第4章放大器基础 (1)
放大器工作原理
放大器工作原理放大器是一种电子设备,它可以将输入信号的幅度放大,从而得到更大的输出信号。
放大器在各种电子设备中都有广泛的应用,比如音响设备、通讯设备、电视机等。
那么,放大器是如何工作的呢?接下来,我们将深入探讨放大器的工作原理。
首先,让我们来了解一下放大器的基本构成。
放大器通常由输入端、输出端和电源端三部分组成。
输入端接收来自外部的信号,输出端输出放大后的信号,而电源端则提供工作所需的电源。
放大器的工作原理主要涉及到两个重要的概念,增益和线性。
增益是指放大器输出信号与输入信号之间的比值,它反映了放大器对信号幅度放大的能力。
而线性则是指放大器在输入信号的作用下,输出信号与输入信号之间的关系是否呈线性。
在理想情况下,放大器应该具有高增益和良好的线性特性。
接下来,让我们来详细了解放大器的工作原理。
放大器的工作原理可以简单地分为三个步骤,信号输入、信号放大和信号输出。
首先,当输入信号进入放大器时,它会被放大器的输入端接收并传输到放大器的放大电路中。
在放大电路中,输入信号会受到放大器的放大作用,其幅度会得到放大。
最后,放大后的信号会通过放大器的输出端输出,从而实现信号放大的功能。
放大器的放大作用主要依赖于放大电路中的放大元件,比如晶体管、真空管等。
这些放大元件可以根据输入信号的大小,控制输出信号的幅度,从而实现信号的放大。
此外,放大器还需要配合电源端提供稳定的电源,以确保放大器能够正常工作。
在实际应用中,放大器的工作原理还涉及到一些其他因素,比如负载匹配、频率响应、失真度等。
这些因素会影响放大器的工作效果,需要在设计和使用放大器时加以考虑。
总的来说,放大器的工作原理是通过放大电路实现对输入信号的放大,从而得到更大的输出信号。
放大器在电子设备中具有重要的作用,它的工作原理对于理解和应用电子设备具有重要意义。
希望通过本文的介绍,读者能够更加深入地了解放大器的工作原理,从而更好地应用和设计放大器。
第4章 三极管及放大电路基础1
与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数
扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理
电子技术基础-第4章
整理得 uO1R Rf 13uI1uI2
图4-18 同相加法运算电路
28
【例4-1】 电路如图4-19所示。设A为理想集成运放, R1=10kΩ,Rf=100kΩ。试求:输出电压uO与输入电压uI之 间的关系,并说明该电路实现了什么运算功能。
解 根据理想集成运放的两条结论,利用“虚短”和“虚断” 的概念,有:uN=up=uI, iI=0
( a)
( b)
( c)
非线性集成电路
3
( d)
( e)
(a)为圆壳式
(b)为双列直插式 (c)为扁平式 (d)为单列直插式 (e)为菱形式
( a)
( b)
( c)
( d)
( e)
4
4.1 直接耦合放大电路
两级直接耦合放大电路如图4-1所示
图4 –1 两级直接耦合放大器电路
5
4.1.1 直接耦合放大器和组成及其零点漂移现 象
③输出级 输出级具有输出电压线性范围宽,输出电阻小(即带负载 能力强),非线性失真小等优点。多采用互补对称发射极输 出电路。
17
Байду номын сангаас
④偏置电路 偏置电路用于设置集成运放各级放大电路的静态工作点。与 分立元件不同,集成运放多采用电流源电路为各级提供合适 的集电极(或发射极、漏极)静态工作电流,从而确定了合 适的静态工作点。 集成运放的电路符号如图4-10所示。图(a)为国外常用符号, 图(b)为我国常用符号。
19
(2)直流参数 ①输入失调电压UIO及其温漂dUIO/dT 理想集成运放,当输入为零时,输出也为零。但实际集成运放的 差分输入级不易做到完全对称,在输入为零时,输出电压可能不 为零。为使其输出为零,人为的在输入端加一补偿电压,称此补 偿电压为输入失调电压,用UIO表示。 ②输入失调电流IIO及其温漂dIIO/dT 集成运放在常温下,当输出电压为零时,两输入端的静态电流之 差,称为输入失调电流,用IIO表示,
