圆锥曲线大题2
高考数学二轮复习 圆锥曲线专题训练(二)
2009届高考数学二轮复习 圆锥曲线专题训练(二)1.已知椭圆1C 的方程为2214x y +=,双曲线2C 的左、右焦点分别是1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:l y kx =C2恒有两个不同的交点A 和B ,且2O A O B ⋅>(其中O为原点),求k 的范围.2如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. ⑴.设点P 满足AP PB λ=(λ为实数), 证明:()QP QA QB λ⊥-;⑵.设直线AB 的方程是2120x y -+=,过A 、B 两点 的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.3.一束光线从点)0,1(1-F 出发,经直线032:=+-y x l 上一点P 反射后,恰好穿过点)0,1(2F .(Ⅰ)求点1F 关于直线l 的对称点1F '的坐标; (Ⅱ)求以1F 、2F 为焦点且过点P 的椭圆C 的方程;(Ⅲ)设直线l 与椭圆C 的两条准线分别交于A 、B 两点,点Q 为线段AB 上的动点,求点Q 到2F 的距离与到椭圆C 右准线的距离之比的最小值,并求取得最小值时点Q 的坐标.4.已知平面上一定点(1,0)C -和一定直线: 4.l x =-P为该平面上一动点,作,PQ l ⊥垂足 为Q ,0)2()2(=-⋅+→→→→PC PQ PC PQ . (1) 问点P在什么曲线上?并求出该曲线方程;点O是坐标原点,A B 、两点在点P的轨迹上,若1OA OB OC λλ+=+(),求λ的取值范围.5.如图,已知E 、F 为平面上的两个定点6||=EF ,10||=FG ,且EG EH =2,HP ·0=GE ,(G 为动点,P 是HP 和GF 的交点)(1)建立适当的平面直角坐标系求出点P 的轨迹方程;(2)若点P 的轨迹上存在两个不同的点A 、B ,且线段AB 的中垂线与EFGFPHE(或EF 的延长线)相交于一点C ,则||OC <59(O 为EF 的中点).6.已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.7.已知)0,1(),0,4(N M 若动点P 满足||6= (1)求动点P 的轨迹方C 的方程;(2)设Q 是曲线C 上任意一点,求Q 到直线0122:=-+y x l 的距离的最小值.8已知抛物线x 2=2py(p>0),过动点M(0,a),且斜率为1的直线L 与该抛物线交于不同两点A 、B ,|AB|≤2p,(1)求a 的取值范围;(2)若p=2,a=3,求直线L 与抛物线所围成的区域的面积;9.如图,直角梯形ABCD 中,∠︒=90DAB ,AD ∥BC ,AB=2,AD=23,BC=21椭圆F 以A 、B 为焦点且过点D ,(Ⅰ)建立适当的直角坐标系,求椭圆的方程; (Ⅱ)若点E 满足21=,是否存在斜率与的直线l k 0≠M 、F 交于椭圆N 两点,且||||NE ME =,若存在,求K 的取值范围;若不存在,说明理由. 10.已知()00,P x y 是函数()ln f x x =图象上一点,过点P 的切线与x 轴交于B ,过点P 作x轴的垂线,垂足为A . (1)求点B 坐标; (2)若()00, 1x ∈,求PAB ∆的面积S 的最大值,并求此时0x 的值.C BD参考答案1.解:(1)设双曲线2C 的方程为22221,x y a b -= (1分)则2413a=-=,再由222a b c +=得21b =, (3分)故2C 的方程为2213x y -= (4分) (2)将y kx =+2213x y -=得22(13)90k x ---= (5分) 由直线l 与双曲线C2交于不同的两点得:2222130)36(13)36(1)0k k k ∆⎧-≠⎪⎨=+-=->⎪⎩ (7分)213k ∴≠且21k <① (8分)设1122(,),(,)A x y B x y,则1212229,1313x x x x k k -+==--12121212(x x y y x x kx kx ∴+=+221212237(1)()231k k x x x x k +=++++=- (10分)又2OA OB ⋅>,得12122x x y y +>2237231k k +∴>-即2239031k k -+>-,解得:213,3k <<② (12分)由①、②得:2113k <<,故k的取值范围为3(1,(,1)33--. (14分) 2.解⑴.依题意,可设直线AB 的方程为m kx y +=,代入抛物线方程y x 42=,得:2440x k x m --= ① …………………………………………………………… 2分设A 、B 两点的坐标分别是11(,)x y 、22(,)x y ,则12,x x 是方程①的两根,所以,124x x m =-. ……………………………………………………………………… 3分由点P 满足AP PB λ=(λ为实数,1λ≠-),得0121=++λλx x , 即12x x λ=-.又点Q 是点P 关于原点的以称点,故点Q 的坐标是(0,)m -,从而(0,2QP =1122(,)(,)QA QB x y m x y m λλ-⋅=+-+1212(,(1)).x x y y m λλλ=--+- 12()2[(1)]QP QA QB m y y m λλλ⋅-=-+- =])1(44[221222121m x x x x x x m ++⋅+ =2212144)(2x mx x x x m +⋅+=221444)(2x m m x x m +-⋅+ =0 ………………………… 6分所以,()QP QA QB λ⊥-. ………………………………………………………………… 7分⑵.由221204x y x y⎧-+=⎨=⎩得点A 、B 的坐标分别是(6,9)、(4,4)-.由y x 42=得241x y =,1,2y x '=所以,抛物线y x 42=在点A 处切线的斜率为63x y ='=. ……………… 9分设圆C 的方程是222)()(r b y a x =-+-,则22229163(6)(9)(4)(4)b a a b a b -⎧=-⎪-⎨⎪-+-=++-⎩ ……………………… 11分解得:222323125,,(4)(4)222a b r a b =-==++-=.…………………………… 13分 所以,圆C 的方程是2125)223()23(22=-++y x . ………………………… 14分 3.解:(Ⅰ)设1F '的坐标为),(n m ,则211-=+m n 且032212=+--⋅nm .……2分解得52,59=-=n m , 因此,点 1F '的坐标为)52,59(-. …………………4分(Ⅱ)11PF F P =' ,根据椭圆定义,得||||||22121F F PF F P a '=+'=22)052()159(22=-+--=,……………5分2=∴a ,112=-=b .∴所求椭圆方程为1222=+y x . ………………………………7分(Ⅲ)22=c a ,∴椭圆的准线方程为2±=x . …………………………8分设点Q 的坐标为)32,(+t t )22(<<-t ,1d 表示点Q 到2F 的距离,2d 表示点Q 到椭圆的右准线的距离.则10105)32()1(2221++=++-=t t t t d ,22-=t d .22221)2(225210105-++⋅=-++=t t t t t t d d , ……………………………10分令22)2(22)(-++=t t t t f )22(<<-t ,则3422)2()86()2()2(2)22()2()22()(-+-=--⋅++--⋅+='t t t t t t t t t f ,当)(,342<'-<<-t f t ,0)(,234>'<<-t f t ,34-=t ,0)(='t f .∴ )(t f 在34-=t 时取得最小值. ………………………………13分因此,21d d 最小值=22)34(5=-⋅f ,此时点Q 的坐标为)31,34(-.…………14分 注:)(t f 的最小值还可以用判别式法、换元法等其它方法求得.说明:求得的点Q )31,34(-即为切点P ,21d d 的最小值即为椭圆的离心率. 4.解:(1)由(2)(2)0PQ PC PQ PC +∙-=,得: 2240PQ PC -=,………(2分)设(,)P x y ,则222(4)4(1)0x x y ⎡⎤+-++=⎣⎦,化简得: 22143x y +=,………(4分)点P 在椭圆上,其方程为22143x y +=.………(6分)(2)设11(,)A x y 、22(,)B x y ,由(1)OA OB OC λλ+=+得:0CA CB λ+=,所以,A 、B 、C 三点共线.且0λ>,得:1122(1,)(1,)0x y x y λ+++=,即: 12121x x y y λλλ=---⎧⎨=-⎩…(8分)因为2211143x y +=,所以222(1)()143x y λλλ----+= ①………(9分) 又因为2222143x y +=,所以22222()()43x y λλλ+= ②………(10分)由①-②得: 2222(1)(1)14x λλλλ+++=- ,化简得:2352x λλ-=,………(12分) 因为222x -≤≤,所以35222λλ--≤≤.解得: 133λ≤≤所以λ的取值范围为1,33⎡⎤⎢⎥⎣⎦. ………(14分)5.解:(1)如图1,以EF 所在的直线为x 轴,EF 的中垂线为y 轴,建立平面直角坐标系.----------------------------------------1分 由题设EG EH =2,0=∙EG HP∴||||PE PG =,而a PG PE PF 2||||||==+-------------3分 ∴点P 是以E 、F 为焦点、长轴长为10的椭圆,故点P 的轨迹方程是:1162522=+y x -----------------4分(2)如图2 ,设),(11y x A ,),(22y x B ,)0,(0x C ,∴21x x ≠,且||||CB CA =,--------------------------------6分即=+-21201)(y x x 22202)(y x x +- 又A 、B 在轨迹上,∴116252121=+y x ,116252222=+yx即2121251616x y -=,2222251616x y -=---------------8分 代入整理得:)(259)(22122012x x x x x -=⋅-∵21x x ≠,∴50)(9210x x x +=.---------------------10分∵551≤≤-x ,552≤≤-x ,∴101021≤+≤-x x . ∵21x x ≠,∴101021<+<-x x∴59590<<-x ,即||OC <59.---------------14分 6.(1)如图,设M 为动圆圆心, F()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN=, ………………………………………………2分即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42= ………………………5分(2)由题可设直线l 的方程为(1)(0)x k y k =-≠,x =由2(1)4x k y y x =-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或 …………………………………7分设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =…………9分由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,……11分即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去),…………………13分又41k =-<-, ∴ 直线l 存在,其方程为440x y +-= …………………………14分 17.解:(1)设动点P (x ,y ),则),1(),0,3(),,4(y x y x --=-=-由已知得1243,)()1(6)4(32222=+-+-=--y x y x x 化简得,13422=+y x 即∴点P 的轨迹方程是椭圆C :13422=+y x(2)解一:由几何性质意义知,椭圆C 与平行的切线其中一条l ‘和l 的距离等于Q 与l 的距离的最小值.设02:'=++D y x l ,入椭圆方程消去x 化简得:0)4(3121622=-++D Dy y 5585|412|40)4(192144'22距离的最小值为与距离的最小值为与l Q l l D D D ∴±±=⇒=--=∆∴解二:由集合意义知,椭圆C 与平行的切线其中一条l ‘和l 的距离等于Q 与l 的距离的最小值.设切点为134,134:),,(202000'00=+=+y x y y x x l y x R 且则,214300-=-=y x k ,解得⎪⎩⎪⎨⎧-=-=⎪⎩⎪⎨⎧==2312310000y x y x 或 042'=±+∴y x l 为,5585|412|'距离的最小值为与距离的最小值为与l Q l l ∴±解三:由椭圆参数方程设θθsin 3,cos 2(Q )则Q 与l 距离5)30sin(4125|12sin 32cos 2|︒+-=-+=θθθd55854121)30sin(min =-==︒+∴d 时θ解四:设134),,(202000=+y x y x Q ,且Q 与l 距离5|122|00-+=y x d由柯西不等式2002002020)2()32322()124)(34(16y x yx y x +=⋅+⋅≥++=4|2|00≤+∴y x ,5585412min =-=∴d18.解:(1)设直线L 方程为:y=x+a 与抛物线联立方程组得⎩⎨⎧=+=py x a x y 22⇒x 2-2px-2ap=0∴∆=4p 2+8ap>0 a>-2px 1+x 2=2p x 1⨯x 2=-2apAB=21k + 21x x -=2212214)(x x x x -+=2ap p 842+p2≤解得a ≤-4p , ∴ -2p <a ≤-4p(2)若p=2,a=3,则直线L 方程为:y=x+3 抛物线方程为x 2=4y⎩⎨⎧=+=y x x y 432⇒x 2-4x-12=0 ∴方程两根为-2和6 ∴ 直线与抛物线所围成区域的面积为: S=⎰--+6224)3(x x =21x 2+3x-123x 26-=368 19.(Ⅰ)以AB 中点为原点O ,AB 所在直线为x 轴,建立直角坐标系,如图则A (-1,0) B(1,0) D(-1,23) (1分) 设椭圆F 的方程为)0(12222>>=+b a b y a x (2分)得⎪⎪⎩⎪⎪⎨⎧+==⎪⎭⎫ ⎝⎛+-1123)1(222222b a b a(4分)得3410417422224==∴>=+-b a a a a所求椭圆F 方程 13422=+y x (6分)(Ⅱ)由)21,0(21E 得=,显然)0(≠+=⊥k m kx y l AB l 方程设时不合条件代入1248)43(13422222=-+++=+m kmx x k y x 得 (7分)l 与椭圆F 有两不同公共点的充要条件是0)124)(43(4)8(222>-+-=∆m k km (8分)即03422>+-m k设、y x M ),(11),(),(0022y x P ,MN y x N 中点,MN PE NE ME ⊥=等价于||||2022104344382k kmx k km x x x +-=∴+-=+= (9分)200436k mm kx y +=+= (10分)kx y MN PE 12100-=-⊥得(11分)得 k k km k m 14342143622-=+--+ 得 2432k m +-= (12分)代入 0234340222>⎪⎪⎭⎫ ⎝⎛+-+>∆k k 得41434022<<+<k k 得 (13分)又)21,0()0,21(0⋃-∈≠k k k 取值范围为故 (14分)解法2, 设),(),(2211y x 、N y x M ,得⎪⎪⎩⎪⎪⎨⎧=+=+13413422222121y x y x① ②①—② 得0)(31)(4122212221=-+-y y x x 212121212143y y x x x x y y x x ++⨯-=--≠得设0043),(y xk y x P MN ⨯-=得中点 得043x ky -= ③ (9分) MN PE NE ME ⊥=即||||得 k x y 12100-=-得200kx ky +-= ④ (11分)由③、④得23,200-==y k x 且P (x0,y0)在椭圆F 内部得4113494422<<+k k得 (13分)又)21,0()0,21(0⋃-∈∴≠k k k 取值范围为 (14分)20.解: (1)∵'1()f x x =,2分∴ 过点P 的切线方成为()0001ln y x x x x -=-4分令0y =,得000ln x x x x =-,即点B 的坐标为()000ln ,0x x x -6分(2)000000ln ln AB x x x x x x =--=-,00()ln PA f x x ==-∴ ()20011ln 22S AB PA x x =⋅=⋅9分()'20000001111ln 2ln ln 2222S x x x x x x =+⋅⋅=+11分由'0S <得,211x e <<,∴210,x e ⎛⎫∈ ⎪⎝⎭时,S 单调递增;21,1x e ⎛⎫∈ ⎪⎝⎭时S 单调递减;13分∴2max 22221112ln 2S S e e e e ⎛⎫=== ⎪⎝⎭.∴ 当021x e =,面积S 的最大值为22e .14分。
圆锥曲线专题训练试卷(2)
圆锥曲线专题训练试卷(2)第I 卷(选择题)1A .(0,1) D .(1,0)2 ). A 3 ((2)若曲线C 表示焦点在x 轴上的椭圆,则1<k <(3)若曲线C 表示双曲线,则k <1或k >4;(4)当1<k <4时曲线C 表示椭圆,其中正确的是 ( ) A .(2)(3) B. (1)(3) C. (2)(4) D.(3)(4)4.过抛物线y 2=2px 焦点F 作直线l 交抛物线于A ,B 两点,O 为坐标原点,则△ABO 为( ).A .锐角三角形B .直角三角形C 54的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,FA FB FC ++=( ))4 C )6 (D )96.如图,1F ,2F 是双曲线1C :与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点.若|F 1F 2|=|F 1A |,则2C 的离心率是( ).A 第II二、填空题(每题6分): 7.设抛物线28y x =,过焦点F 的直线交抛物线于,A B两点,线段AB 的中点的横坐8.已知点P 在抛物线24y x =上运动,F 为抛物线的焦点,点M 的坐标为(3,2),当PM+PF 的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标的坐标为 .线右,M 、N 分别是圆和上的点,则的最大值为________.三、解答题(每题20分):11.在抛物线24x y =上有两点A(x1,y1)和B(x2, y2)求证:(1)直线AB 过的定点是抛物线的焦点;12.已知抛物线24x y =,直线:2l y x =-,F 是抛物线的焦点。
