2011届高三数学一轮复习教案:第二章第十一节_函数的应用

合集下载

高三数学一轮复习学案:函数的应用

高三数学一轮复习学案:函数的应用

高三数学一轮复习学案:函数的应用一、考试要求: 1、会解与一次函数、二次函数有关的问题,掌握一次函数、二次函数在解决实际问题时的步骤与方法。

2、能构建指数函数、对数函数、幂函数、分段函数模型解决一些简单的实际问题二、知识梳理:2、解函数应用题的一般步骤 :(1) 审题:_______________________(2) 建模:________________________(3) 求模:_________________________(4) 还原:_________________________2.基本程序实际问题---------数学模型实际问题结论-------数学模型的解三、基础检测:1.某宾馆有客房300间,每间房日租为20元,每天都客满。

宾馆欲提高档次 ,并提高租金。

如果每间客房每日增加2元,客房出租数就会减少10间。

若不考虑其它因素,宾馆将房间租金提高到多少时,每天客房的租金总收入最高?A .30元 B.40元 C.50元 D.60元2.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。

假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2tM t M -=,其中M 0为t=0时铯137的含量。

已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M (60)=A.5太贝克B.75In2太贝克C.150In2太贝克D.150太贝克3.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:(1)如一次购物不超过200元,不予以折扣;(2)如一次购物超过200元但不超过500元的,按标价予以九折优惠;(3)如一次购物超过500元的,其中500给与九折优惠,超过500元的部分给与八五折优惠。

某人两次去购物,分别付款176和432元,如果他只去一次购买同样的商品,则应付款( )A.608元B.574.1元C.582.6元D.456.8元4.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价( )A.10%B.20%C.5%D.11.1%5.提高过江大桥的车辆通行能力可改善整个城市的交通状况。

(新人教)高三数学第一轮复习教案2.9.2函数的应用2

(新人教)高三数学第一轮复习教案2.9.2函数的应用2

一.课题:函数的应用举例(2)二.教学目标:1.要求学生熟悉属于“增长率”、“利息”一类应用问题,并能掌握其解法;2.提高学生根据实际问题建立函数关系的能力。

三.教学重、难点:1.增长率问题;2.复利问题。

四.教学过程:例1.(课本91例2)按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数关系式,如果存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少?(“复利”:即把前一期的利息和本金加在一起算作本金,再计算下一期利息).分析:1期后 )1(1r a r a a y +=⨯+= 2期后 22)1(r a y += ……∴ x 期后,本利和为:x r a y )1(+=,将 a = 1000元,r =2.25%,x = 5 代入上式: 550225.11000%)25.21(1000⨯=+⨯=y ,由计算器算得:y = 1117.68(元).说明:在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,可以用公式()1xy N p =+表示,解决平均增长率的问题,要用到这个函数式。

例2.现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg 20.301==).分析:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数,1小时后,细胞总数为1131001002100222⨯+⨯⨯=⨯; 2小时后,细胞总数为13139100100210022224⨯⨯+⨯⨯⨯=⨯; 3小时后,细胞总数为191927100100210024248⨯⨯+⨯⨯⨯=⨯; 4小时后,细胞总数为127127811001002100282816⨯⨯+⨯⨯⨯=⨯; 可见,细胞总数y 与时间x (小时)之间的函数关系为: 31002x y ⎛⎫=⨯ ⎪⎝⎭,x N *∈ 由103100102x ⎛⎫⨯> ⎪⎝⎭,得83102x⎛⎫> ⎪⎝⎭,两边取以10为底的对数,得3lg 82x >, ∴8lg 3lg 2x >-, ∵8845.45lg3lg 20.4770.301=≈--, ∴45.45x >.答:经过46小时,细胞总数超过1010个。

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

第十一节 导数在函数研究中的应用1.函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.函数的极值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f __′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f __′(x ).(2)在定义域内解不等式f __′(x )>0或f __′(x )<0. (3)根据结果确定f (x )的单调区间. 易误提醒1.在某个区间(a ,b )上,若f ′(x )>0,则f (x )在这个区间上单调递增;若f ′(x )<0,则f (x )在这个区间上单调递减;若f ′(x )=0恒成立,则f (x )在这个区间上为常数函数;若f ′(x )的符号不确定,则f (x )不是单调函数.2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[自测练习]1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).答案:A2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.易误提醒 f ′(x 0)=0是x 0为f (x )的极值点的非充分非必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.[自测练习]3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D考点一 利用导数研究函数的单调性|(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0, 所以f (x )在(0,+∞)单调递增. 若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 单调递增, 在⎝⎛⎭⎫1a ,+∞单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).利用导数研究函数的单调性应注意两点(1)在区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (2)可导函数f (x )在(a ,b )内是增(减)函数的充要条件是:∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.1.已知函数f (x )=m ln x -12x 2(m ∈R ),求函数f (x )的单调区间.解:函数f (x )=m ln x -12x 2的定义域是(0,+∞).f ′(x )=mx -x =m -x 2x .当m ≤0时,f ′(x )≤-x 2x=-x <0,函数f (x )=m ln x -12x 2在(0,+∞)上为减函数.当m >0时,令f ′(x )=0,得:x =m 或-m (舍去). 当x ∈(0,m )时,f ′(x )>0, ∴f (x )在(0,m )上是增函数. 当x ∈(m ,+∞)时,f ′(x )<0, ∴f (x )在(m ,+∞)上是减函数.综上所述,当m ≤0时,f (x )的单调递减区间为(0,+∞),当m >0时,f (x )的单调递增区间为(0,m ),单调递减区间为(m ,+∞).考点二 已知单调性求参数范围|(2015·福州模拟)已知函数f (x )=e x 2-1e x -ax (a ∈R ).(1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在[-1,1]上为单调函数,求实数a 的取值范围. [解] (1)当a =32时,f (x )=e x 2-1e x -32x ,f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2),令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,则0<x <ln 2.∴f (x )在(-∞,0],[ln 2,+∞)上单调递增,在(0,ln 2)上单调递减. (2)f ′(x )=e x 2+1e x -a ,令e x =t ,由于x ∈[-1,1],∴t ∈⎣⎡⎦⎤1e ,e .令h (t )=t 2+1t ⎝⎛⎭⎫t ∈⎣⎡⎦⎤1e ,e , h ′(t )=12-1t 2=t 2-22t2,∴当t ∈⎣⎡⎭⎫1e ,2时,h ′(t )<0,函数h (t )为单调减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数. 故h (t )在⎣⎡⎦⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝⎛⎭⎫1e =12e +e ,∴2≤h (t )≤e +12e.∵函数f (x )在[-1,1]上为单调函数,若函数在[-1,1]上单调递增,则a ≤t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≤2;若函数f (x )在[-1,1]上单调递减,则a ≥t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≥e +12e,综上可得a ≤ 2或a ≥e +12e.已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.提醒:f (x )为增函数的充要条件是对任意的x ∈(a ,b ),都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.2.已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数). (1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解:(1)函数f (x )的定义域为R ,f ′(x )=e x -a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0, ∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x , ∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x -1在(2,+∞)上恒成立,令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立, 即L (x )=e x -x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0, 即h (x )=x e x +1e x -1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.考点三 利用导数研究极值|设函数f (x )=x 2-ax +b .讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值. [解] f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时, 函数f (sin x )单调递减;x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值 f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24.3.(2015·太原一模)已知函数f (x )=(x 2-ax +a )e x -x 2,a ∈R . (1)若函数f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若函数f (x )在x =0处取得极小值,求a 的取值范围. 解:(1)由题意得f ′(x )=x [(x +2-a )e x -2]= x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , ∵f (x )在(0,+∞)上单调递增, ∴f ′(x )≥0在(0,+∞)上恒成立, ∴x +2-2ex ≥a 在(0,+∞)上恒成立,又函数g (x )=x +2-2e x 在(0,+∞)上单调递增,∴a ≤g (0)=0,∴a 的取值范围是(-∞,0].(2)由(1)得f ′(x )=x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , 令f ′(x )=0,则x =0或x +2-2e x -a =0,即x =0或g (x )=a ,∵g (x )=x +2-2e x 在(-∞,+∞)上单调递增,其值域为R ,∴存在唯一x 0∈R ,使得g (x 0)=a ,①若x 0>0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,x 0)时,g (x )<a ,f ′(x )<0,∴f (x )在x =0处取得极大值,这与题设矛盾.②若x 0=0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处不取极值,这与题设矛盾.③若x 0<0,当x ∈(x 0,0)时,g (x )>a ,f ′(x )<0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处取得极小值.综上所述,x 0<0,∴a =g (x 0)<g (0)=0, ∴a 的取值范围是(-∞,0). 8.分类讨论思想在导数中的应用【典例】 (2015·贵阳期末)已知函数f (x )=ax -ae x (a ∈R ,a ≠0).(1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围.[思维点拨] (1)求f ′(x )后判断f (x )在(-∞,+∞)上的单调性,可求极值. (2)分类讨论f (x )在(-∞,+∞)的单调性,利用极值建立所求参数a 的不等式求解. [解] (1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F (x )没有零点,当且仅当F (2)=ae 2+1>0,解得a >-e 2,所以此时-e 2<a <0;②当a >0时,F (x ),F ′(x )的变化情况如下表:因为F (2)>F (1)>0,且F ⎝⎛⎭⎫1-10a =e1-10a -10e1-10a <e -10e1-10a <0, 所以此时函数F (x )总存在零点. (或:当x >2时,F (x )=a (x -1)e x+1>1,当x <2时,令F (x )=a (x -1)e x+1<0,即a (x -1)+e x <0, 由于a (x -1)+e x <a (x -1)+e 2, 令a (x -1)+e 2≤0,得x ≤1-e 2a ,即x ≤1-e 2a时,F (x )<0,即F (x )存在零点)综上所述,所求实数a 的取值范围是(-e 2,0).[思想点评] 分类讨论思想在导数研究函数的应用中运用普遍常见的分类讨论点有: (1)f ′(x )=0是否有根.(2)若f ′(x )=0有根,根是否在定义域内. (3)若f ′(x )=0有两根,两根大小比较问题.A 组 考点能力演练1.(2015·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:A 、B 为单调函数,不存在极值,C 不是奇函数,故选D. 答案:D2.(2016·厦门质检)函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,1]C .(1,+∞)D .(0,2)解析:由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B3.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A.23B.43C.83D.163解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1·x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1·x 2=4-43=83,故选C.答案:C4.已知函数f (x )=x ⎝⎛⎭⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析:因为f (-x )=-x ⎝ ⎛⎭⎪⎫e -x -1e -x =x ⎝⎛⎭⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*).又f ′(x )=e x-1e x +x ⎝⎛⎭⎫e x +1e x =e 2x(x +1)+x -1ex,当x ≥0时,e 2x (x +1)+x -1≥e 0(0+1)+0-1=0,所以f ′(x )≥0,所以f (x )在[0,+∞)上为增函数,由(*)式得|x 1|<|x 2|,即x 21<x 22,故选D.答案:D5.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案:C6.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞7.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎪⎨⎪⎧a >2,a 3<2,∴2<a <6.答案:(2,6)8.(2015·兰州一模)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2.答案:(-∞,2ln 2-2)9.已知函数f (x )=x -2ln x -ax +1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围; (2)求g (x )的最大值.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0). 因为-(x -1)2+1≤1(当x =1时,取等号), 所以a 的取值范围是[1,+∞). (2)g ′(x )=e x ⎝⎛⎭⎫2x -1+2ln x -x , 由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.10.(2015·安徽六校联考)设函数f (x )=(x -1)e x -kx 2(其中k ∈R ). (1)当k =1时,求函数f (x )的单调区间和极值;(2)当k ∈[0,+∞)时,证明函数f (x )在R 上有且只有一个零点.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎡⎦⎤0,e2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增. ∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝⎛⎭⎫e2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增. f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t , g ″(t )=e t -2,∵t >2,∴g ″(t )>0,g ′(t )在(2,+∞)上单调递增. ∴g ′(t )>g ′(2)=e 2-4>0,∴g (t )在(2,+∞)上单调递增. ∴g (t )>g (2)=e 2-4>0. ∴f (k +1)>0.∴f (x )在[1,+∞)上有且只有一个零点.综上,当k ∈[0,+∞)时,f (x )在R 上有且只有一个零点.B 组 高考题型专练1.(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 所以3a ·169+2·⎝⎛⎭⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 2.(2015·高考安徽卷)已知函数f (x )=ax (x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar=400,求f (x )在(0,+∞)内的极值.解:(1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4,所以当x <-r 或x >r 时,f ′(x )<0,当-r <x <r 时,f ′(x )>0,因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞);f (x )的单调递增区间为(-r ,r ). (2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减. 因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)上的极大值为f (r )=ar (2r )2=a 4r =4004=100.3.(2016·宁夏银川一中联考)函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解:(1)∵f ′(x )=2x -2x,令f ′(x )=0,∵x >0,∴x =1.x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减1单调递增∴f (x )的极小值为1,无极大值.(2)∵k (x )=f (x )-h (x )=-2ln x +x -a ,k ′(x )=-2x +1.若k ′(x )=0,则x =2.当x ∈[1,2)时,k ′(x )<0;当x ∈(2,3]时,k ′(x )>0. 故k (x )在x ∈[1,2)上单调递减,在x ∈(2,3]上单调递增.∴{ k (1)≥0,k (2)<0,k (3)≥0,∴{a ≤1,a >2-2ln 2,a ≤3-2ln 3, ∴实数a 的取值范围是(2-2ln 2,3-2ln 3].。