高频功率放大电路
ube Eb Ubm cost uce Ec Ucm cost
由以上两式可得:
ube
Eb
Ubm
EC uce U cm
(4-13)
第4章 高频功率放大电路 19
将(4-13)代入(4-12)有:
ic
gc ( Eb
Ubm
EC uce U cm
Vth )
第4章 高频功率放大电路 25
➢ 过压状态下的ic的波形如下图所示,从图中看出: 1、特性曲线与临界曲线重合 2、电流凹陷:Rp负载过大,Ucm过大,uce减小,ic随之迅速减小。
第4章 高频功率放大电路 26
四、高频功放的外部特性 外部特性:性能随放大器外部参数变化的规律。
负载电阻Rp
激励电压Ubm
1.高频功放的负载特性
偏置电压Eb Ec
负载特性: 只改变负载电阻Rp, 高频功放电流、 电压、 功率及 效率η变化的特性。
第4章 高频功率放大电路 27
下图是反映不同负载时的动态特性曲线。
ic max
Rp
ic max
Ec Eb
Rp 斜率gd 谐振放大器的工作状态由欠压 临界 过 压逐步过渡。
P0
1 2
I c1mU cm
1 2
I R 2 c1m p
1 2
U
2 cm
Rp
(4-8)
➢ 集电极损耗功率PPcc为:Pd P0
(4-9)
第4章 高频功率放大电路 13
➢ 集电极效率η为:
其中:
P0 1 Ic1m Ucm
Pd 2 Ic0 Ec
1 2 g1
(4-10)
g1
Ic1m Ic0
第04章 集成运算放大电路题解
第四章集成运算放大电路自测题一、选择合适答案填入空内。
(1)集成运放电路采用直接耦合方式是因为。
A.可获得很大的放大倍数B. 可使温漂小C.集成工艺难于制造大容量电容(2)通用型集成运放适用于放大。
A.高频信号B.低频信号C.任何频率信号(3)集成运放制造工艺使得同类半导体管的。
A.指标参数准确B.参数不受温度影响C.参数一致性好(4)集成运放的输入级采用差分放大电路是因为可以。
A.减小温漂B. 增大放大倍数C. 提高输入电阻(5)为增大电压放大倍数,集成运放的中间级多采用。
A.共射放大电路B.共集放大电路C.共基放大电路解:(1)C (2)B (3)C (4)A (5)A二、判断下列说法是否正确,用“√”或“×”表示判断结果填入括号内。
(1)运放的输入失调电压U I O 是两输入端电位之差。
( ) (2)运放的输入失调电流I I O 是两端电流之差。
( ) (3)运放的共模抑制比cdCMR A A K =( ) (4)有源负载可以增大放大电路的输出电流。
( )(5)在输入信号作用时,偏置电路改变了各放大管的动态电流。
( ) 解:(1)× (2)√ (3)√ (4)√ (5)× 三、电路如图T4.3所示,已知β1=β2=β3=100。
各管的U B E 均为0.7V ,试求I C 2的值。
图T4.3解:分析估算如下: 100BE1BE2CC =--=RU U V I R μ AβCC B1C0B2C0E1E2CC1C0I I I I I I I I I I I I R +=+=+====1001C =≈⋅+=R R I I I ββμA四、电路如图T4.4所示。
图T4.4(1)说明电路是几级放大电路,各级分别是哪种形式的放大电路(共射、共集、差放……);(2)分别说明各级采用了哪些措施来改善其性能指标(如增大放大倍数、输入电阻……)。
解:(1)三级放大电路,第一级为共集-共基双端输入单端输出差分放大电路,第二级是共射放大电路,第三级是互补输出级。
第4章 集成运算放大器的结构及特性
4.输入失调电压温漂 dVio /dT
在规定工作温度范围内,输入失调 电压随温度的变化量与温度变化量 之比值。
5.输入失调电流温漂dIio /dT
在规定工作温度范围内,输入失调电 流随温度的变化量与温度变化量之比 值。
6.最大差模输入电压Vidmax
(maximum differential mode input voltage) 运放两输入端能承受的最大差模输入电压, 超过此电压时,差分管将出现反向击穿现象。
