第4章 数据分布特征的测度

合集下载

第四章 数据分布特征度量

第四章 数据分布特征度量

220-230 230-240 合计
4 5 120
115 120 -
9 5 -
二、定序数据:中位数/四分位数
2. 四分位数(Quartile) 一组数据排序后处于25%、75%位臵上的变量值
25% 25% 25% 25%
QL
QM
QU

四分位数的计算 数据排序 确定四分位数位臵(n/4、 3n/4 ) 确定该位臵上的数值(QL、QU)
1. 极差(全距) 一组数据的最大值与最小值之差 特点 离散程度的最简单测度值 易受极端值影响 未考虑数据的分布
7 8 9 10
计算公式: R = max(xi) - min(xi)
7 8 9 10
2. 平均差(平均绝对离差 ) 各变量值与其平均数离差绝对值的平均数 计算公式 n xi x 简单平均差
可看作是均值的一种变形
X
i 1
n i 1
n
i
1 lg G (lg x1 lg x2 lg xn ) n
lg x
n
i
几何平均法的含义 从最初水平 a0 出发,每期按平均发展速度发展, 经过 n 期后将达到最末期水平 an 只与序列的最初观察值 a0 和最末观察值 an 有关
§4.2

离散趋势的度量
离散趋势 不同类型的数据有不同的 离散程度测度指标 常用测度指标: 异众比率 四分位差 方差和标准差 离散系数
§4.2 离散趋势的度量
一、定类数据:异众比率
非众数组的频数占总频数的比例 特点 用来衡量众数对一组数据的代表程度 主要用于定类数据 计算公式 k fi f m f Vr i 1 k 1 k m fi fi

统计学-数据分布特征

统计学-数据分布特征

2
描述集中趋势的统计
一、平均数
平均数:
集中趋势的测度值之一
最常用的测度值
一组数据的均衡点所在 易受极端值的影响
用于数值型数据,不能用于品质型数据
4
一、平均数
5
平均数的计算公式
6
二、中位数和分位数
(一)中位数 集中趋势的测度值之一 排序后处于中间位置上的值 不受极端值的影响

14
15
例:某城市居民关注广告类型的频数分布
16
例:甲城市家庭对住房状况评价的分布频数
17
四、各度量值的比较
18
四、各度量值的比较
19
四、各度量值的比较
20
各度量值适用的数据类型
21
4.2离散程度的度量
22
4.2离散程度的度量
离散程度 数据分布的另一个重要特征 离中趋势的各测度值是对数据离散程度所作的描述 反映各变量值远离其中心值的程度,因此也称为离 中趋势 从另一个侧面说明了集中趋势测度值的代表程度 不同类型的数据有不同的离散程度测度值
50
51
一、偏态及其测度
52
二、峰态及其测度
53
例:
54
55
56
57
用Excel计算描述统计量
58
用Excel计算描述统计量 72页习题2
59
60
61
62
63
作业1:
64
65
作业2:
66
答案:
67
68

对某一个值在一组数据中相对位置的度量 可用于判断一组数据是否有离群点 用于对变量的标准化处理
40
标准分数的性质
41
例:

统计学基础复习提纲复习内容统计数据数据搜集

统计学基础复习提纲复习内容统计数据数据搜集

统计学基础复习提纲复习内容:第一章:统计数据;第二章;数据搜集;第四章:数据分布特征的测度;第五章:抽样与参数估计;第六章:假设检验;第七章:相关与回归分析;第八章:时间序列分析和预测:第九章:指数。

重点内容:第一章统计和数据(1)统计的概念和应用(2)统计数据类型:分类数据、顺序数据、数值型数据;观测数据和实验数据;截面和时间序列数据。

(3)统计中的基本概念:总体与样本;参数与统计量;变量。

第二章数据搜集(1)数据来源:直接来源和间接来源(2)调查设计:调查方案设计和调查问卷设计(3)统计数据质量第四章数据分布特征的测度(1)集中趋势的测度:平均数;中位数和分位数;众数(2)离散程度的度量:极差和四分位差;平均差;方程和标准差;离散系数(3)偏态与峰态度量:偏态系数;峰态系数第五、六章参数估计与假设检验(1)参数估计的基本原理:点估计与区间估计(2)总体均值的区间估计和总体比率的区间估计(3)样本容量的确定(4)假设检验的基本原理:原假设与备择假设;两类错误与显著性水平;检验统计量与拒绝域。