高三数学一轮复习教案(函数全)

高三数学一轮复习教案(函数全)

函数(一)函数1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。

3.了解分段函数,能用分段函数来解决一些简单的数学问题。

4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。

5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值.6.会运用函数图像理解和研究函数的性质.(二)指数函数1.了解指数函数模型的实际背景。

2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

3.理解指数函数的概念,会求与指数函数性质有关的问题。

4.知道指数函数是一类重要的函数模型。

(三)对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

2.理解对数函数的概念;会求与对数函数性质有关的问题.3.知道对数函数是一类重要的函数模型.4.了解指数函数与对数函数互为反函数()。

(四)幂函数1.了解幂函数的概念。

2.结合函数的图像,了解它们的变化情况。

(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。

2.理解并掌握连续函数在某个区间上存在零点的判定方法。

能利用函数的图象和性质判别函数零点的个数.(六)函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长特征。

知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.能利用给定的函数模型解决简单的实际问题。

定义定义域区间对应法则值域一元二次函数一元二次不等式映射函数性质奇偶性单调性周期性指数函数根式分数指数指数函数的图像和性质指数方程对数方程反函数互为反函数的函数图像关系对数函数对数对数的性质积、商、幂与根的对数对数恒等式和不等式常用对数自然对数对数函数的图像和性质函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.函数概念(一)知识梳理1.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。

2011届高三数学一轮复习教案:第二章第一节 函数概念

2011届高三数学一轮复习教案:第二章第一节 函数概念

第二章函数【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。

其中最重要的一条是“不漏不重”.4.掌握“函数与方程思想”.函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高.函数的思想包括运用函数的概念和性质去分析问题,转化问题和解决问题.第1课 函数的概念【考点导读】1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数. 【基础练习】1.设有函数组:①y x =,y =②y x =,y =③yy =;④1(0),1(0),x y x >⎧=⎨-<⎩,x y x=;⑤lg 1y x =-,lg 10x y =.其中表示同一个函数的有___②④⑤___.2.设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有_____②③____. 3.写出下列函数定义域:(1) ()13f x x =-的定义域为______________; (2) 21()1f x x =-的定义域为______________; (3)1()f x x =的定义域为______________; (4)()f x =_________________.4.已知三个函数:(1)()()P x y Q x =;(2)y =(*)n N ∈; (3)()log ()Q x y P x =.写出使各函数式有意义时,()P x ,()Q x 的约束条件:(1)______________________; (2)______________________; (3)______________________________. 5.写出下列函数值域:(1) 2()f x x x =+,{1,2,3}x ∈;值域是{2,6,12}. (2) 2()22f x x x =-+;值域是[1,)+∞.①②③④R {1}x x ≠± [1,0)(0,)-⋃+∞ (,1)(1,0)-∞-⋃- ()0Q x ≠ ()0P x ≥ ()0Q x >且()0P x >且()1Q x ≠(3) ()1f x x =+,(1,2]x ∈.值域是(2,3]. 【范例解析】例 1.设有函数组:①21()1x f x x -=-,()1g x x =+;②()f x =,()g x =;③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有③④.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.解:在①中,()f x 的定义域为{1}x x ≠,()g x 的定义域为R ,故不是同一函数;在②中,()f x 的定义域为[1,)+∞,()g x 的定义域为(,1][1,)-∞-⋃+∞,故不是同一函数; ③④是同一函数. 点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可. 例2.(1)求下列函数的定义域:①12y x =- ②()f x =(2)设函数1()ln1x f x x +=-,则函数1()()()2x g x f f x=+的定义域为_____________. 分析:(2)先求()f x 的定义域,得不等式组求解.解:(1)① 由题意得:220,10,x x ⎧-≠⎪⎨-≥⎪⎩解得1x ≤-且2x ≠-或1x ≥且2x ≠,故定义域为(,2)(2,1][1,2)(2,)-∞-⋃--⋃⋃+∞.② 由题意得:12log (2)0x ->,解得12x <<,故定义域为(1,2).(2)由101x x +>-,解得11x -<<,则11,22,211 1.1 1.x x x x x ⎧-<<⎪-<<⎧⎪⇒⎨⎨<->⎩⎪-<<⎪⎩或故()g x 的定义域为(2,1)(1,2)--⋃.点评:(1)确定函数的定义域主要根据是使式子有意义,列出不等式(组)求解;(2)已知函数()f x 的定义域为[,]a b ,求函数[()]f g x 的定义域问题,由()a g x b ≤≤解出x 的范围. 例3.若函数y =R ,求实数a 的取值范围. 分析:化归为恒成立问题.解:由222(1)(1)01a x a x a -+-+≥+对任意x R ∈恒成立, 当1a =时,10≥成立; 当1a =-时,不成立;当210a ->时,222(1)4(1)01a a a ∆=---⋅≤+,解得19a <≤. 综上,实数a 的取值范围是[1,9].点评:注意讨论二次项系数210a -=的情况. 例4.求下列函数的值域:(1)242y x x =-+-,[0,3)x ∈;(2)22x y x =+()x R ∈;(3)y x =-分析:运用配方法,逆求法,换元法等方法求函数值域.(1) 解:2242(2)2y x x x =-+-=--+,[0,3)x ∈ ,∴函数的值域为[2,2]-;(2) 解法一:由2221111x y x x ==-++,21011x <≤+ ,则21101x -≤-<+ ,01y ∴≤<,故函数值域为[0,1).解法二:由221x y x =+,则21y x y=-,20x ≥ ,∴01y y≥-,01y ∴≤<,故函数值域为[0,1).(3t =(0)t ≥,则21x t =-,2221(1)2y t t t ∴=--=--,当0t ≥时,2y ≥-,故函数值域为[2,)-+∞.点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围. 【反馈演练】1.函数f (x )=x 21-的定义域是___________. 2.函数)34(log 1)(22-+-=x x x f 的定义域为_________________. 3. 函数21()1y x R x=∈+的值域为________________. 4. 函数23y x =-_____________. 5.函数)34(log 25.0x x y -=的定义域为_____________________. 6.若函数()1222-=--aax x x f 的定义域为R ,则实数a 的取值范围______________. 7.设()x x x f -+=22lg,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为______________. 8.设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =____4___.9. 设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列结论中: ①P ÜQ ;②Q ÜP ;③P =Q ;④P Q=∅. 其中正确结论的序号有______①______. 10. 已知函数()f x 与()g x 分别由下表给出:(,0]-∞ (1,2)(2,3)⋃ (0,1] (,4]-∞ 13[,0)(,1]44-⋃ [1,0]- ()()4,11,4 --(1)求((3))g f 的值; (2)若(())g f x =2时,求x 的值; (3)求满足()[]()[]x f g x g f >的x 的值. 解:(1)((3))3g f =;(2) 4; (3)1,411.记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ;(2) 若B ⊆A ,求实数a 的取值范围. 解:(1)由2-13++x x ≥0,得11+-x x ≥0,x <-1或x ≥1, 即A =(-∞,-1)∪[1,+ ∞) . (2) 由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.∵a <1,∴a +1>2a ,∴B=(2a ,a +1) . ∵B ⊆A , ∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, ∴21≤a <1或a ≤-2,故当B ⊆A 时, 实数a 的取值范围是(-∞,-2]∪[21,1).12.对定义域分别是f D ,g D 的函数()y f x =,()y g x =,规定:函数()(),,()(),,(),.f g f g f g f x g x x D x D h x f x x D x D g x x D x D ⋅∈∈⎧⎪=∈∉⎨⎪∉∈⎩当且当且当且(1)若函数()1f x x =-,(,2]f D =-∞,()2g x x =-,[1,)g D =+∞,写出函数()h x 的解析式; (2)求问题(1)中函数()h x 的值域.解:(1)(1)(2),12,()1,1,2, 2.x x x h x x x x x --≤≤⎧⎪=-<⎨⎪->⎩(2)当12x ≤≤时,1()[0,]4h x ∈;当1x <时,()0h x <;当2x >时,()0h x <; 综上可知,1()(,]4h x ∈-∞.。