五、运算放大器的符号和型号
运算放大器的符号中有三个引线端,两个 输入端,一个输出端。一个称为同相输入端, 即该端输入信号变化的极性与输出端相同,用 符号‘+’或‘IN+’表示;另一个称为反相输入 端,即该端输入信号变化的极性与输出端相异, 用符号“-”或“IN-”表示。输出端一般画在输 入端的另一侧,在符号边框内标有‘+’号。实 际的运算放大器通常必须有正、负电源端,有 的品种还有补偿端和调零端。
7.最大共模输入电压Vicmax
(maximum common mode input voltage) 在保证运放正常工作条件下,共模输入 电压的允许范围。共模电压超过此值时, 输入差分对管出现饱和,放大器失去共 模抑制能力。
二、运算放大器的动态技术指标
1.开环差模电压放大倍数 Avd :(open loop voltage gain)运放在无外加反馈条件下,输出电 压的变化量与输入电压的变化量之比。 2.差模输入电阻rid :(input resistance)输入差模 信号时,运放的输入电阻。 3.共模抑制比 KCMR :(common mode rejection ratio)与差分放大电路中的定义相同,是差模电压 增益 Avd 与共模电压增益 Avc 之比,常用分贝数 来表示。 KCMR=20lg(Avd / Avc ) (dB)
第4章 差动放大器
17
差模特性
(假定Vin1-Vin2 从-变化到+ )
Vin1比Vin2更负,M1截止,M2导 通,ID2=ISS,因此Vout1=VDD, Vout2=VDD-RDISS Vin1逐渐增大,M1开始导通, Vout1减小,由于ID1+ID2=ISS, M2流经的电流减小,Vout2增大; 当Vin1=Vin2 时, Vout1=Vout2=VDD-RDISS/2。 当Vin1比Vin2更正时,差动对 两侧情况正好与上述情况相 反。
低电压工作(宽输出摆幅)的共源共栅电流镜
考察图(b),所有晶体管均处于饱和区, 选择合适的器件尺寸,使VGS2=VGS4,若选择
M3~M4消耗的电压余度最小(M3与M4过驱动电压 之和),且可以精确复制IREF(VDS3=VDS1)。
2016/1/22
共源共栅电流镜
4 4
三种电流镜的比较
(W/L)=25/0.5, nCOX=50A/V2,VT=0.6V, ==0, VDD=3V。求: 1. 如果RSS上的压降保持在0.5V,则输入 共模电平=? 2. 计算差模增益等于5时的RD=? 3. 如果输入共模电平比(1)计算出的值大 200mV,则输出如何变化 (1) 因ID1= ID2=0.5mA,故:
Vb
M3
两边对称
15
共模特性
采用NMOS提供尾电流ISS,Vin,CM从0开始增加。
当Vin,CM=0时,ID1=ID2=ID3=0 Vin,CM增加,M3导通,处于三极管区; 当Vin,CM足够大时,M3进入饱和区, 因此电路正常工作状态应满足 Vin,CMVGS1+(VGS3-VTH3) Vin,CM进一步增加, Vin,CM>Vout1+VTH, M1 和M2进入三极管区,Vout1=VDD-RD*ISS/2
(整理)第4章场效应管放大电路
第四章 场效应管放大电路4.1 结型场效应管4.11 结构结型场效应管有两种结构形式:N 型沟道结型场效应管和P 型沟道结型场效应管。
如图(1)图(1)结型场效应管的结构示意图和符号4.12 工作原理在D 、S 间加上电压U DS ,则源极和漏极之间形成电流I D ,我们通过改变栅极和源极的反向电压U GS ,就可以改变两个PN 结阻挡层的(耗尽层)的宽度,这样就改变了沟道电阻,因此就改变了漏极电流I D 。
1. UGS 对导电沟道的影响 假设Uds=0:当Ugs 由零向负值增大时,PN 结的阻挡层加厚,沟道变厚,电阻增大。
如图(2)中(a )(b )所示。
若Ugs 的负值再进一步增大,当Ugs=Up 时两个PN 结的阻挡层相遇,沟道消失,我们称为沟道被“夹断“了,Up 称为夹断电压,此时Id=0,如图(2)中(c )所示。
