题

世界七大数学难题

数学家总是被诸如那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答, 但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的, 即,不存在一般的方法来确定这样的方程是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴 尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为, 如果z(1)等于0,那么存在无限多个有理点(解)。相反,如果z(1)不等于0。那么只存在着有限多个这样的点。
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数; 它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而, 德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。 著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个 解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数 学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。
2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,97年菲尔兹奖获得者伽沃斯以“数学的重 要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关 研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格 规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表 两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得一百万美元的 大奖。

千禧年大奖难题--世界七大数学难题

千禧年大奖难题--世界七大数学难题

千禧年大奖难题--世界七大数学难题

千禧年大奖难题--世界七大数学难题

千禧年大奖难题(Millennium Prize Problems), 又称世界七大数学难题,是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金1,000,000美元。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年大奖难题的破解,极有可能为密码学以及航天、通讯等领域带来突破性进展。

大奖题目

“千僖难题”之一

P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你他可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。

希尔伯特的二十三个数学问题

希尔伯特的二十三个数学问题

希尔伯特的二十三个数学问题

1900年,德国数学家D.希尔伯特在巴黎第二届国际数学家大会上作了题为《数学问题》的著名讲演,其中对各类数学问题的意义、源泉及研究方法发表了精辟的见解,而整个讲演的核心部分则是希尔伯特根据19世纪数学研究的成果与发展趋势而提出的23个问题。

①连续统假设1963年,P.J.科恩证明了:连续统假设的真伪不可能在策梅洛-弗伦克尔公理系统内判明。②算术公理的相容性1931年,K.哥德尔的“不完备定理”指出了用希尔伯特“元数学”证明算术公理相容性之不可能。数学相容性问题尚未解决。

③两等高等底的四面体体积之相等M.W.德恩1900年即对此问题给出了肯定解答。

④直线作为两点间最短距离问题希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。

⑤不要定义群的函数的可微性假设的李群概念A.M.格利森、D.蒙哥马利和L.齐平等于1952年对此问题作出了最后的肯定解答。

⑥物理公理的数学处理公理化物理学的一般意义仍需探讨。至于希尔伯特问题中提到的概率论公理化,已由А.Н.柯尔莫哥洛夫(1933)等人建立。

⑦一些数的无理性与超越性1934年,A.O.盖尔丰德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数□≠0,1,和任意代数无理数□证明了□□的超越性。

⑧素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情

况下的黎曼猜想仍待解决。哥德巴赫猜想最佳结果属于陈景润(1966),但

离最终解决尚有距离。

⑨任意数域中最一般的互反律之证明已由高木□治(1921)和E.阿廷(1927)解决。

希尔伯特23个问题及解决情况

希尔伯特23个问题及解决情况

希尔伯特23个问题及解决情况

1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。在这具有历史意义的演讲中,首先他提出许多重要的思想:

正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。

希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。”

他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:

清晰性和易懂性;

虽困难但又给人以希望;

意义深远。

同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。

编号问题推动发展的领域解决的情况

1 连续统假设公理化集合论1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。

2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。数学的相容性问题至今未解决。

世界七大数学难题

世界七大数学难题

世界七大数学难题

1、费尔马大定理

费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的"算术",经历中世纪的愚昧黑暗到文艺复兴的时候,"算术"的残本重新被发现研究。

1637年,法国业余大数学家费尔马(Pierre de Fremat)在"算术"的关于勾股数问

题的页边上,写下猜想:x^n+y^n=z^n是不可能的(这里n大于2;x,y,z,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道"我对此有绝妙的证明,但此页边太窄写不下"。一般公认,他当时不可能有正确的证明。猜想提出

后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立"代数数论"这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀

青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z振动了世界,获得费尔兹奖(数学界最高奖)。

历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在"谷山丰-志村五朗猜想"之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的"世纪演讲"最后,宣布证明了费尔马大定理。立刻震动世

1900年希尔伯特提出的23个问题

1900年希尔伯特提出的23个问题

1900年希尔伯特提出的23个问题1900年,德国数学家大卫·希尔伯特在国际数学家大会上提出了二十三个数学难题,这些难题被称为希尔伯特的23个问题。这些问题涉及了数学的各个领域,从代数到分析,从几何到数论,从数学逻辑到拓扑等等。希尔伯特希望通过这些问题的研究,推动数学的发展,解决一些重要的数学难题,促进数学与其他科学的交叉研究。

希尔伯特提出的23个问题中,最著名的是他的第一问题:连续统一的函数。在这个问题中,希尔伯特问道,是否存在一个连续函数,可以将所有的整数映射到实数上去。这个问题牵涉到了数学的基础理论,深刻地影响了数学的发展。后来,通过对这个问题的研究,数学家们逐渐发展出了拓扑学的基本概念和方法,使得这个问题得到了更加深入和完善的解答。

除了第一问题,希尔伯特的23个问题中还有很多其他具有重要意义的问题。比如第二个问题:是否存在一个确定性的算法,可以判断任意给定的二次方程是否有整数解。这个问题涉及了数论和算法的复杂性理论,对计算机科学的发展起到了重要的推动作用。

另一个著名的问题是第七个问题:黎曼猜想。这个问题是关于黎曼ζ函数的性质的猜想,涉及了复变函数的研究,对数论的发展有着重要的影响。至今,黎曼猜想仍然是数学界的一个重要未解问题,解决它将对数论和几何拓扑学有着深远的影响。

希尔伯特的23个问题不仅对于数学的发展具有重要的意义,也深刻地影响了20世纪整个数学界的研究方向和发展轨迹。许多数学家为了解决这些问题,进行了深入的研究,取得了众多重要的成果。这些问题激发了无数数学家的智慧和创造力,推动了数学的发展,并促进了数学与其他科学领域的交叉融合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界数学十大未解难题

(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决

的问题”)

一:P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

三:庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

四:黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

五:杨-米尔斯(Yang-Mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

八:几何尺规作图问题

这里所说的“几何尺规作图问题”是指作图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

九:哥德巴赫猜想

公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

相关文档
最新文档