(新人教)高三数学第一轮复习教案2.9.3函数的应用3

(新人教)高三数学第一轮复习教案2.9.3函数的应用3

一.课题:函数的应用举例(3)二.教学目标:1.使学生对分段函数在实际中的应用有进一步的认识;2.能利用分段函数和二次函数解决实际问题,提高在解决实际问题中利用函数进行计算和分析的能力。

三.教学重、难点:1.分段函数的运用;2.正确地进行运算。

四.教学过程:(一)预习题:大气温度()y C o 随着离开地面的高度()x km 增大而降低,到上空11km 为止,大约每上升1km ,气温降低6C o ,而在更高的上空气温却几乎没变(设地面温度为22C o )。

求:(1)y 与x 的函数关系; (2) 3.5x km =以及12x km =处的气温。

解:(1)由题意,011x ≤≤时,226y x =-,所以当11x =时,2261144y =-⨯=-,从而当11x >时,44y =-。

综上,所求函数关系为[]226,0,1144,(11,)x x y x ⎧-∈⎪=⎨-∈+∞⎪⎩; (2)由(1)知, 3.5x km =处的气温为226 3.51y =-⨯=C o ,12x km =处的气温为44C -o.(二)例题分析:例1.我国是水资源比较贫乏的国家之一,各地采用价格调控手段以达到节约用水的目的。

某市用水收费方法是:水费=基本费+超额费+损耗费。

该市规定:(1)若每户每月用水量不超过最低限量m 立方米时,只付基本费9元和每月的定额损耗费a 元;(2)若每户每月用水量超过m 立方米时,除了付基本费和损耗费外,超过部分每立方米付n 元的超额费;(3)每户每月的损耗费不超过5元。

(Ⅰ)求每户月水费y (元)与月用水量x (立方米)的函数关系;(Ⅱ)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示,试分析一、二、三各月份的用水量是否超过最低限量,并求,,m n a 的值。

解: ()9,0059,a x m y a x m n a x m +<≤⎧⎪=<≤⎨+-+>⎪⎩其中; (Ⅱ)∵05a <≤,∴9914a <+≤,由表知,一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米,将4x =和5x =分别代入y 的解析式,得()()18942695m n a m n a =+-+⎧⎪⎨=+-+⎪⎩ 由 ②-①得8n =,从而823a m =- ③, 又三月份用水量为2.5立方米,若2.5m >,将 2.5x =代入()9y x m n a =+-+得()10982.5m a =+-+,得819,a m =-这与③矛盾,∴2.5m ≤,即三月份用水量2.5立方米没有超过最低限量。

高考数学一轮复习必备第19课时第二章 函数-函数的应用

高考数学一轮复习必备第19课时第二章 函数-函数的应用

第19课时:第二章 函数——函数的应用一.课题:函数的应用二.教学目标:1.能够应用函数的性质解决有关数学问题,能够应用函数知识解决一些简单的实际问题;2.培养学生的阅读能力、文字语言转化为数学语言的能力及数学建模能力.三.教学重点:建立恰当的函数关系.四.教学过程:(一)主要知识:函数的综合问题主要有如下几个方面:1.函数的概念、性质和方法的综合问题;2.函数与其它知识,如方程、不等式、数列的综合问题;3.函数与解析几何的综合问题;4.联系生活实际和生产实际的应用问题.(二)主要方法:解数学应用题的一般步骤为:(1)审题;(2)建模;(3)求解;(4)作答.(三)例题分析:例1.从盛满20升纯酒精的容器里倒出1升,然后用水填满,再倒出1升混合溶液又用水填满,这样继续下去,如果倒第(1)n n ≥次时共倒出纯酒精x 升,倒第1n +次时共倒出纯酒精()f x 升,则()f x 的表达式是19()120f x x =+.例2.(《高考A 计划》考点18“智能训练第7题”) 某工厂八年来某种产品总产量y 与时间x (年)的函数关系如右图,下列四种说法①前三年中,产量的增长的速度越来越快,②前三年中,产量的增长的速度越来越慢,③第三年后,这种产品停止生产,④第三年后,年产量保持不变,其中说法正确的是()A ②与③ ()B ②与④ ()C ①与③ ()D ①与④例3.假设国家收购某种农产品的价格是1.2元/kg ,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%),计划可收购mkg .为了减轻农民负担,决定税率降低x 个百分点,预计收购可增加2x 个百分点.(1)写出税收y (元)与x 的函数关系;(2)要使此项税收在税率调节后不低于原计划的78%,确定x 的取值范围.解:(1)由题知,调节后税率为(8)%x -,预计可收购(12%)m x kg +,总金额为1.2(12%)m x +元 ∴231.2(12%)(8)%(40042)(08)12500m y m x x x x x =+-=--<≤. (2)∵元计划税收1.28%m ⋅元, ∴1.2(12%)(8)% 1.28%78%m x x m +-≥⋅⋅,得242880x x +-≤,442x -≤≤,又∵08x <≤,∴x 的取值范围为02x <≤.例4.某航天有限公司试制一种仅由金属A 和金属B 合成的合金,现已试制出这种合金400克,它的体积50立方厘米,已知金属A 的比重d 小于每立方厘米9克,大于每立方厘米8.8克;金属B 的比重约为每立方厘米7.2克.(1)试用d 分别表示出此合金中金属A 、金属B 克数的函数关系式;(2)求已试制的合金中金属A 、金属B 克数的取值范围.解:(1)此合金中含A 金属x 克、B 金属y 克, 则400507.2x y x y d +=⎧⎪⎨+=⎪⎩, 解得40(8.89)7.2d x d d =<<-,360(8)(8.89)7.2d y d d -=<<-. (2)∵407.240(1)7.27.2d x d d ==+--在(8.8,9)上是减函数,∴200220x <<. 360(8)0.8360(1)7.27.2d y d d -==---在(8.8,9)上是增函数,180200y <<.例5.(《高考A 计划》考点18例3)用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可清除蔬菜上残留的农药量的12,用水越多洗掉的农药量越多,但总还有农药残留在蔬菜上,设用x 单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x .(1)试规定(0)f 的值,并解释其实际意义;(2)根据假定写出函数()f x 应满足的条件和具有的性质;(3)设21()1f x x =+,现有(0)a a >单位量的水,可清洗一次,也可以把水平均分成两份后清洗两次,哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.解答见《高考A 计划》第95页.(四)巩固练习:1.(《高考A 计划》考点18“智能训练第5题”)甲、乙两人沿同一方向去B 地,途中都使用两种不同的速度1212,()v v v v <.甲一半路程使用速度1v ,另一半路程使用速度2v ,乙一半时间使用速度1v ,另一半时间使用速度2v ,甲、乙两人从A 地到B 地的路程与时间的函数图象及关系,有下面图中4个不同的图示分析(其中横轴t表示时间,纵轴S表示路程),其中正确的图示分析为(D).())(1)(2)(3)(4)2.投寄本埠平信,每封信不超过20g时付邮费0.6元,超过20g不超过40g时付邮费1.2元,依此类推,每增加20g需增加邮费0.6元(重量在100g以内),如果某人投一封重量为72.5g的信,他应付邮费(D)()A 2.1元()B2元()C 2.3元()D 2.4元五.课后作业:《高考A计划》考点18,智能训练3,4,10,13,14.S S S。

(新人教)高三数学第一轮复习教案2.9.1函数的应用1

(新人教)高三数学第一轮复习教案2.9.1函数的应用1

一.课题:函数的应用举例(1)二.教学目标:1.了解解实际应用题的一般步骤;2.初步学会根据已知条件建立函数关系式的方法;3.向学生渗透建模思想,使学生初步具有建模的能力。

三.教学重、难点:1.根据已知条件建立函数关系式;2.用数学语言抽象概括实际问题。

四.教学过程:(一)复习:1.函数的三要素是什么?其中起决定作用的是什么?2.写出等腰三角形顶角y (单位:度)与底角x 的函数关系。

解:1802y x =- ()090x <<.说明:函数的定义域是函数关系的重要组成部分。

实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义。

(二)新课:例1.(课本P 90)有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,写出这个梯形周长y 和腰长x 间的函数式,并求出它的定义域。

分析:关键是用半径R 与腰长x 表示上底,由对称性:2CD AB AE =-,因此只要求AE . 解:设腰长AD BC x ==,作DE AB ⊥垂足为E , 连结BD ,则90ADB ∠=o ,由此:Rt ADE ∆∽Rt ABD ∆∆, ∴2AD AE AB =⨯,22x AE R =, ∴222x CD AB AE R R=-=-, ∴周长2222(2)24x x y R x R x R R R=++-=-++, ∵ABCD 是圆内接梯形 ∴0,0,0AD AE CD >>>, 即220020x x R x R R⎧⎪>⎪⎪>⎨⎪⎪->⎪⎩,解得02x R <<, 即函数y 的定义域为{}02x x R <<. 变式题:求梯形周长y 的最大值。

解:()221245x y x R x R R R R=-++=--+,()0,2x R ∈Q , ∴当x R =时,周长y 的最大值为5R .例2.距离船只A 的正北方向100海里处有一船只B ,以每小时20海里的速度沿北偏西60角的方向行驶,A 船只以每小时15海里的速度向正北方向行驶,两船同时出发,问几小时后两船相距最近?解:设t 小时后A 行驶到点C ,B 行驶到点D ,则20BD =,10015BC t =-,过D 作DE BC ⊥于E ,C D A BE O · D BE∴sin 60103DE BD t ==o ,cos6010BE BD t ==o ,∴1005EC BC BE t =+=-,∴()()2222103100-5CD DE CE t t =+=+ 2325-100010000t t =+,∴2013t =时CD 最小,最小值为320013,即两船行驶2013小时相距最近。