(1)在抛物线上求一点P ,使点P 到直线l 的距离最小; (2)如图,过点F 作直线交抛物线于A 、B 两点. ①若直线AB 的倾斜角为135,求弦AB 的长度; ②若直线AO 、BO 分别交直线l 于,M N 两点,求||MN 的最小值.参考答案1.C 【解析】试题分析:的标准方程为24x y =,所以抛线以y 轴为对称轴,开口向上,且24p =,2p =,所以焦点坐标为()0,1,故选C.考点:抛物线的标准方程与简单几何性质. 2.B 【解析】试题分析:抛物线24y x =的焦点为(1,0),双曲线所以抛物线24y x =的焦点到双曲线B .考点:抛物线、双曲线的几何性质,点到直线的距离公式. 3.A 【解析】试题分析:①若曲线C 表示椭圆,则401041k k k k -⎧⎪-⎨⎪-≠-⎩>>,即k∈(14)时,曲线C 表示椭圆,故(1)错误;②若曲线C 表示焦点在x 轴上的椭圆,则40104141k k k k k k -⎧⎪-⎪⎨-≠-⎪⎪--⎩>>>,解得1<k2)正确;③若曲线C 表示双曲线,则(4-k )(k-1)<0,解得k >4或k <1,故(3)正确;④由(1)可知,(4)错误. 考点:圆锥曲线的特征. 4.D【解析】设点A ,B 的坐标为(x 1,y 1),(x 2,y 2),则OA ·OB =(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2p 2,∴∠BOA 为钝角,故选D.5.C 【解析】试题分析:由已知得(0,1)F ,设112233(,),(,),(,)A x y B x y C x y ,因为FA FB FC ++=0,所以1233y y y ++=.由抛物线的焦半径公式得:FA FB FC ++=123111336y y y +++++=+=.考点:抛物线. 6.B 【解析】1221212|FA F A|2|F A|2|FA F A|6|FF |4-=∴=∴+==,,,,2∴的离心率是46故选B考点:椭圆、双曲线的几何性质. 7.8 【解析】试题分析:由抛物线方程可知其准线方程为2x =-,设1122(,),(,)Ax y Bx y ,即124x x +=。
全国名校高中数学题库--圆锥曲线2
→ → ∵ OP · OQ = 0 ∴ x1 x 2 + y1 y 2 = 0 ∴ x1 x 2 + k 2 ( x1 − 1)( x 2 − 1) = 0 ∴ x1 x 2 + k 2 [ x1 x 2 − ( x1 + x 2 ) + 1] = 0 (i )
4k (k + 1) − k i4k + k = 0 ,解得 k = −4 或 k = 0 (舍去) , 又 k = −4 < −1 , ∴ 直线 l 存在,其方程为 x + 4 y − 4 = 0
10 3 的椭圆. (9 分) 3
⎩ y = 4x △ = 16k 2 − 16 > 0 , k < −1或k > 1 设 P ( x1 , y1 ) , Q( x 2 , y 2 ) ,则 y1 + y 2 = 4k , y1 y2 = 4k ��� � ���� ��� � ���� 由 OP ⋅ OQ = 0 ,即 OP = ( x1 , y1 ) , OQ = ( x2 , y2 ) ,于是 x1 x2 + y1 y2 = 0 ,
圆锥曲线综合训练题 一、求轨迹方程:
x2 y2 1、 (1)已知双曲线 C1 与椭圆 C2 : + = 1 有公共的焦点,并且双曲线的离心率 e1 与椭圆的 36 49 7 离心率 e2 之比为 ,求双曲线 C1 的方程. 3 2 (2)以抛物线 y = 8 x 上的点 M 与定点 A(6, 0) 为端点的线段 MA 的中点为 P,求 P 点的轨迹方 程.
即 k 2 ( y1 − 1)( y2 − 1) + y1 y2 = 0 , ( k 2 + 1) y1 y2 − k 2 ( y1 + y2 ) + k 2 = 0 ,
新高考方案二轮-数学(新高考版)大题专攻(二) 第1课时 圆锥曲线中的最值、范围、证明问题
(2)已知 O 为坐标原点,M,N 为椭圆上不重合两点,且 M,N 的中点 H
落在直线 y=12x 上,求△MNO 面积的最大值.
[解题微“点”]
(1)利用―A→G ·―B→G =0 及 e= 23构建方程组求 a,b, 即得椭圆方程; 切入点 (2)设出点 M,N 与 H 的坐标,表示出直线 MN 的方 程,与椭圆联立,利用弦长公式和点到直线的距离 公式表示△MNO 的面积后求最大值 障碍点 不要漏掉 Δ>0,利用此条件可求参数的取值范围
解:(1)依题意,2c=6,则 b= 9-5=2,
则双曲线 C:x52-y42=1,B1(0,-2),F2(3,0).
设直线 l:4x+3y+m=0,将 B1(0,-2)代入解得 m=6,
此时 l:4x+3y+6=0,F2 到 l 的距离为 d=158.
(2)设双曲线上的点 P(x,y)满足―PB→1 ·―PB→2 =-2, 即 x2+y2=b2-2,又xa22-by22=1⇒y2=ba22x2-b2,
[对点训练] (2021·济南三模)已知抛物线C:x2=4y,过点P(1,-2)作斜率为k(k>0)的直线l1与 抛物线C相交于A,B两点. (1)求k的取值范围; (2)过P点且斜率为-k的直线l2与抛物线C相交于M,N两点,求证:直线AM、BN 及y轴围成等腰三角形.
解:(1)由题意设直线 l1 的方程为 y+2=k(x-1), 由xy+2=24=y,kx-1, 得到:x2-4kx+4k+8=0, 由题意知 Δ>0,所以 k2-k-2>0,即 k<-1 或 k>2. 因为 k>0,所以 k 的取值范围为(2,+∞).
[提分技巧] 解决范围问题的常用方法
利用待求量的几何意义,确定出极端位置后,利 数形结合法
(常考题)人教版高中数学选修一第三单元《圆锥曲线的方程》测试(答案解析)(2)
一、填空题1.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心的圆与双曲线C 的某一条渐近线交于P ,Q 两点.若60PAQ ∠=︒,且3PO OQ =(其中O 为原点),则双曲线C 的离心率为_________.2.已知椭圆()2222:10x y C a b a b +=>>的离心率e A B =、分别是椭圆的左、右顶点,点P 是椭圆上的一点,直线PA PB 、的倾斜角分别为αβ、,满足tan tan 1αβ+=,则直线PA 的斜率为__________.3.设1F 、2F 分别是椭圆2214xy +=的左、右焦点,若椭圆上存在一点P ,使2()OP OF +⋅20PF =(O 为坐标原点),则△12F PF 的面积是___________4.设F 为椭圆2222:1x y C a b+=的左焦点,P 为C 上第一象限的一点.若6FPO π∠=,PF =,则椭圆C 的离心率为___________5.椭圆2212516x y +=的左、右焦点为F 1、F 2,点P 在椭圆上,若F 1PF 2为直角三角形,则点P 到x 轴的距离为_____.6.已知F 为双曲线22221x y a b-=()0,0a b >>的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3AB FA =,则此双曲线的离心率为________.7.已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.8.设12,F F 分别是椭圆22=1169x y +的两个焦点,点P 在椭圆上,若线段1PF 的中点在y轴上,则12||||PF PF =______. 9.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆上存在一点P使12PF e PF =,则该椭圆的离心率e 的取值范围是______.10.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是______.11.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的过焦点且垂直于对称轴的弦的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1) 能使抛物线方程为y 2=10x 的条件是_____.12.已知抛物线方程为24y x =-,直线l 的方程为240x y +-=,在抛物线上有一动点A ,点A 到y 轴的距离为m ,点A 到直线l 的距离为n ,则m n +的最小值为______.13.已知点P 是椭圆221259x y +=上任意一点,则当点P 到直线45400x y -+=的距离达到最小值时,此时P 点的坐标为______.参考答案二、解答题14.已知抛物线2:2C y px =过点()1,2A . (1)求抛物线C 的方程;(2)求过点()3,2P -的直线与抛物线C 交于M 、N 两个不同的点(均与点A 不重合).设直线AM 、AN 的斜率分别为1k 、2k ,求证:12k k ⋅为定值.15.已知()()()22:3400,q :112x y p m a m a a m m--<>+=--.(1)若q 表示双曲线,求实数m 的取值范围;(2)若q 表示焦点在y 轴上的椭圆,且q ⌝是p ⌝中的充分不必要条件,求实数a 的取值范围.16.已知椭圆()222210x y C a b a b ∴+=>>的离心率e =,左焦点为1F ,右焦点为2F ,且椭圆上一动点M 到2F 的最远距离为1,过2F 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)直线l 的斜率存在且不为0时,试问x 轴上是否存在一点P 使得OPA OPB ∠=∠,若存在,求出点P 坐标;若不存在,请说明理由.17.已知12,F F 分别是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,点P 是双曲线上一点,满足12PF PF ⊥且128,6PF PF ==. (1)求双曲线C 的标准方程;(2)若直线l 交双曲线于A ,B 两点,若AB 的中点恰为点(2,6)M ,求直线l 的方程.18.(1)已知双曲线的渐近线方程为230x y ±=,且双曲线经过点()6,2P .求双曲线方程.(2)若直线2x y -=与抛物线24y x =交于A ,B 两点,求线段AB 的中点坐标;19.已知椭圆()2222:10x y C a b a b +=>>过点231,E ⎛⎫ ⎪ ⎪⎝⎭,1A ,2A 为椭圆的左右顶点,且直线1A E ,2A E 的斜率的乘积为23-.(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆C 交于M ,N 两点,线段MN 的垂直平分线交直线l 于点P ,交直线2x =-于点Q ,求PQMN的最小值. 20.已知椭圆()222210y x a b a b +=>>的离心率22e =,且过点(0,2.(1)求椭圆方程;(2)已知1F 、2F 为椭圆的上、下两个焦点,AB 是过焦点1F 的一条动弦,求2ABF 面积的最大值.21.如图,椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F 上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且1F 恰是2QF 的中点,若过A ,Q ,2F 三点的圆与直线:330l x y --=相切.(1)求椭圆C 的方程;(2)设M ,N 为椭圆C 的长轴两端点,直线m 过点()4,0P 交C 于不同两点G ,H ,证明:四边形MNHG 的对角线交点在定直线上,并求出定直线方程.22.已知椭圆E :()222210x y a b a b +=>>6,且过点31,22⎛⎫ ⎪⎝⎭.(1)求椭圆E 的标准方程;(2)若不过点()0,1A 的动直线l 与椭圆C 交于P ,Q 两点,且0AP AQ ⋅=,求证:直线l 过定点,并求该定点的坐标.23.已知椭圆()222210x y a b a b +=>>的离心率为22,短轴长为22(1)求椭圆的标准方程.(2)已知椭圆的左顶点为A ,点M 在圆2289x y +=上,直线AM 与椭圆交于另一点B ,且AOB 的面积是AOM 的面积的2倍,求直线AB 的方程.24.已知椭圆22221x y a b+=(0a b >>)长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线l 过点(,0)A a -,且与椭圆相交于另一点B .(1)求椭圆的方程; (2)若线段AB 长为25,求直线l 的倾斜角. 25.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴重直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为6,求1C 与2C 的标准方程.26.已知椭圆C :()222210x y a b a b+=>>的左焦点为()1,0F -,且经过点(3.(1)求椭圆C 的标准方程;(2)过点F 的直线l 与椭圆C 交于A ,B 两点,若154AB =,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】设由已知得由双曲线的渐近线的斜率可求得ab 的关系从而求得双曲线的离心率【详解】取PQ 的中点为B 因为所以为正三角形设则所以故答案为:【点睛】方法点睛:(1)求双曲线的离心率时将提供的双曲线的几解析:13【分析】设OQ m =,由已知得2,2BQ m PQ m ==,23,AB m OB m ==,由双曲线的渐近线的斜率可求得a ,b 的关系,从而求得双曲线的离心率. 【详解】取PQ 的中点为B ,因为060PAQ ∠=,3PO OQ =,所以PAQ △为正三角形,设OQ m =,则2,2BQ m PQ m ==,23,AB m OB m ==,所以23231313PQ m bk c a e a===⇒=⇒=. 故答案为:13.【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量,,a b c 的方程或不等式,利用222b c a =-和ce a=转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量.2.或【分析】设出点坐标求得的表达式求得代入直线的斜率公式可得答案【详解】依题意设则即化简得由于是椭圆的左右顶点所以所以所以所以或所以当时当时所以直线的斜率为或故答案为:或【点睛】本小题主要考查椭圆的几【分析】设出P 点坐标,求得tan +tan αβ的表达式,求得00x y ,,代入直线的斜率公式可得答案. 【详解】依题意1,22c b a b a a ====.设()()000,0P x y x ≠,则2200221x y a b +=,即22002214x y a a +=,化简得222004y x a -=-. 由于,A B 是椭圆的左右顶点,所以()(),0,,0A a B a -,所以tan +tan αβ0000+y y x a x a =+-0000022200022142x y x y xx ay y ===-=--,所以002x y =-,所以004x y a ⎧=⎪⎪⎨⎪=⎪⎩或004x y a ⎧=⎪⎪⎨⎪=-⎪⎩,所以当0024x y a ⎧=-⎪⎪⎨⎪=⎪⎩时,tanα002y x a ===+,当0024x a y a ⎧=⎪⎪⎨⎪=-⎪⎩时,00122y x a -===+,所以直线PA或12,故答案为:2或12. 【点睛】本小题主要考查椭圆的几何性质,直线的斜率公式,关键在于求得点P 的坐标,属于中档题.3.1【分析】记的中点为根据向量数量积为得到与的位置关系再结合三角形中位线以及直角三角形中的勾股定理求解出的值则面积可求【详解】如图所示:记的中点为因为所以所以因为为的中点所以所以所以所以所以故答案为:解析:1 【分析】记2PF 的中点为M ,根据向量数量积为0得到OM 与2PF 的位置关系,再结合三角形中位线以及直角三角形中的勾股定理求解出12PF PF ⋅的值,则12F PF △面积可求. 【详解】 如图所示:记2PF 的中点为M ,因为22()0OP OF PF +⋅=,所以220OM PF ⋅=,所以2OM PF ⊥,因为,O M 为122,F F PF 的中点,所以1//OM PF ,所以12PF PF ⊥,所以2221212121224PF PF F F PF PF a ⎧+==⎪⎨+==⎪⎩,所以()()22212121222PFPF PF PF PF PF +-+⋅==,所以121212F PF PF PF S==, 故答案为:1. 【点睛】关键点点睛:圆锥曲线中的向量平行或垂直问题,一方面可以转化为线段或直线的位置关系,另一方面还可以通过坐标形式表示出对应的位置关系.4.【分析】连接由余弦定理结合平面几何的知识得再由椭圆的定义及离心率公式即可得解【详解】设椭圆的右焦点连接如图因为所以所以所以所以为等边三角形所以所以离心率故答案为:【点睛】解决本题的关键是利用余弦定理 31【分析】连接1PF ,由余弦定理结合平面几何的知识得11PF OF =,再由椭圆的定义及离心率公【详解】设(),0F c -,椭圆的右焦点()1,0F c ,连接1PF ,如图,因为6FPO π∠=,3PF =,所以2222223cos 2223PF OP OFOP OFFPO PF OPOP OF+-+∠===⋅⋅, 所以OP OF =,所以1OP OF =,13POF π∠=,所以1POF 为等边三角形,11PF OF =, 所以)113312PF PF OF OF c a +=+==,所以离心率31312ce a===+. 31. 【点睛】解决本题的关键是利用余弦定理及平面几何的知识转化条件为11PF OF =,再由椭圆的定义、离心率公式即可得解.5.【分析】设点P(xy)表示出点P 到x 轴的距离为由哪一个角是直角来分类讨论在第一类中直接令x=士3得结果在第二类中要列出方程组【详解】设点则到轴的距离为由于(1)若或令得即到轴的距离为(2)若则由可得 解析:165【分析】设点P (x ,y ),表示出点P 到x 轴的距离为||y ,由哪一个角是直角来分类讨论,在第一类中直接令x =士3得结果,在第二类中要列出方程组.设点(,)P x y ,则到x 轴的距离为||y 由于5a =,4b =,3c ∴=,(1)若1290PF F ∠=︒或2190PF F ∠=︒,令3x =±得2y =291616(1)2525-=,16||5y ∴=,即P 到x 轴的距离为165. (2)若1290F PF ∠=︒,则122221210||6PF PF PF PF ⎧+=⎪⎨+=⎪⎩, 22121||||(106)322PF PF ∴=-=,由1210PF PF +=可得此情况不存在. 综上,P 到x 轴的距离为165. 故答案为:165. 【点睛】解决本题的关键是要注意分类讨论的思想,题目中的直角三角形,要分清楚那个角是直角,是解决问题的先决条件.6.【分析】首先根据题意得到直线的方程为与双曲线的渐近线联立得到再根据得到从而得到【详解】由得直线的方程为根据题意知直线与渐近线相交联立得消去得由得所以即整理得则故答案为:【点睛】本题主要考查双曲线的离解析:43【分析】首先根据题意得到直线AF 的方程为by x b c=+,与双曲线的渐近线联立得到=-B ac x c a ,再根据3AB FA =得到34c a =,从而得到43e =. 【详解】 由(),0F c -,()0,A b ,得直线AF 的方程为by x b c=+ 根据题意知,直线AF 与渐近线by x a=相交, 联立得b y x b cb y x a ⎧=+⎪⎪⎨⎪=⎪⎩消去y 得,=-B ac x c a .由3AB FA =,得()(),3,-=B B x y b c b , 所以3=B x c ,即3=-acc c a,整理得34c a =, 则43c e a ==. 故答案为:43【点睛】本题主要考查双曲线的离心率,同时考查学生的计算能力,属于中档题.7.【分析】根据题意作出图示求解出的长度然后根据椭圆的定义得到之间的关系即可求解出离心率【详解】如图因为为正三角形所以所以是直角三角形因为所以所以所以因为所以即所以故答案为:【点睛】本题考查根据几何关系 解析:31-【分析】根据题意作出图示,求解出12,PF PF 的长度,然后根据椭圆的定义得到,a c 之间的关系即可求解出离心率. 【详解】如图,因为2POF 为正三角形,所以12||||||OF OP OF ==,所以12F PF ∆是直角三角形. 