重力式桥墩地震力计算
重力式桥墩计算示例
三、天然地基重力式桥墩计算示例) 设计资料 1. 上部构造为装配式混凝土空心板,上部构造恒载支点反力为 3291.12KN.标准跨径: L=16m (两桥墩中心线距离); 预制板长: 1=15.96 m (伸缩缝宽40;计算跨径:1 j =15.60 m (支座中心距板端 18cm );前面净宽:净 -11.25 m o2. 支座型式:版式橡胶支座。
3. 设计活载:汽车 - 超 20 级;挂 -120 级4. 地震基本烈度 8 度。
5. 桥墩高度: H=8m 。
6. 桥墩型式:圆端型实体桥墩。
7. 桥墩材料:墩帽用 25 号钢筋混凝土,墩身和基础用 20 号片石混凝土 8.地基:地基为岩石地基、地基容许承载力 [Q 0]=2000 kPa 。
二) 拟定桥墩尺寸1.墩帽尺寸各加直径为1.40 m 的圆端头,高出墩帽顶面0.3 m 作为防震挡块,墩帽全长为按照上部构造布置,相邻两孔支座中心距离为0.4 :支座顺桥向宽度为0.2 m ,支座边缘离桥墩身的最小距离为0.15 m o 本桥位于地震基本烈度 8度地区,梁端至墩台帽最小距离 a ( cm )还应满足抗震设计规范第求的墩帽宽度为1.40 m 。
墩帽厚度取为0.4 m 。
4.4.3 条规定,即 a 50+L ,_则 a=50+15.6=65.6 cm 。
墩帽宽度 2X 0.656+0.04=1.352 m 。
取满足上述要上部构造为12片空心板,边板宽1.025m 。
中板宽1.02m ,整个板宽为 1..025 X 2+1.02 X 10=12.25 m 。
两边各加0.05 m ,台帽矩型部分长度为 12.35 m o 两端13.752. 墩身顶部尺寸因墩帽宽度为1.40 m,两边挑檐宽度采用各0.10 m,则墩身顶部宽1.20 m。
墩身顶部矩形部分长度采用12.35 m,两端各加直径为1.20 m的半圆形端部,则墩身顶部全长为13.35 。
3. 墩身底部尺寸墩身侧面按25:1向下防坡,墩身底部宽度为 1.81 m,长度为12.35+1.8仁14.16m。
桥梁墩台的计算
•验算截面
墩台身的基础顶面 墩台身截面突变处 墩台帽及墩台帽交界处墩身截面
高墩
•验算截面的内力计算
按照各种组合,分别计算各验算截面的竖向力、水平力和弯矩,N、H M
得到并按下式计算各种组合的竖向力设计值及相应偏心矩:
Nj so slN
e0
M N
•强度验算
Nj ARaj /m
1 (eo )m
y
(eo )2
2.墩顶水平位移的计算
(1)柔性墩(台)顶制动力及其水平位移计算
•墩顶制动力
fiz
Ki
Ki
F
fiz 作用在第i墩(台)顶的制动力;
K i 第i墩(台)的抗水平位移刚度;
F 全桥(或一联)承受的制动力。
•由制动力产生的墩顶水平位移:
z
f iz Ki
(2)梁的温度变形
t tLi
(3)在竖向活载作用下梁长度的变化
计算图式 外力计算
内力计算
配筋验算
•计算模式
桩柱式墩台通常按钢筋混凝土构件设计。在构造上,桩柱的钢筋伸 入盖梁内,与盖梁的钢筋绑扎成整体,因此盖梁与桩柱刚结呈刚架结构。 双柱式墩台,当盖梁的刚度与桩柱的线刚度比大于5时,为简化计算可 以忽略节点不均衡弯矩的分配及传递,一般可按简支梁或悬臂梁进行计 算和配筋,多根桩柱的盖梁可按连续梁计算,当盖梁计算跨径与梁高之 比,对简支梁小于2,对连续梁小于2.5时,应按<<公路钢筋混凝土及 预应力混凝土桥涵设计规范>>附录六作为深梁计算。当线刚度比小于5 时,或桥墩承受较大横向力时,盖梁应作为横向刚架的一部分予以验算。
Sd(s o slQ)Rd(Rm j ,ak)
Sd 荷 载 效 应 函 数 ; Q荷 载 在 结 构 上 产 生 的 效 应 ;
8、10米重力式桥墩计算
孔荷载、
单列车布
置:
R1= 255.018
KN
24 hi (m) 0.6 1 1 1
KN
KN
Gi KN 122.1 215.2 230.0 244.9 812.2
对墩中心产生 的弯矩:
M= 51.00
3)、汽 车横向排 列:
在横桥向,汽 车靠一边行驶 时,汽车荷载 的合力偏离桥 中心线2.35米。 对于实体桥 墩,不考虑活 载的冲击力。 双孔单列: 单孔单列:
P=α *A*Raj/rm
=
87566.18
b、5—— 5截面 (组合 Ⅱ)
rw=(I/F)^0.5= 0.35
I=
1.31
F=A=
10.52
α=(1(e0/y)^m)/(1+( e0/rw)^2)=
m--截面 形状系 数,对圆 形截面取 2.5;对T 形或双曲 拱截面取 3.5;对 箱形或矩 形截面取 8。
P (KN)
H (KN)
917.28 926.53
255.02
263.77
750.00
2606.5
0
2581.8
0
2610.1
0
M (KN.m)
0 0
599.29
P (KN) 917.28 3014.68
255.02
619.86
1050 839.0 867.8 1176.0
263.77
687.55 5075.4 3908.0 3695.6
P=α *A*Raj/rm =
84725.02
五、基底 应力验 算:
KN/m2 >Nj m m4 m2 0.71
KN/m2 >Nj
桥墩抗震计算
XH/2=X0-φ0l0/2+XQ/2=X0-φ0l0/2+ 5l03
48 E1 I 1
=0.0000309+0.00000941× 7.142 +
5 × 7.1423
2
48 × 2.4 ×107 × 0.1402
=0.0000758
Xf/2= X H / 2 = 0.0000758 =0.5657
2G sp Gtp 862.1× 28708.6 + (28708.6 + 55418) × 9154.4 − {[862.1× 28708.6
= 9.8 × + (28708.6 + 55418) × 9154.4]2 − 4 × 862.1× 9154.4 × 28708.6 × 55418}1/ 2
=0.0000361
桩的计算宽度:b1=0.9(d+1)=0.9×(1.5+1)=2.25m
4
桩在土中的变形系数:α= 5 mb1
EI
m=10000kN/m4
其中:桩采用 25 号混凝土,则
Ec=2.80×104MPa
EI=0.8×2.8×107× π ×1.54=5.567×106
64
∴
α= 5 10000 × 2.25 =0.3321
Eihs+Ehp=712.8+67.1=779.9kN (四)墩柱截面内力及配筋计算(柱底截面)
1、荷载计算
上部恒载反力:4577.2kN
下部恒载重力:720+2×185.8=1091.6kN
作用于墩柱底面的恒载垂直力为
N恒=4577.2+1091.6=5668.8kN 水平地震力:H=779.9kN
2
E = ihs
第二章桥墩计算
第二章桥墩计算第二章桥墩计算第一节重力式桥墩设计与计算一、荷载及其组合(一)桥墩计算中考虑的永久荷载(1)上部构造的恒重对墩帽或拱座产生的支示反力,包括上部构造混凝土收缩,徐变影响;(2)桥墩自重,包括在基础襟边卜的土重;(3)预应力,例如对装配式预应力空心桥墩所施加的预应力;(4)基础变位影响力,对于奠基于非岩石地基上的超静定结构,应当考虑由于地基压密等引起的支座K 期变位的影响,并根据最终位移量按弹性理论计算构件截面的附加内力;(5)水的浮力,位于透水性地基上的桥梁墩台,当验算稳定时,应计算设计水位时水的浮力;当验算地基应力时,仅考虑低水位时的浮力;基础嵌人不透水性地基的墩台,不计水的浮力;当不能肯可以定是否透水时,则分别按透水或不透水两种情况进行最不利的荷载组合。
(二)桥墩计算中考虑的可变荷载1.基本可变荷载(1)作用在上部构造上的汽车佝载,对于钢筋混凝土柱式墩台应计人冲击力,对于重力式墩台则不计冲击力;(2)作用于上部构造上的平板挂车或履带中荷载;(3)人群荷载。
2 .其他可变荷载(1)作用在上部构造和墩身上的纵、横向风力;(2)汽车荷载引起的制动力;(3)作用在墩身上的流水压力;(4)作用在墩身上的冰压力;(5)上部构造因温度变化对桥墩产生的水平力;(6)支座摩阻力。
(三)作用于桥墩上的偶然荷载为:1 .地震力;2.船只或漂浮物的撞击力。
(四)荷载组合1、梁桥重力式桥墩1 )第一种组合按在桥墩各截面上可能产生的最大竖向力的情况进行组合。
它是用来验算墩身强度和基底最大应力。
因此,除了有关的永久而载外,应在相邻两跨满布基本可变荷载的一种或几种,即《桥规》中的组合I或组合川。
2)第二种组合按桥墩各截面在顺桥方向上可能产生的最大偏心和最大弯矩的情况进行组合。
它是用来验算墩身强度、基底应力、偏心以及桥墩的稳定性。
属于这一组合的除了有关的荷载外,应在相邻两孔的一孔上(当为不等跨桥梁时则在跨径较大的一孔上)布置基本可变载的一种或几种,以及可能产生的其他可变荷载,例如纵向风力、汽个制动力和支座摩阻力等,即《桥现》中的组合n。
2.2重力式桥墩的计算
第三节
一、盖梁计算
桩柱式桥墩计算要点
力学图示: 双柱式墩:当盖梁的刚度与桩柱的刚度比大与5时,可忽略桩柱对盖梁 的约束,近似按双悬臂梁计算。对多柱式或多桩式桥墩,可按多跨连 续梁计算。 计算内容: 1、恒载及其内力计算; 2、活载及其内力计算; 3、施工吊装荷载及其内力计算; 4、荷载组合及内力包络图; 5、配筋计算。
二、桩身计算
分刚性和柔性两种
y
0 .5
L
式中:L——相邻墩台间的最小跨径,以米计。跨径小于25M时仍以25M计算; ∆Y ——墩台顶水平位移值(mm),它的数值应包括墩台水平方向的弹性位移和 由于地基不均匀沉降而产生的水平位移值的总和。地基不均匀沉降所 产生的水平位移值,可通过计算不均匀沉降引起的倾斜角求得。
计算时可认为墩台身相当于一个固定在基础顶面的悬臂梁,不考虑上部结构对 墩、台顶位移的约束作用,而引起水平弹性位移的荷载为制动力、风力及偏心的竖 向支反力等。由于将墩台视为固定在基础顶面的悬臂梁,完全忽略了上部结构对墩 台顶的约束作用,所以结果是偏大的。 重力式墩台帽一般可不进行验算,支座垫石下的局部承压应力与支座计算的有 关内容相同。采用悬臂式帽的重力式墩台,悬臂墩台帽需配受力钢筋,悬臂部分按 悬臂梁计算。有关施工时的特殊受力,可按实际情况验算。
K1 M M
稳 倾
K 01
桥墩稳定性验算
(二)抗滑移稳定验算
墩、台的抗滑移稳定验算,可按下式进行:
K2
f P T
K 02
地基土分类 软塑性土 硬塑性土 砂性土、粘砂土、半干硬的粘土
摩檫系数f 0.25 0.30 0.30~0.40
砂类土
碎石类土
0.40
0.50
重力式桥墩计算示例
三、天然地基重力式桥墩计算示例(一)设计资料1.上部构造为装配式混凝土空心板,上部构造恒载支点反力为3291.12KN.标准跨径:L=16m(两桥墩中心线距离);预制板长:l=15.96m(伸缩缝宽4cm);计算跨径:l j=15.60m(支座中心距板端18cm);前面净宽:净-11.25m。
2.支座型式:版式橡胶支座。
3.设计活载:汽车-超20级;挂-120级。
4.地震基本烈度8度。
5.桥墩高度:H=8m。
6.桥墩型式:圆端型实体桥墩。
7.桥墩材料:墩帽用25号钢筋混凝土,墩身和基础用20号片石混凝土。
8.地基:地基为岩石地基、地基容许承载力[Q0]=2000kPa。
(二)拟定桥墩尺寸1.墩帽尺寸按照上部构造布置,相邻两孔支座中心距离为0.4m,支座顺桥向宽度为0.2m,支座边缘离桥墩身的最小距离为0.15m。
本桥位于地震基本烈度8度地区,梁端至墩台帽最小距离a(cm)还应满足抗震设计规范第4.4.3条规定,即a 50+L,则a=50+15.6=65.6cm。
墩帽宽度2×0.656+0.04=1.352m。
取满足上述要求的墩帽宽度为1.40m。
墩帽厚度取为0.4m。
上部构造为12片空心板,边板宽1.025m。
中板宽1.02m,整个板宽为1..025×2+1.02×10=12.25m。
两边各加0.05m,台帽矩型部分长度为12.35m。
两端各加直径为1.40m的圆端头,高出墩帽顶面0.3m作为防震挡块,墩帽全长为13.75m。
2.墩身顶部尺寸因墩帽宽度为1.40m,两边挑檐宽度采用各0.10m,则墩身顶部宽1.20m。
墩身顶部矩形部分长度采用12.35m,两端各加直径为1.20m的半圆形端部,则墩身顶部全长为13.35m。
3.墩身底部尺寸墩身侧面按25:1向下防坡,墩身底部宽度为1.81m,长度为12.35+1.81=14.16m。
4.基础尺寸采用两层台阶式片石混凝土基础,每层厚度0.75m,每层四周放大0.25m,上层平面尺寸为2.31×14.66m,下层平面尺寸为2.81x15.56m。
桥墩抗震计算报告(现浇箱梁)
1、荷载 (2)2、地震计算参数 (2)3、工况组合 (4)4、计算软件及模型 (4)5、桥墩截面尺寸 (6)6、计算结果 (6)6.1 E1地震作用纵、横桥向桥墩强度计算(抗震规范7.3.1): (6)6.2 E2地震作用桥墩桩、柱抗震强度验算 (19)6.2.1 墩柱有效抗弯刚度计算(抗震规范第6.1.6条) (19)6.2.2 E2地震作用下能力保护构件计算(抗震规范6.8条) (21)6.2.3 E2地震作用下墩柱抗震强度验算(抗震规范7.3.4) (23)6.3 E2地震作用变形验算(抗震规范第7.4条) (24)6.3.1 墩顶位移验算(抗震规范第7.4.6条) (24)6.4 E2地震作用下支座验算(抗震规范7.5.1) (29)6.5延性构造细节设计(抗震规范8.1条) (32)7、抗震计算结论 (32)主线桥左幅桥30+35+31.501m连续箱梁下部桥墩抗震计算报告1、荷载考虑上部箱梁自重及二期恒载包括桥面铺装和栏杆,下部桥墩自重,程序自动考虑,混凝土容重取26kN/ m3,计算时将荷载转化为质量。
2、地震计算参数按《中国地震动参数区划图(GB18306-2001)》、《福建省区划一览表》、《福州绕城公路西北段线路工程地震安全性评价补充报告》,根据规范表3.1.2判定本桥梁抗震设防类别为B类。
桥址所在地抗震设防烈度为Ⅶ度,场地类型为Ⅱ类,根据《抗震细则》的9.3.6条规定,混凝土梁桥、拱桥的阻尼比不宜大于0.05,因此在这里取阻尼比为0.05。
设防目标:E1地震作用下,一般不受损坏或不需修复可继续使用;E2地震作用下,应保证不致倒塌或产生严重结构损伤,经临时加固后可维持应急交通使用。
按抗震规范6.1.3,本桥为规则桥梁,抗震规范表6.1.4:本桥E1、E2作用均可采用SM/MM分析计算方法。
抗震分析采用多振型反应谱法,水平设计加速度反应谱S由下式(规范5.2.1)确定:max max max (5.50.45)0.10.1(/)g g g S T T s S S s T T S T T T T ⎧+<⎪=≤≤⎨⎪>⎩max 2.25i s d S C C C A =式中:T g —特征周期(s);T —结构自振周期(s);max S —水平设计加速度反应谱最大值; C i —抗震重要性系数; C s —场地系数;C d —阻尼调整系数;A —水平向设计基本地震加速度峰值。
T梁重力式桥墩设计计算书
T梁重力式桥墩设计计算书1. 引言T梁是一种常见的桥梁结构形式,其桥墩是支撑桥梁横梁(T梁)的重要组成部分。
本设计计算书将对T梁重力式桥墩的设计进行详细的说明和计算,以确保桥墩能够承受来自桥梁和交通荷载的力并保持稳定。
2. 设计参数在进行T梁重力式桥墩设计计算之前,首先需要明确以下设计参数:•T梁的跨度:L = 20m•T梁的受力方式:重力式•桥墩高度:H = 6m•桥墩底座尺寸:宽度B = 4m,长度L = 4m•桥墩材料:混凝土3. 桥墩设计计算步骤3.1. 确定荷载重力式桥墩需要能够承受来自桥梁和交通荷载的力。
根据桥梁设计规范,我们需要计算以下荷载:•桥梁自重:G1 = V梁* γ混凝土•桥梁活荷载:Q1 = Q活荷载 * L / 2•桥墩活荷载:Q2 = Q活荷载 * H其中,V梁为T梁的体积,γ混凝土为混凝土的密度,Q活荷载为活荷载的设计值。
3.2. 确定稳定性桥墩设计需要考虑到桥墩的稳定性,确保其能够承受荷载并保持平衡。
稳定性分析需要计算桥墩的倾覆力矩和抗倾覆力矩之间的比值,即倾覆系数。
3.3. 确定抗滑稳定性除了倾覆稳定性外,重力式桥墩还需要具备抗滑稳定性。
考虑到桥墩基础与地基之间的水平摩擦力和地基反力,计算桥墩的抗滑稳定系数。
3.4. 确定基底抗压承载力最后,要确保桥墩的基底能够承受来自荷载的压力。
根据桥墩基底的面积和混凝土的抗压强度,计算桥墩基底的抗压承载力。
4. 结论经过上述设计计算步骤,我们得到了T梁重力式桥墩的设计参数和计算结果。
根据计算结果,桥墩的稳定性、抗滑稳定性和基底抗压承载力均满足设计要求。
因此,这些设计参数可以用于实际工程中。
注意:本设计计算书仅提供了T梁重力式桥墩的基本设计计算步骤,具体设计仍需要以相关设计规范和标准为准。
混凝土桥墩抗震设计与计算
混凝土桥墩抗震设计与计算一、设计概述本文主要介绍混凝土桥墩的抗震设计与计算方法。
混凝土桥墩是桥梁结构中重要的承重构件,其在地震作用下的抗震能力直接关系到桥梁的安全性。
因此,合理的抗震设计与计算是桥梁工程中不可忽视的环节。
二、设计标准混凝土桥墩的抗震设计应遵循以下标准:1.《公路桥梁抗震设计规范》(GB 50011-2010);2.《混凝土结构设计规范》(GB 50010-2010);3.《钢筋混凝土桥梁设计规范》(JTG/T D62-2004)。
三、设计流程混凝土桥墩的抗震设计与计算主要包括以下步骤:1.确定地震烈度;2.选择设计地震动;3.计算桥墩受力;4.计算桥墩的抗震承载力;5.根据桥墩受力和抗震承载力确定桥墩的尺寸和配筋;6.检查桥墩的抗震性能是否满足要求。
四、确定地震烈度确定地震烈度应根据所在地区的地震烈度图进行,根据地震烈度图确定地震作用下的水平设计地震加速度系数和垂直地震加速度系数。
五、选择设计地震动选择设计地震动应根据所在地区的地震烈度和桥梁的重要性级别进行确定。
常用的设计地震动包括:地震动记录、地震响应谱、等效静力法等。
六、计算桥墩受力计算桥墩受力应考虑静力作用和动力作用两种情况。
静力作用下计算桥墩的自重、地震惯性力和水平力的作用;动力作用下计算桥墩的地震作用下的地震惯性力和地震反力。
七、计算桥墩的抗震承载力计算桥墩的抗震承载力应根据桥墩的几何形状、材料性质和受力状态进行确定。
常用的计算方法包括:弯剪承载力计算、轴心压缩承载力计算、剪压承载力计算等。
八、根据桥墩受力和抗震承载力确定桥墩的尺寸和配筋根据桥墩受力和抗震承载力确定桥墩的尺寸和配筋应考虑桥墩的抗震性能和经济性。
一般情况下,桥墩的截面应当满足强度和稳定性要求,并且应当尽可能减小桥墩的尺寸和配筋。
九、检查桥墩的抗震性能是否满足要求检查桥墩的抗震性能应根据设计地震动下的桥墩受力和抗震承载力进行。
若桥墩的抗震性能不满足要求,则应进行优化设计或者改进措施,直至满足要求为止。
桥墩地震作用计算
桥墩地震作用计算1 桥墩计算简图梁桥下部结构和上部结构是通过支座相互连接的,当梁桥墩台受到侧向力作用时,如果支座摩阻力未被克服,则上部桥跨结构通过支座对墩台顶部提供一定约束作用。
震害表明,在强震作用下,支座均有不同程度破坏,桥跨梁也有较大的纵、横向位移,墩台上部约束作用并不明显。
《公路抗震规范》计算桥墩地震作用时,不考虑上部结构对下部结构的约束作用,均按单墩确定计算简图。
(1)实体墩计算实体墩台地震作用时,可将桥梁墩身沿高度分成若干区段,把每一区段的质量集中于相应重心处,作为一个质点。
从计算角度,集中质量个数愈多,计算精度愈高,但计算工作量也愈大。
一般认为,墩台高度在50~60m以下,墩身划分为4~8个质点较为合适。
对上部结构的梁及桥面,可作为一个集中质量,其作用位置顺桥向取在支座中心处,横桥向取在上部结构重心处。
桥面集中质量中不考虑车辆荷载,由于车辆的滚动作用,在纵向不产生地震力;在横向最大地震惯性力也不会超过车辆与桥面之间摩阻力,一般可以忽略。
实体墩的计算简图为一多质点体系。
(2)柔性墩柔性墩所支承的上部结构重量远大于桥墩本身重量,桥墩自身质量约为上部结构的1/5~1/8,它的大部分质量集中于墩顶处,可简化为一单质点体系。
2 桥墩基本振型与基本周期(1)基本振型墩台下端嵌固于基础之上,墩身可视为竖向悬臂杆件。
在水平地震力作用下,墩身变形由弯曲变形和剪切变形组成,两种变形所占的份额与桥墩高度与截面宽度比值H/B有关。
当计算实体桥墩横向变形时,H/B的值较小,应同时考虑弯曲变形和剪切变形影响;当计算纵向变形时,H/B的值较大,弯曲变形占主导作用。
公路桥梁墩身一般不高,质量和刚度沿高度分布均匀,实体墩在确定地震作用时一般只考虑第1振型影响,由于墩身沿横桥向和顺桥向的刚度不同,在计算时应分别采用不同的振型曲线。
振型曲线确定之后,可以运用能量法或等效质量法将墩身各区段重量折算到墩顶,换算成单质点体系计算基本周期。
8、10米重力式桥墩计算
基底截面
四、正截 面强度计 算:
横桥向内 力不控 制,故不 计算横桥 向截面强 度。
1.偏心距 计算:
a、1—— 1截面 (组合Ⅱ 控制)
b、5—— 5截面 (组合Ⅱ 控制)
以上满足 规范要求
e0=
0.0789
e0=
0.2255
2.强度计 算:
Raj=
γm---材料安全 系数,γm=
a、1—— 1截面 (组合 Ⅱ)
2、横桥 向内力汇 总及组合
编号
项目
1
上部结构
2
桥墩
3
汽车-20级单跨 布载
4
汽车-20级双跨 布载
5
挂车-100级
(Ⅰ)1+2+3
内力组合 (Ⅰ)1+2+4
(Ⅳ)1+2+5
255.02
263.77
687.55
750.00
1594.93 1607.19 1275.9 1285.7 1760.38 1830.32
N/A+M/W N/A-M/W
组合Ⅱ
σ
地基土基 本承载力 σ =250KPa
σmax= σmin=
121.4 70.9
六、抗倾 覆稳定性 验算:
1.抗倾覆 验算:
组合Ⅱ K0=y/e0
11.4 y= 1.62 e0= 0.1418
2.抗滑动 验算:
K0=μ*P/T
μ=0.6
组合Ⅱ
K0=
27.91
m3
P=α *A*Raj/rm
=
87566.18
b、5—— 5截面 (组合 Ⅱ)
rw=(I/F)^0.5= 0.35
第16章-桥墩计算
6-2-3 基底土的承载力、偏心距验算(1)
1、基底承载力验算
1)一般情况: 竖向力 的合力点在截面核心之内: ○按顺桥向、横桥向分别验算偏心方向的基底应力。 ○判据:最大应力≯容许应力
2)竖向力 的合力点在截面核心之外: 因不考虑基底土受拉力,应计及基底应力重分布。〖详后↓〗
具体限制随荷载组合情况有所不同(1.2/1.3/1.5)
6-2-4 整体稳定性验算
2、滑动稳定验算: 以水平推力不超过摩阻力、并考虑一定的
安全储备为限。 抗滑动稳定系数如下:
Kc
f Pi Ti
摩阻力
1)摩擦系数与基底土的性质有关 2)Kc值大必须于1,随荷载组合情况有所不同(1.2/1.3)
第一节 荷载及其组合
内容提要: 桥墩计算时应考虑的荷载: 6-1-1、永久荷载 6-1-2 、可变荷载 6-1-3 、偶然荷载 荷载组合 6-1-4 、梁桥重力式桥墩的荷载组合 6-1-5 、拱桥重力式桥墩的荷载组合
6-1-1、永久荷载
1、恒载产生的支承反力
~作用于墩帽、拱座; ~含上部砼的收缩、徐变影响力;
最大竖向力—双侧满布活载
6-1-4 、梁桥重力式桥墩的荷载组合(2)
2、按桥墩各截面 在纵桥向可能产生的最大偏
心、最大弯矩竖布载:
〖组合Ⅱ〗
1)验算目的: 墩身强度、 基地应力、 偏心验算、 墩身稳定性;
2)布载基本原则: ~永久荷载 ~活载靠边单侧(大跨一侧)满布; ~其它纵向力按规范组合
风力、制动力、摩阻力等
2、桥墩自重
~含襟边以上的土重力
3、预应力
~指施加了预应力的桥墩
4、基础变位影响力
~对于超静定结构而言; ~长期 荷载下的地基压缩(非岩基);
桥墩桩基抗震能力保护构件计算
1.8
-0.95564 -0.86715 0.52997 1.61162
4473.3
1.9
-1.11796 -1.07357 0.38503 1.63969
4143.3
2
-1.29535 -1.31361 0.20676 1.64628
3807.7
2.2
-1.69334 -1.90567 -0.27087 1.57538
kN.m
此弯矩时实际的轴向力偏心矩
e 0= M d/N d = 0.812 m
构件的计算长度: 惯性半径 长细比
l 0 = 2l = 14.8 m
i = I = 0.3 m A
l 0/I = 49.33
> 17.5
∴ 应考虑偏心矩增大系数 偏心矩增大系数 式中:截面有效高度
η
=
1+ 1 1400e0 / h0
M0 α 2EI
C3
+
H0 α 3EI
D3 )
X0 =
H
0
2.441 α 3 EI
+
M
0
1.625 α 2 EI
= 0.0164 m
φ0 =
−
(H
0
1.625 α 2 EI
+
M
0
1α.7E5I1)
= -0.00655
A3、B3、C3、D3由《公路桥涵地基与基础设计规范》(JTG D63-2007)附表P.0.8查得,计算见下表
A = 1.0029
B = 0.5855
C = -0.4782
sheji公司 4
桩基础抗震能力保护构件计算书
D = 1.9192
∴
混凝土简支梁桥桥墩地震内力计算过程--------.
混凝土简支梁桥桥墩地震内力计算过程柔性墩一、桥梁基本概况:(1)跨径布置: 5*20m 简支板梁桥;(2)桥面宽度: 0.5m(防撞栏) +6.5m(行车道) +0.5m(防撞栏) =7.5m;(3)支承体系:每跨结构一端设置固定支座,一端设置板式橡胶支座;(4)桥面铺装: C40 防水混凝土,平均厚度为13cm;(5)材料:主梁为 C50 混凝土,盖梁、墩柱、防撞栏均为C30 混凝土;(6)地震设防:场地地震动加速度峰值为0.1g ,地震动反应特征周期为0.4s,抗震设防类别为 B 类,抗震设防烈度为7 度,场地条件为Ⅲ类。
总体布置图见图 1。
图 1 桥梁立面布置图二、结构尺寸:上部结构:主梁梁高0.9m,具体尺寸参见图 2 。
a)主梁横断面图b)中板断面图c)边板断面图图 2上部结构具体尺寸图下部结构:采用独柱式桥墩,墩高7.5m,桥墩直径 1.8m,见图 3.a)平面图b)立面图图 3 桥墩尺寸图三、桥墩地震内力计算过程(不考虑地基变形):(1)柱式墩地震内力的计算简图如图 3 所示:图 3柱式墩地震内力计算简图( 2)顺桥向水平地震力的计算公式为:本算例根据《公路桥梁抗震设计细则》规定属于柱式墩的规则桥梁。
其顺桥向水平地震力可按照 6.7.3 之规定来计算。
具体计算步骤如下:EhtpS h1Gt/ g① G t 的确定: G t G spGcpG p ;一跨主梁重量 = 20 3 6872 2 7960 10000 26.5 1936.4kN桥面铺装重量 =0.136.5 20 26 439.4kN防撞栏重量 = 2 4081.21 10000 20 25 408.12 kN一孔梁的重力 G sp 1936.4 439.4 408.12 2783.92kN盖梁重力 G cp 25 2 6.783 339.15kN墩身重力 G p7.5 3.14 0.9225 476.89kN墩身重力换算系数0.16 X f 2 2 X 2 1X f X 1X 11f2ff22由于不考虑地基变形,即X f0 , X 1 可根据静力挠度曲线求得:悬臂梁f2的静力挠度曲线为: y xx 2 x 3l,当 x l 2 时, y5l 3 l 时,6EIl ; x248EIy ll 3。
重力式桥台的计算与验算
一、重力式墩台的验算(一)截面强度验算重力式墩台主要采用圬工材料建造,一般为偏心受压构件,根据《公路圬工桥涵设计规范》(JTGD61—2005),其设计过程采用以概率理论为基础的极限状态设计方法,采用分项系数表达式进行计算。
在不利荷载组合作用下,验算墩台各控制截面作用效应的设计值(内力)应小于或等于结构抗力效应的设计值。
S―作用效应组合设计值,按《通规》JTGD60-2004的规定计算;R(.)―构件承载力设计值函数;f―材料强度设计值;d―几何参数设计值,可采用几何参数标准值,即设计文件规定值。
ad具体的墩台截面的强度验算包括以下各项内容:(1)选取验算截面1)通常选取墩台身的基础顶面与墩台身截面突变处。
2)采用悬臂式墩台帽的墩身,除对墩台帽进行验算外,应对墩台帽交界处墩身截面进行验算。
3)当桥墩、桥台较高时,需沿墩台身每隔2~3米选取一个验算截面。
(2)验算截面的内力计算按照各种组合,分别计算各验算界面的竖向力、水平力和弯矩,得到N∑,∑、H∑及M并按下式计算各种组合的竖向力设计值:式中:N——各种组合中最不利的设计荷载效应(竖向力);jN——各种组合中按不同荷载算得的竖向力设计值;d(3)砌体构件受压承载力计算承载能力极限状态验算:按轴心或偏心受压构件验算墩身各截面的承载能力。
对于砌体以及混凝土截面,要分别采用《圬规》相应条款的规定计算。
如果不满足要求就应根据修改墩身截面尺寸重新验算;(4)截面偏心距验算如超过表限制时,可按下式确定截面尺寸:1)单向偏心:2)双向偏心:Wy 、Wx―双向偏心时,构件x方向受拉边缘绕y轴的截面弹性抵抗矩和构件y方向受拉边缘绕x轴的截面弹性抵抗矩,对于组合截面应按弹性模量比换算为换算截面弹性抵抗矩;ftmd―构件受拉边层的弯曲抗拉强度设计值,按《圬规》表、表和表采用;ex、ey―双向偏心时,轴向力在x方向和y方向的偏心距;φ―砌体偏心受压构件承载力影响系数或混凝土轴心受压构件弯曲系数,分别参见《公路圬工桥涵设计规范》第条和条。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力式桥墩地震力计算
一、墩顶反力:
墩号TQ1-2TQ2-2TQ3-2TQ4-2TQ6-2单位
恒载(KN):4290.04290.04290.04290.08870.0KN
二、结构设计:
1、墩形:矩形截面
墩 号TQ1-2TQ2-2TQ3-2TQ4-2TQ6-2单位截面尺寸 3.0X1.5 3.0X1.5 3.0X1.5 3.0X1.5 3.0X1.8m
墩高:h1=16.007.5010.00 6.5012.50m 墩截面积:A= 4.50 4.50 4.50 4.50 5.40m2墩身截面惯性矩:I=0.840.840.840.84 1.46m4
墩身混凝土体积:V=77.2739.0250.2734.4861.52m3墩身自重:G=2008.931014.431306.93896.481599.43KN
2、承台尺寸:TQ1-2TQ2-2TQ3-2TQ4-2TQ6-2单位
a= 2.6 2.6 2.6 2.67.0m
b=7.07.07.07.07.0m
t= 2.0 2.0 2.0 2.0 3.0m 承台混凝土体积:V=36.4036.4036.4036.40147.00m3承台自重:G=910.00910.00910.00910.003675.00KN 承台下桩数:22224
三、水平地震力计算:
3计算得:
墩 号TQ1-2TQ2-2TQ3-2TQ4-2TQ6-2
K=15758.5153000.064546.9235036.457106.9
2、地震力:
当单位水平力F=1KN作用于墩顶时,在承台底中心产生内力为:
墩 号TQ1-2TQ2-2TQ3-2TQ4-2TQ6-2单位
N=00000KN
Q=11111KN
M=189.5128.515.5KN.m 用“m”法计算得承台底的位移为:
墩 号TQ1-2TQ2-2TQ3-2TQ4-2TQ6-2单位水平位移 a= 4.50E-05 4.26E-05 5.25E-05 3.87E-05 6.43E-05m
转角位移ω= 1.45E-05 1.38E-05 1.73E-05 1.24E-05 2.15E-05rad
承台以上部分按悬臂计算,不计桩效应,当单位水平力F=1KN作用于墩顶时,在墩顶产生的水平位移为:墩 号TQ1-2TQ2-2TQ3-2TQ4-2TQ6-2单位δ=F*L3/3EI= 6.34578E-05 6.53595E-061.54926E-054.25466E-06 1.7511E-05m
综合计算得墩身各点在单位力作用下的位移及地震力计算各参数:
墩 号TQ1-2TQ2-2TQ3-2TQ4-2TQ6-2单位墩顶 3.69E-04 1.80E-04 2.76E-04 1.48E-04 4.15E-04m 墩底7.40E-057.02E-058.71E-05 6.35E-05 1.29E-04m 1/2墩身处 1.98E-04 1.23E-04 1.76E-04 1.04E-04 2.65E-04m X10 1.000 1.000 1.000 1.000 1.000
X 110.5360.6810.6370.7030.639
X f0.2000.3890.3160.4280.310
G04290.04290.04290.04290.08870.0KN G12008.91014.41306.9896.51599.4KN γ1 1.103 1.046 1.063 1.040 1.039
自振周期T= 2.526 1.764 2.181 1.600 3.849s Ci(E1作用)0.4300.4300.4300.4300.430
Ci(E2作用) 1.300 1.300 1.300 1.300 1.300 Cs0.9000.9000.9000.9000.900
Cd 1.000 1.000 1.000 1.000 1.000
Tg0.3000.3000.3000.3000.300
Sh1(E1作用)0.3040.4350.3520.4800.200
Sh1(E2作用)0.919 1.316 1.064 1.4510.603
E1地震力E hp0146.8199.4163.8218.4187.6KN E1地震力E hp136.832.131.832.121.6KN E2地震力E hp0443.8602.9495.2660.2567.1KN E2地震力E hp1111.397.196.197.065.4KN
1760。