(5)总体均值的检验:大样本检验方法;小样本检验方法。

第七章相关与回归分析(1)变量间关系度量:相关关系的描述和测度;散点图与离散系数。

(2)一元线性回归:一元线性回归模型;参数的最小二乘估计;回归方程的拟合优度;显著性检验。

(3)利用回归房产进行估计和预测第八章时间序列分析与预测(1)时间序列的分解和描述:图形描述;增长率分析(2)预测方法的选择和估计(3)平稳序列的预测:移动平均法;指数平滑法(4)趋势序列的预测:线性趋势预测;非线性趋势预测平均数:x 二2 4 10 11| 14 151096 9.610(2-9.6)2(4-9.6)2 川(15-9.6)2n -110-12、一家公司在招收职员时,首先要进行两项能力测试。

在A 测试中,其平均分数是100分, 标准差是15分;在B 项测试中,其平均数是 400分,标准分数是50分。

第四章数据特征测度平均指标

第四章数据特征测度平均指标

m1 m2 mn
1 x1
m1
1 x2
m2
1 xn
mn
m 1 m x
调和平均数
(例题分析)
【例】某蔬菜批发市场三种蔬菜的日成交数据如表,计算三 种蔬菜该日的平均批发价格
某日三种蔬菜的批发成交数据
蔬菜 名称
甲 乙 丙
批发价格(元) xi
1.20 0.50 0.80
成交额(元) mi=xi fi 18000 12500 6400
分组资料: (x x)2 f 为最小。
这两个性质是进行趋势预测、回归预测、 建立数学模型的重要数学理论依据。
算术平均数(均值,mean ) 小结
1. 集中趋势的最常用测度值 2. 一组数据的均衡点所在(重心) 3. 体现了数据的必然性特征 4. 易受极端值的影响 5. 用于数值型数据,不能用于分类数据和顺
f 1 f 2 fn
i 1 n
fi
i 1
简写为:
x
xf f
分组资料时,各组变量值应用组中值M代替。
加权算术平均数
(权数对均值的影响)
甲乙两组各有10名学生,他们的考试成绩及其分布数据如下
甲组: 考试成绩(x ): 0 20 100 人数分布(f ):1 1 8
乙组: 考试成绩(x): 0 20 100
2.平均指标可以反映现象总体的综合特征 3.平均指标经常用来进行同类现象在不同空间
、不同时间条件下的对比分析
二、平均指标的类别及计算
算术平均数(Mean) 均 值(Mean) 调和平均数(Harmonic mean)
几何平均数(Geometric mean) 中位数 (Median)
众 数 (Mode)
值 x及各组的标志总和 m 即 xf 时,可采用加权调和

统计学课后习题与答案 郑贵华、颜泳红主编 湘潭大学出版:第四章 数据分布特征的度量

统计学课后习题与答案   郑贵华、颜泳红主编 湘潭大学出版:第四章 数据分布特征的度量

第四章思考与习题一、思考题1.什么是集中趋势?测度集中趋势常用指标有哪些?2.算术均值.众数和中位数有何关系?3.什么是几何平均数?其适用场合是什么?4.什么叫离散趋势?测度离散趋势常用指标有哪些?5.为什么要计算离散系数?二、练习题(一)填空题1.统计数据分布的特征,可以从三个方面进行测度和描述:一是分布的__________,反映所有数据向其中心值靠拢或聚集的程度;二是分布的__________,反映各数据远离其中心值的趋势;三是分布的__________,反映数据分布的形状。

2.在某城市随机抽取13个家庭,调查得到每个家庭的人均月收入数据如下:1080.750.1080.850.960.2000.1050.1080.760.1080.950.1080.660,则其众数为,中位数为。