高三数学一轮复习精品教案1:2.1函数及其表示教学设计

高三数学一轮复习精品教案1:2.1函数及其表示教学设计

2.1 函数及其表示1.函数映射的概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A 、B 若不是数集,则这个映射便不是函数. 3.误把分段函数理解为几种函数组成. 『试一试』1.(2013·苏锡常镇一调)已知常数t 是负实数,则函数f (x )=12t 2-tx -x 2的定义域是________. 『解析』因为f (x )=12t 2-tx -x 2=-x +3t x +4t ,则(-x +3t )(x +4t )≥0.又t <0,所以x ∈『3t ,-4t 』. 『答案』『3t ,-4t 』2.(2013·扬州期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (0))=________.『解析』因为f (0)=30=1,所以f (f (0))=f (1)=log 21=0. 『答案』0求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ). 『练一练』1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于________. 『解析』f (x )=g (x +2)=2(x +2)+3=2x +7. 『答案』2x +72.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________.『解析』由题意得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3.∴f (x )=x 2-4x +3. 『答案』x 2-4x +3考点一函数与映射的概念1.下列四组函数中,表示同一函数的是________.(填写序号)①y =x -1与y =x -12②y =x -1与y =x -1x -1 ③y =4lg x 与y =2lg x 2 ④y =lg x -2与y =lgx 100『答案』④2.以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx ;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:(3)f 1:y =2x ;f 2:如图所示.『解析』(1)不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .(2)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. (3)同一函数.理由同(2).『备课札记』 『类题通法』两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.考点二函数的定义域问题函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分.归纳起来常见的命题角度有:1求给定函数解析式的定义域; 2已知f x 的定义域,求f g x 的定义域;3已知定义域确定参数问题.角度一 求给定函数解析式的定义域 1.(1)(2013·山东高考改编)函数f (x )=1-2x +1x +3 的定义域为________. (2)(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 『解析』(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x ≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)要使函数有意义,需⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0,即⎩⎪⎨⎪⎧x +1x >0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1』.『答案』(1)(-3,0』 (2)(0,1』角度二 已知f (x )的定义域,求f (g (x ))的定义域2.已知函数f (x )的定义域是『-1,1』,求f (log 2x )的定义域. 『解析』∵函数f (x )的定义域是『-1,1』,∴-1≤log 2x ≤1, ∴12≤x ≤2.故f (log 2x )的定义域为⎣⎡⎦⎤12,2. 『备课札记』 角度三 已知定义域确定参数问题 3.(2014·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.『解析』函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 『答案』『-1,0』 『类题通法』简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为『a ,b 』,则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.考点三求函数的解析式『典例』 (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).(4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. 『解析』 (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R ).(4)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1). ①以-x 代x ,得2f (-x )-f (x )=lg(-x +1). ② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).『备课札记』 『类题通法』求函数解析式常用的方法有(1)待定系数法;(2)换元法(换元后要注意新元的取值范围); (3)配凑法; (4)解方程组法. 『针对训练』1.已知f (x +1)=x +2x ,求f (x )的解析式. 『解析』法一:设t =x +1, 则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1).2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. 『解析』设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.考点四分段函数『典例』 (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.『解析』 当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.『答案』 -34『备课札记』 『类题通法』分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒:当分段函数的自变量范围不确定时,应分类讨论. 『针对训练』设函数f (x )=⎩⎨⎧2-x ,x ∈-∞,1,x 2,x ∈[1,+∞,若f (x )>4,则x 的取值范围是______.『解析』当x <1时,由f (x )>4,得2-x >4,即x <-2; 当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2. 『答案』(-∞,-2)∪(2,+∞)『课堂练通考点』1.(2013·南京一模)函数y =2x -x 2的定义域是________.『解析』由2x -x 2≥0得0≤x ≤2,故函数的定义域为『0,2』 『解析』『0,2』2.(2013·苏北四市二调)若函数f (x )=⎩⎪⎨⎪⎧2x , x <0,-2-x , x >0,则函数y =f (f (x ))的值域是________.『解析』当x <0时,f (x )=2x ∈(0,1),故y =f (f (x ))=-2-f (x )∈⎝⎛⎭⎫-1,-12;当x >0时,f (x )=-2-x ∈(-1,0),故y =f (f (x ))=2f (x )∈⎝⎛⎭⎫12,1,从而原函数的值域为⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫12,1. 『答案』⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫12,1 3.函数y =(x +1)0+ln(-x )的定义域为________.『解析』由题意知,⎩⎪⎨⎪⎧ x +1≠0,-x >0,⇒⎩⎪⎨⎪⎧x ≠-1x <0⇒x ∈(-∞,-1)∪(-1,0).『答案』(-∞,-1)∪(-1,0)4.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 『解析』由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2. 故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 『答案』6 5.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2)); (2)求f (g (x ))与g (f (x ))的表达式. 『解析』(1)g (2)=1,f (g (2))=f (1)=0; f (2)=3,g (f (2))=g (3)=2.(2)当x >0时,f (g (x ))=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f (g (x ))=f (2-x )=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.同理可得g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x <-1或x >1,3-x 2,-1<x <1.。

高三数学第一轮复习教案第11课时—函数的单调性

高三数学第一轮复习教案第11课时—函数的单调性

一.课题:函数的单调性二.教学目标:理解函数单调性的定义,会用函数单调性解决一些问题. 三.教学重点:函数单调性的判断和函数单调性的应用. 四.教学过程: (一)主要知识:1.函数单调性的定义;2.判断函数的单调性的方法;求函数的单调区间; 3.复合函数单调性的判断. (二)主要方法:1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集; 2.判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数. 3.注意函数的单调性的应用;4.注意分类讨论与数形结合的应用. (三)例题分析:例1.(1)求函数20.7log (32)y x x =-+的单调区间;(2)已知2()82,f x x x =+-若2()(2)g x f x =-试确定()g x 的单调区间和单调性. 解:(1)单调增区间为:(2,),+∞单调减区间为(,1)-∞,(2)222()82(2)(2)g x x x =+---4228x x =-++,3()44g x x x '=-+,令 ()0g x '>,得1x <-或01x <<,令 ()0g x '<,1x >或10x -<< ∴单调增区间为(,1),(0,1)-∞-;单调减区间为(1,),(1,0)+∞-.例2.设0a >,()x xe af x a e =+是R 上的偶函数. (1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数.解:(1)依题意,对一切x R ∈,有()()f x f x -=,即1x xx x e a ae ae a e+=+ ∴11()()x x a e a e --0=对一切x R ∈成立,则10a a-=,∴1a =±,∵0a >,∴1a =.(2)设120x x <<,则12121211()()x xx x f x f x e e e e -=-+-2121121122111()(1)(1)x x x x x x x x x x x e e e e e e e +-++-=--=-,由12210,0,0x x x x >>->,得21120,10x x x x e -+>->,2110x xe +-<,∴12()()0f x f x -<, 即12()()f x f x <,∴()f x 在(0,)+∞上为增函数.例3.(1)(《高考A 计划》考点11“智能训练第9题”)若()f x 为奇函数,且在(,0)-∞上是减函数,又(2)0f -=,则()0x f x ⋅<的解集为(,2)(2,)-∞-+∞U .例4.(《高考A 计划》考点10智能训练14)已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=,(1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2(21)2f x -<. 解:(1)令121x x ==,得(1)2(1)f f =,∴(1)0f =,令121x x ==-,得∴(1)0f -=,∴()(1)(1)()()f x f x f f x f x -=-⋅=-+=,∴()f x 是偶函数. (2)设210x x >>,则221111()()()()x f x f x f x f x x -=⋅-221111()()()()x x f x f f x f x x =+-= ∵210x x >>,∴211x x >,∴21()xf x 0>,即21()()0f x f x ->,∴21()()f x f x > ∴()f x 在(0,)+∞上是增函数.(3)(2)1f =Q ,∴(4)(2)(2)2f f f =+=,∵()f x 是偶函数∴不等式2(21)2f x -<可化为2(|21|)(4)f x f -<,又∵函数在(0,)+∞上是增函数,∴2|21|4x -<,解得:22x -<<,即不等式的解集为(22-. 例5.函数9()log (8)af x x x=+-在[1,)+∞上是增函数,求a 的取值范围.分析:由函数9()log (8)af x x x=+-在[1,)+∞上是增函数可以得到两个信息:①对任意的121,x x ≤<总有12()()f x f x <;②当1x ≥时,80ax x+->恒成立.解:∵函数9()log (8)af x x x=+-在[1,)+∞上是增函数,∴对任意的121,x x ≤<有12()()f x f x <,即919212log (8)log (8)a a x x x x +-<+-,得121288a a x x x x +-<+-,即1212()(1)0ax x x x -+<, ∵120x x -<,∴1210,a x x +> 121,ax x >- 12a x x >-, ∵211x x >≥,∴要使12a x x >-恒成立,只要1a ≥;又∵函数9()log (8)af x x x=+-在[1,)+∞上是增函数,∴180a +->,即9a <,综上a 的取值范围为[1,9)-.另解:(用导数求解)令()8a g x x x =+-,函数9()log (8)af x x x=+-在[1,)+∞上是增函数,∴()8a g x x x =+-在[1,)+∞上是增函数,2()1ag x x'=+,∴180a +->,且210ax+≥在[1,)+∞上恒成立,得19a -≤<.(四)巩固练习: 1.《高考A 计划》考点11,智能训练10; 2.已知)(x f 是R 上的奇函数,且在),0(+∞上是增函数,则)(x f 在)0,(-∞上的单调性为 .五.课后作业:《高考A 计划》考点1,智能训练4,5, 7,8,12,13,15.。

高三数学复习教案 第二章《函数》(新人教版必修1)11

高三数学复习教案 第二章《函数》(新人教版必修1)11

第十一教时教材:函数的单调性与奇偶性综合练习(《教学与测试》第21、22课) 目的:通过对例题(习题)的判析,使学生对函数的单调性与奇偶性有更深刻的理解。

过程:一、复习函数单调性与奇偶性的定义、图象的直观形态、单调区间、判定方法等概念。

二、处理《教学与测试》第21、22课例题例一.(P43 例一) 注意突出定义域:x ≠1 然后分区间讨论例二.(P43 例二) 难点在于:判断 x 2 + x 1x 2 + x 2 > 0 应考虑用配方法 而且:∵x 1, x 2中至少有一个不为0, ∴……反之,倘若 x 1, x 2全为0 x 2 + x 1x 2 + x 2 = 0例三.(P43 例三) 难点在于:分 a > 0, a = 0, a < 0 讨论应突出“二次函数”,再结合图象分析例四.(P45 例一) 1、2题已讲过;第3题是两个函数之乘积, 尤其后者要利用幂指数概念例五.(P45 例二) 此题是常见形式:应注意其中的“转换..”关系例六.(P45 例三) 此题是单调性与奇偶性综合题,注意思路分析。

三、补充:例七、已知函数f (x ), g (x )在 R 上是增函数,求证:f [g (x )]在 R 上也是增函数。

证:任取 x 1, x ∈ R 且 x 1 < x 2∵g (x ) 在R 上是增函数 ∴g (x 1) <g (x 2)又∵f (x ) 在R 上是增函数 ∴f [g (x 1)] < f [g (x 2)]而且 x 1 < x 2 ∴ f [g (x )] 在R 上是增函数同理可以推广:若 f (x )、g (x ) 均是R 上的减函数,则 f [g (x )] 是R 上的增函数若 f (x )、g (x ) 是R 上的一增、一减函数,则 f [g (x )] 是R 上的减函数例八、函数 f (x )在 [0, )∞+上单调递减,求)1(2x f -的递减区间。

高三数学复习教案 第二章《函数》(新人教版必修1)2

高三数学复习教案 第二章《函数》(新人教版必修1)2

第二教时教材:函数概念及复合函数目的:要求学生从映射的观点去理解函数的概念,明确决定函数的三个要素。

过程:一、复习:(提问)1.什么叫从集合到集合上的映射?2.传统(初中)的函数的定义是什么?初中学过哪些函数?二、函数概念:1.重复初中时讲的函数(传统)定义:“定义域”“函数值”“值域”的定义。

2.从映射的观点定义函数(近代定义):1︒函数实际上就是集合A到集合B的一个映射f:A B这里A, B非空。

2︒A:定义域,原象的集合B:值域,象的集合(C)其中C⊆Bf:对应法则x∈A y∈B3︒函数符号:y=f(x) ——y是x的函数,简记f(x)3.举例消化、巩固函数概念:见课本P51—52一次函数,反比例函数,二次函数注意:1︒务必注意语言规范2︒二次函数的值域应分a>0, a<0 讨论4.关于函数值f(a) 例:f(x)=x2+3x+1 则f(2)=22+3×2+1=11 注意:1︒在y=f(x)中f表示对应法则,不同的函数其含义不一样。

2︒f(x)不一定是解析式,有时可能是“列表”“图象”。

3︒f(x)与f(a)是不同的,前者为函数,后者为函数值。

三、函数的三要素:对应法则、定义域、值域只有当这三要素完全相同时,两个函数才能称为同一函数。

例一:判断下列各组中的两个函数是否是同一函数?为什么?1.3)5)(3(1+-+=x x x y 52-=x y 解:不是同一函数,定义域不同2。

111-+=x x y )1)(1(2-+=x x y 解:不是同一函数,定义域不同3。

x x f =)( 2)(x x g = 解:不是同一函数,值域不同 4.x x f =)( 33)(x x F = 解:是同一函数 5.21)52()(-=x x f 52)(2-=x x f 解:不是同一函数,定义域、值域都不同例二: P55 例三 (略)四、关于复合函数设 f (x )=2x -3 g (x )=x 2+2 则称 f [g (x )](或g [f (x )])为复合函数。

高三数学第二章函数+导数高考一轮复习教案2.14 函数的实际应用 教案

高三数学第二章函数+导数高考一轮复习教案2.14 函数的实际应用 教案

函数的实际应用一、学习目标:理解函数模型及其应用热点提示:1.能够应用函数的性质解决有关数学问题,能够应用函数知识解决一些简单的实际问题;2.培养学生的阅读能力、文字语言转化为数学语言的能力及数学建模能力.3.多一解答题出现,属中高档题,偶尔在小题中出现本节重点:建立恰当的函数关系. 二、知识要点:1.函数定义域、图象、单调性质等知识;2.函数的值域、最值;解不等式等知识。

3.常见函数模型:一次函数,二次函数,分段函数,指数函数 主要方法:解数学应用题的一般步骤为:()1审题;()2建模;()3求解;()4作答. 三、课前检测:1.(09某某卷理)(本小题满分12分)两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A 和城B 的总影响度为城A 与城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A 和城B 的总影响度为0.065.(1)将y 表示成x 的函数;(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由。

A BC x2.(09某某)本小题满分16分按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为mm a+;如果他买进该产品的单价为n 元,则他的满意度为nn a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h ,则他对这两种交现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙 (1) 求h 甲和h 乙关于A m 、B m 的表达式;当35AB m m =时,求证:h 甲=h 乙; (2) 设35AB m m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3) 记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立?试说明理由。

高考数学一轮复习 2.11 函数的应用教案

高考数学一轮复习 2.11 函数的应用教案

高考数学一轮复习 2.11 函数的应用教案●知识梳理解函数应用问题的基本步骤: 第一步:阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题.第二步:引进数学符号,建立数学模型.一般地,设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个函数问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果. 第四步:将所得结果再转译成具体问题的解答. ●点击双基1.某一种商品降价10%后,欲恢复原价,则应提价A.10%B.9%C.11%D.1191% 解析:设提价x %,则a (1-10%)(1+x %)=a ,∴x =1191. 答案:DA.v =log 2tB.v =log 21tC.v =212-tD.v =2t -2解析:特值检验,如:当t =4时,v =212-t =7.5.答案:C3.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为A.3B.4C.6D.12解析:设隔墙的长为x (0<x <6),矩形面积为y ,y =x ×2424x-=2x (6-x ),∴当x =3时,y 最大.答案:A4.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后剩量为y ,则x 、y 之间的函数关系式为______________.答案:y =0.9576100x5.建筑一个容积为8000 m 3、深6 m 的长方体蓄水池(无盖),池壁造价为a 元/米2,池底造价为2a 元/米2,把总造价y 元表示为底的一边长x m 的函数,其解析式为___________,定义域为___________.底边长为___________ m 时总造价最低是___________元.解析:设池底一边长x (m ),则其邻边长为x 68000(m ),池壁面积为2·6·x +2·6·x68000=12(x +x 68000)(m 2),池底面积为x ·x 68000=68000(m 2),根据题意可知蓄水池的总造价y(元)与池底一边长x (m )之间的函数关系式为y =12a (x +x 68000)+38000a .定义域为(0,+∞).x +x 68000≥2x x 68000 =34030(当且仅当x =x 68000即x =32030时取“=”).∴当底边长为32030 m 时造价最低,最低造价为(16030a +38000a )元. 答案:y =12a (x +x 68000)+38000a (0,+∞) 32030 16030a +38000a●典例剖析【例1】 (1)一种产品的年产量原来是a 件,在今后m 年内,计划使年产量平均每年比上一年增加p %,写出年产量随经过年数变化的函数关系式.(2)一种产品的成本原来是a 元,在今后m 年内,计划使成本平均每年比上一年降低p %,写出成本随经过年数变化的函数关系式.解:(1)设年产量经过x 年增加到y 件,则y =a (1+p %)x (x ∈N*且x ≤m ).(2)设成本经过x 年降低到y 元,则y =a (1-p %)x (x ∈N*且x ≤m ).特别提示增长率问题是一重要的模型.【例2】 “依法纳税是每个公民应尽的义务”.国家征收个人所得税是分段计算的,总收入不超过800元,免征个人所得税,超过800元部分需征税,设全月纳税所得额为x ,x =全月总收入-800元,税率见下表:级 数 全月纳税所得额 税 率 1 不超过500元部分 5% 2 超过500元至2000元部分 10% 3 超过2000元至5000元部分15% … … (9)超过10000元部分45%(2)某人2000年10月份总收入3000元,试计算该人此月份应缴纳个人所得税多少元; (3)某人一月份应缴纳此项税款26.78元,则他当月工资总收入介于 A.800~900元 B.900~1200元 C.1200~1500元 D.1500~2800元 (1)解:依税率表,有第一段:x ·5%,0<x ≤500, 第二段:(x -500)×10%+500×5%,500<x ≤2000, 第三段:(x -2000)×15%+1500×10%+500×5%,2000<x ≤5000,即f (x )=⎪⎩⎪⎨⎧+-+-⨯175)2000(15.025)500(1.005.0x x x).50002000(),2000500(),5000(≤<≤<≤<x x x(2)解:这个人10月份应纳税所得额x =3000-800=2200,f (2200)=0.15×(2200-2000)+175=205,即这个人10月份应缴纳个人所得税205元.(3)解法一:(估算法)由500×5%=25元,100×10%=10元,故某人当月工资应在1300~1400元之间,故选C.解法二:(逆推验证法)设某人当月工资为1200元或1500元,则其应纳税款分别为400×5%=20(元),500×5%+200×10%=45(元).可排除A 、B 、D ,故选C.答案:C评述:本题也可以根据纳税额计算公式直接计算.特别提示分段函数在新课标中占有重要地位.【例3】 某地区上年度电价为0.8元/(千瓦·时),年用电量为a 千瓦·时.本年度计划将电价降到0.55元/(千瓦·时)至0.75元/(千瓦·时)之间,而用户期望电价为0.4元/(千瓦·时).经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/(千瓦·时).(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%? 〔注:收益=实际用电量×(实际电价-成本价)〕解:(1)设下调后的电价为x 元/(千瓦·时),依题意知用电量增至4.0-x k+a ,电力部门的收益为y =(4.0-x k+a )(x -0.3)(0.55≤x ≤0.75).(2)依题意有⎪⎩⎪⎨⎧≤≤+-⨯≥-+-.75.055.0%),201)](3.08.0([)3.0)(4.02.0(x a x a x a整理得⎩⎨⎧≤≤≥+-.75.055.0,03.01.12x x x解此不等式得0.60≤x ≤0.75.答:当电价最低定为0.60元/(千瓦·时)时,仍可保证电力部门的收益比去年至少增长20%.深化拓展某商场预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x 台(x ∈N *),且每批均需付运费400元,贮存购入的电视机全年所付的保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43600元.现全年只有24000元资金可以用于支付这笔费用.试问:能否恰当安排每批进货的数量,使资金够用?写出你的结论,并说明理由.提示:设全年的运输和保管总费用为y 元,则y =x3600×400+k ·(2000x ).据题设,x =400时,y =43600,解得k =5%.∴y =x4003600⨯+100x ≥2x x 1004003600⋅⨯=2400(元). 因此只需每批购入120台电视机就可以使预定资金够用.答案:每批购入120台可使资金够用.【例4】 (2003年春季上海)在一次人才招聘会上,有A 、B 两家公司分别开出它们的工资标准:A 公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B 公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初被A 、B 两家公司同时录取,试问:(1)若该人分别在A 公司或B 公司连续工作n 年,则他在第n 年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?(3)在A 公司工作比在B 公司工作的月工资收入最多可以多多少元(精确到1元)?并说明理由.剖析:第(1)问可通过第2、3年月工资归纳出所求结果.第(2)问应注意的是年工资总量.第(3)问难度较大,是求月工资之差的最大值,转化为c n =1270+230n -2000×1.05n -1,需要转化为c n >c n -1,c n >c n +1,则c n 最大.解:(1)此人在A 、B 公司第n 年的月工资数分别为a n =1500+230×(n -1)(n ∈N *),b n =2000·(1+5%)n -1(n ∈N *).(2)若该人在A 公司连续工作10年,则他的工资收入总量为12(a 1+a 2+…+a 10)=304200(元); 若该人在B 公司连续工作10年,则他的工资收入总量为12(b 1+b 2+…+b 10)≈301869(元). 因为在A 公司收入的总量高些,因此该人应该选择A 公司.(3)问题等价于求c n =a n -b n =1270+230n -2000×1.05n -1(n ∈N *)的最大值.当n ≥2时,c n -c n -1=230-100×1.05n -2.当c n -c n -1>0,即230-100×1.05n -2>0时,1.05n -2<2.3,得n <19.1. 因此,当2≤n ≤19时,c n -1<c n ;当n ≥20时,c n ≤c n -1. ∴c 19是数列{c n }的最大项,c 19=a 19-b 19≈827(元),即在A 公司工作比在B 公司工作的月工资收入最多可以多827元.●闯关训练 夯实基础1.某学生离家去学校,为了锻炼身体,一开始跑步前进,跑累了再走余下的路程.用纵轴表示离学校的距离,横轴表示出发后的时间,则下列四个图形中较符合该学生的走法的是答案:D2.某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y 万元与营运年数x (x ∈N )的关系为y =-x 2+12x -25,则每辆客车营运______________年可使其营运年平均利润最大.A.2B.4C.5D.6解析:设年平均利润为g (x ),则g (x )=xx x 25122-+-=12-(x +x 25).∵x +x 25≥2x x 25⋅=10,∴当x =x25,即x =5时,g (x )max =2. 答案:C3.某县计划十年内产值翻两番,则产值平均每年增长的百分率为___________________.(lg2=0.3010,lg11.49=1.0602)解析:设产值平均年增长率为x ,则(1+x )10=4. 两边同取以10为底的对数得10lg (1+x )=2lg2.∴lg (1+x )=103010.02⨯=0.0602.∴1+x =100.0602. 又∵lg11.49=1.0602,∴11.49=101.0602=10·100.0602.∴100.0602=1.149.因此1+x =1.149,x =0.149=14.9%. 答案:14.9%4.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R (Q )=4Q -2001Q 2,则总利润L (Q )的最大值是___________万元,这时产品的生产数量为___________.(总利润=总收入-成本)解析:L (Q )=4Q -2001Q 2-(200+Q )=-2001(Q -300)2+250. 答案:250 3005.(2003年福州市质量检测题)沿海地区某农村在2002年底共有人口1480人,全年工农业生产总值为3180万元.从2003年起计划10年内该村的总产值每年增加60万元,人口每年净增a 人,设从2003年起的第x 年(2003年为第一年)该村人均产值为y 万元.(1)写出y 与x 之间的函数关系式;(2)为使该村的人均产值年年都有增长,那么该村每年人口的净增不能超过多少人? 分析:本小题主要考查函数知识、函数的单调性,考查数学建模,运用所学知识解决实际问题的能力.(1)解:依题意得第x 年该村的工农业生产总值为(3180+60x )万元,而该村第x 年的人口总数为(1480+ax )人,∴y =axx++1480603180(1≤x ≤10).(2)解法一:为使该村的人均产值年年都有增长,则在1≤x ≤10内,y =f (x )为增函数.设1≤x 1<x 2≤10,则f (x 1)-f (x 2)=111480603180ax x ++-221480603180ax x ++=)1480)(1480()(3180)(148060211221ax ax x x a x x ++-+-⨯=)1480)(1480())(318088800(2121ax ax x x a ++--.∵1≤x 1<x 2≤10,a >0,∴由f (x 1)<f (x 2),得88800-3180a >0. ∴a <318088800≈27.9.又∵a ∈N *,∴a =27. 解法二:∵y =a 60(x a x ++148053)=a60[1+ax a 1480148053+-], 依题意得53-a 1480<0,∴a <531480≈27.9. ∵a ∈N *,∴a =27.答:该村每年人口的净增不能超过27人. 培养能力6.(2005年春季北京,19)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (km/h )之间的函数关系为y =160039202++v v v(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时)(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?解:(1)依题意,y =)1600(3920vv ++≤160023920+=83920, 当且仅当v =v 1600,即v =40时,上式等号成立,所以y max =83920≈11.1(千辆/时).(2)由条件得160039202++v v v>10,整理得v 2-89v +1600<0, 即(v -25)(v -64)<0.解得25<v <64.∴当v =40 km/h 时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25 km/h 且小于64 km/h.7.(2003年石家庄市一模题)某工厂有216名工人接受了生产1000台GH 型高科技产品的总任务,已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.每个工人每小时能加工6个G 型装置或3个H 型装置.现将工人分成两组同时开始....加工,每组分别加工一种装置.设加工G 型装置的工人有x 人,他们加工完G 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x )(单位:小时,可不为整数).(1)写出g (x ),h (x )的解析式;(2)比较g (x )与h (x )的大小,并写出这216名工人完成总任务的时间f (x )的解析式;(3)应怎样分组,才能使完成总任务用的时间最少? 解:(1)由题意知,需加工G 型装置4000个,加工H 型装置3000个,所用工人分别为x 人,(216-x )人.∴g (x )=x64000,h (x )=3)216(3000⋅-x ,即g (x )=x 32000,h (x )=x-2161000(0<x <216,x ∈N *). (2)g (x )-h (x )=x 32000-x-2161000=)216(3)5432(1000x x x --⋅.∵0<x <216,∴216-x >0.当0<x ≤86时,432-5x >0,g (x )-h (x )>0,g (x )>h (x ); 当87≤x <216时,432-5x <0,g (x )-h (x )<0,g (x )<h (x ).∴f (x )=⎪⎪⎩⎪⎪⎨⎧∈<≤-∈≤<.,21687,2161000,,860,32000**N N x x xx x x(3)完成总任务所用时间最少即求f (x )的最小值.当0<x ≤86时,f (x )递减,∴f (x )≥f (86)=8632000⨯=1291000.∴f (x )min =f (86),此时216-x =130.当87≤x <216时,f (x )递增,∴f (x )≥f (87)=872161000-=1291000.∴f (x )min =f (87),此时216-x =129.∴f (x )min =f (86)=f (87)=1291000.∴加工G 型装置,H 型装置的人数分别为86、130或87、129. 探究创新8.现代社会对破译密文的难度要求越来越高,有一种密码把英文的明文(真实文)按两个字母一组分组(如果最后剩一个字母,则任意添一个字母,拼成一组),例如:Wish you success ,分组为Wi ,sh ,yo ,us ,uc ,ce ,ss 得到⎪⎪⎭⎫ ⎝⎛923,⎪⎪⎭⎫ ⎝⎛819,⎪⎪⎭⎫ ⎝⎛1525,⎪⎪⎭⎫ ⎝⎛1921,⎪⎪⎭⎫ ⎝⎛321,⎪⎪⎭⎫ ⎝⎛53,⎪⎪⎭⎫ ⎝⎛1919, 其中英文的a ,b ,c ,…,z 的26个字母(不论大小写)依次对应的1,2,3,…,26给出如下一个变换公式⎩⎨⎧+='+='.43,2y x y y x x 将明文转换为密文.如⎪⎪⎭⎫ ⎝⎛53→⎩⎨⎧=⨯+⨯='=⨯+='29543313523y x →⎪⎪⎭⎫⎝⎛313,即ce 变成mc (说明:29÷26余数为3). 又如⎪⎪⎭⎫ ⎝⎛923→⎩⎨⎧=⨯+⨯='=⨯+='10594233419223y x →⎪⎪⎭⎫⎝⎛115,即wi 变成oa (说明:41÷26余数为15,105÷26余数为1).(1)按上述方法将明文star 译成密文;(2)若按上述方法将某明文译成的密文是kcwi ,请你找出它的明文.解:(1)将star 分组:st ,ar ,对应的数组分别为⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛181,2019,由⎩⎨⎧+='+=',43,2y x y y x x 得⎩⎨⎧⨯+⨯='⨯+='20419320219y x →⎪⎪⎭⎫ ⎝⎛77,⎩⎨⎧⨯+⨯='⨯+='184131821y x →⎪⎪⎭⎫⎝⎛2311. ∴star 翻译成密文为ggkw.(2)由⎩⎨⎧+='+=',43,2y x y y x x 得⎪⎩⎪⎨⎧'-'='+'-='.223,2y x y y x x 将kcwi 分组:kc ,wi ,对应的数组分别为⎪⎪⎭⎫ ⎝⎛311,⎪⎪⎭⎫ ⎝⎛923,由⎪⎩⎪⎨⎧'-'='+'-=,223,2y x y y x x 得⎪⎩⎪⎨⎧-⨯=+⨯-=2311233112y x →⎪⎪⎭⎫ ⎝⎛-1519→⎪⎪⎭⎫ ⎝⎛157,⎪⎩⎪⎨⎧-⨯=+⨯-=2923239232y x →⎪⎪⎭⎫⎝⎛415. ∴密文kcwi 翻译成明文为good.●思悟小结1.数学的应用问题实际上是数学模型方法的应用问题,也就是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题.2.所谓数学模型,简单地说,就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的形式是多样的,它们可以是几何图形,也可以是方程式、函数解析式等等.实际问题越复杂,相应的数学模型也就越复杂.●教师下载中心 教学点睛1.在教学过程中要注意引导学生从数学的角度理解分析问题、把握问题,特别要强调自主地、独立地分析、研究、探讨活动,这样才有利于培养阅读理解、分析和解决实际问题的能力;有利于对数学思想方法的应用;有利于培养学生的用数学意识.2.用数学模型方法解决问题的步骤可用框图表示如下:拓展题例【例1】 (2002年春季高考)用一张钢板制作一个容积为4 m 3的无盖长方体水箱.可用的长方形钢板有四种不同的规格(长×宽的尺寸如各选项所示,单位均为m ),若既要够用,又要所剩最少,则应选钢板的规格是A.2×5B.2×5.5C.2×6.1D.3×5解析:设水箱底长a ,宽b ,高h ,则abh =4, ∴h =ab 4.∴S =ab +2ah +2bh =ab +b 8+a8≥3388a b ab ⨯⨯=12,当且仅当a =b 时等号成立.∴至少要钢板12 m 2.答案:C评述:若a 、b 、c ∈R +,则有a +b +c ≥33abc ,当且仅当a =b =c 时等号成立.【例2】 (2001年春季高考)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得y =[1.2×(1+0.75x )-1×(1+x )]×1000(1+0.6x )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的利润比上年有所增加,必须⎩⎨⎧<<>⨯--,10,01000)12.1(x y即⎩⎨⎧<<>+-.110,020602x x 解得0<x <31.∴为保证本年度的年利润比上年有所增加,投入成本增加的比例x 应满足0<x <0.33.评述:本题主要考查建立函数关系、运用不等式的性质和解法等数学知识解决实际问题的能力.。

高考数学一轮复习 第二章函数2.1函数及其表示教学案 理

高考数学一轮复习 第二章函数2.1函数及其表示教学案 理

第二章 函数2.1 函数及其表示考纲要求1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用.(1)函数的定义域、值域.在函数y =f (x ),x ∈A 中,x 叫做自变量,__________叫做函数的定义域;与x 的值相对应的y 值叫做函数值,__________叫做函数的值域,显然,值域是集合B 的子集.(2)函数的三要素:__________、__________和__________.3.函数的表示方法表示函数的常用方法有__________、__________和__________.4.分段函数若函数在其定义域的不同子集上,因__________不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的__________,其值域等于各段函数的值域的__________,分段函数虽由几个部分组成,但它表示的是一个函数.1.设f ,g 都是从A 到A则f (g (3))等于( ).A .1B .2C .3D .不存在2.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( ).A .f :x →y =12x B .f :x →y =13x C .f :x →y =23x D .f :x →y =x3.下列各函数中,表示同一个函数的是( ).A .f (x )=lg x 2,g (x )=2lg xB .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1)C .f (u )=1+u 1-u ,g (v )=1+v 1-vD .f (x )=x ,g (x )=x 2 4.(2012山东高考)函数f (x )=1ln x +1+4-x 2的定义域为( ). A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1,若f (x )=2,则x 等于( ). A .log 32B .-2C .log 32或-2D .2一、求简单函数的定义域、值域【例1-1】(2012江苏高考)函数f (x )=1-2log 6x 的定义域为__________.【例1-2】已知函数f (3-2x )的定义域为[-1,2],求f (x )的定义域.【例1-3】求下列函数的值域:(1)y =x 2+2x ,x ∈[0,3]; (2)y =212x -;(3)y =log 3x +log x 3-1.方法提炼1.求函数定义域的方法(1)函数给 出的方式确定定义域的方法 列表法 表中实数x 的集合图象法 图象在x 轴上的投影所覆盖的实数x 的集合解析法 使解析式有意义的实数x 的集合实际问题 有实际意义及使相应解析式有意义的x 的集合(2)①若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.提醒:定义域必须写成集合或区间的形式.2.求值域的方法常见的求值域的方法有:①配方法;②换元法;③基本不等式法;④利用函数的单调性;⑤分离常数法;⑥数形结合法;⑦导数法等.3.若两个函数的定义域与值域相同,它们不一定是同一函数,如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.定义域和解析式相同的两个函数是同一个函数.4.分段函数的定义域、值域为各段上的定义域、值域的并集;最大(小)值是各段最大(小)值中最大(小)的;图象则是由各段上的图象合成的.请做演练巩固提升1,4二、求函数的解析式【例2-1】若函数f (x )=x ax +b(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,则f (x )=__________.【例2-2】若2f (x )-f (-x )=x +1,求f (x ).【例2-3】已知y =f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +x 2.(1)求x >0时,f (x )的解析式;(2)若关于x 的方程f (x )=2a 2+a 有三个不同的解,求a 的取值范围.方法提炼函数解析式的求法:1.凑配法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;2.待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;3.换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;4.方程思想:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).提醒:因为函数的解析式相同、定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域,否则会导致错误.请做演练巩固提升2忽略分段函数中自变量的取值范围而致误【典例】设函数f (x )=⎩⎪⎨⎪⎧ x 2+bx +c ,x ≤0,2,x >0,若f (-2)=f (0),f (-1)=-3,求关于x 的方程f (x )=x 的解.错解:当x ≤0时,f (x )=x 2+bx +c .因为f (-2)=f (0),f (-1)=-3, 所以⎩⎪⎨⎪⎧ -22-2b +c =c ,-12-b +c =-3,解得⎩⎪⎨⎪⎧ b =2,c =-2. 所以f (x )=⎩⎪⎨⎪⎧ x 2+2x -2,x ≤0,2,x >0. 当x ≤0时,由f (x )=x 得x 2+2x -2=x 得x =-2或x =1.当x >0时,由f (x )=x 得x =2.所以方程f (x )=x 的解为:-2,1,2.分析:(1)条件中f (-2),f (0),f (-1)所适合的解析式是f (x )=x 2+bx +c ,所以可构建方程组求出b ,c 的值.(2)在方程f (x )=x 中,f (x )用哪个解析式,要进行分类讨论.正解:当x ≤0时,f (x )=x 2+bx +c ,因为f (-2)=f (0),f (-1)=-3,∴⎩⎪⎨⎪⎧ -22-2b +c =c ,-12-b +c =-3,解得⎩⎪⎨⎪⎧ b =2,c =-2. ∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2,x ≤0,2,x >0. 当x ≤0时,由f (x )=x 得,x 2+2x -2=x ,得x =-2或x =1.由于x =1>0,所以舍去.当x >0时,由f (x )=x 得x =2,所以方程f (x )=x 的解为-2,2.答题指导:1.对于分段函数问题,是高考的热点.在解决分段函数问题时,要注意自变量的限制条件.2.就本题而言,当x ≤0时,由f (x )=x 得出两个x 值,但其中的x =1不符合要求,错解中没有舍去此值,因而导致了增解.分段函数问题分段求解,但一定注意各段的限制条件.1.已知函数f (x )=12+x+(x -1)0的定义域为M ,g (x )=ln(2-x )的值域为N ,则M ∩N =( ).A .{x |x >-2}B .{x |x <2}C .{x |-2<x <2}D .{x |x >-2,且x ≠1}2.已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=( ). A .lg 1x B .lg 1x -1C .lg 2x -1D .lg 1x -23.(2012陕西高考)设函数f (x )=⎩⎨⎧ x ,x ≥0,⎝ ⎛⎭⎪⎫12x ,x <0,则f (f (-4))=______.4.设g (x )是定义在R 上、以1为周期的函数.若函数f (x )=x +g (x )在区间[0,1]上的值域为[-2,5],则f (x )在区间[0,3]上的值域为__________.5.对a ,b ∈R ,记min{a ,b }=⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,函数f (x )=min ⎩⎨⎧⎭⎬⎫12x ,-|x -1|+2(x ∈R )的最大值为________.参考答案基础梳理自测知识梳理1.数集 集合 任意 数x 都有唯一确定数f (x ) 任意 元素x 都有唯一确定 元素yf :A →B f :A →B2.(1)x 的取值范围A 函数值的集合{f (x )|x ∈A } (2)定义域 值域 对应关系3.解析法 列表法 图象法4.对应法则 并集 并集基础自测1.C 解析:由题中表格可知g (3)=1,∴f (g (3))=f (1)=3.故选C.2.C 解析:依据函数的概念,集合A 中任一元素在集合B 中都有唯一确定的元素与之对应,选项C 不符合.3.C 解析:选项A 和B 定义域不同,选项D 对应法则不同.4.B 解析:由⎩⎪⎨⎪⎧ ln(x +1)≠0,x +1>0,4-x 2≥0得⎩⎪⎨⎪⎧ x ≠0,x >-1,-2≤x ≤2,所以定义域为(-1,0)∪(0,2].5.A 解析:当x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,∴x =-2(舍去).∴x =log 32.考点探究突破【例1-1】(0,6] 解析:要使函数f (x )=1-2log 6x 有意义,则需⎩⎪⎨⎪⎧1-2log 6x ≥0,x >0,解得0<x ≤6,故f (x )的定义域为(0,6]. 【例1-2】解:用换元思想,令3-2x =t ,f (t )的定义域即为f (x )的定义域, ∴t =3-2x (x ∈[-1,2]).∴-1≤t ≤5.故f (x )的定义域为[-1,5].【例1-3】解:(1)y =x 2+2x =(x +1)2-1,x ∈[0,3],结合二次函数的图象,可知y =x 2+2x 在区间[0,3]上是增函数,故当x =3时,y max =15;当x =0时,y min =0.故函数的值域为[0,15].(2)令x 2-1=t ,则t ≥-1,原函数化为y =2t ,t ∈[-1,+∞).结合y =2t 的单调性得y =2t ,t ∈[-1,+∞)的值域为⎣⎢⎡⎭⎪⎫12,+∞. (3)原函数即为y =log 3x +1log 3x-1. 当x >1时,log 3x >0,因此利用基本不等式得y ≥2-1=1,当log 3x =1log 3x,即x =3时取“=”; 当0<x <1时,log 3x <0,因此log 3x +log x 3=-⎣⎢⎡⎦⎥⎤(-log 3x )+⎝ ⎛⎭⎪⎫-1log 3x ≤-2, ∴log 3x +1log 3x-1≤-3, 当且仅当log 3x =1log 3x, 即x =13时取“=”. 综上可知,y =log 3x +log x 3-1的值域为(-∞,-3]∪[1,+∞).【例2-1】2x x +2 解析:由f (2)=1得22a +b=1,即2a +b =2; 由f (x )=x 得x ax +b =x , 变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0, 解此方程得x =0或x =1-b a ,又∵方程有唯一解,∴1-b a=0,解得b =1, 代入2a +b =2得a =12, ∴f (x )=2x x +2. 【例2-2】解:∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x ,得2f (-x )-f (x )=-x +1.即有⎩⎪⎨⎪⎧ 2f (x )-f (-x )=x +1,2f (-x )-f (x )=-x +1.解方程组消去f (-x ),得f (x )=x 3+1. 【例2-3】解:(1)任取x >0,则-x <0,∴f (-x )=-2x +(-x )2=x 2-2x .∵f (x )是奇函数,∴f (x )=-f (-x )=2x -x 2.故x >0时,f (x )=2x -x 2.(2)∵方程f (x )=2a 2+a 有三个不同的解,∴-1<2a 2+a <1.∴-1<a <12. 演练巩固提升1.D 解析:∵M ={x |x >-2,且x ≠1},N =R ,∴M ∩N =M ={x |x >-2,且x ≠1}.2.C 解析:令t =2x +1,则x =2t -1, ∴f (t )=lg 2t -1,即f (x )=lg 2x -1, 故选C.3.4 解析:∵f (-4)=⎝ ⎛⎭⎪⎫12-4=16,∴f(f(-4))=f(16)=16=4.4.[-2,7] 解析:设x1∈[0,1],f(x1)=x1+g(x1)∈[-2,5].∵函数g(x)是以1为周期的函数,∴当x2∈[1,2]时,f(x2)=f(x1+1)=x1+1+g(x1)∈[-1,6].当x3∈[2,3]时,f(x3)=f(x1+2)=x1+2+g(x1)∈[0,7].综上可知,当x∈[0,3]时,f(x)∈[-2,7].5.1 解析:y=f(x)是y=12x与y=-|x-1|+2两者中的较小者,数形结合可知,函数的最大值为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11 课 函数模型及其应用【考点导读】1.能根据实际问题的情境建立函数模型,结合对函数性质的研究,给出问题的解答.2.理解数据拟合是用来对事物的发展规律进行估计的一种方法,会根据条件借助计算工具解决一些简单的实际问题.3.培养学生数学地分析问题,探索问题,解决问题的能力. 【基础练习】1.2006年11月15日起,国内投寄首重100g 以内的外部信函的邮资标准:每封信不超过20g 时付邮资120分,超过20g 而不超过40g 付邮资240分,超过40g 而不超过60g 付邮资360分,依次类推.如果某人所寄一封信的质量为82.5g ,那么他应付邮资为____600___分. 2.今有一组实验数据如下:现准备用下列函数中的一个近似地表示这些数据满足的规律,①2log v t = ②12log v t =③212t v -=④22v t =-其中最接近的一个的序号是______③_______.3.以墙为一边,用篱笆围成长方形的场地,并用平行于一边的篱笆隔开(如图),已知篱笆的总长为定值l ,则这块场地的最大面积是___________.4.某种放射性物质不断变化为其他物质,每经过1年,这种物质剩留的质量是原来的84%,则这种物质的剩留量关于时间的函数关系式为_______________.5.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0 < x < 1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润 = (出厂价-投入成本)×年销售量.(Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(Ⅰ)由题意得y = [ 1.2×(1+0.75x )-1×(1 + x ) ] ×1000×( 1+0.6x )(0 < x < 1)第3题 212l0.84xy =整理得 y = -60x 2+ 20x + 200(0 < x < 1).(Ⅱ)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y即⎩⎨⎧<<>+-.10,020602x x x 解不等式得310<<x .答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足0 < x < 0.33. 【范例解析】例1.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (Ⅰ)写出图一表示的市场售价与时间的函数关系式p =f (t );写出图二表示的种植成本与时间的函数关系式Q =g (t );(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg ,时间单位:天) 解:(Ⅰ)由图一可得市场售价与时间的函数关系为()⎩⎨⎧≤<-≤≤-=.3002003002,2000300t t t t t f ,,由图二可得种植成本与时间的函数关系为 g (t )=2001(t -150)2+100,0≤t ≤300.(Ⅱ)设t 时刻的纯收益为h (t ),则由题意得 h (t )=f (t )-g (t ),即()⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-=.30020021025272001,20002175********t t t t t t t h ,,当0≤t ≤200时,配方整理得 h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200<t ≤300时,配方整理得:h (t )=-2001(t -350)2+100,所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大点评:本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.例2.某工厂第一季度某产品月生产量分别为1万件,1.2万件,1.3万件.为了估测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量y 与月份x 的关系.模拟函数可以选用二次函数或函数x y ab c =+(其中a ,b ,c 为常数).已知4月份的产量为1.36万件,问:用以上哪个函数作为模拟函数较好?为什么?分析:待定系数法求二次函数解析式.解:设二次函数21111()f x a x b x c =++,由1(1)1f =,1(2) 1.2f =,1(3) 1.3f =,解得:10.05a =-,10.35b =,10.7c =,21()0.050.350.7f x x x ∴=-++.由2()xf x ab c =+得231,1.2,1.3.ab c ab c ab c +=⎧⎪+=⎨⎪+=⎩,解得:0.8a =-,0.5b =, 1.4c =,即2()0.80.5 1.4xf x =-⨯+又11(4) 1.370.07r f =-=,22(4) 1.370.02r f =-=,12r r < ,∴2()0.80.5 1.4xf x =-⨯+作为模拟函数更好.点评:函数模型不确定,需要我们去探索,尝试,找到最合适的模型.本题给了两个函数模型供选择,如何选?结合条件中的数据进行处理.例3.甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时.已 知汽车每小时的运输成本........(以元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/时)的平方成正比、比例系数为b ;固定部分为a 元.(Ⅰ)把全程运输成本......y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域;(II )为了使全程运输成本......最小,汽车应以多大速度行驶?解:(Ⅰ)依题意知汽车从甲地匀速行驶到乙地所用时间为vs ,全程运输成本为)(2bv va S vS bvv S a y +=⋅+⋅=故所求函数及其定义域为],0(),(c v bv va S y ∈+=(Ⅱ)依题意知S ,a ,b ,v 都为正数,故有ab Sbv va S 2)(≥+当且仅当,bv va =.即ba v =时上式中等号成立若c b a ≤,则当ba v =时,全程运输成本y 最小,若c ba >,则当],0(c v ∈时,有)()(bc ca S bv va S +-+)]()[(bc bv ca va S -+-==))((bcv a v c vcS --因为c -v ≥0,且a >bc 2,故有a -bcv ≥a -bc 2>0, 所以)()(bc ca S bv va S +≥+,且仅当v =c 时等号成立,也即当v =c 时,全程运输成本y 最小. 综上知,为使全程运输成本y 最小,当c bab ≤时行驶速度应为bab v =;当c bab >时行驶速度应为v =c .点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力. 【反馈演练】1.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,则这两个正三角形面积之和的最小值是2cm . 2.某地高山上温度从山脚起每升高100m 降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则此山的高度为_____17_____m .3.为了稳定市场,确保农民增收,某农产品的市场收购价格a 与其前三个月的市场收购价格有关,且使a 与其前三个月的市场收购价格之差的平方和最小.若下表列出的是该产品前6个月的市场收购价格:则7月份该产品的市场收购价格应为______ 71_______元.4.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15 x 2和L 2=2 x ,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为____45.6___万元. 5.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( A )A .214h h h >>B .123h h h >>C .324h h h >> D .241h h h >>6.一根长为1的铁丝,分成两段分别围成一个正方形和一个圆,当正方形和圆的面积之和最小时,正方形的周长为 .7.建造一个容积为8m 3 ,深为2m 的长方体无盖水池.如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为_____1120____元.8.为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为at y -⎪⎭⎫⎝⎛=161(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为0.110,00.11(),0.116t t t y t -≤≤⎧⎪=⎨>⎪⎩.(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 0.6 小时后,学生才能回到教室.9.在经济学中,函数()f x 的边际函数()Mf x 定义为()(1)()Mf x f x f x =+-.某公司每月最多生产100台报警装置,生产x 台(*)x N ∈的收入函数为2()300020R x x x =-(单位:元),其成本函数为()5004000C x x =+(单位:元),利润是收入与成本之差.则利润函数()P x 的最大值为_____74120_____元,边际利润函数()M P x 的最大值为____2440___元.10.某单位用木料制作如图所示的框架,框架的下部是边长分别为x ,y (三角形. 要求框架围成的总面积8cm 2. 问x 、y 分别为多少时用料最省?第8题44+π解:由题意得 xy +41x 2=8,∴y =xx482-=48x x -(0<x <42).则框架用料长度为l =2x +2y +2(x 22)=(23+2)x +x16≥4246+.当(23+2)x =x16,即x =8-42时等号成立.此时,x =8-42,y =,故当x 为8-42m ,y为m 时,用料最省.11.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(I )当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(II )设一次订购量为x 个,零件的实际出厂单价为P(III )当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)解:(I )设每个零件的实际出厂价恰好降为51因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元(II(III )设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则 2200100(40)22100500()5011500x x x L P x x x x N x x <≤⎧⎪⎪=-=-<≤∈⎨⎪>⎪⎩因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.12.设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm 空白,左、右各留5cm 空白.(1)怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?(2)如果要求23[,]34λ∈,那么λ为何值时,能使宣传画所用纸张面积最小?解:(1)设画面高为x cm ,宽为λx cm ,则λx 2 = 4840.设纸张面积为S ,有S = (x +16) (λx +10)= λx 2+(16λ+10) x +160, 将λ1022=x 代入上式,得)58(10445000λλ++=S .当λλ58=时,即)185(85<=λ时,S 取得最小值.此时,高:cm 884840==λx ,宽:cm 558885=⨯=x λ.(2)如果23[,]34λ∈,可设122334λλ≤<≤,则由S 的表达式得12()()S S λλ-=44)5858(102211λλλλ--+=)58)((104421121λλλλ--由于2538≥>,故580->因此12()()0S S λλ-<,所以()S λ在区间[43,32]内单调递增. 从而,对于23[,]34λ∈,当λ=32时,()S λ取得最小值答:画面高为88cm ,宽为55cm 时,能使所用纸张面积最小.如果要求23[,]34λ∈,当λ=32时,所用纸张面积最小.。

相关文档
最新文档