图(2)当UDS=0时UGS 对导电沟道的影响示意2. I D 与U DS 、U GS 之间的关系假定栅,源电压|Ugs|〈|Up|,如Ugs=-1V ,而Up=-4V ,当漏,源之间加上电压Uds=2V 时,沟道中将所有的电流Id 通过。
此电流将沿着沟道的方向产生一个电压降,这样沟道上各点的电位就不同,因而沟道内各点的栅极之间的电位差也就各不相等。
漏电端与栅极之间的反(a ) N 型沟道+(b ) P 型沟道+DS(c ) N 沟道(d ) P 沟道(a ) U GS =0=0(b ) U GS <0=0(c ) U GS = -U P=0向电压最高,如Udg=Uds-Ugs=2 -(-1)=3V ,沿着沟道向下逐渐降低,使源极端沟道较宽,而靠近漏极端的沟道较窄。
如图(3)中(a )。
此时,若增大Uds ,由于沟道电阻增大较慢,所以Id 随之增加。
当Uds 进一步怎家到使栅,漏间电压Ugd 等于Up 时,即 Ugd=Ugs-Uds=Up则在D 极附近,两个PN 结的阻挡层相遇,如图(3)(b )所示,我们称为预夹断。
第4章负反馈放大器
电子线路基础
对于电压并联负反馈,由于稳定量是闭环互阻增益,而 信号源接近恒流源,故输出电压是稳定的。稳定过程是,假
设由于某种原因使Ar 增大,这就引起输出电压Uo 增大,通过 反馈网络,反馈电流If也增大了,使得控制电流IΣ减小,于是 Uo下降,结果Uo增大不多。上述过程可表示为
Ar↑→[WB]Uo↑→If↑→IΣ↓(Ii一定)— Uo↓
(2) 要稳定IC3,即保持输出电流不变,应引入电流负反馈。
对于该电路,要保证是负反馈,只能引入电流串联负反馈,
即在e1、e3之间接入一电阻Rf,如图4 -7(c)所示。
电子线路基础
电子线路基础
4.2.2 展宽了通频带
图4 - 8清晰地表明了负反馈展宽频带的作用。 设基本放大 器原来的频率特性|Au|~f, 其带宽为fbw。负反馈放大器相当于 插入了等效衰减网络, 其频率特性(1/Fu)~f的样子是倒过来的
电子线路基础
由图4 - 3可知, 判别是串联反馈还是并联反馈, 可以直 接根据信号源、基本放大器与反馈网络的连接方式确定; 也
可将反馈放大器的输入端短路,这时如果反馈信号作用不到
基本放大器的输入端,则为并联反馈,若反馈信号仍能作用 到基本放大器的输入端,则为串联反馈。 综上所述, 负反馈放大器可以分为表4 - 1列出的4种类 型(也称基本组态), 它们的组成方框图如图4 - 4所示。
电子线路基础
电子线路基础
Au↑→Uo↑→Uf↑→UΣ↓(Ui一定)— Uo↓ 对于电流串联负反馈,由于稳定量是闭环互导增益,而信 号源接近恒压源,故输出电流是稳定的。稳定过程是,假设由
于某种原因使Ag增大,这就引起输出电流Io增大,通过反馈网 络,反馈电压Uf也增大了,使得控制电压UΣ减小,导致Io 下降,结果使Io增大不多。上述过程可表示为 Ag↑→Io↑→Uf↑→UΣ↓(Ui一定)—
模电课件第四章集成运算放大电路
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB
I0
2
I0
所以,I0
1 1 2
IR
基准电流
输出电流
当
时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。
高频电子线路第二版第4章高频功率放大器
高频电子线路
首页
上页
下页
退出
4.2.2 工作原理
取电流脉冲的 基波分量ω
图4.2.3 各级电压和电流波形
哈尔滨工程大学
高频电子线路
首页
上页
下页
退出
4.3 丙类(C类)高频功率放大器的折线分析法
4.3.1 晶体管特性曲线的理想化及其解析式 在大信号工作条件下,理想化特性曲线的原理是 ①在放大区集电极电流和基极电流不受集电极电压 影响,而又与基极电压成线性关系。 ②在饱和区集电极电流与集电极电压成线性关系, 而不受基极电压的影响。
哈尔滨工程大学
高频电子线路
首页
上页
下页
退出