3.算术均值有两个重要数学性质:各变量值与其算术均值的__________等于零;各变量值与其算术均值的__________等于最小值。

4.简单算术均值是__________的特例。

4.几何均值主要用于计算__________的平均。

5.在一组数据分布中,当算术均值大于中位数大于众数时属于________分布;当算术均值小于中位数小于众数时属于________分布。

6.__________是各变量值与其均值离差平方的平均数,是测度数值型数据__________最主要的方法。

7.为了比较人数不等的两个班级学生的学习成绩的优劣,需要计算__________;而为了说明哪个班级学生的学习成绩比较整齐,则需要计算________。

8.偏态是对数据分布__________或__________的测度;而峰度是对数据分布_________的测度。

(二)判断题1.众数的大小只取决于众数组与相邻组次数的多少。

()2.当总体单位数n为奇数时,中位数=(n+1)/2。

()3.根据组距分组数据计算的均值是一个近似值。

()4.若已知甲企业工资的标准差小于乙企业,则可断言:甲企业平均工资的代表性好于乙企业。

数据分布特征的测度.

数据分布特征的测度.

n
0 8 20 1 100 1 12(分) 10
均值的数学性质
1. 各变量值与均值的离差之和等于零
(x x) 0
i 1 n i
n
2. 各变量值与均值的离差平方和最小
(x x)
i 1 i
2
min
二、调和平均数 (倒数平均数 Harmonic mean)
甲 乙 丙

15 20 30
试指出那个厂的总平均成本高,其原因何在?
练习3: 计算某地区工业企业产值平均计划完成程度
计划完成%
90以下 90——100 100——110 110——120 120以上 合计
企业数(个)
7 22 57 26 3 115
计划产值(万元)
140 310 1650 710 40 2850
均值(mean)
1.
2. 3. 4. 5.
集中趋势的最常用测度值 一组数据的均衡点所在 体现了数据的必然性特征 易受极端值的影响 用于数值型数据,不能用于分类数据和顺 序数据
一、算术平均数(Arithmetic mean)
(一)简单算术平均数
X X N

i
例:有5名工人生产的零件数分别为:15、16、17、18、 19,平均零件数为多少?
xf xA Ax x x f A nA n
例:计算某车间工人平均工资(单项式)
某班组工人平均工资的计算(单项式数列)
工资(x) 500 530
740 860 1020 合计

工人数(f) 2 4
8 5 1 20
工资总额(xf) 1000 2120
5920 4300 1020 14360

第四章数据分布特征的测度

第四章数据分布特征的测度

第四章数据分布特征的测度一、选择题1.一组数据中出现频数最多的变量值称为()。

A.众数B.中位数C.四分位数D.均值2.下列关于众数的叙述,不正确的是()。

A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响3.一组数据排序后处于中间位置上的变量值称为()。

A.众数B.中位数C.四分位数D.均值4.一组数据排序后处于25%和75%位置上的值称为()。

A.众数 B.中位数C.四分位数D.均值5.非众数组的频数占总额数的比率称为()。

A.异众比率B.离散系数C.平均差D.标准差6.如果一个数据的标准分数是-2,表明该数据()。

A.比平均数高出2个标准差B.比平均数低2个标准差C.等于2倍的平均数D.等于2倍的标准差7.比较两组数据的离散程度最适合的统计量是()。

A.极差B.平均差C.标准差D.离散系数8.偏度系数测度了数据分布的非对称性程度。

如果一组数据的分布是对称的,则偏度系数()。

A.等于0 B.等于1 C.大于0 D.大于1 9.某专家小组成员的年龄分别为29,45,35,43,45,58,他们的年龄中位数为()。

A.45 B.40 C.44 D.3910.某居民小区准备建一个娱乐活动场所,为此,随机抽取了80户居民进行调查,其中表示赞成的有59户,表示中立的有12户,表示反对的有9户。