因为2160PF F ∠=,21||2F F c =,所以2||PF c =,所以22212122122cos60PF PF F F PF F F =+-⋅⋅︒,所以13PF c =, 因为21||||2PF PF a +=,所以32c c a +=, 即3131ca ,所以31e =-.故答案为:31-.【点睛】本题考查根据几何关系以及椭圆的定义求解椭圆的离心率,难度一般.求解离心率的问题,如果涉及到特殊几何图形,一定要注意借助图形本身的性质去求解问题.8.【分析】先设P 点中点再求焦点再根据线段的中点在轴上求出P 点坐标再利用焦半径公式即可得的长则可解【详解】设中点由题意得由线段的中点在轴上则有代入中得P 点坐标为或根据焦半径公式可得∴故答案为:【点睛】考 解析:239【分析】先设P 点,中点,再求焦点12,F F ,再根据线段1PF 的中点在y 轴上,求出P 点坐标,再利用焦半径公式即可得12||,||PF PF 的长,则12||||PF PF 可解. 【详解】设(,)p p P x y ,中点(0,)m n .由题意得12(F F ,4a =,e =由线段1PF 的中点在y 轴上,则有02p x +=,p x =22=1169x y +中得P 点坐标为9()4或9()4-根据焦半径公式可得,12239||,||44PF PF ==, ∴12||23||9PF PF =. 故答案为:239. 【点睛】考查椭圆的焦半径公式, 解题关键要求出P 点坐标.9.【分析】由椭圆的定义可得解得由椭圆的性质可得解不等式求得离心率的取值范围【详解】设点的横坐标为则由椭圆的定义可得由题意可得则该椭圆的离心率的取值范围是故答案为:【点睛】本题考查椭圆的定义以及简单性质解析:)1,1【分析】由椭圆的定义可得22()()a a e x e e x c c +=⨯-,解得(1)c a x e e -=+,由椭圆的性质可得(1)c aaa e e --+,解不等式求得离心率e 的取值范围.【详解】设点P 的横坐标为x ,12PF e PF =,则由椭圆的定义可得22()()a a e x e e x c c+=⨯-,(1)c a x e e -∴=+,由题意可得(1)c aaa e e --+, 111(1)e e e -∴-+,∴2211e e e e e e ⎧--⎨-+⎩,∴211e -<, 则该椭圆的离心率e 的取值范围是[21-,1), 故答案为:[21-,1). 【点睛】本题考查椭圆的定义,以及简单性质的应用,由椭圆的定义可得22()()a a e x e e x c c+=⨯-,是解题的关键.10.【分析】由双曲线方程求得渐近线方程当过焦点的两条直线与两条渐近线平行时这两条直线与双曲线右支分别只有一个交点利用数形结合可求出符合条件直线的斜率取值范围【详解】双曲线的渐近线方程当过焦点的直线与两条解析:33,⎡⎤-⎢⎥⎣⎦【分析】由双曲线方程求得渐近线方程33y x =±,当过焦点的两条直线与两条渐近线平行时,这两条直线与双曲线右支分别只有一个交点,利用数形结合,可求出符合条件直线的斜率取值范围. 【详解】双曲线221124x y -=的渐近线方程33y x =±,当过焦点的直线与两条渐近线平行时, 直线与双曲线右支分别只有一个交点(因为双曲线正在与渐近线无限接近中),由图可知,斜率不在33⎡⎢⎣⎦的所有直线与双曲线右支有两点交点(如图中直线2l ),斜率在⎡⎢⎣⎦的所有直线都与双曲线右支只有一个交点(如图中直线m ).所以此直线的斜率的取值范围.⎡⎢⎣⎦故答案为.⎡⎢⎣⎦【点睛】本题主要考查双曲线的几何性质以及直线与双曲线的位置关系,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.11.②⑤【分析】设抛物线方程为根据抛物线的定义焦半径公式直线相互垂直与斜率之间的关系即可判断出结论【详解】设抛物线方程为②③抛物线上横坐标为1的点到焦点的距离等于6可得解得抛物线方程为舍去;②④抛物线的解析:②⑤ 【分析】设抛物线方程为22y px =.根据抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系即可判断出结论. 【详解】设抛物线方程为22y px =.②③抛物线上横坐标为1的点到焦点的距离等于6,可得162p+=,解得10p =,抛物线方程为220y x =,舍去;②④抛物线的过焦点且垂直于对称轴的弦的长为5,可得25()222pp =⨯,解得52p =,可得抛物线方程为25y x =.②⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1),可得:111222p ⨯=--,解得5p =,可得抛物线方程为210y x =,因此正确.能使抛物线方程为210y x =的条件是②⑤. 故答案为:②⑤. 【点睛】本题考查了抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.12.【分析】过点作直线的垂线垂足为过点作准线的垂线垂足为交轴于点根据抛物线的定义可知所以过点作直线的垂线垂足为当点在与抛物线的交点时最小从而可求出答案【详解】如图焦点为抛物线的准线方程为过点作直线的垂线1 【分析】过点A 作直线l 的垂线,垂足为H ,过点A 作准线的垂线,垂足为C ,交y 轴于点B ,根据抛物线的定义可知,1AF AC m ==+,所以1m n AF AH +=+-,过点F 作直线l 的垂线,垂足为1H ,当点A 在1FH 与抛物线的交点时,AF AH +最小,从而可求出答案. 【详解】如图,焦点为()1,0F -,抛物线的准线方程为1x =, 过点A 作直线l 的垂线,垂足为H ,则AH n =,过点A 作准线的垂线,垂足为C ,交y 轴于点B ,则AB m =,1AC m =+, 根据抛物线的定义可知,1AF AC m ==+, 所以1m n AF AH +=+-,过点F 作直线l 的垂线,垂足为1H ,则1FH ==,当点A 在1FH 与抛物线的交点时,AF AH +最小,为15FH =,此时,m n +取得最小值15-.1.【点睛】本题考查抛物线的性质,考查点到直线距离公式的应用,考查学生的计算求解能力,属于中档题.13.【分析】首先求出与椭圆相切的直线的方程根据直线方程与椭圆方程联立求出点坐标即可【详解】设直线:当直线与椭圆相切时其中一个切点到直线的距离最小故联立整理得相切时易知当时点到直线的距离最小代入中解得代入解析:94,5⎛⎫- ⎪⎝⎭ 【分析】首先求出与椭圆相切的直线的方程,根据直线方程与椭圆方程联立求出P 点坐标即可. 【详解】设直线1l :()450x y m m R -+=∈, 当直线1l 与椭圆相切时,其中一个切点到直线45400x y -+=的距离最小,故联立224501259x y m x y -+=⎧⎪⎨+=⎪⎩,整理得222582250x mx m ++-=, 相切时24025b ac m ∆=-=⇒=±,易知当25m =时点到直线45400x y -+=的距离最小,25m =代入222582250x mx m ++-=中,解得4x =-,4x =-代入45250x y -+=中,解得95y =, 故P 点坐标为94,5⎛⎫- ⎪⎝⎭.故答案为:94,5⎛⎫- ⎪⎝⎭. 【点睛】本题主要考查了直线与椭圆的位置关系,属于一般题.二、解答题14.(1)24y x =;(2)证明见解析. 【分析】(1)本题可将()1,2A 代入抛物线方程中求出p 的值,即可得出结果; (2)本题首先可设()11,M x y 、()22,N x y 以及直线MN 的方程23xt y ,然后通过联立直线MN 的方程与抛物线方程即可得出124y y t +=、12812y y t =--,最后通过1212122211y y k k x x 并化简即可得出结果.【详解】(1)因为抛物线2:2C y px =过点()1,2A , 所以42p =,2p =,抛物线方程为24y x =.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为23xt y ,联立()2234x t y y x⎧=++⎨=⎩,整理得248120y ty t ---=,21632480t t ∆=++>,124y y t +=,12812y y t =--,则1212122212122222111144y y y y k k y y x x 1212161622481284y y y y t t ,故12k k ⋅为定值2-. 【点睛】关键点点睛:本题考查抛物线方程的求法以及抛物线与直线相交的相关问题的求解,通过联立直线的方程与抛物线方程以及韦达定理得出12y y +、12y y 的值是解决本题的关键,考查计算能力,考查化归与转化思想,是中档题.15.(1)()()–,12,∞+∞;(2)13,38⎡⎤⎢⎥⎣⎦.【分析】(1)根据曲线方程,列式()()120m m --<,求m 的取值范围;(2)分别求两个命题为真命题时,m 的取值范围,根据命题的等价性转化为p 是q 的充分不必要条件,转化为真子集关系,求实数a 的取值范围. 【详解】(1)由()()120m m --<,得1m <或2m >,即()()–,12,m ∈∞⋃+∞(2)命题p ∶由()()()3400m a m a a --<>,得34a m a <<.命题q ∶22112x y m m+=--表示焦点在y 轴上的椭圆, 则102021m m m m ->⎧⎪->⎨⎪->-⎩,解得312m <<,因为q ⌝是p ⌝的充分不必要条件,所以p 是q 的充分不必要条件,则31342a a ≥⎧⎪⎨≤⎪⎩,解得1338a ≤≤,故实数a 的取值范围为:13,38⎡⎤⎢⎥⎣⎦.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.16.(1)2212x y +=;(2)存在,()2,0P .【分析】(1)由已知条件列出关于,,a b c 的方程组,解得,,a b c 即得椭圆方程;(2)假设存在,设(),0P m ,()11,A x y ,()22,B x y ,设直线方程为(1)y k x =-,代入椭圆方程应用韦达定理得1212,x x x x +,然后计算由0AP BP k k +=是关于k 的恒等式可求得m 即得.【详解】(1)22221c e a a c a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,11a cb ⎧=⎪∴=⎨⎪=⎩,2212x y ∴+=.(2)假设存在(),0P m 满足题意,设()11,A x y ,()22,B x y ,():1AB l y k x =-,()22122y k x x y ⎧=-⎨+=⎩,()2222124220k x k x k ∴+-+-=, 2122412k x x k ∴+=+,21222212k x x k -=+,11APy k x m =-,22BP y k x m =-, ()()()()1221120AP BP y x m y x m k k x m x m -+-+==--,()1221120y x y x m y y ∴+-+=,211212(1)(1)(2)0kx x kx x km x x -+--+-=,()()1212220kx x k mk x x km ∴-+++=,代入1212,x x x x +整理得24,2km k m ==,()2,0P ∴. 【点睛】方法点睛:本题考查求椭圆标准方程,求直线与椭圆相交中的定点问题.求椭圆方程的关键是列出关于,,a b c 的方程组,解之即得,直线与椭圆相交问题采用“设而不求”的思想方法,即设交点为1122(,),(,)x y x y ,设直线方程(1)y k x =-,同时假设定点在在.设坐标为(,0)m ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,并代入定点满足的条件0AP BP k k +=,由此求出参数m ,得定点坐标.17.(1)22124y x -=;(2)810y x .【分析】(1)由双曲线定义求a ,结合12PF PF ⊥求2b ,写出双曲线C 的标准方程;(2)设()()1122,,,A x y B x y ,结合双曲线方程得1212121224y y y y x x x x -+⋅=-+,根据中点M 、直线斜率的坐标表示得324AB k ⋅=,即可写出直线方程. 【详解】(1)1222a PF PF =-=,得1a =,在△12PF F 中2221212100F F PF PF =+=,∴24100c =,22225c a b ==+,则224b =,故双曲线的标准方程为:22124y x -=(2)设()()1122,,,A x y B x y ,有221221221212222212424124y x y y x x y x ⎧-=⎪-⎪⇒-=⎨⎪-=⎪⎩,所以221212122112122224y y y y y y x x x x x x --+=⋅=--+,又1212AB y y k x x -=-,1212632y y x x +==+, ∴324AB k ⋅=,得8AB k =, ∴直线AB 方程为:810y x ,满足0∆>,符合题意 .【点睛】 关键点点睛:由双曲线定义:曲线上的点到两焦点距离差为定值m ,有2a m =,结合勾股定理求c .()()1122,,,A x y B x y ,利用中点1212(,)22x x y y ++、直线斜率1212y y k x x -=-,结合所得方程1212121224y y y y x x x x -+⋅=-+,求斜率并写出直线方程. 18.(1)2231143y x -=;(2)()4,2. 【分析】(1)由渐近线方程设双曲线方程为()22094x y λλ-=≠,代入点P 的坐标可得双曲线方程;(2)设()11,A x y ,()22,B x y ,直线方程代入双曲线方程,应用韦达定理和中点坐标公式可得. 【详解】(1)由双曲线的渐近线方程23y x =±,可设双曲线方程为()22094x y λλ-=≠.∵双曲线过点)P,∴6494λ-=,13λ=-,故所求双曲线方程为2231143y x -=.(2)由224x y y x-=⎧⎨=⎩得2840x x -+=,设()11,A x y ,()22,B x y ,则128x x +=,121244y y x x +=+-=, 故线段AB 的中点坐标为()4,2. 【点睛】方法点睛:本题考查求双曲线方程,考查弦中点坐标.已知双曲线的渐近线方程为0mx ny ±=,则双曲线方程可设为2222m x n y λ-=,代入其他条件求得λ即可得,这种方法不需要考虑双曲线的焦点所在轴.19.(1)22132x y +=;(2【分析】(1)由题可得221413a b+=,233113a a ⋅=-+-,解得,ab ,即可得椭圆C 的方程;(2)由题可设直线l :1x my =+,代入椭圆方程,利用韦达定理,弦长公式计算出点P ,MN,计算得2PQMN =,令t =,采用换元法求解最小值. 【详解】 (1)依题意有,221413a b+=,233113a a ⋅=-+-, 解得23a =,22b =,椭圆的方程为22132x y +=;(2)由题意知直线l 的斜率不为0,设其方程为1x my =+, 设点()11,M x y ,()22,N x y ,联立方程()2222123440321x y m y my x my ⎧+=⎪⇒++-=⎨⎪=+⎩, 得到122423m y y m -+=+,122423y y m -=+ 由弦长公式MN =整理得22123m MN m +=+,又1222223P y y m y m +-==+,2323Px m =+,2P PQ x =-=212PQMN =, 令t =,1t ≥,上式24554t t t t +⎫==+≥⎪⎝⎭,当254t =,即12m =±时,PQ MN【点睛】方法点睛:求解弦长问题通常应用弦长公式: 直线与圆锥曲线交于点()()1122,,,A x y B x y,则弦长1212AB x y =-=-(k 为直线的斜率). 20.(1)2212y x +=;(2【分析】(1)根据离心率的值,可列出a c ,的关系式,再根据经过()0,-2点,可得出a 的值和c 的值,最后再结合222a b c =+,可算出b 的值,直接写出椭圆方程即可.(2)根据题意设出直线的方程和椭圆方程联立方程组,由根和系数的关系,再结合三角形面积公式,可把三角形面积表示成含有参数的关系式,最后根据不等式,可求得面积的最大值. 【详解】 (1)由题意,a =2c e a ==得1c =,所以1b =,所以椭圆方程是2212y x +=.(2)由于直线AB 经过上焦点()0,1,设直线AB 方程为1y kx =+,联立方程组22112y kx y x =+⎧⎪⎨+=⎪⎩将1y kx =+代入椭圆方程2212y x +=,得()222210k x kx ++-=,则222A B k x x k +=-+,212A Bx x k ⋅=-+, ∴A Bx x -==21212ABF A B S F F x x =⋅-△,可知122F F=则21112ABF S ===≤△.=,即0k =时,2ABF S.【点睛】椭圆与直线相交时,三角形面积问题的关键点为:设直线方程、联立方程组、韦达定理、列出三角形面积的关系式,最后根据函数或不等式,可求出三角形面积的范围.21.(1)22143x y +=;(2)证明见解析, 1x =.【分析】(1)设椭圆C 的半焦距为()0c c >,由圆的定义可求得圆的半径,再由直线与圆的相切的条件可求得c , 2a ,2b ,可求得椭圆方程.(2)设其方程为4x my =+,设()11,H x y ,()22,G x y ,直线与椭圆的方程联立整理得()223424360my my +++=,得出根与系数的关系,表示直线MH 的方程和直线GN 的方程。
圆锥曲线大题