对于小信号线性放大器,因为工作于晶体管的线 性放大区,集电极电流不产生失真是甲类放大,放大器 的动态特性是一条直线(在负载线上)。
U bm
哈尔滨工程大学
高频电子线路
首页
上页
下页
退出
iC gcU bm (cost cosc ) 当 t 0 时, i I 则 IcM gcU bm (1 cosc )
C cM
可得集电极余弦电流脉冲的表示式为 cost cos c iC I cM 1 cos c 2.余弦电流脉冲的分解系数
波形系数
g1 (c ) I c1m / I C0 1 (c ) / 0 (c )
高频电子线路
首页
上页
下页
退出
关于效率的几点说明 ①在电压利用系数ξ=1的理想条件下
甲类放大器的半通角 c 180o , g1 (c ) 1,c 50%; 乙类放大器的半通角 c 90o , g1 (c ) 1.57,c 78.5% ; 丙类放大器的半通角 c 90o , g1(c ) 1.57,c 78.5% ,而 θc越小,ηc越高。 ②谐振功率放大器在谐振电阻 RP 一定的条件下, c 120o 时,输出功率最大,理想效率只有66%; c 1o ~ 15o 时,效率最高, 但输出功率很小。 在实际应用中,为了兼顾高的输出功率和高的集电 极效率,通常取 c 60o ~ 80o 。
第4章集成运算放大器习题解答
第4章集成运算放⼤器习题解答第四章习题参考答案4-1 什么叫“虚短”和“虚断”?答虚短:由于理想集成运放的开环电压放⼤倍数⽆穷⼤,使得两输⼊端之间的电压近似相等,即-+≈u u 。
虚断:由于理想集成运放的开环输⼊电阻⽆穷⼤,流⼊理想集成运放的两个输⼊端的电流近似等于零,即0≈=-+i i 。
4-2 理想运放⼯作在线性区和⾮线性区时各有什么特点?分析⽅法有何不同?答理想运放⼯作在线性区,通常输出与输⼊之间引⼊深度负反馈,输⼊电压与输出电压成线性关系,且这种线性关系只取决于外部电路的连接,⽽与运放本⾝的参数没有直接关系。
此时,利⽤运放“虚短”和“虚断”的特点分析电路。
理想运放⼯作在⾮线性去(饱和区),放⼤器通常处于开环状态,两个输⼊端之间只要有很⼩的差值电压,输出电压就接近正、负电压饱和值,此时,运放仍具有“虚断”的特点。
4-3 要使运算放⼤器⼯作在线性区,为什么通常要引⼊负反馈?答由于理想运放开环电压放⼤倍数∞=uo A ,只有引⼊深度负反馈,才能使闭环电压放⼤倍数FA 1u =,保证输出电压与输⼊电压成线性关系,即运放⼯作在线性区。
4-4 已知F007运算放⼤器的开环放⼤倍数dB A uo 100=,差模输⼊电阻Ω=M r id 2,最⼤输出电压V U sat o 12)(±=。
为了保证⼯作在线性区,试求:(1)+u 和-u 的最⼤允许值;(2)输⼊端电流的最⼤允许值。
解(1)由运放的传输特性5o uo 1012===++u u u A 则V 102.1101245--+?===u u(2)输⼊端电流的最⼤允许值为A 106102102.11164id --+?=??==r u I 4-5 图4-29所⽰电路,设集成运放为理想元件。
试计算电路的输出电压o u 和平衡电阻R 的值。
解由图根据“虚地”特点可得0==+-u u图中各电流为601.01--=u i 305.02---=u i 180o f u u i -=- 由“虚断”得f 21i i i =+以上⼏式联⽴,可得V 7.2o =u平衡电阻为Ω==k R 18180//60//30图4-29 题4-5图4-6 图4-30所⽰是⼀个电压放⼤倍数连续可调的电路,试问电压放⼤倍数uf A 的可调范围是多少?图4-30 题4-6图解设滑线变阻器P R 被分为x R 和x P R R -上下两部分。
第四章 谐振功率放大器讲解
4.1 概述 4.2 谐振功率放大器的原理 4.3 晶体管线形分析放大器的折线
近似分析法
4.4 谐振功率放大器电路
4.5 谐振功率放大器实例 4.6 晶体管倍频器
退出
4.1 概述
1、使用高频功率放大器的目的: 放大高频大信号使发射机末级获得足够大的 发射功率。
2、高频功率信号放大器使用中需要解决的两个 问题?