该组数据的中位数是()。

A.赞成B.59 C.中立D.1211.对于右偏分布,均值、中位数和众数之间的关系是()。

A .均值>中位数>众数B .中位数>均值>众数C .众数>中位数>均值D .众数>均值>中位数12.某班学生的大学英语平均成绩是70分,标准差是10分。

如果已知该班学生的考试分数为对称分布,可以判断成绩在60分~80分之间的学生大约占( )。

A .95%B .89%C .68%D .99%13.当一组数据中有一项为零时,不能计算( )。

管理统计学第04章 描述统计中的测度

管理统计学第04章 描述统计中的测度


-1

-2
1

x 5

1
x1
2 2 2
x2
2
x3 x4
2 2
x5
x6
( x x ) 1 0 (2) 3 1 (1) 0
( x x ) 1 0 (2) 3 1 (1) 16
2
第4 章
第2节 集中趋势的测度
2 集中趋势统计平均指标
第4 章
第2节 集中趋势的测度
2 集中趋势统计平均指标
均值(数学性质)
各变量值与均值的离差之和等于零
(X
i 1 n i 1
n
i
X) 0
i
各变量值与均值的离差平方和最小
(X
X ) min
2
第4 章
离差的概念
第2节 集中趋势的测度
2 集中趋势统计平均指标
8 7 6 5 4 3 2 -1 3
2 集中趋势统计平均指标
例:市场上早、中、晚蔬菜的价格分别是:早晨0.67公斤/元,中午0.5公斤/元,晚上0.4公斤 /元。 现在,我们分别按四种方法购买蔬菜,分别计算蔬菜的平均价格(不管用什么方法购买, 平均价格都应该等于花费的现金除以所购买蔬菜的数量)。
第4 章
第2节 集中趋势的测度
2 集中趋势统计平均指标
数据集中区 变量x
x
简单算术平均数和加权算术平均数。
一组数据的总和除以这组数据的项数所得的结果,最常用的数值平均数,容易受极端值的影响,有
第4 章
第2节 集中趋势的测度
2 集中趋势统计平均指标
简单算术平均数把每项数据直接加总后除以它们的项数,通常用于对未分组的数据计算算术平

第四章 数据分布特征的测度讲解

第四章  数据分布特征的测度讲解

第四章数据分布特征的测度学习目的和要求:通过本章的学习,掌握数据分布特征的各种描述方法;掌握不同测度方法的特点、应用条件及应用场合;能利用所学的方法对统计数据作各种统计描述。

难点释疑:(一)算术平均数通常用来反映总体分布的集中趋势,调和平均数往往只作为算术平均数的变形来使用,即在已知标志总量而未知总体单位总量的情况下计算调和平均数;而几何平均数较适用于计算平均比率和平均速度。

(二)调和平均数虽然是根据标志值的倒数计算的,但其结果不等于算术平均数的倒数。

在计算和应用平均指标时,除了考虑数理方面的要求外,更重要的是要考虑其现实的经济意义。

(三)平均数的性质是简捷计算法的基础,也是计算标志变异指标的基础。

掌握中位数和众数与算术平均数的关系的目的是能够根据其中的两个平均数大体计算出第三个平均数,并判断总体的分布状态。

(四)全距、四分位差、平均差、标准差在反映标志变异程度方面各有优缺点。

全距是描述数据离散程度的最简单测度值,它计算简单,易于理解,但不能全面反映总体各单位标志值的差异程度。

标准差与平均差的意义基本相同,但在数学性质上比平均差要优越,所以,在反映标志变动度大小时,一般都采用标准差。

标准差是实际中应用最广泛的离散程度测度值。

(五)标准差系数的应用。

为了对比和分析不同平均水平总体的标志差异程度,就需要使用标准差系数。

它是标志变异的相对指标。

它既消除了变量数列变量值差异程度的影响,也消除了变量数列水平高低的影响。

练习题:(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.平均指标反映了()。

①总体变量值分布的集中趋势②总体分布的离散特征③总体单位的集中趋势④总体变动趋势2.加权算术平均数的大小( )。

①受各组标志值的影响最大 ②受各组次数的影响最大③受各组权数系数的影响最大 ④受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数( )。

stata第4章 数据分布特征

stata第4章 数据分布特征

广告类型
商品广告 服务广告 金融广告 房地产广告 招生招聘广告 其他广告
合计
人数(人)
112 51 9 16 10 2
200
频率(%)
56.0 25.5 4.5 8.0 5.0 1.0
100
12
f max
Mo=商品广告
4.1 分布集中趋势的测度
二、位置平均数
4.1.1 分类数据:众数
2、定序数据的众数
19 1
12 13
Position of Q1 4 2.5 Q1 2 12.5
25
4.1 分布集中趋势的测度
4.1.3 数值型数据:平均数
均值(mean)
集中趋势的最常用测度值 一组数据的均衡点所在,如同翘翘板的支点 用于定量数据,不能用于定性数据资料 易受到极端值或离群值得影响
26
30
4.1 分布集中趋势的测度
4.1.3 数值型数据:平均数
例解
组下限 组上限
fi
组中值x i
3
4
34
3.5
4
5
13
4.5
5
6
24
5.5
6
7
32
6.5
103
x
xi fi n
517.5 103
x i×f i 119 58.5 132 208 517.5
31
4.1 分布集中趋势的测度
4.1.3 数值型数据:平均数
22
4.1 分布集中趋势的测度
分位数
分位数
中位数又称为二分位数,即将数字数据由 小至大排序后,切成二部分。大于及小于 中位数者刚好各占所有数字数据的一半
除了将数据作半切割外,我们也可以将数 据切成四等分、十等分、或一百等分

第四章 数据分布特征的测度

第四章 数据分布特征的测度

第四章数据分布特征的测度【教学要求】了解绝对数和相对数的概念及作用,掌握绝对数的种类、相对数的种类及应用;掌握集中趋势的测度方法,掌握算术平均数、调和平均数、几何平均数、众数、中位数的计算方法及应用;掌握离散程度的测度方法,理解全距、四分位差、异众比率、平均差的概念及计算方法,掌握标准差、离散系数的计算方法及应用;了解偏态与峰度的测度方法。

【知识点】绝对数、相对数、术平均数、调和平均数、几何平均数、众数、中位数、全距、四分位差、异众比率、平均差、标准差、离散系数【本章重点】相对数的种类及应用;算术平均数、调和平均数、几何平均数、众数、中位数的计算方法及应用;理解全距、四分位差、异众比率、平均差的概念及计算方法,掌握标准差、离散系数的计算方法及应用。

【本章难点】算术平均数、调和平均数、几何平均数、众数、中位数的计算方法及应用;理解全距、四分位差、异众比率、平均差的概念及计算方法,掌握标准差、离散系数的计算方法及应用。

【教学内容】第一节绝对数和相对数统计指标就其具体内容来讲非常多,可谓成千上万,但从其基本形式看,则不外乎总量指标、相对指标和平均指标三种类型,统称统计综合指标。

一、绝对数(一)绝对数的概念和种类1、绝对数的作用主要表现在:(1)绝对数可以反映一个国家、地区、部门或单位的基本情况(2)绝对数是制定政策、编制计划以及进行科学管理的重要依据(3)绝对数是计算相对数和平均数的基础相对数和平均数是由两个有联系的总量指标对比计算出来的统计综合指标,无论是相对指标还是平均指标,都是总量指标的派生指标,没有总量指标就不会有相对指标和平均指标。

例如,职工劳动生产率、职工平均工资、宏观经济增长速度、国民经济发展的重要比例关系、农作物单位面积产量等都是在总量指标的基础上计算出来的。

(二)绝对数的种类1、按反映总体内容不同分为总体单位总量和总体标志总量。

例、某业企业职工人数1,000人,工资总额1980,000元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24 132 225 270 300
解:中位数的位置为 300/2=150 从累计频数看, 中位数在“一般”这 一组别中。因此
合计
300

Me=一般
数值型数据的中位数
(9个数据的算例)
【例】:9个家庭的人均月收入数据
原始数据: 排 序: 位 置: 1500 750 780 1080 850 960 2000 1250 1630 750 780 850 960 1080 1250 1500 1630 2000
中位数
960 1080 2
1020
四分位数
(quartile)
1. 排序后处于25%和75%位置上的值
25%
QL
25%
25%
QM
25%
QU
2. 不受极端值的影响 3. 主要用于顺序数据,也可用于数值型数据, 但不能用于分类数据
四分位数位置的确定
(原理:P81—P82)
n3 QL 位置 4 Q 位置 3n 1 U 4 Q L 位置 Q 位置 U n 4 3n 4
i
频数(fi) 4 9 16 27 20 17 10 8 4 5
Mi fi 580 1395 2640 4725 3700 3315 2050 1720 900 1175
155 165 175 185 195 205 215 225 235
xபைடு நூலகம்
M
i 1
k
i
fi
n 22200 120
185
数据的特征和度量
(本节位置)
数据的特征和测度
集中趋势
众 数 中位数 均 值
离散程度
异众比率
分布的形状
偏 态
四分位差 方差和标准差 离散系数
峰 度
离中趋势
1. 数据分布的另一个重要特征
2. 反映各变量值远离其中心值的程度(离散程度) 3. 从另一个侧面说明了集中趋势测度值的代表程度 4. 不同类型的数据有不同的离散程度测度值
合计

120
22200
加权均值
(权数对均值的影响)
甲乙两组各有10名学生,他们的考试成绩及其分布数据如下
甲组: 考试成绩(x ): 0 人数分布(f ):1
乙组: 考试成绩(x): 0 人数分布(f ):8
20 1
20 1
100 8
100 1
x甲
x
i 1
n
i
x乙
x
i 1
n
n
i

0 1 20 1 100 8 10
lg Gm 1 n (lg x1 lg x2 lg xn )
lg x
i 1
i
n
几何平均数
(例题分析)
【例】某水泥生产企业2007年的水泥产量为100 万 吨 , 2008 年 与 2007 年 相 比 增 长 率 为 9% , 2009年与2008年相比增长率为16%,2010年与 2009年相比增长率为20%。求各年的年平均增 长率。
分类数据的众数
(例题分析)
不同品牌饮料的频数分布 饮料品牌 频数 比例 百分比 (%) 解:这里的变量为“饮料 品牌”,这是个分类变量 ,不同类型的饮料就是变 量值 在 所 调 查 的 50 人 中 , 购买可口可乐的人数最多 , 为 15 人 , 占 总 被 调 查 人数的30%,因此众数为 “可口可乐”这一品牌, 即 Mo=可口可乐
x
i 1
n
i
M e min
中位数
(位置的确定)
n 1 2 n 2
原始数据:
中位数位置
顺序数据:
中位数位置
顺序数据的中位数
(例题分析)
甲城市家庭对住房状况评价的频数分布 回答类别
非常不满意 不满意 一般 满意 非常满意 甲城市
户数 (户)
24 108 93 45 30
累计频数
可口可乐 旭日升冰茶 百事可乐 汇源果汁 露露 合计
15 11 9 6 9 50
0.30 0.22 0.18 0.12 0.18 1
30 22 18 12 18 100
顺序数据的众数
(例题分析)
甲城市家庭对住房状况评价的频数分布 解:这里的数据为 顺序数据。变量为 甲城市 回答类别 “回答类别” 户数 (户) 百分比 (%) 非常不满意 不满意 一般 满意 非常满意 24 108 93 45 30 8 36 31 15 10
众数 中位数 均值
左偏分布
对称分布
右偏分布
众数、中位数和均值的特点和应用
1. 众数


不受极端值影响 具有不唯一性 数据分布偏斜程度较大时应用
不受极端值影响 数据分布偏斜程度较大时应用 易受极端值影响 数学性质优良 数据对称分布或接近对称分布时应用
2. 中位数

3. 均值

数据类型与集中趋势测度值
解:
50 15 1 50 0.7 70% 在所调查的50人当中,购 买其他品牌饮料的人数占 70%,异众比率比较大。因 此,用“可口可乐”代表消 费者购买饮料品牌的状况, 其代表性不是很好
vr
50 15
顺序数据:四分位差
四分位差
(quartile deviation)
1. 对顺序数据离散程度的测度 2. 也称为内距或四分间距 3. 上四分位数与下四分位数之差 QD = QU – QL 4. 反映了中间50%数据的离散程度 5. 不受极端值的影响 6. 用于衡量中位数的代表性
1. 均值的另一种表现形式 2. 易受极端值的影响 3. 计算公式为
H n
H 1 mn m1 m 2 ... x1 x 2 xn m1 m 2 ... m n

i 1
n
1 xi
调和平均数
(例题分析)
【例】某集贸市场白菜的价格,早市每斤1元,午市每斤 0.95元,晚市每斤0.8元,若早中晚各买一元钱,其平均价格 多少元?
简单均值与加权均值
(simple mean / weighted mean)
设一组数据为: x1 ,x2 ,… ,xn 各组的组中值为:M1 ,M2 ,… ,Mk 相应的频数为: f1 , f2 ,… ,fk
简单均值 加权均值
x
x
x1 x 2 x n n

x
i 1
n
i
k
n

第 4 章 数据的概括性度量
数据分布的特征
集中趋势 (位置) 离中趋势 (分散程度) 偏态和峰态 (形状)
数据分布特征的测度
数据特征的测度
集中趋势
众 数 中位数 均 值
离散程度
异众比率
分布的形状
偏 态
四分位差 方差和标准差 离散系数
峰 态
集中趋势
(Central tendency)
1. 一组数据向其中心值靠拢的倾向和程度 2. 测度集中趋势就是寻找数据水平的代表值或中心值 3. 不同类型的数据用不同的集中趋势测度值
82(分)
n

0 8 20 1 100 1 10
12(分)
均值
(重点:数学性质)
1. 各变量值与均值的离差之和等于零
(x
i 1
n
i
x) 0
2. 各变量值与均值的离差平方和最小
(x
i 1
n
i
x ) min
2
调和平均数
(harmonic mean)
4. 低层次数据的测度值适用于高层次的测量数据,但高 层次数据的测度值并不适用于低层次的测量数据
第 4 章 数据分布特征的测度
§4.1 集中趋势的测度 §4.2 离散程度的测度 §4.3 偏态与峰态的测度
§4.1 集中趋势的测度
一. 二. 三. 四. 分类数据:众数 顺序数据:中位数和分位数 数值型数据:均值 众数、中位数和均值的比较
甲城市中对住 房表示不满意的户 数 最 多 , 为 108 户 ,因此众数为“不 满意”这一类别, 即
Mo=不满意
合计
300
100.0
返回
顺序数据:中位数和分位数
中位数
(median)
1. 排序后处于中间位置上的值
50%
2. 不受极端值的影响
Me
50%
3. 主要用于顺序数据,也可用数值型数据,但不能 用于分类数据 4. 各变量值与中位数的离差绝对值之和最小,即
数据类型和所适用的集中趋势测度值
数据类型 分类数据 ※众数 适 用 的 测 度 值 顺序数据 ※中位数 间隔数据 ※均值 比率数据 ※均值

— — — —
四分位数
众数 — — —
众数
中位数 四分位数 — —
调和平均数
几何平均数 中位数 四分位数 众数
返回
§4.2 离散程度的度量
一.分类数据:异众比率 二.顺序数据:四分位差 三.数值型数据:方差及标准差 四.相对位置的测量:标准分数 五.相对离散程度:离散系数
户数 (户)
24 108 93 45 30 300
累计频数
24 132 225 270 300 —
QU = 一般
数值型数据的四分位数
【例】:9个家庭的人均月收入数据
原始数据: 排 序: 位 置: 1500 750 780 1080 850 960 2000 1250 1630 750 780 850 960 1080 1250 1500 1630 2000
几何平均:
G 4 104.5% 102.1% 125.5% 101.9% 1 8.0787% 算术平均: G 4.5% 2.1% 25.5% 1.9% 4 8.5%
相关文档
最新文档