绝密★启用前数学组卷圆锥大题学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.解答题(共40小题)1.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.2.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |. 3.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .4.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN . 5.(2017•新课标Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,√32),P 4(1,√32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.6.(2017•新课标Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.7.(2016•新课标Ⅰ)设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.8.(2016•新课标Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求|OH||ON|;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 9.(2015•新课标Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分別求C 在点M 和N 处的切线方程.(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?(说明理由) 10.(2015•新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围;(2)若OM →•ON →=12,其中O 为坐标原点,求|MN |. 11.(2014•新课标Ⅰ)已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 12.(2014•新课标Ⅰ)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.13.(2013•新课标Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.14.(2012•新课标)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点;(1)若∠BFD =90°,△ABD 的面积为4√2,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.15.(2011•新课标)在平面直角坐标系xOy 中,已知点A (0,﹣1),B 点在直线y =﹣3上,M 点满足MB →∥OA →,MA →⋅AB →=MB →•BA →,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.16.(2011•新课标)在平面直角坐标系xOy 中,曲线y =x 2﹣6x +1与坐标轴的交点都在圆C 上.(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线x ﹣y +a =0交与A ,B 两点,且OA ⊥OB ,求a 的值. 17.(2010•全国新课标)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (Ⅰ)求|AB |;(Ⅱ)若直线l 的斜率为1,求b 的值.18.(2009•全国卷Ⅰ)如图,已知抛物线E :y 2=x 与圆M :(x ﹣4)2+y 2=r 2(r >0)相交于A 、B 、C 、D 四个点. (Ⅰ)求r 的取值范围;(Ⅱ)当四边形ABCD 的面积最大时,求对角线AC 、BD 的交点P 的坐标.19.(2008•海南)在直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=53. (Ⅰ)求C 1的方程;(Ⅱ)平面上的点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与C 1交于A ,B 两点,若OA →⋅OB →=0,求直线l 的方程.20.(2007•海南)在平面直角坐标系xOy 中,已知圆x 2+y 2﹣12x +32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同的两点A ,B . (Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA →+OB →与PQ →共线?如果存在,求k 值;如果不存在,请说明理由.21.(2007•陕西)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√63,短轴一个端点到右焦点的距离为√3. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为√32,求△AOB 面积的最大值.22.(2006•全国卷Ⅱ)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M . (Ⅰ)证明FM →.AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.23.(2006•福建)已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;(II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.24.(2019•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为C上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.25.(2019•新课标Ⅱ)已知点A (﹣2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:△PQG 是直角三角形; (ii )求△PQG 面积的最大值.26.(2018•新课标Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 27.(2017•新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=√2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =﹣3上,且OP →•PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .28.(2016•新课标Ⅱ)已知椭圆E :x 2t+y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围. 29.(2016•新课标Ⅱ)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (I )当|AM |=|AN |时,求△AMN 的面积 (II )当2|AM |=|AN |时,证明:√3<k <2. 30.(2015•陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,﹣1),且离心率为√22. (Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.31.(2015•新课标Ⅱ)椭圆C :x 2a 2+y 2b 2=1,(a >b >0)的离心率√22,点(2,√2)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与l 的斜率的乘积为定值.32.(2014•大纲版)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (Ⅰ)求C 的方程;(Ⅱ)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程. 33.(2014•陕西)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =﹣x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为√32. (Ⅰ)求a ,b 的值;(Ⅱ)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.34.(2014•新课标Ⅱ)设F 1,F 2分别是C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 35.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.36.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.37.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.38.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 39.(2017•新课标Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx ﹣2与x 轴交于A 、B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A 、B 、C 三点的圆在y 轴上截得的弦长为定值.40.(2017•新课标Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,﹣2),求直线l 与圆M 的方程.数学组卷参考答案与试题解析一.解答题(共40小题)1.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.【分析】(1)由条件知点M 在线段AB 的中垂线x ﹣y =0上,设圆的方程为⊙M 的方程为(x ﹣a )2+(y ﹣a )2=R 2(R >0),然后根据圆与直线x +2=0相切和圆心到直线x +y =0的距离,半弦长和半径的关系建立方程组即可;(2)设M 的坐标为(x ,y ),然后根据条件的到圆心M 的轨迹方程为y 2=4x ,然后根据抛物线的定义即可得到定点.【解答】解:∵⊙M 过点A ,B 且A 在直线x +y =0上, ∴点M 在线段AB 的中垂线x ﹣y =0上,设⊙M 的方程为:(x ﹣a )2+(y ﹣a )2=R 2(R >0),则 圆心M (a ,a )到直线x +y =0的距离d =√2, 又|AB |=4,∴在Rt △OMB 中, d 2+(12|AB |)2=R 2,即(|2a|√2)2+4=R 2① 又∵⊙M 与x =﹣2相切,∴|a +2|=R ② 由①②解得{a =0R =2或{a =4R =6,∴⊙M 的半径为2或6;(2)∵线段AB 为⊙M 的一条弦O 是弦AB 的中点,∴圆心M 在线段AB 的中垂线上, 设点M 的坐标为(x ,y ),则|OM |2+|OA |2=|MA |2, ∵⊙M 与直线x +2=0相切,∴|MA |=|x +2|, ∴|x +2|2=|OM |2+|OA |2=x 2+y 2+4, ∴y 2=4x ,∴M 的轨迹是以F (1,0)为焦点x =﹣1为准线的抛物线,∴|MA |﹣|MP |=|x +2|﹣|MP | =|x +1|﹣|MP |+1=|MF |﹣|MP |+1,∴当|MA |﹣|MP |为定值时,则点P 与点F 重合,即P 的坐标为(1,0), ∴存在定点P (1,0)使得当A 运动时,|MA |﹣|MP |为定值.【点评】本题考查了直线与圆的关系和抛物线的定义,考查了待定系数法和曲线轨迹方程的求法,属难题.2.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.【分析】(1)根据韦达定理以及抛物线的定义可得.(2)若AP →=3PB →,则y 1=﹣3y 2,⇒x 1=﹣3x 2+4t ,再结合韦达定理可解得t =1,x 1=3,x 2=13,再用弦长公式可得.【解答】解:(1)设直线l 的方程为y =32(x ﹣t ),将其代入抛物线y 2=3x 得:94x 2﹣(92t +3)x +94t 2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=92t+394=2t +43,①,x 1x 2=t 2②,由抛物线的定义可得:|AF |+|BF |=x 1+x 2+p =2t +43+32=4,解得t =712, 直线l 的方程为y =32x −78.(2)若AP →=3PB →,则y 1=﹣3y 2,∴32(x 1﹣t )=﹣3×32(x 2﹣t ),化简得x 1=﹣3x 2+4t ,③由①②③解得t =1,x 1=3,x 2=13, ∴|AB |=√1+94√(3+13)2−4=4√133. 【点评】本题考查了抛物线的性质,属中档题. 3.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .【分析】(1)先得到F 的坐标,再求出点A 的方程,根据两点式可得直线方程, (2)分三种情况讨论,根据直线斜率的问题,以及韦达定理,即可证明. 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22),∴直线AM 的方程为y =−√22x +√2,y =√22x −√2,证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k(x 1−2)(x 2−2),将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1,∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0从而k MA +k MB =0, 故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB .【点评】本题考查了直线和椭圆的位置关系,以韦达定理,考查了运算能力和转化能力,属于中档题.4.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .【分析】(1)当x =2时,代入求得M 点坐标,即可求得直线BM 的方程;(2)设直线l 的方程,联立,利用韦达定理及直线的斜率公式即可求得k BN +k BM =0,即可证明∠ABM =∠ABN .【解答】解:(1)当l 与x 轴垂直时,x =2,代入抛物线解得y =±2, 所以M (2,2)或M (2,﹣2),直线BM 的方程:y =12x +1,或:y =−12x ﹣1.(2)证明:设直线l 的方程为l :x =ty +2,M (x 1,y 1),N (x 2,y 2), 联立直线l 与抛物线方程得{y 2=2x x =ty +2,消x 得y 2﹣2ty ﹣4=0,即y 1+y 2=2t ,y 1y 2=﹣4,则有k BN +k BM =y 1x 1+2+y 2x 2+2=(y 222×y 1+y 122×y 2)+2(y 1+y 2)(x 1+2)(x 2+2)=(y 1+y 2)(y 1y22+2)(x 1+2)(x 2+2)=0,所以直线BN 与BM 的倾斜角互补, ∴∠ABM =∠ABN .【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,直线的斜率公式,考查转化思想,属于中档题. 5.(2017•新课标Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,√32),P 4(1,√32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.【分析】(1)根据椭圆的对称性,得到P 2(0,1),P 3(﹣1,√32),P 4(1,√32)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,√32)代入椭圆C ,求出a 2=4,b 2=1,由此能求出椭圆C 的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l :y =kx +t ,(t ≠1),联立{y =kx +tx 2+4y 2−4=0,得(1+4k 2)x 2+8ktx +4t 2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l 过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P 3(﹣1,√32),P 4(1,√32)两点必在椭圆C 上, 又P 4的横坐标为1,∴椭圆必不过P 1(1,1), ∴P 2(0,1),P 3(﹣1,√32),P 4(1,√32)三点在椭圆C 上. 把P 2(0,1),P 3(﹣1,√32)代入椭圆C ,得: {1b 2=11a 2+34b2=1,解得a 2=4,b 2=1, ∴椭圆C 的方程为x 24+y 2=1.证明:(2)①当斜率不存在时,设l :x =m ,A (m ,y A ),B (m ,﹣y A ), ∵直线P 2A 与直线P 2B 的斜率的和为﹣1, ∴k P 2A +k P 2B =y A −1m +−y A −1m =−2m=−1, 解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设l :y =kx +t ,(t ≠1),A (x 1,y 1),B (x 2,y 2), 联立{y =kx +tx 2+4y 2−4=0,整理,得(1+4k 2)x 2+8ktx +4t 2﹣4=0, x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k2, 则k P 2A +k P 2B =y 1−1x 1+y 2−1x 2=x 2(kx 1+t)−x 2+x 1(kx 2+t)−x 1x 1x 2=8kt 2−8k−8kt 2+8kt1+4k 24t 2−41+4k2=8k(t−1)4(t+1)(t−1)=−1,又t ≠1,∴t =﹣2k ﹣1,此时△=﹣64k ,存在k ,使得△>0成立, ∴直线l 的方程为y =kx ﹣2k ﹣1, 当x =2时,y =﹣1, ∴l 过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.6.(2017•新课标Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【分析】(1)设A (x 1,x 124),B (x 2,x 224),运用直线的斜率公式,结合条件,即可得到所求;(2)设M (m ,m 24),求出y =x 24的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m ,即有M 的坐标,再由两直线垂直的条件:斜率之积为﹣1,可得x 1,x 2的关系式,再由直线AB :y =x +t 与y =x 24联立,运用韦达定理,即可得到t 的方程,解得t 的值,即可得到所求直线方程.【解答】解:(1)设A (x 1,x 124),B (x 2,x 224)为曲线C :y =x 24上两点,则直线AB 的斜率为k =x 124−x 224x 1−x 2=14(x 1+x 2)=14×4=1; (2)设直线AB 的方程为y =x +t ,代入曲线C :y =x 24, 可得x 2﹣4x ﹣4t =0,即有x 1+x 2=4,x 1x 2=﹣4t , 再由y =x 24的导数为y ′=12x , 设M (m ,m 24),可得M 处切线的斜率为12m ,由C 在M 处的切线与直线AB 平行,可得12m =1, 解得m =2,即M (2,1), 由AM ⊥BM 可得,k AM •k BM =﹣1,即为x 124−1x 1−2•x 224−1x 2−2=−1,化为x 1x 2+2(x 1+x 2)+20=0, 即为﹣4t +8+20=0, 解得t =7.则直线AB 的方程为y =x +7.【点评】本题考查直线与抛物线的位置关系,注意联立直线方程和抛物线的方程,运用韦达定理,考查直线的斜率公式的运用,以及化简整理的运算能力,属于中档题. 7.(2016•新课标Ⅰ)设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【分析】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB =ED ,再由圆的定义和椭圆的定义,可得E 的轨迹为以A ,B 为焦点的椭圆,求得a ,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x =my +1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN |,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),求得A 到PQ 的距离,再由圆的弦长公式可得|PQ |,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围. 【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4, 由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y1﹣y 2|=√1+m 2•√36m 2(3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =√1+m 2=√1+m 2,|PQ |=2√r 2−d 2=2√16−4m 21+m2=√2√1+m 2, 则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2, 当m =0时,S 取得最小值12,又11+m2>0,可得S <24•√33=8√3, 即有四边形MPNQ 面积的取值范围是[12,8√3).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.8.(2016•新课标Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求|OH||ON|;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【分析】(Ⅰ)求出P ,N ,H 的坐标,利用|OH||ON|=|y H ||y N |,求|OH||ON|;(Ⅱ)直线MH 的方程为y =p2tx +t ,与抛物线方程联立,消去x 可得y 2﹣4ty +4t 2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l 与抛物线方程联立,解得P (t 22p,t ),∵M 关于点P 的对称点为N , ∴x N +x M2=t 22p,y N +y M2=t ,∴N (t 2p,t ), ∴ON 的方程为y =ptx , 与抛物线方程联立,解得H (2t 2p,2t )∴|OH||ON|=|y H ||y N |=2;(Ⅱ)由(Ⅰ)知k MH =p 2t, ∴直线MH 的方程为y =p2tx +t ,与抛物线方程联立,消去x 可得y 2﹣4ty +4t 2=0, ∴△=16t 2﹣4×4t 2=0,∴直线MH 与C 除点H 外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.9.(2015•新课标Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分別求C 在点M 和N 处的切线方程.(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?(说明理由)【分析】(I )联立{y =ay =x 24,可得交点M ,N 的坐标,由曲线C :y =x 24,利用导数的运算法则可得:y ′=x2,利用导数的几何意义、点斜式即可得出切线方程.(II )存在符合条件的点(0,﹣a ),设P (0,b )满足∠OPM =∠OPN .M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为:k 1,k 2.直线方程与抛物线方程联立化为x 2﹣4kx ﹣4a =0,利用根与系数的关系、斜率计算公式可得k 1+k 2=k(a+b)a.k 1+k 2=0⇔直线PM ,PN 的倾斜角互补⇔∠OPM =∠OPN .即可证明.【解答】解:(I )联立{y =ay =x 24,不妨取M (2√a ,a),N (−2√a ,a),由曲线C :y =x 24可得:y ′=x 2, ∴曲线C 在M 点处的切线斜率为2√a 2=√a ,其切线方程为:y ﹣a =√a(x −2√a),化为√ax −y −a =0.同理可得曲线C 在点N 处的切线方程为:√ax +y +a =0. (II )存在符合条件的点(0,﹣a ),下面给出证明:设P (0,b )满足∠OPM =∠OPN .M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为:k 1,k 2.联立{y =kx +a y =x 24,化为x 2﹣4kx ﹣4a =0,∴x 1+x 2=4k ,x 1x 2=﹣4a . ∴k 1+k 2=y 1−b x 1+y 2−b x 2=2kx 1x 2+(a−b)(x 1+x 2)x 1x 2=k(a+b)a. 当b =﹣a 时,k 1+k 2=0,直线PM ,PN 的倾斜角互补, ∴∠OPM =∠OPN . ∴点P (0,﹣a )符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.10.(2015•新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围;(2)若OM →•ON →=12,其中O 为坐标原点,求|MN |.【分析】(1)由题意可得,直线l 的斜率存在,用点斜式求得直线l 的方程,根据圆心到直线的距离等于半径求得k 的值,可得满足条件的k 的范围.(2)由题意可得,经过点M 、N 、A 的直线方程为y =kx +1,根据直线和圆相交的弦长公式进行求解.【解答】(1)由题意可得,直线l 的斜率存在,设过点A (0,1)的直线方程:y =kx +1,即:kx ﹣y +1=0. 由已知可得圆C 的圆心C 的坐标(2,3),半径R =1. 故由√k 2<1,故当4−√73<k <4+√73,过点A (0,1)的直线与圆C :(x ﹣2)2+(y ﹣3)2=1相交于M ,N 两点.(2)设M (x 1,y 1);N (x 2,y 2),由题意可得,经过点M 、N 、A 的直线方程为y =kx +1,代入圆C 的方程(x ﹣2)2+(y ﹣3)2=1,可得 (1+k 2)x 2﹣4(k +1)x +7=0, ∴x 1+x 2=4(1+k)1+k 2,x 1•x 2=71+k2, ∴y 1•y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=71+k 2•k 2+k •4(1+k)1+k 2+1=12k 2+4k+11+k2, 由OM →•ON →=x 1•x 2+y 1•y 2=12k 2+4k+81+k2=12,解得 k =1, 故直线l 的方程为 y =x +1,即 x ﹣y +1=0. 圆心C 在直线l 上,MN 长即为圆的直径. 所以|MN |=2.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.11.(2014•新课标Ⅰ)已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 【分析】(Ⅰ)通过离心率得到a 、c 关系,通过A 求出a ,即可求E 的方程; (Ⅱ)设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2)将y =kx ﹣2代入x 24+y 2=1,利用△>0,求出k 的范围,利用弦长公式求出|PQ |,然后求出△OPQ 的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0,当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k2 从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k2又点O 到直线PQ 的距离d =√k +1,所以△OPQ 的面积S △OPQ=12d|PQ|=4√4K 2−31+4K 2, 设√4k 2−3=t ,则t >0,S △OPQ =4t t 2+4=4t+4t≤1, 当且仅当t =2,k =±√72等号成立,且满足△>0, 所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.12.(2014•新课标Ⅰ)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【分析】(1)由圆C 的方程求出圆心坐标和半径,设出M 坐标,由CM →与MP →数量积等于0列式得M 的轨迹方程;(2)设M 的轨迹的圆心为N ,由|OP |=|OM |得到ON ⊥PM .求出ON 所在直线的斜率,由直线方程的点斜式得到PM 所在直线方程,由点到直线的距离公式求出O 到l 的距离,再由弦心距、圆的半径及弦长间的关系求出PM 的长度,代入三角形面积公式得答案. 【解答】解:(1)由圆C :x 2+y 2﹣8y =0,得x 2+(y ﹣4)2=16, ∴圆C 的圆心坐标为(0,4),半径为4.设M (x ,y ),则CM →=(x ,y −4),MP →=(2−x ,2−y).由题意可得:CM →⋅MP →=0. 即x (2﹣x )+(y ﹣4)(2﹣y )=0. 整理得:(x ﹣1)2+(y ﹣3)2=2.∴M 的轨迹方程是(x ﹣1)2+(y ﹣3)2=2.(2)由(1)知M 的轨迹是以点N (1,3)为圆心,√2为半径的圆, 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上, 又P 在圆N 上, 从而ON ⊥PM . ∵k ON =3,∴直线l 的斜率为−13.∴直线PM 的方程为y −2=−13(x −2),即x +3y ﹣8=0. 则O 到直线l 的距离为√122=4√105.又N 到l 的距离为√10=√105, ∴|PM |=2√2−(√105)2=4√105. ∴S △POM =12×4√105×4√105=165. 【点评】本题考查圆的轨迹方程的求法,训练了利用向量数量积判断两个向量的垂直关系,训练了点到直线的距离公式的应用,是中档题.13.(2013•新课标Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【分析】(I )设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得|PM |+|PN |=R +1+(3﹣R )=4,而|NM |=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(II )设曲线C 上任意一点P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P 的圆心为(2,0)R =2时,其半径最大,其方程为(x ﹣2)2+y 2=4.分①l 的倾斜角为90°,此时l 与y 轴重合,可得|AB |.②若l 的倾斜角不为90°,由于⊙M 的半径1≠R ,可知l 与x 轴不平行,设l 与x 轴的交点为Q ,根据|QP||QM|=R r 1,可得Q (﹣4,0),所以可设l :y =k (x +4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I )由圆M :(x +1)2+y 2=1,可知圆心M (﹣1,0);圆N :(x ﹣1)2+y 2=9,圆心N (1,0),半径3. 设动圆的半径为R ,∵动圆P 与圆M 外切并与圆N 内切,∴|PM |+|PN |=R +1+(3﹣R )=4,而|NM |=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆, ∴a =2,c =1,b 2=a 2﹣c 2=3. ∴曲线C 的方程为x 24+y 23=1(x ≠﹣2).(II )设曲线C 上任意一点P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤3﹣1=2,所以R ≤2,当且仅当⊙P 的圆心为(2,0)R =2时,其半径最大,其方程为(x ﹣2)2+y 2=4.①l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=2√3.②若l 的倾斜角不为90°,由于⊙M 的半径1≠R ,可知l 与x 轴不平行, 设l 与x 轴的交点为Q ,则|QP||QM|=R r 1,可得Q (﹣4,0),所以可设l :y =k (x +4),由l 于M 相切可得:√1+k 2=1,解得k =±√24.当k =√24时,联立{y =√24x +√2x 24+y23=1,得到7x 2+8x ﹣8=0.∴x 1+x 2=−87,x 1x 2=−87.∴|AB |=√1+k 2|x 2−x 1|=√1+(24)2√(−87)2−4×(−87)=187由于对称性可知:当k =−√24时,也有|AB |=187. 综上可知:|AB |=2√3或187.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.14.(2012•新课标)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点;(1)若∠BFD =90°,△ABD 的面积为4√2,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【分析】(1)由对称性知:△BFD 是等腰直角△,斜边|BD |=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p ,由△ABD 的面积S △ABD =4√2,知12×BD ×d =12×2p ×√2p =4√2,由此能求出圆F 的方程.(2)由对称性设A(x 0,x 022p )(x 0>0),则F(0,p2)点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p 2⇔x 02=3p 2,得:A(√3p ,3p 2),由此能求出坐标原点到m ,n 距离的比值.【解答】解:(1)由对称性知:△BFD 是等腰直角△,斜边|BD |=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p , ∵△ABD 的面积S △ABD =4√2, ∴12×BD ×d =12×2p ×√2p =4√2,解得p =2,所以F 坐标为(0,1), ∴圆F 的方程为x 2+(y ﹣1)2=8.(2)由题设A(x 0,x 022p )(x 0>0),则F(0,p2),∵A ,B ,F 三点在同一直线m 上,又AB 为圆F 的直径,故A ,B 关于点F 对称.由点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p 2⇔x 02=3p 2得:A(√3p ,3p2),直线m :y =3p 2−p 2√3p+p 2⇔x −√3y +√3p 2=0,x 2=2py ⇔y =x 22p⇒y′=x p =√33⇒x =√33p ⇒切点P(√3p 3,p6) 直线n :y −p 6=√33(x −√3p 3)⇔x −√3y −√36p =0 坐标原点到m ,n 距离的比值为√3p 2:√3p6=3.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化. 15.(2011•新课标)在平面直角坐标系xOy 中,已知点A (0,﹣1),B 点在直线y =﹣3上,M 点满足MB →∥OA →,MA →⋅AB →=MB →•BA →,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.【分析】(Ⅰ)设M (x ,y ),由已知得B (x ,﹣3),A (0,﹣1)并代入MB →∥OA →,MA →⋅AB →=MB →•BA →,即可求得M 点的轨迹C 的方程;(Ⅱ)设P (x 0,y 0)为C 上的点,求导,写出C 在P 点处的切线方程,利用点到直线的距离公式即可求得O 点到l 距离,然后利用基本不等式求出其最小值. 【解答】解:(Ⅰ)设M (x ,y ),由已知得B (x ,﹣3),A (0,﹣1). 所MA →=(﹣x ,﹣1﹣y ),MB →=(0,﹣3﹣y ),AB →=(x ,﹣2). 再由题意可知(MA →+MB →)•AB →=0,即(﹣x ,﹣4﹣2y )•(x ,﹣2)=0. 所以曲线C 的方程式为y =14x 2−2.(Ⅱ)设P (x 0,y 0)为曲线C :y =14x 2−2上一点,因为y ′=12x ,所以l 的斜率为12x 0,因此直线l 的方程为y ﹣y 0=12x 0(x ﹣x 0),即x 0x ﹣2y +2y 0﹣x 02=0. 则o 点到l 的距离d =002√4+x 0.又y 0=14x 02−2,所以d =12x 2+4√4+x 0=12(√x 02+4√4+x 0)≥2,所以x 02=0时取等号,所以O 点到l 距离的最小值为2.【点评】此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.16.(2011•新课标)在平面直角坐标系xOy 中,曲线y =x 2﹣6x +1与坐标轴的交点都在圆C 上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB 建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2√2,0),(3﹣2√2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2√2)2+t2,解得t=1,故圆C的半径为√32+(t−1)2=3,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组{x−y+a=0(x−3)2+(y−1)2=9,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=a 2−2a+12①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.17.(2010•全国新课标)设F1,F2分别是椭圆E:x2+y 2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.。
(完整word版)圆锥曲线基础知识专项练习
圆锥曲线练习一、选择题(本大题共13小题,共65。
0分)1.若曲线表示椭圆,则k的取值范围是()A。
k>1 B.k<—1C。
-1<k<1 D。
-1<k<0或0<k<12。
方程表示椭圆的必要不充分条件是()A.m∈(—1,2)B。
m∈(-4,2)C。
m∈(-4,-1)∪(—1,2) D.m∈(—1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3 B。
1 C.3 D。
64。
已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B.C。
D。
5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B 为焦点的椭圆”,那么()A。
甲是乙成立的充分不必要条件B。
甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6。
“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A。
充要条件B。
充分非必要条件C.必要非充分条件D。
既不充分也不必要条件7。
方程+=10,化简的结果是()A。
+=1 B。
+=1 C.+=1 D。
+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A.B。
C.D。
9。
若点P到点F(4,0)的距离比它到直线x+5=0 的距离小1,则P点的轨迹方程是( )A。
y2=-16x B.y2=—32x C.y2=16x D.y2=32x10。
抛物线y=ax2(a<0)的准线方程是( )A.y=—B.y=-C.y=D.y=11.设抛物线y2=4x上一点P到直线x=—3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812。
已知点P是抛物线x=y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为( )A。
2 B。
C.-1 D。
+113.若直线y=kx—2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=() A。
专题11 圆锥曲线基础检测2(解析版)-2021年高考数学圆锥曲线中必考知识专练
椭圆 E 的焦点在 y 轴上,得 a 4 , b 2 , c a2 b2 2 3 ,故椭圆 E 的离心率 e c 3 . a2
(2)由(1)得椭圆 E 的标准方程为 y2 x2 1,设与直线 MN 平行且与椭圆相切的直线 l 方程为: y 2x m , 16 4
)
9
A.6
B.3
C.1
D.2
【答案】D 因为椭圆 x2 y2 1 ,所以 b2 1,即 b 1,所以椭圆的短轴长为 2b 2 , 9
4.抛物线 x2 1 y 的焦点坐标是( ) 2
A.
0,
1 4
B.
0,
1 8
C.
0,
1 8
D.
0,
1 4
【答案】B 解:由题意,抛物线的焦点在 y 上,开口向下,且 2 p 1 , p 1 . 2 28
.
故 y1 y2 y1 y2 2 4 y1 y2 16 4 16 4 5 .
所以 SAOB
1 2
OF
y1 y2
1 24 2
54
5 .则 AOB 的面积为 4
5.
11.已知双曲线
x2 a2
y2 3
1(a
0) 的离心率为 2,则 a (
)
小姚数学
A.2
B. 6 2
C. 5 2
D.1
(1)这组直线何时与椭圆有公共点? (2)当它们与椭圆相交时,求这些直线被椭圆截得的线段的中点所在的直线方程.
【答案】(1)截距在[ 13, 13] 范围内;(2) 9x 4 y 0 . (1)设平行直线的方程为 y x b ,若直线与椭圆有公共点,则:
将 y x b 代入 x2 y2 1,整理得:13x2 8bx 4b2 36 0 , 49
(完整版)圆锥曲线高考真题
(完整版)圆锥曲线⾼考真题(1)求M 的⽅程(2)C ,D 为M 上的两点,若四边形ACBD 的对⾓线CD ⊥AB ,求四边形ACBD 的⾯积最⼤值.2.设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上⼀点且2MF 与x 轴垂直,直线1MF 与C 的另⼀个交点为N.(1)若直线MN 的斜率为34,求C 的离⼼率;(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .3.已知椭圆C :,直线不过原点O 且不平⾏于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1) 证明:直线OM 的斜率与的斜率的乘积为定值;(2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平⾏四边⾏?若能,求此时的斜率,若不能,说明理由.4.已知抛物线C :22y x = 的焦点为F ,平⾏于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的⾯积是△ABF 的⾯积的两倍,求AB 中点的轨迹⽅程.5.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的⽅程.6.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上⼀点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.7.已知椭圆2222:1(0)x y C a b a b +=>>的离⼼率为,且经过点(0,1),圆22221:C x y a b +=+。
圆锥曲线之椭圆题库2 含详解 高考必备
51 如图,设F 是椭圆)0(1:2222>>=+b a b y a x C 的左焦点,直线l 为其左准线,直线l 与x 轴交于点P ,线段MN 为椭圆的长轴,已知.||2||,8||MF PM MN ==且(1)求椭圆C 的标准方程;(2)若过点P 的直线与椭圆相交于不同两点A 、B 求证:∠AFM=∠BFN ; (3)(理科)求三角形ABF 面积的最大值。
解(1)48||=∴=a MN122)(1210132)(2||2||22222=-==∴==⇒=+--=-=c a b c e c e e c a a c a MF PM 舍去或即得又1121622=+∴y x 椭圆的标准方程为(2)当AB 的斜率为0时,显然.0=∠=∠BFN AFM 满足题意当AB 的斜率不为0时,设),(),,(2211y x B y x A ,AB 方程为,8-=my x 代入椭圆方程 整理得014448)43(22=+-+my y m则431444348),43(1444)48(22122122+=⋅+=++⨯-=∆m y y m my y m m662222112211-+-=+++=+∴my y my y x y x y k k BF AF)6)(6()(62212121=--+-=my my y y y my.,0BFN AFM k k BF AF ∠=∠=+∴从而综上可知:恒有BFN AFM ∠=∠(3)(理科)43472||||212212+-=-⋅=-=∆∆∆m m y y PF S S S PAFPBF ABF33163272416437216)4(34722222=⋅≤-+-=+--=m m m m当且仅当32841643222=-=-m m m 即(此时适合△>0的条件)取得等号.∴三角形ABF 面积的最大值是3 352 设椭圆方程为422y x +=1,求点M (0,1)的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足→→→+=)(21OB OA OP ,当l 绕点M 旋转时,求动点P 的轨迹方程.解:设P (x ,y )是所求轨迹上的任一点,①当斜率存在时,直线l 的方程为y =k x +1,A (x 1,y 1),B (x 2,y 2),联立并消元得:(4+k 2)x 2+2k x -3=0, x 1+x 2=-,422k k +y 1+y 2=248k+,由)(21→→→+=OB OA OP 得:(x ,y )=21(x 1+x 2,y 1+y 2),即:⎪⎪⎩⎪⎪⎨⎧+=+=+-=+=22122144242k y y y k k x x x消去k 得:4x 2+y 2-y =0当斜率不存在时,AB 的中点为坐标原点,也适合方程所以动点P 的轨迹方程为:4x 2+y 2-y = 0.53 已知椭圆C:2222by a x +=1(0a b >>)的离心率为36,短轴一个端点到右焦点的距离为3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23, 求△AOB 面积的最大值.解:(Ⅰ)设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩∴ 1b =,∴ 所求椭圆方程为2213x y +=. (Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥轴时,AB =(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+.=223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+.22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠≤+=++⨯+++. 当且仅当2219k k =,即k =时等号成立.当0k =时,AB = 综上所述max 2AB =.∴ 当AB 最大时,AOB △面积取最大值max 12S AB =⨯=. 54 已知向量)1,0(,)0,(21••e •••a •e ==,经过定点)0,(••a A -且方向向量为21e e λ+-的直线与经过定点)0,(•a •B 且方向向量为212e e +λ的直线交于点M ,其中∈λR ,常数a >0. (1)求点M 的轨迹方程; (2)若26=a ,过点)0,1(••F 的直线与点M 的轨迹交于C 、D 两点,求FD FC ∙的取值范围.设点),(,),(,),(•y a •x ••y a •x •••y x •M -=+=则,又∥),()(21λλ••e e a -=+-,∥)1,2()2(21••e e a λλ=+故⎩⎨⎧-=-=+a x ay ay a x λλ2)(,消去参数λ,整理得点M的轨迹方程为22222a y a x =+(除去点)0,(,)0,(•a ••B ••a •A -) (2)由26=a 得点M 轨迹方程为121)26(222=+y x (除去点)0,26(,)0,26(•••B •••A -),若设直线CD 的方程为)1(-=x k y ••k ,0(≠)点过否则A CD ,••y x C ),(11,••y x D ),(22,则由⎩⎨⎧=+-=362)1(22y x x k y 消去y 得0)12(312)13(22222=-+-+k k x k ,显然0)1(242>+=∆k ,于是)13(2)12(3,13622212221+-=+=+k k x •x •k k x x , 设),1(,),1(,2211•y •x •••y •x •m •-=-==∙,因此)1)(1()1)(1()1)(1(212212121--+--=+--=∙=x x k x x y y x x m]1136)13(2)12(3)[1(]1)()[1(2222221212++-+-+=++-+=k k k k k x x x x k ,即,6121)016(01612)13(21222•m m •m m k k k m -<<-⇒≠+>++=⇒++-= 若直线x CD ⊥轴,则61,12121-===y •y •x x ,于是61-=m ,综上可知⎥⎦⎤ ⎝⎛--∈=∙61,21••m 55如图,已知直线)0(1:1:2222>>=++=b a by a x C my x L 过椭圆的右焦点F ,且交椭圆C 于A ,B 两点,点A ,F ,B 在直线2:a x G =上的射影依次为点D ,K ,E . (1)若抛物线y x 342=的焦点为椭圆C 的上顶点,求椭圆C 的方程;(2)对于(1)中的椭圆C ,若直线L 交y 轴于点M ,且BF MB AF MA 21,λλ==,当m 变化时,求21λλ+的值;(3)连接AE ,BD ,试探索当m 变化时,直线AE 、BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由. 解:(1)易知)0,1(,332F b b 又=∴=41222=+==∴c b a c13422=+∴y x C 的方程为椭圆(2))1,0(mM y l -轴交于与设⎩⎨⎧=-++=012431),(),,(222211y x my x y x B y x A 由 0)1(144096)43(222>+=∆=-++∴m my y m(*)321121m y y =+∴又由),1()1,(111111y x my x --=+∴=λλ1111my --=∴λ同理2211my --=λ38322)11(122121-=--=+--=+∴y y m λλ3821-=+∴λλ…(3))0,(),0,1(2a k F =先探索,当m =0时,直线L ⊥ox 轴,则ABED 为矩形,由对称性知,AE 与BD 相交FK中点N ,且)0,21(2+a N猜想:当m 变化时,AE 与BD 相交于定点)0,21(2+a N … 证明:设),(),,(),,(),,(12222211y a D y a E y x B y x A当m 变化时首先AE 过定点N21,21)1(0)1(40)1(2)(0122121222222222222222222a y K m y a y K a b m a b a a b y m b y m b a b a y a x b m y x ENAN --=---=>>-+=∆=-+++⎩⎨⎧=-++=又即 )21(21)(2112221212m y a a y m y y y a K K ENAN ----+-=-而)0)()1()1()2(21)(21(222222222222222221212=+-⋅-=+-⋅-+-⋅-=-+-bm a mb mb a b m a a b m b m a mb a y my y y a∴=∴ENAN K K A 、N 、E 三点共线同理可得B 、N 、D 三点共线∴AE 与BD 相交于定点)0,21(2+a N56 已知椭圆C 过点)0,2(),26,1(-F M 是椭圆的左焦点,P 、Q 是椭圆C 上的两个动点,且|PF|、|MF|、|QF|成等差数列。
圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
2020高中数学 第二章 圆锥曲线与方程章末综合检测(二)(含解析)2-1
章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线y =-错误!x 2的焦点坐标是( )A .(0,-4)B .(0,-2)C .错误!D .错误!解析:选B .由题意,知抛物线标准方程为x 2=-8y ,所以其焦点坐标为(0,-2).故选B .2.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析:选C .由于θ∈R ,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.3.设椭圆x 2a 2+错误!=1(a 〉b 〉0)的左、右焦点分别为F 1,F 2,上顶点为B .若|BF 2|=|F 1F 2|=2,则该椭圆的方程为( )A .错误!+错误!=1B .错误!+y 2=1C .x 22+y 2=1D .错误!+y 2=1 解析:选A .因为|BF 2|=|F 1F 2|=2,所以a =2c =2,所以a =2,c =1,所以b =错误!.所以椭圆的方程为错误!+错误!=1.4.(2018·高考全国卷Ⅲ)设F 1,F 2是双曲线C :错误!-错误!=1(a >0,b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P 。
若|PF 1|=错误!|OP |,则C 的离心率为( )A . 5B .2C .错误!D .错误!解析:选C .不妨设一条渐近线的方程为y =错误!x ,则F 2到y =错误!x 的距离d =错误!=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=错误!a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=错误!=-cos ∠POF 2=-错误!,即3a 2+c 2-(错误!a )2=0,得3a 2=c 2,所以e =错误!=错误!。
圆锥曲线练习2
圆锥曲线练习题求曲线方程一、 标准方程的识别1、方程x 2|a|-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .(-3,-1)B .(-3,-2)C .(1,+∞)D .(-3,1)2、双曲线x 2m -y 23+m=1的一个焦点为(2,0),则m 的值为( )A .12 B .1或3 C .1+22 D .2-123、双曲线与椭圆4x 2+y 2=1有相同的焦点,它的一条渐近线方程为y =2x ,则双曲线的方程为( ) A .2x 2-4y 2=1 B .2x 2-4y 2=2 C .2y 2-4x 2=1 D .2y 2-4x 2=34、椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14B .12 C . 2 D .4 5、若焦点在x 轴上的椭圆222145x y b+=上有一点,使它与两焦点的连线互相垂直,则正数b 的取值范围是_______________6、已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是_____7、对于曲线C :x 24-k +y 2k -1=1,给出下面四个命题:①曲线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <52.其中所有正确命题的序号为________.二、 求曲线的方程直接法求轨迹1、已知两个定点A (-1,0)、B (2,0),求使∠MBA =2∠MAB 的点M 的轨迹方程.待定系数法求轨迹1、根据下列条件,求椭圆的标准方程.(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P 到两焦点的距离之和等于10;(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝⎛⎭⎫-32,52. 2、根据下列条件,求双曲线的标准方程.(1)经过点⎝⎛⎭⎫154,3,且一条渐近线为4x +3y =0;(2)P(0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为π3.3、设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.4、已知双曲线的一个焦点为F(7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.5、双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C的方程.定义法求轨迹1、 已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.2、 如图△ABC 中底边BC =12,其它两边AB 和AC 上中线的和为30,求此三角形重心G 的轨迹方程,并求顶点A 的轨迹方程.3、 已知动圆M 与直线y =2相切,且与定圆C :1)3(22=++y x 外切,求动圆圆心M的轨迹方程.4、 在△ABC 中,B(4,0)、C(-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.相关点法求轨迹1、动点M 在曲线x 2+y 2=1上移动,M 和定点B(3,0)连线的中点为P ,求P 点的轨迹方程.2、已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为F 1(-3,0),且右顶点为D(2,0).设点A 的坐标是⎝⎛⎭⎫1,12. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.设点法在求曲线方程中的应用1、 设双曲线x 2-y 22=1上两点A 、B ,AB 中点M(1,2),求直线AB 的方程.圆锥曲线定义的应用1、椭圆22162x y +=和双曲线2213x y -=的公共点为P F F ,,21是两曲线的一个交点, 那么21cos PF F ∠的值是__________________。
新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(2)
一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =3.若圆锥曲线C :221x my +=的离心率为2,则m =( ) A .3B 3C .13-D .134.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,23M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .235.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( ) A .(2,)+∞B .2)C .(3,)+∞D .3)6.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9167.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A 3B .23C 23D 438.设1F ,2F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120F PF ∠=︒,则点P 到x 轴的距离为( )A .2121B .22121C .42121D 219.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||3||QF PF ≥,则离心率的取值范围为( ) A .61⎛- ⎝⎦B .62]C .231⎤⎥⎝⎦D .31]10.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C .(625)π-D .54π 11.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ) A .25[B .5[C .2[31] D .[31,1)12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B .32C .13D .233二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.15.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.16.如图,直线3y x =-与抛物线24y x =交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为________.17.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b 取最大值时,双曲线C 的方程为________.18.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.19.已知椭圆2222:1(0)x y C a b a b +=>>上有一点22(,)22M ,F 为右焦点,B 为上顶点,O 为坐标原点,且2BFO BFMS S∆=,则椭圆C 的离心率为________20.双曲线221916x y -=的左焦点到渐近线的距离为________.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标; ②求||||AP BQ ⋅的取值范围.22.如图,直线:l x ty n =+与抛物线2:C y x =交于A ,B 两点,且l 与圆22:1O x y +=相切于点()00,P x y .(Ⅰ)证明:00ny t +=; (Ⅱ)求||||PA PB ⋅(用n 表示)23.在直角坐标系xOy 中,已知一动圆经过点()3,0,且在y 轴上截得的弦长为6,设动圆圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点3(,0)2作相互垂直的两条直线1l ,2l ,直线1l 与曲线C 相交于A ,B 两点,直线2l 与曲线C 相交于E ,F 两点,线段AB ,EF 的中点分别为M 、N ,求证:直线MN 恒过定点,并求出该定点的坐标.24.在平面直角坐标系中,动点M 到点(2,0)F 的距离和它到直线52x =的距离的比是常25(1)求动点M 的轨迹方程;(2)若过点F 作与坐标轴不垂直的直线l 交动点M 的轨迹于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由. 25.已知双曲线C 过点(3,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.26.如图,过抛物线24y x =的焦点F 任作直线l ,与抛物线交于A ,B 两点,AB 与x 轴不垂直,且点A 位于x 轴上方.AB 的垂直平分线与x 轴交于D 点.(1)若2,AF FB =求AB 所在的直线方程; (2)求证:||||AB DF 为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由3c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.3.C解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-, 11()123m m +-=⇒=-, 故选C.4.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B.【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.5.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立0034122x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.7.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k -⋅=-,所以3||3k =, 又||1OF =,所以OPQ △的面积S =121143||||18||223OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.8.C解析:C 【分析】如图,设1=PF m ,2=PF n ,由双曲线定义知=23m n -,平方得:22212m n mn +-=,在12F PF △中利用余弦定理可得:2228m n mn ++=,即可得到163mn =,再利用等面积法即可求得PD 【详解】由题意,双曲线22134x y -=中,2223,4,7a b c === 如图,设1=PF m ,2=PF n ,由双曲线定义知=223m n a -= 两边平方得:22212m n mn +-=在12F PF △中,由余弦定理可得:2222cos120428m n mn c +-==,即2228m n mn ++=两式相减得:316mn =,即163mn = 利用等面积法可知:11sin120222mn c PD =⨯⨯,即1632732PD ⨯=⨯ 解得42121PD = 故选:C.【点睛】关键点睛:本题考查双曲线的定义及焦点三角形的几何性质,解题的关键是熟悉焦点三角形的面积公式推导,也可以直接记住结论:(1)设1F ,2F 分别为椭圆22221x y a b+=的左,右焦点,点P 为椭圆上的一点,且12F PF θ∠=,则椭圆焦点三角形面积122tan2F PF Sb θ=(2)设1F ,2F 分别为双曲线22221x y a b-=的左,右焦点,点P 为双曲线上的一点,且12F PF θ∠=,则双曲线焦点三角形面积122tan2F PF b Sθ=9.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥,可得13mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()2224232c a c <≤-,所以,()22222a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为11225O l d -==,圆C 面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.A解析:A 【分析】设椭圆的左焦点'F ,由椭圆的对称性结合0FA FB ⋅=,得到四边形'AFBF 为矩形,设'AF n =,AF m =,在直角ABF 中,利用椭圆的定义和勾股定理化简得到222m n c n m b+=,再根据2FB FA FB ≤≤,得到m n 的范围,然后利用双勾函数的值域得到22b a 的范围,然后由c e a ==. 【详解】 如图所示:设椭圆的左焦点'F ,由椭圆的对称性可知,四边形'AFBF 为平行四边形, 又0FA FB ⋅=,即FA FB ⊥, 所以平行四边形'AFBF 为矩形, 所以'2AB FF c ==, 设'AF n =,AF m =,在直角ABF 中,2m n a +=,2224m n c +=,得22mn b =,所以222m n c n m b +=,令m t n =,得2212t c t b+=, 又由2FB FA FB ≤≤,得[]1,2mt n=∈, 所以221252,2c t t b ⎡⎤+=∈⎢⎥⎣⎦,所以 2251,4c b ⎡⎤∈⎢⎥⎣⎦ ,即2241,92b a ⎡⎤∈⎢⎥⎣⎦,所以2225123c b e a a ==-⎣⎦,所以离心率的取值范围是25⎣⎦, 故选:A. 【点睛】本题主要考查椭圆的定义,对称性,离心率的范围的求法以及函数值域的应用,还考查了转化求解问题的能力,属于中档题.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b --+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解.【详解】设()()1122,,,A x y B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以c e a ===, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.15.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为:【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以e =故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.16.【分析】设点将直线的方程与抛物线的方程联立求得点的坐标进而可得出的坐标由此可计算得出梯形的面积【详解】设点并设点在第一象限由图象可知联立消去得解得或所以点因此梯形的面积为故答案为:【点睛】本题考查抛 解析:48【分析】设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线的方程联立,求得点A 、B 的坐标,进而可得出P 、Q 的坐标,由此可计算得出梯形APQB 的面积. 【详解】设点()11,A x y 、()22,B x y ,并设点A 在第一象限,由图象可知12x x >,联立234y x y x =-⎧⎨=⎩消去y ,得21090x x -+=,解得19x =,21x =,1196x y =⎧∴⎨=⎩或2212x y =⎧⎨=-⎩, 所以点()9,6A 、()1,2B -、()1,6P -、()1,2Q --,10AP ∴=,2BQ =,8PQ =,因此,梯形APQB 的面积为()()10284822AP BQ PQ S +⋅+⨯===.故答案为:48. 【点睛】本题考查抛物线中梯形面积的计算,解题的关键就是求出直线与抛物线的交点坐标,考查计算能力,属于中等题.17.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得a 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M处的切线与直线y =垂直,则(012x ⨯=-,解得0x =,则200143x y ==,所以,点M的坐标为13⎫⎪⎪⎝⎭, 抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为13y x =-+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==, 因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.18.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.19.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解解析:22【分析】由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率. 【详解】由题意可得直线BF 的方程为:1x yc b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d ab c +---==+,因为22||BF b c a =+=, 所以12||[(21)]24BFMS BF d b a c ==--, 而12BFOSbc =, 因为2BFOBFMSS=,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--, 整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.20.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-,渐近线方程为43y x =±,即430x y ±=,则左焦点到其渐近线的距离为2045d ===, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.三、解答题21.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.22.(Ⅰ)证明见解析;(Ⅱ)||||PA PB ⋅21n n =--,1n ≤-或1n ≥.【分析】(Ⅰ)利用圆心到直线的距离为半径可得221n t =+,结合00x ty n =+以及点P 在圆上可得01nx =,在00x nt y -=消去n 后可得所求证的关系式. (Ⅱ)设()11,A x y ,()22,B x y ,则||||PA PB ⋅可用前者的纵坐标表示,联立直线方程和抛物线方程,消去x 后利用韦达定理化简||||PA PB ⋅,则可得其表达式. 【详解】解:(Ⅰ)若00y =,则直线l 垂直于x 轴,此时0t =,故00ny t +=成立, 若00y ≠,因为直线:l x ty n =+1=,整理得到:221n t =+,又00x ty n =+,故()222022121x n nx n n y y --+=+=, 整理得到2200120nx n x -+=即01nx =,而2000000000011x x x n x x y t ny y y y x ---====-=-即00ny t +=. (Ⅱ)设()11,A x y ,()22,B x y .联立2x ty ny x=+⎧⎨=⎩,得20y ty n --=,∴12y y t +=,12y y n =-.由(Ⅰ)可得221n t =+,故1n ≤-或1n ≥,而240t n ∆=+>,故2410n n +->即2n <-2n >- 故1n ≤-或1n ≥.而1020||||PA PB y y ⋅=--()()221201201t y y y y y y =+-++()22222220021t t t t t n ty y n n t n n n n n n--⎛⎫=+--+=--⨯+=-++ ⎪⎝⎭222211n n n n n n--=-++21n n =--,其中1n ≤-或1n ≥. 【点睛】思路点睛:对于直线与抛物线、圆的位置关系的问题,前者可设而不求(即韦达定理)来处理,后者利用几何方法来处理,计算过程中注意判别式的隐含要求以及代数式非负对应范围的影响.23.(1)26y x =;(2)证明见解析,9(,0)2. 【分析】(1)设圆心(),C x y ,然后根据条件建立方程求解即可;(2)设直线1l 的方程为3()2y k x =-,然后算出22363(,)2k M k k +,236(,3)2k N k +-,然后表示出直线MN 的方程即可. 【详解】(1)设圆心(),C x y ,由题意得2229(3)x x y =-++,即26y x = 所以曲线C 的方程为26y x =(2)由题意可知,直线12,l l 的斜率均存在,设直线1l 的方程为3()2y k x =-,()11,A x y ,()22,B x y联立方程组2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得22224(1224)90k x k x k -++=, 所以212236k x x k ++=,12126(3)y y k x x k +=+-= 因为点M 是线段AB 的中点,所以22363(,)2k M k k +同理,将k 换成1k -得236(,3)2k N k +-,当222363622k k k ++≠,即1k ≠±时2222333636122MNkk k k k k k k +-==++--所以直线MN 的方程为22363()12k k y k x k -++=--即29()12k y x k -=--, 所以直线MN 恒过定点9(,0)2当1k =±时,直线MN 的方程为92x =,也过点9(,0)2所以直线MN 恒过定点9(,0)2【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.24.(1)2215x y +=;(2)存在定点5,02Q ⎛⎫ ⎪⎝⎭,使得,,P B Q 三点共线.【分析】(1)设(,)M x y=化简可得结果;(2)联立直线l 与椭圆方程,根据韦达定理得1212,x x x x +,椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上,设(,0)Q t ,根据//PB PQ 列式,结合1212,x x x x +可求出52t =. 【详解】(1)设(,)M x y=,化简得2215x y +=故动点M 的轨迹方程为2215x y +=.(2)由题知(2,0)F 且直线l 斜率存在,设为k ,则直线l 方程为(2)y k x =- 由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得2222(51)202050k x k x k +-+-=设1122(,),(,)A x y B x y ,则2212122220205,5151k k x x x x k k -+==++, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上故假设存在定点(,0)Q t ,使得,,P B Q 三点共线,则//PB PQ 且11(,)P x y - 又212111(,),(,).PB x x y y PQ t x y =-+=-211211()()()x x y y y t x ∴-=+-,即211121()(2)(4)()x x k x k x x t x --=+-- 化简得12122(2)()40x x t x x t -+++=将2212122220205,5151k k x x x x k k -+==++式代入上式得2222205202(2)405151k k t t k k -⨯-+⨯+=++ 化简得52t =故存在定点5(,0)2Q ,使得,,P B Q 三点共线. 【点睛】关键点点睛:由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上是解题关键.25.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=;(2)设直线l 的方程为1x my =+,设定点(,0)Q t联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠, 设()11,M x y ,()22,N x y , ∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关. ∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=.【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.26.(1)0y --=;(2)证明见解析. 【分析】(1)由于直线l 斜率不为0,(1,0)F ,所以设直线:1l x ty =+,设()()1122,,,A x y B x y ,由题意可得120,0y y ><,然后直线方程和抛物线方程联立,消去x ,再利用韦达定理结合2,AF FB =可求出t 的值,从而可得AB 所在的直线方程;(2)设AB 中点为(),N N N x y ,则由(1)可得2122,212N N y y y t x t +===+,从而可得AB 中垂线()2:221l y t t x t -=---',求出点()223,0D t +,进而可求出DF 的长,再利用两点间的距离公式可求出AB 的长,从而可求得||||AB DF 的值【详解】解:(1)直线l 斜率不为0,(1,0)F ,设直线:1l x ty =+, 设()()1122,,,A x y B x y ,因为A 点在x 轴上方,所以120,0y y ><由214x ty y x =+⎧⎨=⎩,得2440y ty --= 12124,4y y t y y ∴+==-()()11221221,21,2AF FB x y x y y y =⇒-=-∴-=由1211224824y y t y ty y y t ⎧+==⎧⎪⇒⎨⎨-==-⎪⎩⎩代入124y y =-因10y >,所以0t >,解得t =所以AB所在直线方程为0y --= (2)设AB 中点为(),N N N x y()22122,2121,22N N y y y t x t N t t +∴===+∴+ 所以AB 中垂线()()22:22123,0l y t t x t D t -=---+'∴22||23122DF t t ∴=+-=+(||AB ====244t =+22||442||22AB t DF t +∴==+(定值) 【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查韦达定理的应用,解题的关键是利用设而不求的方法,设出直线方程和交点坐标,然后将直线方程和抛物线的方程联立,消元,再利用韦达定理,然后结已知条件求解即可,考查计算能力,属于中档题。
高考专题讲解之圆锥曲线全部经典题型 2
突 破 高 中 数 学 圆 锥 曲 线1.如图,已知直线L :)0(1:12222>>=++=b a by a x C my x 过椭圆的右焦点F ,且交椭圆C 于A 、B 两点,点A 、B 在直线2:G x a =上的射影依次为点D 、E 。
(1)若抛物线y x 342=的焦点为椭圆C 的上顶点,求椭圆C 的方程;(2)(理)连接AE 、BD ,试探索当m 变化时,直线AE 、BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由。
(文)若)0,21(2+a N 为x 轴上一点,求证:AN NE λ=2.如图所示,已知圆,8)1(:22=++y x C 定点A (1,0),M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足0,2=⋅=AM NP AP AM ,点N 的轨迹为曲线E 。
(1)求曲线E 的方程;(2)若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λλ求,FH FG =的取值范围。
3.设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 作垂直于AF 的直线交椭圆C 于另外一点P ,交x 轴正半轴于点Q , 且 PQ AP 58= ⑴求椭圆C 的离心率;⑵若过A 、Q 、F 三点的圆恰好与直线l : 053=-+y x 相切,求椭圆C 的方程.4.设椭圆)0(12222>>=+b a by a x 的离心率为e=22 (1)椭圆的左、右焦点分别为F 1、F 2、A 是椭圆上的一点,且点A 到此两焦点的距离之和为4,求椭圆的方程.(2)求b 为何值时,过圆x 2+y 2=t 2上一点M (2,2)处的切线交椭圆于Q 1、Q 2两点,而且OQ 1⊥OQ 2.5.已知曲线c 上任意一点P 到两个定点F 1(-3,0)和F 2(3,0)的距离之和为4.(1)求曲线c 的方程;(2)设过(0,-2)的直线l 与曲线c 交于C 、D 两点,且O OD OC (0=⋅为坐标原点),求直线l 的方程.APQ F O xy6.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作⊙P ,其中圆心P 的坐标为(m ,n ).(Ⅰ)当m +n >0时,求椭圆离心率的范围;(Ⅱ)直线AB 与⊙P 能否相切?证明你的结论.7.有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a b y a x 上一点>>=+处的切线方程为12020=+by y a x x ”,过椭圆C :1422=+y x 的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A 、B.(1)求证:直线AB 恒过一定点;(2)当点M 在的纵坐标为1时,求△ABM 的面积8.已知点P (4,4),圆C :22()5(3)x m y m -+=<与椭圆E :22221(0)x y a b a b+=>>有一个公共点A (3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切.(Ⅰ)求m 的值与椭圆E 的方程; (Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅ 的取值范围.9.椭圆的对称中心在坐标原点,一个顶点为)2,0(A ,右焦点F 与点(2,2)B 的距离为2。
圆锥曲线专题40大题练习(含答案)
圆锥曲线44道特训221.已知双曲线C:「-仁=1的离心率为心,点(V3,o)是双曲线的一个顶点.a-b'(1)求双曲线的方程;(2)经过的双曲线右焦点旦作倾斜角为30°直线/,直线/与双曲线交于不同的A,3两点,求A3的长.22[2.如图,在平面直角坐标系xOy中,椭圆、+与=1(。
〉力〉0)的离心率为一,过椭圆右a2b22焦点F作两条互相垂直的弦A3与CQ.当直线A3斜率为0时,AB+CD=7.(1)求椭圆的方程;(2)求AB+CD的取值范围.3.已知椭圆C:「+「=1(。
〉力〉0)的一个焦点为尸(1,0),离心率为土.设P是椭圆Zr2C长轴上的一个动点,过点P且斜率为1的直线/交椭圆于A,B两点.(1)求椭圆C的方程;(2)求|PA|2+|PB|2的最大值.224.已知椭圆C:「+七=1(0〉力〉0)的右焦点为『(L°),短轴的一个端点B到F的距离a'd等于焦距.(1)求椭圆。
的方程;(2)过点万的直线/与椭圆C交于不同的两点M,N,是否存在直线/,使得△3加与△B月V的面积比值为2?若存在,求出直线/的方程;若不存在,说明理由..2,25.已知椭圆C:=■+%■=1(a>b>0)过点p(—1,—1)-c为椭圆的半焦距,且c=姻b.过a"b~点P作两条互相垂直的直线L,L与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线L的斜率为一1,求APMN的面积;第1页共62页(3)若线段MN的中点在x轴上,求直线MN的方程.6.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e=—.2(1)求椭圆£*的方程;(2)若直线l:y=kx+m(人主0)与椭圆E交于不同的两点A、B,且线段的垂直平分线过定点P(|,0),求实数女的取值范围.Ji7.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e.2(1)求椭圆E的方程;(2)设直线l-.y=x+m(m^O)与椭圆E交于A、3两点,线段A3的垂直平分线交x 轴于点T,当hi变化时,求面积的最大值.8.已知椭圆错误!未找到引用源。
8.2 圆锥曲线的方程与性质 题型2 椭圆、双曲线的离心率讲义-2024届高三数学二轮复习
考点8.2圆锥曲线的方程与性质题型2椭圆、双曲线的离心率母题模型已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,2=a 过右焦点F 且斜率为(0)k k >的直线与C 相交于,A B 两点,若3AF FB =uuu r uur,则k =()A B .1C .2拆题解读:椭圆离心率公式推理:由离心率可求得c 值联想:向量的坐标运算得出坐标间的关系.k >方法总结:一、椭圆,双曲线离心率的正弦口算公式(1)在椭圆()222210+=>>x y a b a b中,焦点分别为12,F F ,点P 为椭圆上一点,在12△F PF 中,12α∠=F PF ,12β∠=PF F ,21γ∠=PF F ,则椭圆的离心率为sin sin sin αβγ=+e .(2)在双曲线()222210,0-=>>x y a b a b中,焦点分别为12,F F ,点P 为椭圆上一点,在12△F PF 中,12α∠=F PF ,12β∠=PF F ,21γ∠=PF F ,则双曲线的离心率为sin sin sin αβγ=-e .二、椭圆离心率的最大张角公式如图在椭圆()222210+=>>x y a b a b中,(1)焦点三角形的顶角为θ,当点P 位于椭圆的上、下顶点时,张角θ有最大值,进而可得2cos 12θ≥-e ,即离心率满足sin12θ≤<e .(2)顶点三角形的顶角为α,当点Q 位于椭圆的上、下顶点时,张角α有最大值,进而可得离心率满足211tan 2α≥-e .三、椭圆,双曲线离心率的焦比弦公式(1)经过椭圆()222210+=>>x y a b a b的焦点F 且倾斜角为θ的直线与椭圆中交于A ,B 两点,且λ=uuu r uurAF FB ,则1cos 1λθλ-=+e .(2)经过双曲线()222210,0-=>>x y a b a b的焦点F 且倾斜角为θ的直线与双曲线中交于A ,B 两点,且λ=uuu r uur AF FB ,则1cos 1λθλ-=+e .(2)经过抛物线()220=>y px p 的焦点F 且倾斜角为θ的直线与抛物线中交于A ,B 两点,且λ=uuu r uurAF FB ,则1cos 1λθλ-=+.四、由双曲线()222210,0-=>>x y a b a b 的渐近线求离心率双曲线()222210,0-=>>x y a b a b 的渐近线斜率为(),0->k k k ,渐近线对应的倾斜角为,0,2παπαα⎛⎫⎛⎫-∈ ⎪ ⎪⎝⎭⎝⎭,那么21cos 1α⎧=⎪⎨⎪=+⎩e e k ,双曲线为()222210,0-=>>y x a b a b 时,21sin 11α⎧=⎪⎪⎨⎪=+⎪⎩e e k 子题变式1.(难度★★)(2023春·云南昆明·高三校考阶段练习)已知双曲线()222102x y a a -=>的一条渐近线的倾斜角为π6,则此双曲线的离心率e 为()A .33B 26C 3D .2【答案】A【解析】∵双曲线()222102x y a a -=>的一条渐近线的倾斜角为π6,π3tan 6=的方程为33y x =,∴22233a ⎛= ⎝⎭,解得6a =6-,∴2222c a b =+=,∴双曲线的离心率为222336c e a ==.故选A .大招快解:双曲线()222210,0-=>>x y a b a b 的离心率为1cos α=e ,133cos 62π===e .2.(难度★★)(2023春·浙江·高三开学考试)已知抛物线24y x =,过焦点F 的直线与抛物线交于A 、B 两点,若16||,(1)3AB AF FB λλ==>,则λ=()A .3B .4C .5D .6【答案】A【解析】设()()1122,,,,:(1)A x y B x y AB y k x =-,联立24(1)y x y k x ⎧=⎨=-⎩,得204ky y k --=,12124,4y y y y k ∴+==-圆锥曲线弦长公式解得23k =,(1)AF FB λλ=> ,12y y λ∴=-,12224y y y y kλ+=-=,21224y y y λ=-=-,消去2y 整理可得231030λλ-+=,又1λ>,3λ∴=.故选A .大招快解:经过抛物线()220=>y px p 的焦点F 且倾斜角为θ的直线与抛物线中交于A ,B 两点,且λ=uuu r uur AF FB ,则1cos 1λθλ-=+.若2162||3sin θ==pAB ,解得sin 2θ=,(1)AF FB λλ=> ,故3πθ=,所以1cos 31πλλ-=+,解得3λ=.3.(挑战题)(难度★★)过双曲线()222210,0x y a b a b -=>>的右焦点F 作倾斜角为60︒的直线交双曲线右支于A ,B 两点,若5AF FB =,则双曲线的离心率为()A .65B C .2D .43【答案】D【解析】过右焦点F 的直线的倾斜角60︒,不妨设直线方程为:3x y c =+,联立方程。
专题2 圆锥曲线求解析式(解析版)-2021年高考数学圆锥曲线中必考知识专练
双曲线的虚轴长为16 2 c2 a2 2a ,可得 a 8 ,
当双曲线的焦点在 x 轴上时,双曲线的标准方程为 x2 y2 1 ; 64 64
当双曲线的焦点在 y 轴上时,双曲线的标准方程为 y2 x2 1 . 64 64
综上所述,所求双曲线的标准方程为 x2 y2 1 或 y2 x2 1 ;
B. x2 y2 1 34
C. x2 y2 1 16 9
D. x2 y2 1 9 16
【答案】D 解:由题可知, F1A F2F1 F2 A ,若 (F2F1 F2 A) F1A 0 ,即为 (F2F1 F2 A) F2F1 F2 A 0 ,
2 可得 AF2
【答案】A
由题意可得
2c
4
c2 a2
5 b2
a ,解得 b
6
,因此,椭圆的标准方程为
4
x2 36
y2 16
1.
7.若双曲线 C : mx2 y2 2 的实轴长等于虚轴长的一半,则 m ( )
1
A.
4
1 B.
2
C.4
D.2
【答案】C 解:双曲线 C : mx2
y2
2 化为标准方程是 C :
3
x2 9
y2 3
1;
(2)由双曲线的焦点在
y 轴上,可设双曲线的标准方程为
y2 a2
x2 b2
1a
0, b
0,
由双曲线的定义可得 2a 4
5 ,则 a 2
5
,所以,双曲线的标准为
y2 20
x2 b2
1,
将点 2, 5 的坐标代入双曲线的标准方程得
52
20
22 b2
1 ,解得 b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012高考真题分类汇编:圆锥曲线三、解答题部分20.【2012高考真题浙江理21】(本小题满分15分)如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.【命题立意】本题主要考查椭圆的几何性质,直线与椭圆的位置关系,同时考查解析几何的基本思想方法和运算求解能力。
【答案】(Ⅰ)由题:12c e a ==; (1) 左焦点(﹣c ,0)到点P (2,1)的距离为:d =(2)由(1) (2)可解得:222431ab c ===,,.∴所求椭圆C 的方程为:22+143x y =.(Ⅱ)易得直线OP 的方程:y =12x ,设A (x A ,y A ),B (x B ,y B ),R (x 0,y 0).其中y 0=12x 0. ∵A ,B 在椭圆上,∴220220+12333434422+143A A A B A B AB A B A B B B x y x y y x x k x x y y y x y ⎧=⎪-+⎪⇒==-⨯=-⨯=-⎨-+⎪=⎪⎩.设直线AB 的方程为l :y =﹣32x m +(m ≠0), 代入椭圆:2222+143333032x y x mx m y x m ⎧=⎪⎪⇒-+-=⎨⎪+⎪⎩=-.显然222(3)43(3)3(12)0m m m ∆=-⨯-=->.mm ≠0.由上又有:A B x x +=m ,A B y y +=233m -.∴|AB |A B x x -|∵点P (2,1)到直线l的距离表示为:d==.∴S ∆ABP =12d |AB |=12|m +,当|m +2|m =﹣3 或m =0(舍去)时,(S ∆ABP )max =12.此时直线l 的方程y =﹣3122x +. 21.【2012高考真题辽宁理20】(本小题满分12分)如图,椭圆0C :22221(0x y a b a b+=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<。
点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点。
(Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;(Ⅱ)设动圆22222:C x y t +=与0C 相交于////,,,A B C D 四点,其中2b t a <<, 12t t ≠。
若矩形ABCD 与矩形////A B C D 的面积相等,证明:2212t t +为定值。
【答案】23.【2012高考真题北京理19】(本小题共14分)【答案】解:(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240kx kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得:21621M N k x x k +=+①,22421M N x x k =+,② 设(,4)NN N x k x +,(,4)M M M x kx +,(1)G G x ,MB 方程为:62M Mkx y x x +=-,则316M M x G kx ⎛⎫ ⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,()2N N AN x x k =+ ,,欲证A G N ,,三点共线,只需证AG ,AN共线即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N,,三点共线得证。
225.【2012高考真题重庆理20】(本小题满分12分(Ⅰ)小问5分(Ⅱ)小问7分)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为21,F F ,线段 的中点分别为21,B B ,且△21B AB 是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过 做直线l 交椭圆于P ,Q 两点,使22QB PB ⊥,求直线l 的方程【答案】【命题立意】本题考查椭圆的标准方程,平面向量数量积的基本运算,直线的一般式方程以及直线与圆锥曲线的综合问题.27.【2012高考真题新课标理20】(本小题满分12分)设抛物线2:2(0)C xpy p =>的焦点为F,准线为l ,A C ∈,已知以F为圆心,FA 为半径的圆F交l 于,B D 两点;(1) 若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F的方程;(2) 【答案】(1)由对称性知:BFD ∆是等腰直角∆,斜边2BD p =点A 到准线l 的距离d FA FB ===122ABD S BD d p ∆=⨯⨯== 圆F 的方程为22(1)8xy +-=28.【2012高考真题福建理19】如图,椭圆E :的左焦点为F1,右焦点为F2,离心率.过F1的直线交椭圆于A 、B 两点,且△ABF2的周长为8.(Ⅰ)求椭圆E 的方程.(Ⅱ)设动直线l :y=kx+m 与椭圆E 有且只有一个公共点P ,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由. 【29.【2012高考真题上海理22】(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x.(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN的距离是定值. 【答案】过点A 与渐近线x y 2=平行的直线方程为, 1.y x y ==+⎭即30.【2012高考真题陕西理19】本小题满分12分)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率。
(1)求椭圆2C 的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程。
【答案】31.【2012高考真题山东理21】(本小题满分13分) 在平面直角坐标系xOy 中,F 是抛物线2:2(0)C xpy p =>的焦点,M是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34.(Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E,求当122k ≤≤时,22AB DE+的最小值.32.【2012高考真题江西理21】已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足()2MA MB OM OA OB +=⋅++.1求曲线C 的方程;2动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l 向:是否存在定点P (0,t )(t <0),使得l 与PA ,PB 都不相交,交点分别为D,E ,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值。
若不存在,说明理由。
【答案】33.【2012高考真题全国卷理21】(本小题满分12分)( 已知抛物线C :y=(x+1)2与圆M :(x-1)2+(12y -)2=r2(r >0)有一个公共点,且在A 处两曲线的切线为同一直线l. (Ⅰ)求r ;(Ⅱ)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离. 【答案】35.【2012高考真题湖南理21】(本小题满分13分)[www.z%zstep.co*~&m^]在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D.证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值. 【答案】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x=-的右侧.于是20x +>5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x=-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.3.=整理得2200721890.ky k y ++-= ①设过P 所作的两条切线,P A P C的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得0102123412400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.。