Vb
m
Vbm
t
图4-4 谐振功率放大器转移特性曲线
退出
eb vb
ib
ic
VBZ
ec Vcm
Vcm
(a) ec=VCC–vc
t –VBB
t
图4-5
高频功
t 率放大
器中各
分电压
与电流
VCC
的关系
t
退出
电 流
或 电 压
Vcm
vc
ic
ec VCC
ic
ic max ec min
VBZ
eb max
高效率输出 高功率输出
联想对比: 高频功率放大器和低频功率放大器的共同 特点都是输出功率大和效率高。
退出
4.1 概述(续)
3、谐振功率放大器与小信号谐振放大器的异同之处。
相同之处:它们放大的信号均为高频信号,而且放大器的负 载均为谐振回路。
不同之处:激励信号幅度大小不同;放大器工作点不同; 晶体管动态范围不同。
4、谐振功率放大器与非谐振功率放大器的异同:
共同之处都要求输出功率大和效率高。 功率放大器实质上是一个能量转换器,把电源供给 的直流能量转化为交流能量,能量转换的能力即为功 率放大器的效率。 谐振功率放大器通常用来放大窄带高频信号(信号的通 带宽度只有其中心频率的1%或更小),其工作状态通常 选为丙类工作状态(c<90),为了不失真的放大信号, 它的负载必须是谐振回路。
基本放大器的工作原理
基本放大器的工作原理
放大器是一种电子设备,主要用于放大电信号的幅度。
它通常由输入端、输出端和一个或多个放大电路组成。
放大电路接收来自输入端的电信号,经过放大后,输出到输出端。
放大器的工作原理可以简单描述为:增大输入信号的幅度,而不改变其波形特征。
具体过程如下:
1. 输入信号进入放大电路的输入端。
这个信号可以是电压信号或电流信号。
2. 放大电路中的放大器将输入信号放大。
放大电路的结构和具体放大方式会根据放大器的种类(如运放放大器、功放放大器等)而有所不同。
3. 放大后的信号输出到放大器的输出端。
输出信号的幅度通常比输入信号大,可以根据需要进行调节。
在放大器中,放大器的放大倍数被称为增益。
增益可以通过调整放大器电路的参数来控制。
常见的参数包括电阻、电容和电感等。
不同的放大器具有不同的增益范围和频率响应特性。
除了放大信号的幅度,放大器还应具备一些其他特性。
例如,放大器应具有足够的带宽,以便能够放大宽频带的信号。
放大器还应具有低失真特性,以避免对输入信号波形的破坏。
总之,放大器的工作原理是通过对输入信号进行放大,达到增
加幅度而保持信号特性的目的。
这使得放大器在各种电子设备中广泛应用,如音频放大、通信、测量、控制和电力应用等领域。
《放大器》教案
《放大器》教案
放大器教案
教学目标
- 了解放大器的工作原理
- 能够区分放大器类型并了解其各自特点
- 掌握放大器电路的设计方法并能够实现放大器电路的布线- 能够测试放大器电路的性能并进行调整
教学内容
1. 放大器的基本概念和工作原理
2. 放大器类型的分类与特点
3. 放大器电路的设计方法
4. 放大器电路的布线与测试
教学步骤
第一步:放大器基本概念和工作原理
1. 讲解放大器的基本概念和工作原理
2. 演示放大器的工作过程
3. 补充放大器的基本元件和符号
第二步:放大器类型的分类与特点
1. 介绍放大器类型的分类与特点
2. 比较不同类型放大器的优缺点
第三步:放大器电路的设计方法
1. 讲解放大器电路的设计方法
2. 教授常用的放大器电路设计技巧第四步:放大器电路的布线与测试
1. 指导学生进行放大器电路的布线
2. 演示放大器电路的测试方法和步骤
3. 指导学生调整放大器电路的性能
教学评价
1. 给学生提供布置作业的机会,鼓励学生自主研究和发现
2. 对实验结果进行分析,帮助学生理解并纠正常见问题教具准备
1. 教师和学生电脑
2. 放大器电路实验板
3. 放大器电路元器件
4. 万用表
教学时间
2个课时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或
iS
RS vi -
Ri
定义
vi Ri ii
上式中,Ri 表示本级电路对输入信号源的影响程度。
第4章
放大器基础
输出电阻
对输出端负载而言(根据戴维宁定理和诺顿定理), 任何放大器均可看作它的信号源,该信号源内阻即放大 器输出电阻 Ro 。
io Ro + vot io
部分。
第4章
放大器基础
放大器分类
按信号特征分: 音频放大器 视频放大器 脉冲放大器 谐振放大器 (放大语音信号) (放大图像信号) (放大脉冲信号) (放大高频载波信号)
宽频带 放大器
按信号强弱分: 小信号放大器 (线性放大器) 大信号放大器 (非线性放大器) 按电路结构分: 直流放大器 (多用于集成电路) 交流放大器 (多用于分立元件电路)
(3)信噪比与噪声系数
信噪比:
PS SNR P N
有用信号功 率
信噪比越大越好 噪声系数:
噪声信号功 率
输入端信噪比 NF = SNRi 输出端信噪比 SNRo
NF越小,说明放大器对微弱信号的实际放大 能力越强(NF=1说明放大器是理想无噪声 的)。
第4章
放大器基础
(4)放大器的失真
放大器的失真是指输出信号不能重现输入信号波形 的一种物理现象。 频率失真 线性失真 瞬变失真 失真类型 非线性失真
v Vm sin t
v VBEQ VT
利用傅里叶级数展开得: iC I S e
I CQe
v VT
v 1 v 2 1 v 3 iC I CQ [1 ( ) ( ) ] VT 2! VT 3! VT
I 0 I 1m sin t I 2m sin 2 t I nm sin n t ]
(2)通频带及频率响应 Av Avo Av0/ 2
放大倍数随频率变化曲 线——幅频特性曲线
幅频特性和相 f 下限截 L 频特性,统称 止频率 为频率特性。通频带: BW
上限截 fH 止频率
0.7
f
通频带越宽,放大器对信号的频率变化适应 能力越强;但也不宜过宽,易使信号以外的噪声得 到放大。
= fH – fL
+
RE RC RL
vo
-
27
第4章
放大器基础
共集电极放大器
RB1 C1 +
VCC
C2 RL
VCC
RS
+ vs -
+
+
RB2
RE
vo
-
直 流 通 路
RB1
RB2
RE
交 流 通 路
RS + vs -
RB1
RB2
RE
RL
+ -
vo
28
第4章
放大器基础
4.2.2 共射、共基和共集放大器的性能
共射电路性能分析
vo
-
直 流 通 路
RB1
RC
RB2
RE
交 流 通 路
+ RS + vs -
RB1
RB2
RC RL
vo
26
第4章
放大器基础
共基极放大器
C1 RS + vs RC RB2 CB RB1 C2 + RL VCC VCC
RE
vo
-
直 RB1 流 通 路 RB2
RC
RE
交 流 通 路
RS + vs -
( Ro 的定义)
+
v
-
(放大器一般框图)
令负载电阻 RL 开路,信号源为零。
在输出端外加电压 v,则产生电流 i。
定义
加压求流法
v Ro i
RL v s 0 ( is 0 )
实验测量的方法:
Ro 反映放大器的带负载能力。
vot Ro ( 1) RL voL
第4章
+
RL vo -
+
或
vot Roion
ion
Ro
RL vo -
vot :负载开路时 vi 或 ii 在电路输出端产生的开路电压。 ion :负载短路时 vi 或 ii 在电路输出端产生的短路电流。
第4章
放大器基础
输出电阻 Ro 计算:
i
RS + vS -
放 大 器
+ RL vo RS
放 大 器
直流偏置电路(即直流通路)要保证器件工作在放大 模式。 交流通路要保证信号能正常传输,即有输入信号 vi 时,应有 vo 输出。 元件参数的选择要保证信号能不失真地放大,即电 路需提供合适的 Q 点及足够的放大倍数。
判断一个电路是否具有放大作用,关键就是看它 的直流通路与交流通路是否合理。若有任何一部分不 合理,则该电路就不具有放大作用。
fL A( f )(线性刻度)
增益分贝值:
A( ) dB 20 lg A( )
通频带:
(对数刻度)
fH f /Hz
O
2 (下降了3dB ) ,
增益下降到
1
AI
对应上限频率 fH
O (对数刻度)
f /Hz
及下限频率 fL 。
BW 0.7 f H f L
第4章
放大器基础
频率特性的三个频段
源电压增益:
Avs
电压放大器
+ vi Ri
-
Ro + RL vo vot -
+
vo vo vi Ri Av vs vi vs Rs Ri
Ri 越大,RS 对 Avs 影响越小。
第4章
放大器基础
电流放大器
电流增益:
ii
io
ion RL
RS Ri 短路电流增益: ion io ion RL Ain Ai (1 ) ii i i io Ro Ro 越大,RL 对 Ai 影响越小。 源电流增益: Ais io io ii Ai RS is i i is RS Ri Ri 越小,RS 对 Ais 影响越小。 io 互导放大器 互导增益: Ag vi vo 互阻放大器 A 互阻增益: r
频率失真
一般而言,放大器中含有电抗元件。在正弦信号激 励下,不同频率呈现不同电抗,因而放大器增益应为频 率的复函数: j ( )
A( j ) A( )e
A
幅值,幅频特性
相角,相频特性
第4章
放大器基础
波特图
在半对数坐标纸上描绘的频率特性曲线即波特图。 幅 A( f )/dB(线性刻度) 频 AI 特 AI-3dB 性 相 频 特 性
ii RS + vS + vi io
线性 有源 四端 网络 Ri
Ro
RL
规定: + 电压的极性: 上+下- vo 电流的方向: - 流入网络为正 方向
反映放大器性能的主要指标有: 输入电阻 Ri 、 输出电阻 R 、 增益 A o
第4章
放大器基础
(1) 输入电阻、输出电阻、增益
输入电阻
对输入信号源而言,放大器相当于它的一个负载, 而这个等效负载电阻就是放大器输入电阻 Ri 。
1 2 1 2 2 2 PL iC RCdt I CQ RC I cm RC 2 2 0
因为 VC C VC EQ I C Q RC
所 以 PD PC PL
7
第4章
放大器基础
电源提供的功率 PD 除了转换成负载上有用的输出功
率 PL 外,其余均消耗在晶体三极管上( PC )。
放大器基础
小信号放大器四种电路模型
ii io
RS + vS -
+ vi Ri
-
Ro + RL vo vot io
+
ion
iS RS Ri Ro RL
电压放大器 ii iS
电流放大器 +
RS + vS -
+ vi Ri
-
ion
Ro RL RS Ri
Ro + RL vo vot -
互导放大器
互阻放大器
第4章
放大器基础 具有正向受控作用的半导 体器件是整个电路的核心
放大器组成框图
输 入 信 号
耦 合 电 路
耦 合 电 路
输 出 负 载
直流偏置电路
将输入信号源 与放大器输入 端进行连接。 外 围 电 路 将放大器输出 端与输出负载 进行连接。
保证半导体器件 工作在放大模式
第4章
放大器基础
放大器的组成原则:
第4章
概 4.1 4.2 4.3 4.4
放大器基础
述 放大器的基本概念 基本放大器 差分放大器 电流源电路及其应用
4.5 多级放大器 4.6 放大器的频率响应
第4章
放大器基础
概
述
放大器是应用最广泛的一类电子线路。它 的主要功能是将输入信号进行不失真的放大。 在广播、通信、自动控制、电子测量等 各种电子设备中,放大器是必不可少的组成
放大器放大信号的实质:是利用三极管的正向受控 作用,将电源 VCC 提供的直流功率,部分地转换为输 出功率。 注意: 电源 VCC 不仅要为三极管提供偏置,保证管子工作在 放大区,同时还是整个电路的能源。 三极管仅是一个换能器。
8
第4章
放大器基础
4.1.2 放大器的性能指标
就信号而言,各种小信号放大器均可统一表示为有 源线性四端网络: