2A概率与统计复习材料答案.docx
概率论与数理统计第二版课后答案
概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。
在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。
2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。
–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。
–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。
1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。
–基本事件:对于只包含一个样本点的事件,称为基本事件。
–复合事件:由一个或多个基本事件组成的事件称为复合事件。
2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。
随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。
–连续型随机变量:其取值在某个区间内的任意一个值。
1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。
如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。
–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。
2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。
–交:事件A和事件B同时发生,记作A∩B。
–差:事件A发生而事件B不发生,记作A-B。
第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。
–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。
全国自学考试概率论与数理统计二历年真题及答案
全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计第二版参考答案
习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/6 5/36 1/91/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CC C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CC C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++=(2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+=2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314kk lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯=1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X CC ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X CC C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5) 01.51.5{0}0!P X e-=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)122222{2}1{0}{1}1130!1!P X P X P X e ee---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
概率论与数理统计第二章课后习题答案
概率论与数理统计课后习题答案第二章1.一袋中有5 只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最 大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========2.设在15只同 类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分 布律;(2) X 的分 布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为(2) 当x <0时, F (x )=P (X ≤x )=0当0≤x <1时 ,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时 ,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时, F (x )=P (X ≤x )=1 故X 的分布函 数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)3.射手向目标独立 地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函 数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的 分布律为分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故 e a λ-=(2) 由分布律的性质知111()NNk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1)(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2)=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降 落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【 解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似2000.02 4.np λ==⨯=41e 4()0.01!kk N P X N k -∞=+≥<∑ 查表得N ≥9.故机场至少应配备9条跑道.7.有 一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.000 1,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊 松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0 001)8.已知在五重贝努里试验中成功的次数X 满足P {X = 1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则故所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率; ( 2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1 )32(0)eP X -== (2) 52(1)1(0)1e P X P X -≥=-==-11.设P { X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mm m p p --44)1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -= 即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+321131313()()444444k -=++++213141451()4==- 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑ 即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑ 即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰得||01e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰11e 2x -=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==⎰33128[(150)]()327p P X =>==(2) 1223124C ()339p == (3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰100100()d ()d x f t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰ 故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+=19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1)求P{2<X≤5},P{-4<X≤10},P{|X|>2},P{X>3}; (2)确定c使P{X>c}=P{X≤c}.【解】(1)23353(25)222XP X P---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222XP X P----⎛⎫-<≤=<≤⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X>=>+<-323323222215151122220.691510.99380.6977X XP PΦΦΦΦ-----⎛⎫⎛⎫=>+<⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522XP X PΦ->=>=-=-(2) c=322.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06XP X P⎛-⎫->=>⎪⎝⎭1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤200}≥0.8,允许σ最大不超过多少?【解】120160160200160 (120200)XP X Pσσσ---⎛⎫<≤=<≤⎪⎝⎭404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故4031.251.29σ≤=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩ (1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1eP X F λ-≤==-33(3)1(3)1(1e)e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d x F x f t t -∞=⎰111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e -|x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x x x bx 试确定常数a ,b ,并求其分布函数F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰知||021e d 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2xx x x ==⎰当1≤x <2时01211()()d 0d d d x xF x f x x x x x x x -∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩27.求标准正态分布的上α分位点, (1)α=0.01,求z α; (2)α=0.003,求z α,/2z α. 【解】(1) ()0.01P X z α>=即 1()0.01z αΦ-= 即 ()0.09z αΦ= 故 2.33z α= (2) 由()0.003P X z α>=得1()0.003z αΦ-=即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α-Φ=即 /2()0.9985z αΦ= 查表得 /2 2.96z α=求Y =X 的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====29.设P {X =k }=(2)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-=2(1)1(1)3P Y P Y =-=-==30.设X ~N (0,1).(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )xY F y P Y y P y P X y =≤=≤=≤ln ()d yX f x x -∞=⎰故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ⎛-⎛⎫=≤=≤≤ ⎪ ⎝⎭⎝()d X f x x =故 d ()()d Y Y XX f y F y f f y ⎤⎛==+⎥ ⎥⎝⎦(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+- 2/2,0y y -=> 31.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数; (2) Z =-2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e)1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )XY F y P y P X y =≤=≤ln 0d ln yx y ==⎰当y ≥e 时()(e )1XY F y P y =≤=即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他 (2) 由P (0<X <1)=1知(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z z P X P X -=≤-=≥ /21/2ed 1e z z x --==-⎰即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩032.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x xx x -=+⎰⎰ 222211arcsin 1πarcsin ππy y =+--()()2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为221,01π()10,Y y f y y⎧<<⎪=-⎨⎪⎩其他 33.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项.【解】由lim ()1x F x →∞=知②填1。
概率论与数理统计(第二版)课后答案
各章大体题详解习题一一、选择题1. (A )A B A B B ⊂−−→=;(B )B A A B A B B ⊂−−→⊂−−→=; (C )AB A B A B B φ=−−→⊂−−→=;(D )AB B A φ=−−→⊂ 不必然能推出A B B =(除非A B =)所以 选(D )2. ()()()()()()()P A B P AB P AB P A P B P A P B -==--++ ()()()P A P B P AB =+-所以 选(C )3. )()()()()()()()|(A P B P A P B P A P B P AB P B A P B A ≥−→−==−→−⊂所以 选(B )4. 1)(0)()()()()(==−→−==B P A P B P A P AB P A P 或 所以 选(B )5. (A )若B A =,则φ=AB ,且φ==A A B A ,即B A ,不相容(B )若φ≠⊃B A ,且Ω≠A ,则φ≠AB ,且φ≠=A B A ,即B A ,相容 (C )若φφ≠=B A ,,则φ=AB ,且φ≠=B B A ,即B A ,相容 (D )若φ≠AB ,不必然能推出φ=B A 所以 选(D )6. (A )若φ≠AB ,不必然能推出)()()(B P A P AB P =(B )若1)(=A P ,且φ≠⊃B A ,则)()()()(B P A P B P AB P ==,即A,B 独立(C )若φ=AB ,1)(0<<A P ,1)(0<<B P ,则)()()(B P A P AB P ≠ (D )若1)(=A P ,则A 与任何事件都彼此独立 所以 选(B )7. 射击n 次才命中k 次,即前1-n 次射击恰好命中1-k 次,且第n 次射击时命中目标,所以 选(C )二、填空题8. C A C A C A A C A C A C A C A )())((= C C C C A A C C A C A C ==== ))(()()( 所以 C B =9. 共有44⨯种大体事件,向后两个邮筒投信有22⨯种大体事件,故所求概率为414422=⨯⨯ 10. 设事件A 表示两数之和大于21,则 样本空间}10,10|),{(<<<<=Ωy x y x ,}10,10,21|),{(<<<<>+=y x y x y x A 872121211=⋅⋅-==ΩS S P A 11. 由1.0)(,8.0)(=-=B A P A P ,得7.0)(=AB P ,故3.0)(=AB P 12. 由4.0)(,3.0)(,2.0)(===B A P B P A P ,得1.0)(=AB P ,故2.0)()()(=-=AB P B P A B P 13. 2.0)|()()(==A B P A P AB P ,故8.0)|()()(==B A P AB P B P14. )()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P +---++=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=2719=15. 由于A,B 彼此独立,可得91)()()(==B P A P B A P ,)()(B A P B A P =,于是31)()(==B P A P ,故32)(=B P 三、计算题16.(1))},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(T T T H T T T H T H H T T T H H T H T H H H H H =Ω;(2)}3,2,1,0{=Ω;(3)}1|),{(22≤+=Ωy x y x ;(4)}5:0,5:1,5:2,5:3,5:4,4:5,3:5,2:5,1:5,0:5{=Ω 17.(1)C B A ; (2))(C B A ; (3)C B A C B A C B A ; (4)AC BC AB ; (5)C B A ; (6)C B A ; (7)ABC18. 法一,由古典概率可知,所求概率为:2016420109⋅C ;法二,由伯努利定理可知,所求概率为:1644209.01.0⋅⋅C19. 只有唯一的一个六位数号码开能打开锁。
文科数学专题概率与统计(学案)高考二轮复习资料含答案
文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.一、统计与统计案例1.抽样方法三种抽样方法的比较类别共同点各自特点相互联系适用范围总体中的个体数较简单随机抽样抽样过程中将总体均分成几部分,每个个体被系统抽样抽取的概率部分抽取相等将总体分成几层,分层分层抽样进行抽取2.统计图表(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数x=(x1+x2+?+xn).n1-2-2-22方差s=[(x1-x)+(x2-x)+?+(xn-x)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量x和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=bx+a,则?^?b=-?? ?x-x??^-^-?a=y-bxni=1nii=1--? ?xi-x??yi-y?=--?xiyi-nxyi=1nn22i-nx?x2-i=1.--注意:回归直线一定经过样本的中心点(x,y),据此性质可以解决有关的计算问题.5.回归分析n? ?xi-x??yi-y?i=1--r=n,叫做相关系数.? ?xi-x?2? ?yi-y?2i=1i=1-n-相关系数用来衡量变量x与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为x1 x2 总计2y1 a c a+c 2y2 b d b+d 总计a+b c+d a+b+c+d ?a+b+c +d??ad-bc?则K=,?a+b??c+d??a+c??b+d?若K3.841,则有95%的把握说两个事件有关;若K6.635,则有99%的把握说两个事件有关;若K2.706,则没有充分理由认为两个事件有关. 7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0. 8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B 互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2021课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度. D的测度1 41C.2A.Bπ 8πD.4B.【变式探究】(2021・江苏卷)记函数f(x)=6+x-x的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是________.5 93-?-2?52由6+x-x≥0,解得-2≤x≤3,则D=[-2,3],则所求概率为=.5-?-4?9【变式探究】从区间[0,1]随机抽取2n个数x1,x2,?,xn,y1,y2,?,yn,构成n个数对(x1,y1),(x2,y2),?,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n2m2nB.mC.4mn2m D.nCmπ4m4m由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2021・全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )。
概率论与数理统计习题及答案第二章.doc
习题 2-21. 设 A 为任一随机事件 , 且 P ( A )= p (0< p <1). 定义随机变量1, 发生 ,XA0, 不发生 .A写出随机变量 X 的分布律 .解 { =1}= ,{ =0}=1- p .P X p P X或者X 0 1P1- pp2. 已知随机变量X 只能取 -1,0,1,2 四个值 , 且取这四个值的相应概率依次为1 , 3 , 5 , 7. 试确定常数 c ,并计算条件概率 P{ X1 | X0} .2c 4c 8c 16c解 由离散型随机变量的分布律的性质知,1 3 571,2c4c8c 16c37所以 c .161P{ X1}8所求概率为{ <1|X0 }=2c.P XP{ X 0}1 5 7252c 8c 16c3. 设随机变量 X 服从参数为 2, p 的二项分布 , 随机变量 Y 服从参数为 3, p 的二项分布 ,若P{X ≥1}5, 求P{Y ≥1}.9解 注意 p{x=k}=C n k p k q n k , 由题设 5P{ X ≥1}1 P{ X0} 1 q 2 ,9故 q1 p2 从而.3P{Y ≥1} 1 P{ Y 0}1 (2 )3 19 .3 274. 在三次独立 的重复试验中 , 每次试验成功的概率相同 , 已知至少成功一次的概率19为, 求每次试验成功的概率 .27解设每次试验成功的概率为p , 由题意知至少成功一次的概率是19,那么一次都27没有成功的概率是8 . 即 (1 p)38 ,故p = 1 .272735. 若 X 服从参数为的泊松分布 ,且P{X1} P{ X 3}, 求参数 .解 由泊松分布的分布律可知 6 .6. 一袋中装有 5 只球 , 编号为 1,2,3,4,5.在袋中同时取 3 只球, 以 X 表示取出的 3 只球中的最大号码 , 写出随机变量 X 的分布律 .解 从 1,2,3,4,5 中随机取 3 个,以 X 表示 3 个数中的最大值, X 的可能取值是 3,4,5,在 5 个数中取 3 个共有C 5310 种取法 .{ =3} 表示取出的 3 个数以 3 为最大值, P{=3}=C 22= 1;C 53 10{ =4} 表示取出的 3 个数以 4 为最大值, P{=4}=C 323 ;C 53 10 { =5} 表示取出的 3 个数以 5 为最大值, P{=5}=C 423 .5 C 53X 的分布律是X 3 45P13310105习题 2-31. 设 X 的分布律为X -11P求分布函数( ), 并计算概率 { <0},{ <2},{-2 ≤ <1}.F xPXPXPX0, x 1, 解 (1)0.15, 1≤ x 0,F ( x )=0≤ x 1,0.35, 1,x ≥1.(2) P { X <0}= P { X =-1}=; (3) P { X <2}= P { X =-1}+ P { X =0}+P { X =1}=1; (4) P {-2 ≤ x <1}= P { X =-1}+ P { X =0}=.2. 设随机变量 X 的分布 函数为( ) = + arctan x - ∞< <+∞.F xA Bx试求 : (1) 常数 A 与 B ; (2)X 落在 (-1, 1] 内的概率 .解 (1) 由于 (- ∞)=0,(+∞)=1, 可知F FA B()1 12A, B.A B( )122于是F ( x) 1 1arctan x, x .2(2) P{ 1X ≤1} F (1) F ( 1)1 1 1 1arctan( 1))( arctan1) (2 21 1 1 1 () 1 .2424 23. 设随机变量 X 的分布函数为F ( x )=0,x 0, x,0≤x 1,1,x ≥1,求 P { X ≤ -1}, P { < X <}, P {0< X ≤ 2}.解 P {X ≤ 1} F( 1) 0,P {< X <}= F - F {}- P { X =}=, P {0< X ≤2}= F (2)- F (0)=1.5.X 的绝对值不大于1;P{ X1}1 1}1 假设随机变量 ,P{X; 在事件{ 1 X 1} 出现的条件下 ,84X 在 (-1,1) 内任一子区间上取值的条件概率与该区间的长度成正比 . (1) 求 X 的分布函数 F ( x) P{ X ≤ x }; (2)求 X 取负值的概率 p .解 (1) 由条件可知 ,当 x1时,F ( x) 0 ;当 x 1 时 , F ( 1) 1;当 x 1时 , 8F (1)= P { X ≤ 1}= P ( S )=1.所以P{ 1 X1} F (1) F ( 1)P{X 1}1 1 514.88易见 , 在 X 的值属于 (1,1) 的条件下 , 事件 { 1 X x} 的条件概率为P{ 1 X ≤ x | 1X 1} k[ x( 1)],取 x =1 得到 1= k (1+1),所以 k = 1.2x 1 . 因此P{ 1 X ≤x | 1 X 1}于是 , 对于1 x 1 ,有2P{ 1X ≤ x} P{ 1X ≤ x, 1 X 1}P{ 1 X 1} P{ 1 X ≤ x | 1 X 1}5 x 1 5x 5 . 对于 x ≥1,8 2 16有 F ( x) 1. 从而0, x 1, F ( x)5x 7 , 1x 1,161, ≥x1.(2) X 取负值的概率p P{ X0} F(0) P{ X0} F (0) [F(0)F (0 )] F (0 )7 . 习题 2-4161. 选择题设 f ( x)2x, x [0, c],则 f ( x) 是某一随机变量的概率(1)0,x如果 c =(),[0, c].密度函数 .(A)1(B)1.(C) 1.(D)3.2.3c2f ( x)dx 11 ,于是 c 1解 由概率密度函数的性质可得2xdx, 故本题应选 (C ).(2) 设 X ~ N (0,1), 又常数 c 满足 P{ X ≥ c} P{ X c} , 则 c 等于 ( ).(A) 1.(B) 0.(C)1 (D) -1..2解因为P{ X ≥ c} P{ X c} ,所以 1 P{ X c} P{ X c} , 即2P{ Xc} 1, 从而 P{X c} 0.5 , 即 ( c) 0.5 , 得 c =0. 因此本题应选 (B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).cos x, x [0, ],1x2,(A)f (x)(B)f (x),0,其它 .20,其它 .1( x) 2x≥22e,≥ 0,e , x0, (C)f (x) (D)f ( x)20, x0.0,x 0.解 由概率密度函数的性质f ( x)dx 1 可知本题应选 (D).(4) 设随机变量X ~ N(,42) , Y~N(,52), P 1P{X ≤4 },P 2 PY ≥ 5 }, 则( ).(A) 对任意的实数 , P 1P 2 . (B) 对任意的实数 , P 1 P 2 .(C) 只对实数的个别值 ,有P 1 P 2 . (D) 对任意的实数 , P P .12解 由正态分布函数的性质可知对任意的实数, 有P 1( 1) 1 (1) P 2 .因此本题应选 (A).Xf xf (x)f ( x)F x(5) 设随机变量 的概率密度为 , 且 , 又( )为分布函数 , 则对任意实数 a , 有 ( ).a(A)F ( a) 1∫0 f (x)dx .(B)F ( a)(C) F ( a)F ( a) . (D) Fa解由分布函数的几何意义及概率密度的性质知答案为1 a2 ∫0f ( x)dx.2F ( a) 1 .(B).(6) 设随机变量X 服从正态分布N (1, 12 ) , Y 服从正态分布 N ( 2, 22) ,且P{ X11} P{ Y21},则下式中成立的是 (). (A) σ1 < σ2 .(B)σ 1 > σ 2 .(C)μ1 <μ2 .(D)μ1 >μ2 .解 答案是 (A). XN(0 1)u 满足(7) 设随机变量 服从正态分布对给定的正数, 数(0,1),P{ X u }, 若P{X x}, 则 x 等于 ().(A)u .(B)u.(C)u 1-.(D)u 1.2122解 答案是 (C).2. 设连续型随机变量 X 服从参数为的指数分布 ,要使P{ kX 2k}1成立 ,4应当怎样选择数 k ?解 因为随机变量 X 服从参数为的指数分布 , 其分布函数为F ( x)1 e x , x 0,0,x ≤ 0.由题意可知1 P{ k X 2k} F(2k) F ( k) (1 e2 k )(1 e k ) e k e 2 k .4于是kln 2.3. 设随机变量 X 有概率密度f ( x) 4 x 3 , 0 x 1, 0,其它 ,要使 P{ X ≥ a}P{ Xa} ( 其中 a >0) 成立 , 应当怎样选择数 a ?解由条件变形 , 得到 1P{ Xa} P{ Xa},可知P{ X a} 0.5 ,于是a3dx 0.5,因此 a14x.424. 设连续型随机变量 X 的分布函数为0,x 0,F ( x)x 2 , 0≤x ≤1,1,x 1,求: (1)X 的概率密度 ; (2) P{0.3 X 0.7} .解 (1)根据分布函数与概率密度的关系F ( x)f ( x) ,可得f (x)2x, 0 x 1,0, 其它 .(2)P{0.3 X0.7}F (0.7) F (0.3) 0.720.320.4 .5. 设随机变量 X 的概率密度为2x,0≤ x ≤1,f ( x ) =其它 ,0,求P {X ≤ 1}与P {1< X ≤2}.241}11 1解P{X ≤ 22xdx x 22 ;24P{ 1 X ≤2}1 2 xdx x 2 1 15 .1444 166. 设连续型随机变量 X 具有概率密度函数x,0 x ≤1,f ( x) Ax,1x ≤2,0,其它 .求 : (1) 常数 A ; (2) X 的分布函数 F ( x ).解 (1) 由概率密度的性质可得11 2( A x)dx1 x2xdx12于是A 2;(2) 由公式 F ( x) xf ( x)dx可得当 x ≤0 时 , F ( x) 0 ; 当 0x ≤1时 ,F( x)x1 x2 ;xdx2当 1x ≤2时 ,F ( x)1x(2xdx1当 x >2 时,F ( x) 1.0,1 x2 , 所以F ( x)2 x 22x1,2112[ Ax x 2]A 1,21x 2 x)dx 2x1;2x ≤ 0,0 x ≤ 1,1 x ≤ 2,1,x2.7. 设随机变量 X 的概率密度为1f ( x) 4( x 1), 0 x 2,0, 其它 ,对 X 独立观察 3 次, 求至少有 2 次的结果大于 1 的概率 . 解根据概率密度与分布函数的关系式P{ a X ≤ b} F (b) F ( a)b f ( x)dx ,a可得P{ X 1} 21 ( x 1)dx 54.1 8 所以 , 3 次观察中至少有2 次的结果大于 1 的概率为C 2(5)2(3) C 3 ( 5)3 175 .8 8 2568 4x 2 8. 设 X ~U(0,5) , 求关于 x 的方程 4 Xx 2 0 有实根的概率 .解 随机变量 X 的概率密度为1, ≤ x 5,f ( x)50, 其它 ,若方程有实根 , 则16 X 232≥0, 于是 X 2 ≥ 2. 故方程有实根的概率为P { X 2 ≥2}= 1P{ X 2 2}1 P{2 X2}1 21dx0 512 .59. 设随机变量 X ~ N(3,22) .(1)计算 P{2 X ≤5} , P{ 4 X ≤10}, P{| X | 2}, P{X 3};(2)确定 c 使得P{ X c} P{ X ≤ c}; (3) 设 d 满足 P{ X d}≥0.9 , 问 d 至多为多少?解 (1) 由 P { a <x ≤ b }= P { a3 X 3 ≤ b 3 } Φ( b 3 ) Φ( a 3)公式,得到2 2 2 22XΦ(1) Φ( 0.5) 0.5328P,{2< ≤5}=P {-4< X ≤10}= Φ(3.5) Φ( 3.5) 0.9996,P{|X|2}=P{X2} +P{X2}=1 2 32 3Φ() +Φ(2 ) =,2P{ X 3} =1 P{ X ≤3} 1Φ( 3 3 ) 1 Φ(0) = .2(2) 若P{Xc}P{ X ≤ c} , 得 1P{ X ≤ c}P{ x ≤ c} ,所以P{ X ≤ c} 0.5由 Φ(0) =0 推得c3 0, 于是 c =3.2 Φ(d3(3)P{ X d}≥ 0.9 即1)≥ 0.9 , 也就是2Φ( d 3 )≥ 0.9 Φ(1.282) ,2因分布函数是一个不减函数, 故(d 3)≥ 1.282,2解得d ≤ 3 2 ( 1.282) 0.436 .10. 设随机变量 X ~ N (2, 2) , 若 P{0 X4} 0.3 , 求 P{X 0} .解 因为X ~ N2,所以 ZX~ N(0,1). 由条件 P{0 X4} 0.3可知0.3 P{0 X4}0 2X 24 22(2P{}( )) ,于是 222 ( )10.3从而 ( )0.65 .,P{X 0}P{X202}(22 所以) 1( ) 0.35.习题 2-5 1. 选择题(1) 设 X 的分布函数为 F ( x ), 则 Y 3 X 1 的分布函数 G y 为( ).(A) F (1 1 (B)F (3 y 1) .y) .3311(C)3F ( y) 1.(D)F ( y).3 3解 由随机变量函数的分布可得 , 本题应选 (A).(2) 设X~N 01 ,令YX 2, 则Y ~().(A)N( 2, 1). (B)N(0,1) . (C) N( 2,1) . (D)N (2,1) .解 由正态分布函数的性质可知本题应选 (C).2. 设 X ~ N(1,2), Z 2X 3 , 求 Z 所服从的分布及概率密度 . 解 若随机变量 X ~ N(,2) , 则 X 的线性函数 YaX b 也服从正态分布 , 即Y aX b ~ N( a b,( a ) 2). 这里 1,2 , 所以 Z ~ N(5,8) .概率密度为1 ( x 5) 2f (z)16,x.e43. 已知随机变量 X 的分布律为X -1137P(1) 求 =2- X 的分布律; (2) 求 =3+ 2分布律 .YYX解 (1)2-X-5-1123P(2)3+X 23 41252P4. 已知随机变量 X 的概率密度为1, 1 x 4,f X ( x)=2 x ln 20,其它,且 Y =2- X , 试求 Y 的概率密度 .解 先求Y的分布函数F Y ( y):F Y ( y) = P{ Y ≤ y}P{2X ≤ y}P{X ≥2 y}2 y1 P{ X 2y} =1-f X ( x)dx.于是可得 Y 的概率密度为1, 1 2 y4,f Y ( y)f X (2y)(2 y)=2(2 y) ln 20,其它 .1, 2 y1,f Y ( y)即2(2 y) ln 20,其它 .5. 设随机变量 X 服从区间 (-2,2) 上的均匀分 布, 求随机变量 YX 2 的概率密度 .解 由题意可知随机变量 X 的概率密度为f X ( x)1 ,2 x2,40, 其它 .因为对于 0<y <4,F Y ( y) P{ Y ≤ y} P{ X 2 ≤ y} P{y ≤ X ≤ y }F X ( y ) F X ( y ) .于是随机变量YX 2 的概率密度函数为f Y ( y)1 f X ( y )11 , 0 y 4.f X ( y )y4 2 y2 yf ( y)1 , 0 y 4,即4 y0,其它 .总习题二1. 一批产品中有 20%的次品 , 现进行有放回抽样 , 共抽取 5 件样品 . 分别计算这 5 件样品中恰好有 3 件次品及至多有 3 件次品的概率 .解 以 X 表示抽取的 5 件样品中含有的次品数 . 依题意知 X ~ B(5,0.2) .(1) 恰好有 3 件次品的概率是 P X C 5 0.2 3 0.8 .{ =3}= 3 23(2) 至多有 3 件次品的概率是C 5k 0.2k 0.85 k .k 02. 一办公楼装有 5 个同类型的供水设备 . 调查表明 , 在任一时刻 t 每个设备被使用 的概率为 . 问在同一时刻(1) 恰有两个设备被使用的概率是多少? (2) 至少有 1 个设备被使用的概率是多少? (3) 至多有 3 个设备被使用的概率是多少?(4) 至少有 3 个设备被使用的概率是多少?解 以 X 表示同一时刻被使用的设备的个数,则X ~B (5,,{ = }=k k5 kP X kC 50.1 0.9, k =0,1, ,5.(1) 所求的概率是 P XC 50.1 0.90.0729 ;{ =2}=223(2)所求的概率是 P X(1 0.1)5 0.40951 ;{ ≥ 1}=1(3)所求的概率是{ ≤ 3}=1-P{ =4}- { =5}=;P XXP X(4) 所求的概率是 P { X ≥ 3}= P { X =3}+ P { X =4}+ P { X =5}=.3. 设随机变量 X 的概率密度为xkf ( x)e , x ≥0,0, x0,1且已知k θ, 求常数.,2k x解由概率密度的性质可知dx1得到 k =1.e1x1由已知条件1, 得.1 e dx2ln 24. 某产品的某一质量指标 X ~ N(160, 2 ) , 若要求 P{120 ≤X ≤ 200} ≥, 问允许最大是多少 ?解 由P{120 ≤ ≤ 200} P{ 120 160 X160 200 160X≤ ≤ }= ( 404040) (1( ))2 ( ) 1≥,( 40 ) ≥ , 40最大值为 .得到 查表得 ≥ , 由此可得允许5.设随机变量 X 的概率密度为( x ) = e -| x | , - ∞< <+∞.φX A x试求 : (1) 常数 ; (2) {0< <1}; (3)的分布函数 .AP X解 (1)由于(x)dxAe |x|dx 1, 即2 Ae x dx 1故 2A = 1, 得1到A = .2所以φ( x ) =1 e -|x |.2(2) P {0< X <1} = 11 xdx1 ( e x 11 e 10.316.e2 ) 220 (3)因为 F ( x)x1 e |x| 得到2 dx,11当 x <0 时 , F ( x)x x x ,2 e dx 2e当 x ≥0 时,F ( x)1 0x1 xe x1 x,2e dx2dx 1 e21e x ,x0,所以 X 的分布函数为F ( x)21 ex,1 x ≥ 0.2。
概率论与数理统计第二版课后答案
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
高三数学二轮复习----概率与统计答案
高考数学二轮复习考点解析四:概率与统计某某市同泽高级中学 谷凤军2008年4月7日一、方法概述1、概率与统计已成为高考的一个重点考查内容,其基本考点有随机事件的概率,抽样方法,总体分布的估计;理科则还有离散型随机变量的分布列,数学期望与方差,正态分布等。
试题以实际问题为背景,贴近生活,难度适中。
2、 解决概率问题,一定要根据有关概念,判断是否是等可能事件,或互斥事件,或相互独立事件,或是独立重复试验,以便选择正确的计算方法。
解题过程中,要明确条件中“至少有1个发生”、“至多有1个发生”、“恰有1个发生”、“都发生”、“都不发生”和“不都发生”等词语的意义,以及它们概率之间的关系和计算公式。
3、总体、样本及样本频率是统计中最基本的概念,通过样本可对总体进行估计。
4、在求某些较复杂的概率时,通常有两种办法:一是将所求事物的概率化成一些彼此互斥的事件的概率之和;二是先求此事件的对立事件的概率。
5、 要注重概率、统计知识与其它知识的互相渗透,是近几年来高考的命题方向,通常与函数、数列、不等式、方程等知识相结合,同时它的应用性极强,需要学会建立准确的数学模型。
6、 对于随机变量,则必须弄清楚它是服从哪一类型分布,能够写出分布列,求出数学期望和方差,它们是随机变量最常用也是最重要的数学特征,它们分别刻划了随机变量的平均值水平和取值分布离散的程度。
二、各地模拟题汇编1、(08年东北育才三模)现有五道数学试题,记为A 、B 、C 、D 、E 和它们对应的答案为e d c b a 、、、、,把A 、B 、C 、D 、E 和e d c b a 、、、、分别写成左右两列,现有一答题者,随机用5条线段把左、右全部连接起来,构成一个“一一对应”已知连对一个得1分,连错一个得0分。
(1)求答题者得分的分布列; (文科)求恰连对一个的概率。
(2)求所得分数的期望。
(文科)求五个都练错的概率。
设答对数为η,则η=0,1,2,3,5(1)记得分为ξ,则ξ=0,1,2,3,5 1分∴12011)5()5(55=====A p p ηξ121)3()3(5535=====A C p p ηξ612)2()2(5525=====A C p p ηξ839)1()1(5515=====A C p p ηξ3011836112112011)0()0(=----====ηξp p 8分 ∴所求得分数ξ的分布列为9∴(2)112015121361283130110=⨯+⨯+⨯+⨯+⨯=ξE 12分 2、(本小题满分13分)一个口袋里面装有2个白球4个黑球,这些球除颜色差别外没有其它的区别. 现在从袋中随机取出一个来记好颜色,然后放回并搅匀,之后再随机取球记色,再放回搅匀,…. 记数列1n :n n na a 第次取得白球-1第次取得黑球,数列n a 的前n 项和记为nS ①.求事件“4S =2”的概率; ②求4S 取值的分布列和数学期望4ES . 解:(1)事件42S =只能是“四次取球中出现三次白球一次黑球”,每次取得白球的概率为2163=;取得黑球的概率是4263=…………..2’ 于是3344128(2).3381p S C ⎛⎫⎛⎫==⋅⋅= ⎪ ⎪⎝⎭⎝⎭………………………………..2’ (2)4S 可能的取值有4,2,0,2,4--40441216(4)(3381p S p C ⎛⎫⎛⎫=-==⋅⋅= ⎪ ⎪⎝⎭⎝⎭四次全黑); 441232(2)(3381p S p C ⎛⎫⎛⎫=-==⋅⋅=⎪⎪⎝⎭⎝⎭131三黑一白); 4412248(0)(338127p S p C ⎛⎫⎛⎫===⋅⋅==⎪⎪⎝⎭⎝⎭222二黑二白); 44128(2)(3381p S p C ⎛⎫⎛⎫===⋅⋅= ⎪ ⎪⎝⎭⎝⎭313一黑三白); 44121(2)(3381p S p C ⎛⎫⎛⎫===⋅⋅= ⎪⎪⎝⎭⎝⎭404四次皆白),…………………5’于是4S 取值的分布列为………………………………………….2’4163224814(4)(2)02481818181813ES =-⨯+-⨯+⨯+⨯+⨯=-…………2’ 3、(本小题满分12分)有10X 形状、大小相同的卡片,其中2X 上写着数字0,另外5X 上写着数字1,余下3X 上写着数字2。
概率论与数理统计复习题答案
第一章 随机事件及其概率复习题一. 单选1. D2. A3. B4. C5. B6. D7. A8. B9. C 10. A. 二. 填空1. 0.9,2. 11(1)n p --, 3. 0.8, 4. 7/8, 5. 1/6, 6. 1/3, 7. 13/18, 1/2, 8. 0.863, 0.435, 9. 0.06, 10. 0.75. 三.计算与证明 1. 解: 6106610!()10104!P P A ==, 6668()0.810P B ==.2. 解:(1)4134411111(12)C P +=-=0.0372;(2)4124412!110.4271;12128!P P =-=-=(3)4132234444444666610.1004;0.1004.77C C C C P P +++=-===或3.解: ,0()()0,()0.ABC AB P ABC P AB P ABC ⊂∴≤≤=∴=则A ,B ,C 至少发生一个的概率为()()()()()()()()111115000.625.44416168P A B C P A P B P C P AB P BC P AC P ABC =++---+=++---+==A ,B ,C 全不发生的概率为3()()1()0.375.8P A B C P A B C P A B C =⋃⋃=-⋃⋃==4.解:设A 表示任意取出一个产品是次品,123,,B B B 分别表示取出一、二、三车间生产的产品,则(1)由全概率公式得112233()()(|)()(|)()(|)0.450.050.350.040.20.020.0405;P A P B P A B P B P A B P B P A B =++=⨯+⨯+⨯=(2) 由贝叶斯公式得 111()(|)0.450.05(|)0.556.()0.0405P B P A B P B A P A ⨯===5.解:设12,A A 分别表示第一、第二次取出的零件是一等品,12,B B 分别表示取出第一、第二箱中的零件,则 (1)由全概率公式得1111212()()(|)()(|)0.50.20.50.60.4;P A P B P A B P B P A B =+=⨯+⨯=21121122122111()()(|)()(|)(2)(|)()()11091817()2504930290.4856.0.4P A A P B P A A B P B P A A B P A A P A P A +==⨯⨯+⨯==6.证明:{()}()()()()P A B C P AC BC P AC P BC P ABC ⋃=⋃=+- =()()()()()()()P A P C P B P C P A P B P C +- =(()()())()()()P A P B P AB P C P A B P C =+-=⋃ 故 A B ⋃与C 独立.第二章随机变量及其分布复习题一 选择题1. B2. B3. C4. D5. C 二 填空题 1.22(),0,1,2,;!kP X k e k k -=== 0.592.27193. ,1,21π==B A2111,,21x R xπ∈+4.,65,61 分布律:X -1 1 2P 616221三 解答题1. 解: X 的分布律为 X 1 2 3 4 P643764196476412. 解: X 的分布律为 1(),1,2,3,.k P X k q p k -=== 3. 解:设X 表示两次调整之间生产的合格品数,则X 的分布律为1()(1),0,1,2,.k P X k p p k -==-=4. 解: X 的概率分布为55()0.250.75,0,1,2,3,4,5.k k k P X k C k -=== 设A 表示“5道选择题至少答对两题”,则()1(0)(1)0.3672.P A P X P X =-=-==5. 解:1)一天中必须有油船转走意味着“X .>3”242(3)0.143;!kk P X ek ∞-=>==∑(查泊松分布表)2) 设设备增加到一天能为y 艘油船服务,才能使到达港口的90%的油船可以得到服务.则21212()0.910.9!20.1,15 4.!kk y kk y P X y ek ey y k ∞-=+∞-=+≤≥⇒-≥⇒≤+≥⇒≥∑∑反查泊松分布表得6. 解:21)()()31()31(3131=+=+⇒>=<⎰⎰∞dx b ax dx b ax X P X P47,23=-=⇒b a7.170170170:1)()0.01()()0.99666170(2.33)0.99 2.33184.6X h h P X h P h h ---≥<⇒<=Φ≥-Φ≈⇒≥⇒≥解查表得2)(182)P X ≥=1821701()1(2)0.02,6--Φ=-Φ≈设A 表示“100个男子中与车门碰头人数不多于2个”676.002.098.002.098.098.0)(2982100991100100=++=C C A P .8. 解:(1) X 的分布函数为 1,02()11,02xx e x F x e x -⎧-∞<≤⎪⎪=⎨⎪-<<+∞⎪⎩011(2)(1)(0)2211(1)(0),22xxP Y P X e dx P Y P X e dx ∞--∞==>===-=≤==⎰⎰故Y 的概率分布律为 Y -1 1P 1/2 1/2Y 的分布函数为 0,11(),1121,1Y y F y y y <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩ 第三章 多维随机变量及其分布复习题1. 解:()1由X 和Y 相互独立可知()()(),P X i Y j P X i P Y j =====,i =1,2,3; 0j =,1,2.则X 和Y 的联合概率分布为YX0 1 212311218 124 16 14 11211218124()2()()313P X Y P X Y +≠=-+=()()()()11,22,13,0P X Y P X Y P X Y =-==+==+==111951124412248⎛⎫=-++=-=⎪⎝⎭. 2. 解:由二维联合概率分布律及其性质可知:0.40.11a b +++=,即0.5a b += ()*()00.4P X a ==+, ()1P Y =0.1a =+()()10,1P X Y P X Y +====()1,00.5P X Y a b +===+=则由随机事件{0}X =与{1}X Y +=相互独立可得: ()()()01P X X Y =⋂+=()1P Y ==0.1a =+()()01P X P X Y ==+=()()()0.40.50.4a a b a =++=+,即 0.10.5(0.4a a +=+可得:0.2a =,再有()*式得:0.3b =.3. 解:由题意可知(),X Y 的可能取值为()0,0,()0,1,()1,0,()1,1, 则(),X Y 的联合分布律为()0,0P X Y ==()()P A B P A B ==⋃()1P A B =-⋃()()()()1P A P B P AB =-+-1111211461233⎛⎫=-+-=-= ⎪⎝⎭()0,1P X Y ==()()()P AB P B P AB ==-11161212=-=()()()()1,0P X Y P A B P A P AB ====- ()()11,112P X Y P AB ====即YX0 1123 112161124. 解:由题意知Y 的密度函数为(),00,y Y e y f y -⎧>=⎨⎩其他,()12,X X 的可能取值为()0,0,()0,1,()1,0,()1,1,则()12,X X 的联合分布律为()()120,01,2P X X P Y Y ===≤≤()1P Y =≤111y e dy e --==-⎰()()()120,11,20P X X P Y Y P φ===≤>==()()()2121211,01,212y P X X P Y Y P Y e dy ee---===>≤=<≤==-⎰()()()21221,11,22yP X X P Y Y P Y e dy e +∞--===>>=>==⎰,即:2X1X0 1111e -- 012ee--- 2e-5. 解:()1由题意记区域G 的面积为()A G ,则()()1216A G x x dx =-=⎰,所以()()()6,,,0,,x y G f x y x y G∈⎧⎪=⎨∉⎪⎩()2 关于X的边缘密度函数为()()22666,01,0,x x X dy x x x f x f x y dy +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘密度函数为()()()66,01,0,yy Y dx y y y f y f x y dx +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他()3 不独立. 因为当01,01x y ≤≤≤≤时()()(),X Y fx y f x f y ≠.6. 解:()1关于X 的边缘密度函数为()()2012,01,0,x X dy x x f x f x y dy +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘密度函数为()()1211,022,0,y Y y dx y f y f x y dx +∞-∞⎧=-<<⎪==⎨⎪⎩⎰⎰其他 ()2()112211,,22P X Y fx y dxdy -∞-∞⎛⎫<<=⎪⎝⎭⎰⎰111222002131(1).216y dy dx y dy ==-=⎰⎰⎰第四章 随机变量的数字特征复习题一 选择题B D B D C二 填空题1.18.4 2.1 3.0.9 4.6三 计算题 1.解:⎰+∞∞-dx x f )(=⎰20axdx +42()2621bx c dx a b c +=++=⎰242433222856()()()()6233233a b c E X xf x dx xaxdx x bx c dx xx x a b c +∞-∞==++=++=++=⎰⎰⎰P( 1<x<3)=⎰21axdx +⎰+32)(dx c bx =23a+25b+c=43∴11,,144a b c ==-=2解: E(Z)=21E(X)+31E(Y)=67, Cov(X,Y)= X YρDX DY =1,D(Z)=41D(X)+91D(Y)+31cov(X,Y)=3637Cov(X,Z)= cov(X,2X+3Y )= 21D(X)+31cov(X,Y)=65第七章 参数估计复习题1.解 似然函数为 12222221111()(,)2(2)nii i x x n ni ni i L f x e eσσσσπσπσ=--==∑===∏∏,取对数 221122ln ()ln(2)ln 2ln 22nniii i xxL n n n σπσπσσσ===--=---∑∑令2122ln ()022nii xd n L d σσσσ==-+=∑,解得2σ的极大似然估计值为221ˆxσ=.2.解 记12m in(,,...,)n n X X X X *=,此时θ的似然函数等价于1,()0,ni i x n n n e x L x θθθθ=-+**⎧∑⎪≤=⎨⎪>⎩所以只有当n x θ*≤时,才有可能使()L θ取到最大值.又()L θ对n x θ*≤的θ是增函数,故当n x θ*=取到其最大值.即()m ax ()n L x L θθ*>=所以θ的极大似然估计值为 12ˆmin(,,...,)n n x x x x θ*==.3.解 由于[,1]X U θθ+ ,故总体的期望为212E X θ+=,从而得到方程ˆ21,2X θ+= 解得 1ˆ2X θ=-.所以θ的矩估计量为 1ˆ2X θ=-.又111ˆ()()()222E E X E X E X θθ=-=-=-= ,故1ˆ2X θ=-是θ的无偏估计量.4.证明2221122111ˆ[()]()1(2)nniii i ni i i E E XE X nnEX EX nσμμμμ====-=-=-+∑∑∑2222211(2)ni nμσμμσ==+-+=∑故2ˆσ是2σ的无偏估计量。
概率统计复习题答案
概率统计复习题答案一、选择题1. 某随机事件A的概率为0.3,那么它的补事件的概率为:A. 0.7B. 0.6C. 0.9D. 0.5答案:A2. 随机变量X服从正态分布N(μ, σ²),其中μ=0,σ=1,那么P(-1 < X < 1)的值最接近:A. 0.6827B. 0.9545C. 0.9772D. 0.9997答案:B3. 一组数据的平均数是50,标准差是10,那么这组数据的方差是:A. 5B. 10C. 100D. 1000答案:C二、填空题1. 假设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么P(X=3)等于______。
(答案:0.2668)2. 假设随机变量Y服从泊松分布P(λ),其中λ=2,那么P(Y=1)等于______。
(答案:0.2707)三、简答题1. 请简述什么是大数定律。
答案:大数定律是概率论中的一个概念,它描述了随着试验次数的增加,样本均值会趋近于总体均值的性质。
具体来说,如果进行足够多次的独立同分布的随机试验,那么这些试验的平均结果会越来越接近总体的真实均值。
2. 请解释什么是中心极限定理。
答案:中心极限定理是概率论中的一个重要定理,它指出了在一定条件下,大量相互独立的随机变量之和经过标准化后,其分布趋近于正态分布,无论这些随机变量本身是否服从正态分布。
四、计算题1. 某工厂生产的零件,其长度服从正态分布N(100, 25)。
求长度超过105mm的零件所占的比例。
答案:首先计算Z值,Z = (105 - 100) / √25 = 2。
然后查标准正态分布表,得到P(Z > 2) ≈ 0.0228。
因此,长度超过105mm的零件所占的比例约为2.28%。
2. 某次考试的分数服从正态分布N(70, 16),求分数在65到85之间的学生所占的比例。
答案:首先计算两个Z值,Z1 = (65 - 70) / √16 = -0.5,Z2 = (85 - 70) / √16 = 1.5。
概率论与数理统计第二章课后习题及参考答案
概率论与数理统计第二章课后习题及参考答案1.离散型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.4,1,42,7.0,21,2.0,1,0)()(x x x x x X P x F 求X 的分布律.解:)0()()(000--==x F x F x X P ,∴2.002.0)01()1()1(=-=----=-=F F X P ,5.02.07.0)02()2()2(=-=--==F F X P ,3.07.01)04()4()4(=-=--==F F X P ,∴X 的分布律为2.设k a k X P 3()(==, ,2,1=k ,问a 取何值时才能成为随机变量X 的分布律.解:由规范性,a a a n n k k 2321]32(1[32lim )32(11=--=⋅=+∞→∞+=∑,∴21=a ,此时,k k X P 32(21)(⋅==, ,2,1=k .3.设离散型随机变量X 的分布律为求:(1)X 的分布函数;(2)21(>X P ;(3))31(≤≤-X P .解:(1)1-<x 时,0)()(=≤=x X P x F ,11<≤-x 时,2.0)1()()(=-==≤=X P x X P x F ,21<≤x 时,7.0)1()1()()(==+-==≤=X P X P x X P x F ,2≥x 时,1)2()1()1()()(==+=+-==≤=X P X P X P x X P x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=.2,1,21,7.0,11,2.0,1,0)(x x x x x F .(2)方法1:8.0)2()1()21(==+==>X P X P X P .方法2:8.02.01)21(121(1)21(=-=-=≤-=>F X P X P .(3)方法1:1)2()1()1()31(==+=+-==≤≤-X P X P X P X P .方法2:101)01()3()31(=-=---=≤≤-F F X P .4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的概率都是0.4,而当第一组成功时,每年的销售额可达40000元;当第二组成功时,每年的销售额可达60000元,若失败则分文全无.以X 记这两种新药的年销售额,求X 的分布律.解:设=i A {第i 组取得成功},2,1=i ,由题可知,1A ,2A 相互独立,且4.0)()(21==A P A P .两组技术人员试制不同类型的新药,共有四种可能的情况:21A A ,21A A ,21A A ,21A A ,相对应的X 的值为100000、40000、60000、0,则16.0)()()()100000(2121====A P A P A A P X P ,24.0)()()()40000(2121====A P A P A A P X P ,24.0)()()()60000(2121====A P A P A A P X P ,36.0)()()()0(2121====A P A P A A P X P ,∴X 的分布律为5.对某目标进行独立射击,每次射中的概率为p ,直到射中为止,求:(1)射击次数X 的分布律;(2)脱靶次数Y 的分布律.解:(1)由题设,X 所有可能的取值为1,2,…,k ,…,设=k A {射击时在第k 次命中目标},则k k A A A A k X 121}{-== ,于是1)1()(--==k p p k X P ,所以X 的分布律为1)1()(--==k p p k X P , ,2,1=k .(2)Y 的所有可能取值为0,1,2,…,k ,…,于是Y 的分布律为1)1()(--==k p p k Y P , ,2,1,0=k .6.抛掷一枚不均匀的硬币,正面出现的概率为p ,10<<p ,以X 表示直至两个面都出现时的试验次数,求X 的分布律.解:X 所有可能的取值为2,3,…,设=A {k 次试验中出现1-k 次正面,1次反面},=B {k 次试验中出现1-k 次反面,1次正面},由题知,B A k X ==}{,=AB ∅,则)1()(1p p A P k -=-,p p B P k 1)1()(--=,p p p p B P A P B A P k X P k k 11)1()1()()()()(---+-=+=== ,于是,X 的分布律为p p p p k X P k k 11)1()1()(---+-==, ,3,2=k .7.随机变量X 服从泊松分布,且)2()1(===X P X P ,求)4(=X P 及)1(>X P .解:∵)2()1(===X P X P ,X 100000060000400000P0.160.240.240.36∴2e e2λλλλ--=,∴2=λ或0=λ(舍去),∴224e 32e !42)4(--===X P .)1()0(1)1(1)1(=-=-=≤-=>X P X P X P X P 222e 31e 2e 1----=--=.8.设随机变量X 的分布函数为⎩⎨⎧<≥+-=-.0,0,0,e )1(1)(x x x x F x 求:(1)X 的概率密度;(2))2(≤X P .解:(1)⎩⎨⎧<≥='=-.0,0,0,e )()(x x x x F x f x ;(2)2e 31)2()2(--==≤F X P .9.设随机变量X 的概率密度为xx Ax f e e )(+=-,求:(1)常数A ;(2))3ln 210(<<X P ;(3)分布函数)(x F .解:(1)⎰⎰+∞∞--+∞∞-+==xAx x f xx d e e d )(1A A x A x x x 2|e arctan d e 21e 2π==+=∞+∞-∞+∞-⎰,∴π2=A .(2)61|e arctan 2d e e 12)3ln 210(3ln 213ln 210==+=<<⎰-x x x x X P ππ.(3)xxxx xx t t f x F e arctan 2d e e 12d )()(ππ=+==⎰⎰∞--∞-.10.设连续型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<-+-≤=.a x a x a a x B A a x x F ,1,,arctan ,,0)(其中0>a ,试求:(1)常数A ,B ;(2)概率密度)(x f .解:(1)∵2arcsin (lim )0()(0)(π⋅-=+=+-=-=+-→B A a x B A a F a F a x ,1)(lim )0()(2==+==⋅++→x F a F a F B A a x π,∴21=A ,π1=B .(2)⎪⎩⎪⎨⎧≥<-='=.a x a x x a x F x f ,0,,1)()(22π.11.设随机变量X 的概率密度曲线如图所示,其中0>a .(1)写出密度函数的表达式,求出h ;(2)求分布函数)(x F ;(3)求)2(a X aP ≤<.解:(1)由题设知⎪⎩⎪⎨⎧≤≤-=其他.,0,0,)(a x x ah h x f ∵2d )(d )(10ah x x a h h x x f a=-==⎰⎰∞+∞-,∴ah 2=,从而⎪⎩⎪⎨⎧≤≤-=其他.,0,0,22)(2a x x a a x f .y hO a x(2)0<x 时,0d 0d )()(===⎰⎰∞-∞-xxt t t f x F ,a x <≤0时,220202d )22(d 0d )()(a x a x t t a a t t t f x F xx-=-+==⎰⎰⎰∞-∞-,a x ≥时,1)(=x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.a x a x axa x x x F ,1,0,2,0,0)(22.(3)41411(1)2()()2(=--=-=≤<a F a F a X a P .12.设随机变量X 在]6,2[上服从均匀分布,现对X 进行三次独立观察,试求至少有两次观测值大于3的概率.解:由题意知⎪⎩⎪⎨⎧≤≤=其他.,0,62,41)(x x f ,记3}{>=X A ,则43d 41)3()(63==>=⎰x X P A P ,设Y 为对X 进行三次独立观测事件}3{>X 出现的次数,则Y ~43,3(B ,所求概率为)3()2()2(=+==≥Y P Y P Y P )(()(333223A P C A P A P C +=3227)43(41)43(333223=+⋅=C C .13.设随机变量X 的概率密度为⎩⎨⎧<<=其他.,0,10,3)(2x x x f 以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,求:(1)}21{≤X 至少出现一次的概率;(2)}21{≤X 恰好出现两次的概率.解:由题意知Y ~),3(p B ,其中81d 3)21(2102==≤=⎰x x X P p ,(1)}21{≤X 至少出现一次的概率为512169)811(1)1(1)0(1)1(33=--=--==-=≥p Y P Y P .(2)}21{≤X 恰好出现两次的概率为51221811(81()1()2(223223=-=-==C p p C Y P .14.在区间],0[a 上任意投掷一个质点,以X 表示这个质点的坐标.设这个质点落在],0[a 中任意小区间内的概率与这个小区间的长度成正比例.试求X 的分布函数.解:0<x 时,事件}{x X ≤表示X 落在区间],0[a 之外,是不可能事件,此时0)()(=≤=x X P x F ;a x ≤≤0时,事件}{x X ≤发生的概率等于X 落在区间],0[x 内的概率,它与],0[x 的长度x 成正比,即x k x X P x F =≤=)()(,a x =时,1)(=≤x X P ,所以a k 1=,则此时ax x F =)(;a x ≥时,事件}{x X ≤是必然事件,有1)(=x F ,综上,⎪⎪⎩⎪⎪⎨⎧≥<≤<=,a x a x a x x x F ,1,0,,0,0)(.15.设X ~),2(2σN ,又3.0)42(=<<X P ,求)0(>X P .解:)24222()42(σσσ-<-<-=<<X P X P 3.0)0(2(=Φ-Φ=σ,∴8.03.0)0(2(=+Φ=Φσ,∴8.02(2(1)0(1)0(=Φ=-Φ-=≤-=>σσX P X P .16.设X ~)4,10(N ,求a ,使得9.0)10(=<-a X P .解:)10()10(a X a P a X P <-<-=<-)22102(a X a P <-<-=)2()2(a a -Φ-Φ=9.01)2(2=-Φ=a,∴95.02(=Φa,查标准正态分布表知645.12=a,∴290.3=a .17.设X ~)9,60(N ,求分点1x ,2x ,使得X 分别落在),(1x -∞,),(21x x ,),(2∞x 的概率之比为3:4:5.解:由题知5:4:3)(:)(:)(2211=><<<x X P x X x P x X P ,又∵1)()()(2211=>+<<+<x X P x X x P x X P ,∴25.041)(1==<x X P ,33.031)(21==<<x X x P ,125)(2=>x X P ,则5833.0127)(1)(22==>-=≤x X P x X P .∴25.0)360()360360()(111=-Φ=-<-=<x x X P x X P ,查标准正态分布表知03601<-x ,∴03601>--x ,则75.0)360(1)360(11=-Φ-=--Φx x 查标准正态分布表,有7486.0)67.0(=Φ,7517.0)68.0(=Φ,75.02)68.0()67.0(=Φ+Φ,∴675.0268.067.03601=+=--x ,即975.571=x .∵5833.0)360(360360()(222=-Φ=-≤-=≤x x X P x X P ,查标准正态分布表知5833.0)21.0(=Φ,∴21.03602=-x ,即63.602=x .18.某高校入学考试的数学成绩近似服从正态分布)100,65(N ,如果85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?解:设X 为考生的数学成绩,则X ~)100,65(N ,于是)85(1)85(≤-=>X P X P )1065851065(1-≤--=X P 0228.09772.01)2(1=-=Φ-=,即数学成绩为“优秀”的考生大致占总人数的2.28%.19.设随机变量X 的分布律为求2X Y =的分布律.解:Y 所有可能的取值为0,1,4,9,则51)0()0(====X P Y P ,307)1()1()1(==+-===X P X P Y P ,51)2()4(=-===X P Y P ,3011)3()9(====X P Y P ,∴Y 的分布律为20.设随机变量X 在)1,0(上服从均匀分布,求:(1)X Y e =的概率密度;(2)X Y ln 2-=的概率密度.解:由题设可知⎩⎨⎧<<=其他.,0,10,1)(x x f ,(1)当0≤y 时,=≤}{y Y ∅,X 2-1-013P5161511513011Y 0149P51307513011∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;e 0<<y 时,)e ()()(y P y Y P y F X Y ≤=≤=)(ln )ln (y F y X P X =≤=,此时,yy f y y y F y F y f X XY X 1)(ln 1)(ln )(ln )()(=='⋅'='=;e ≥y 时,1)()(=≤=y Y P y F Y ,0)(=y f Y ;∴⎪⎩⎪⎨⎧<<=其他.,0,e 0,1)(y y y f Y .(2)当0≤y 时,=≤}{y Y ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;当0>y 时,)e ()ln 2()()(2y Y X P y X P y Y P y F -≥=≤-=≤=)e (1)e (122y X y F X P ---=<-=,此时,222e 21)e ()e ()()(yy yX Y X F y F y f ---='⋅'-='=;∴⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY .21.设X ~)1,0(N ,求:(1)X Y e =的概率密度;(2)122+=X Y 的概率密度;(3)X Y =的概率密度.解:由题知22e 21)(x X xf -=π,+∞<<∞-x ,(1)0≤y 时,=≤=}e {y Y X ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;0>y 时,)(ln )ln ()e ()()(y F y X P y P y Y P y F X X Y =≤=≤=≤=,此时,2)(ln 2e 21)(ln 1)(ln )(ln )()(y X XY X y f y y y F y F y f -=='⋅'='=π;综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2)(ln 2y y y f y Y π.(2)1<y 时,=≤+=}12{2y X Y ∅,∴0)()(=≤=y Y P y F Y ;1≥y 时,21()12()()(22-≤=≤+=≤=y X P y X P y Y P y F Y )2121(-≤≤--=y X y P 当1=y 时,0)(=y F Y ,故1≤y 时,0)(=y F Y ,0)(=y f Y ;当1>y 时⎰⎰------==210221212d e22d e21)(22y x y y x Y x x y F ππ,此时,41e)1(21)()(---='=y Y Y y y F y f π,综上,⎪⎩⎪⎨⎧≤>-=--.1,0,1,e )1(21)(41y y y y f y Y π.(3)0<y 时,=≤=}{y X Y ∅,∴0)()()(=≤=≤=y X P y Y P y F Y ,0≥y 时,)()()()(y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,0=y 时,0)(=y F Y ,∴0≤y 时,有0)(=y F Y ,0)(=y f Y ;0>y 时,22e 22)()()()()(y X X Y Y Y yf y f y F y F y f -=-+=-'+'=π,综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 22)(22y y y f yY π.22.(1)设随机变量X 的概率密度为)(x f ,+∞<<∞-x ,求3X Y =的概率密度.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其他.,00,e )(x x f x 求2X Y =的概率密度.解:(1)0=y 时,0)()(=≤=y Y P y F Y ,0)(=y f Y ;0≠y 时,)()()()()(333y F y X P y X P y Y P y F X Y =≤=≤=≤=,3233331())(()()(-⋅=''='=y y f y y F y F y f XY Y ;∴⎪⎩⎪⎨⎧=≠=-.0,0,0),(31)(332y y y f y y f Y .(2)由于02≥=X Y ,故当0<y 时,}{y Y ≤是不可能事件,有0)()(=≤=y Y P y F Y ;当0≥y 时,有)()(()()()(2y F y F y X y P y X P y Y P y F X X Y --=≤≤-=≤=≤=;因为当0=y 时,0)0()0()(=--=X X Y F F y F ,所以当0≤y 时,0)(=y F Y .将)(y F Y 关于y 求导数,即得Y 的概率密度为⎪⎩⎪⎨⎧≤>-+=.0,0,0)],()([21)(y y y f y f y y f X X Y ,⎪⎩⎪⎨⎧≤>+=-.0,0,0),e e (21y y y y y.23.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他.,0,0,2)(2ππx xx f 求X Y sin =的概率密度.解:由于X 在),0(π内取值,所以X Y sin =的可能取值区间为)1,0(,在Y 的可能取值区间之外,0)(=y f Y ;当10<<y 时,使}{y Y ≤的x 取值范围是),arcsin []arcsin ,0(ππy y - ,于是}arcsin {}arcsin 0{}{ππ<≤-≤<=≤X y y X y Y .故)arcsin ()arcsin 0()()(ππ<≤-+≤<=≤=X y P y X P y Y P y F Y ⎰⎰-+=ππyX y X x x f x x f arcsin arcsin 0d )(d )(⎰⎰-+=ππππyy x xx xarcsin 2arcsin 02d 2d 2,上式两边对y 求导,得22222121)arcsin (21arcsin 2)(yyy yyy f Y -=--+-=ππππ;综上,⎪⎩⎪⎨⎧<<-=其他.,0,10,12)(2y y y f Y π.。
概率论与数理统计(第二版)习题解答
习题解答——第一章1-1解:(1)C AB ;(2)ABC ;(3)C B A ;(4)C AB C B A BC A ; (5)C B A ;(6)C B A C B A C B A C B A 。
1-2 解:(1)A B ;(2)A B ;(3)A BC ;(4)A BC ()。
1-3解:1+1=2点,…,6+6=12点,共11种; 样本空间的样本点数:n =6×6=12, 和为2,1,1A ,1An ,1()36An P A n , …… 和为6,1,5;2,4;3,3;4,2;5,1A,5An ,5()36A n P A n, 和为(2+12)/2=7,1,6;2,5;3,4;4,3;5,2;6,1A ,6An ,61()366A n P A n , 和为8,2,6;3,5;4,4;5,3;6,2A ,5An ,5()36A n P A n , …… 和为12,6,6A,1An ,1()36A n P A n , ∴ 出现7点的概率最大。
1-4解:只有n =133种取法,设事件A 为取到3张不同的牌,则313A n A ,(1)31333131211132()1313169AA n P A n;(2)37()1()169P A P A 。
1-5解: (1)()()()()()0.450.100.080.030.30P ABC P A P AB P AC P ABC(2)()()()0.100.030.07P ABC P AB P ABC(3)∵ ,,ABC ABC ABC 为互不相容事件,参照(1)有()()()()()()()()()()()()()()()()()()()2[()()()]3()0.450.350.302(0.100.080.05)0.090.73P ABCABCABC P ABC P ABC P ABC P A P AB P AC P ABC P B P AB P BC P ABC P C P AC P BC P ABC P A P B P C P AB P BC P AC P ABC (4)∵ ,,ABC ABC ABC 为互不相容事件,参照(2)有()()()()()()()3()0.100.080.0530.030.14P ABC ABC ABC P ABC P ABC P ABC P AB P AC P BC P ABC(5)()()()()()()()3()0.450.350.300.100.080.0530.030.90P A B C P A P B P C P AB P AC P BC P ABC(6)()1()10.900.10P A B C P AB C 。
新北师大版数学二年级下册总复习3统计与概率(含答案)
北师大版数学二年级下册总复习3统计与概率(含答案)(时间:60分钟满分:100分)一、数一数,填一填(18分)1.用自己喜欢的方法,在表格中记录三种图形的个数。
长方形正方形三角形2.长方形有( )个,正方形有( )个,三角形有( )个。
二、回答问题(18分)1.用自己喜欢的方法在表格中记录三种图形的个数。
2.有( )个,有( )个,有( )个。
三、解决问题(28分)1.用画“正”字的方法,在表格中记录四种小动物的数量。
(16分)动物记录方式数量2.回答问题。
(12分)(1)( )最多,( )最少。
(2)( )比( )多2只。
(3)一共有( )只小动物。
(4)提出一个问题并解答。
四、我是小统计员(36分)小新上二年级了,你能帮她完成这个统计的任务吗?1 2 3 4 5 6星期一数学语文英语美术品生音乐星期二数学书法语文英语体育心健星期三语文品生语文美术星期四数学体育品生语文音乐英语星期五数学英语语文体育语文书法1.请你帮小新数一数,她每周各门学科各有几节课?在下面的横线上用自己喜欢的方法记录下来。
(27分)语文:数学:英语:美术:品生:音乐:体育:书法:心健:2.从课程表中可以看出,她一共学习了( )门课程。
(3分)3.( )课的节数最多,( )课的节数最少。
(6分)★挑战题学校放映室,第一排有8个座位,以后每排都比前一排多2个座位,最后一排的座位是16个,这个放映室有多少排座椅?共有多少个座位?(画一画,算一算)3 统计与概率一、1.略 2.9 7 5二、1.略 2.7 11 7三、1.(记录方式不唯一)正正正 5 6 4 5 2.(1)乌龟小猫(2)乌龟小猫(3)20 (4)(答案不唯一)小猫和小猪一共有多少只?4+5=9(只) 答:一共有9只。
四、1.(记录方式不唯一)语文:正7 数学: 4 英语: 4 美术: 2 品生:3 音乐: 2 体育: 3 书法: 2 心健: 1 2.9 3.语文心健★挑战题(画一画略)5排60个一、培优题易错题1.在下面图形的“?"处,应该是哪一个图形?【答案】,剩下的图形是②号。
2021年大二必修概率论与数理统计必考题及答案(精华版)
2021年大二必修概率论与数理统计必考题及答案(精华版)一、单选题1、设是未知参数的一个估计量,若,则是的___ _____(A)极大似然估计 (B)矩法估计 (C)相合估计 (D)有偏估计 【答案】D2、设12,,,n X X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C XX θ-+==-∑为 2σ的无偏估计,C =(A )1/n (B )1/1n - (C ) 1/2(1)n - (D ) 1/2n - 【答案】C3、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是 (A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭(B){}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅ (C ){}(1),k k n k n kP X C p p n-==-0,1,2,,k n =⋅⋅⋅ (D ){}(1),1k kn k i nP X k C p p i n -==-≤≤ 【答案】B4、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件 【答案】C5、设 ()2~,N ξμσ,其中μ已知,2σ未知,123,,X X X 为其样本, 下列各项不是统计量的是( )(A)22212321()X X X σ++ (B)13X μ+ˆθθˆE θθ≠ˆθθ(C)123max(,,)X X X (D)1231()3X X X ++【答案】A6、设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S ni i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) n S X t /3μ-=(D) nS X t /4μ-=【答案】B 7、若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -= 【答案】D8、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是 A )F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x). 【答案】C9、已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值A )与a 无关,随λ的增大而增大B )与a 无关,随λ的增大而减小C )与λ无关,随a 的增大而增大D )与λ无关,随a 的增大而减小【答案】C 10、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C 二、填空题1、已知2)20,8(1.0=F ,则=)8,20(9.0F 。
概率与统计答案
概率与统计答案概率与统计是数学中非常重要的一门学科,无论是在学术领域还是实践中都有着广泛的应用。
在人们的日常生活中,常常会涉及到概率与统计的相关知识,比如说彩票的中奖概率、疾病的发病率等等。
因此,掌握概率与统计的相关知识对于我们每个人来说都非常重要。
一、概率概率是一种数学概念,它用来描述某个事件发生的可能性大小。
一般来说,概率的取值范围是0到1之间,其中0表示该事件不可能发生,1表示该事件肯定会发生。
在实际应用中,我们可以使用概率的计算公式来计算某个事件发生的概率。
例如,在掷骰子的游戏中,每次掷骰子的结果都有可能是1到6之间的任意一个数字。
那么,我们可以通过计算来求得掷出某个特定数字的概率。
具体而言,如果我们想要求掷出数字3的概率,那么可以通过以下公式来计算:P(掷出数字3) = 掷出数字3的可能性 / 所有可能性对于掷骰子的游戏来说,所有可能性一共有6种,因此我们可以得到以下答案:P(掷出数字3) = 1/6 ≈ 0.1667也就是说,在掷骰子的游戏中,掷出数字3的概率约为0.1667。
二、统计统计是一种对数据进行收集、整理、分析和解释的方法,以便更好地理解数据所蕴含的信息。
在实际应用中,我们常常使用统计学方法来做决策,评估风险,甚至预测未来的趋势。
以下是一个实际案例:假设你是一家公司的销售主管,你需要帮助公司了解销售情况。
通过收集数据,你发现公司的销售额在不同季度有所波动。
于是,你想知道这种波动是否具有统计学意义,是否与季节有关,以及如何调整销售策略。
为了回答这些问题,你可以使用统计学方法来分析数据。
具体而言,你可以运用如下的流程来进行分析:1. 数据收集:收集不同季度的销售额数据。
2. 数据整理:将数据整理成表格或图表的形式,以便进行后续分析。
3. 描述性统计分析:对数据进行描述性统计分析,比如计算均值、标准差、最大值、最小值等等。
4. 探索性数据分析:通过绘制图表或者计算相关系数等方法,发现数据中的规律或者联系。
概率与统计答案_(31页)
专题概率与统计随机事件的概率学案跟踪1①②;②例二跟踪23/20;7/20;3/20 3/10 例三考点巩固DBBAD④②;①③150.259、随机事件的概率作业DCCB略CBABA CCCBB DA3/4;8/15,14/15;0.92;5/36;4/5 23、25、古典概型学案考点自测D;A;2/3;2/5例一11种;是3个;不是跟踪1B例三典例2/3;D;25%;B;A;0.3;1/3;1/4;(-∞12]∪[24,+∞) 10、古典概型作业BABBC BCCCA DB1/9;13/28;1/12;3/417、18、19、20、几何概型学案考点自测B;B;0.18;47/72例一1/3;2/5跟踪1D;1/4例二D;2/3跟踪2B;5/16例三1013/1152跟踪39/32典例1/4考点巩固C略CCA4/9;3;1/2;13/16;1/12,21/25;几何概型作业DBBCA DDBCD DD47/72;7/8;1/5;9/10;(1+2Ln2)/4; 9/32 19、N=220、2/31/221、22、25/36221/288条件概率与事件的相互独立性学案例一A;0.665变式训练4/99;2/3;2/π;1/4例二3/4;3/4;11/32变式20.5596/625;101/125例三4/9;11/27变式3②④考点巩固BBD略DC 3/58、0.8;0.384条件概率与事件的相互独立性作业DBBCA ABBAB DA4/9;0.128;3/70;2/5 4/5;0.128 18、5/126;16/6319、19/36; 7/1120、略21、3/8;21/3222、离散型随机变量的分布、均值、方差1 考点自测D;1/5;10;A;C;A;0.7例一C例二B例五3:2:1随堂练习DDCBC -1,0,1,2,3 13/351/69、3/8;离散型随机变量的分布、均值、方差2 学案例一例二例三例四例五56/81;例六离散型随机变量的分布、均值、方差1 作业ABABC CDACC5/12 1/4; 2/3; 5/9; 4/9; 70616、19/3517、1/518、1/3;8/3离散型随机变量的分布、均值、方差2 作业1、101/1252、0.033、4、5、略期望为6/56、0.4272期望为0.65527、。
概率论第2版参考答案
概率论第2版参考答案概率论第2版参考答案概率论是数学中的一个重要分支,研究随机事件发生的规律性。
对于概率论这门学科,学生们经常会遇到一些难题,需要仔细思考和解答。
为了帮助学生更好地理解和掌握概率论知识,教材出版商推出了概率论第2版参考答案。
概率论第2版参考答案是一本针对概率论第2版教材的解答集合。
它包含了教材中所有习题的答案和解析,为学生们提供了一个参考和对比的标准。
通过查阅参考答案,学生们可以自我检测和纠正错误,加深对概率论知识的理解和应用。
在概率论第2版参考答案中,习题的答案和解析都被细分为不同的章节和主题。
这样的安排使得学生们可以有针对性地查找和学习相关的知识点。
同时,参考答案还提供了一些解题的技巧和方法,帮助学生们更好地应对各种概率论问题。
参考答案的编写过程需要经过严格的审校和校对。
编写者需要对概率论的知识有深入的理解和掌握,并且要能够清晰地表达解题思路和步骤。
同时,编写者还需要考虑到学生们可能会遇到的困惑和疑问,提供清晰的解释和说明。
概率论第2版参考答案的出版对于学生们的学习有着积极的影响。
首先,它为学生们提供了一个标准和参考,帮助他们更好地理解和掌握概率论知识。
其次,参考答案还可以帮助学生们发现和纠正自己的错误,提高解题的准确性和效率。
最重要的是,参考答案可以激发学生们的学习兴趣和动力,促进他们对概率论的深入思考和探索。
然而,概率论第2版参考答案也存在一些问题和限制。
首先,参考答案只提供了习题的答案和解析,而没有给出详细的解题过程。
这可能会导致学生们在遇到类似但稍微有些不同的问题时无法灵活运用所学知识。
其次,参考答案并不是万能的,它只是一种参考和辅助工具。
学生们在使用参考答案时,仍然需要自己进行思考和分析,不能完全依赖于答案本身。
综上所述,概率论第2版参考答案是一本对于学生们学习概率论非常有帮助的参考资料。
它提供了习题的答案和解析,帮助学生们更好地理解和掌握概率论知识。
然而,学生们在使用参考答案时需要保持独立思考和分析的能力,不能完全依赖于答案本身。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2A 概率与统计复习材料答案一、知识点1、 随机事件、必然事件、不可能事件2、 事件的关系和运算① 丰件的包會、相著丰件、弄事件、委事件、② 若AQB 拓耒可饨爭件,即A05=(|),两个事件不同时发生,但并非至少有一个发生;那么隸丰件人£丰件斥;③ 苦AAB 怎耒可滋*件,4 UB 怎盛銘*件,两个事件不同时发生,必有一个发生。
那么隸丰件A £事件B 互拓对立丰件,④ 必跳丰件傀卑卷1,耒可饨丰件梃車卷0,因此O<P(A)<1;⑤ £京件人鸟B 虽斥时,满足畑依公式:P(AUB)= P(A)+P(B);⑥ 若净件A £ B 务对鱼事件,则4U3务盛魅事件,所M P(AUB)=P(A)+P(B)=1,叼足帘 P(A)=l —P(B)3、 古典概型①一次试验屮只有有限个基本事件(有限性)②毎个基木事件发生的可能性是 相等的(等可能性)A 包含的基本事件的个数 (基本事件的总数4、ZL 何概卑撲嘤.,鸟密毎个*件农望的概車已鸟构咸後丰件&域的g 庚、角庚、卤软或体 荻啟比糾,则隸这祥的概卑犊更拎儿何概車栈型’鬲个特点①无限住②等可能性 D小 构成事件4的区域测度(长度、角度、面积、体积)p / A 1 二 _____________________________________________________________一试验的全部结果所构成的区域测度(长度、角度、面积、体积) 5、简单随机抽样:设一个总体含有N 个个体,从屮逐个不放冋地抽取n 个个体作为样木 (n < N),如果每次抽取时总体内的各个个体被抽到的机会祁相等,则这种抽样方法叫做简 单随机抽样。
两种方法①抽签法(抓凰法)②随机数法(随机数表法)6、 系统抽样:将总体平均分成几个部分,然后按照预先定出的规则,从每个部分中抽取一 个个体,得到所需的样木,这样的抽样方法称为系统抽样(等距抽样)。
步骤:①编号;②分段;③在第一段确定起始号;④加间隔获取样木。
7、 分层抽样:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地 抽取一定数量的个体,将各层取岀的个体合在一起作为样木,这种抽样方法称为分层抽样。
步骤:①分层,②求比,③定数,④抽样久画频率分布肓方图的步骤 ①求极差(即-组数据中最大值与最小值的差)②决定组距与组数组数=11③将数据分组④登记频数,计算频率,列频率分布表 ⑤逊频率分布育方图10、 茎叶图:茎是指中间的一列数,表示得分的十位数,叶就是从茎的旁边生长出来的数, 表示得分的个位数。
11、 数字特征:众数,屮位数,平均数 9、小长方形的面积=组住巨>< 频率 频率12、标准差,方差:用来衡量一批数据的波动大小(即这批数据偏离平均数的大小). $2 =•! (x{ -X)2 +(X2 -X)2+••• + (%,, -X)2].方差、标准差越小,其越稳定。
方差、标准差越大,其越不稳定13、相关关系:①正相关②负相关14、冋归育线:两个变量Z间具有线性相关关系,这条育线就叫做冋归直线15、冋归方程:y = bx +a必过)样木点的屮心(x, y)用最小二乘法求/?16、独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{xl, x2}和{yl, y2},其样本频数列联表(称为2X2列联表)(3)独立性检验:利用随机变量疋来判断两个分类变量有关系的方法称为独立性检验二、练习1、(2011四川卷)有一个容量为66的样本,数据的分组及备组的频数如下:[11. 5, 15. 5) 2 [15. 5,19. 5) 4 [19. 5, 23. 5) 9 [23. 5,27. 5) 18[27. 5, 31. 5)11 卩1. 5, 35. 5)12 卩5. 5. 39. 5) 7 [39. 5,43. 5) 3根据样木的频率分布估计,数据落在[31. 5, 43. 5)的概率约是(B )1 1 1 2A. 6B. 3C. 2D. 32、(2011江苏卷)从],2, 3, 4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为(A )1 12 3A -B -C -D -3 2 3 43、在两根相距10m的木杆上系一根绳了,并在绳了上挂一盏灯,则灯与两端距离都大于2m 的概率是(C )5、在腰长为2的等腰肓角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率是(B )71 … Ji n"兀A • —B • —C . —D .—16 8 4 26、为了解450名学生对学校某项教改试验的意见,打算从屮抽取一个容量为30的样本,考虑采有系统抽样,则分段间隔k为(D )A 40B 30C 25D 157、 某家庭统计了 5天的甲、乙两个菜市场某种青菜的价格(单位:元/斤)如下:甲:1.2,1.3, 1.1, 1.4, 1.0;乙:1.0, 1.3, 1.4, 1.3, 1.5.则(C )A 甲的平均价格较高,且它的价格比较稳定B 乙的平均价格较高,且它的价格比较稳定C 甲的平均价格较低,且它的价格比较稳定D 乙的平均价格较低,且它的价格比较稳定8、 (2010山东)在某项体冇比赛屮,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(B )A. 92,2B. 92,2.8C. 93,2D. 93,2.89、 (2013陕西卷)对一批产品的长度(单位:〃加)讲行抽样检测,下图喂检测结果的频率分布 直方图.根据标准,产品长度在区间[20, 25)上的为一等品,在区间[15, 20)和区间[25, 30) 上的为二等品,在区间[10, 15)和[30, 35)上的为三等品.用频率估计概率,现从该批产品 屮随机抽取一件,则其为二等品的概率为(D )A. 0. 09B. 0. 20C. 0. 25D. 0.4510、( 2013四川卷)某学校随机抽取20个班,调查各班屮有网上购物经历的人数,所得数据的 茎叶图如图所示.以组距为5将数据分组成[0,5), [5,10),, [30,35), [35,40]时,所作的频 率分布15方图是 ( A )11、“吸烟有害健康”,那么吸烟与健康Z 是存在什么关系(B )A.正相关B.负相关C.无相关D.不确定12、下曲是一个2X2的列联表Y1 Y2 总计 XIa 21 73 X22 25 27 总计b 46 100则表屮a,b 处的值分别为 (C )7 3 7 6 4 4 3 O 7 5 5 4 3 2 O 8 5 4 3 OO1 2 3 (B) (O(D)A 94, 96B 52, 50C 52, 54D 54, 5213、(2013年髙考重庆卷(文))若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站2 的概率为.-14、(2011福建卷)盒屮装有形状、大小完全相同的5个球,其屮红色球3个,黄色球2个。
若从中随机取出2个球,贝0所取出的2个球颜色不同的概率等于____ o 0.615、边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,则豆子落在圆及正方形夹的部分的概率是 _______________________1--416、(2013天津卷)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员屮抽取一个容量为21的样木,则抽取男运动员的人数为__________ 12 17、(2012辽宁卷)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调杳显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得y对x的冋归直线方稈:» = 0.254+ 0.321由冋归直线方稈可知,家庭年收入每增加1万元,年饮食支出平均增加 __________________ 万元.0.25418、某射手在一次射击中,射中10环、9环、8环、7环的概率分别为0.21, 0.23, 0.25,0.28,计算该射手在一次射击屮:(1)射屮10环或7环的概率;(2)不够7环的概率.解:设事件4 B, C, D, E分别代表射中10环、9环、8环、7环、射中10环或7环、不够7 环,则P(A) = 0.21, P(B) = 0.23 , P(C) = 0.25 , P(D) = 0.28 .所以(1)射中10环或7环包含两个互斥事件:射中10环和射中7环,由概率加法公式知P(E) = P(A) + P(D) = 0.49 ;(2)事件不够7环与至少7环互为对立事件,所以P(F) = \-[P(A) + P(B) + P(C) + P(D)] = 1-(0.21 + 0.23 + 0.25 + 0.28) = 0.0319、如果下了课以后,教室里最后还剩下2位男同学,3位女同学.一会儿乂走了一位女同学,如果没冇两位同学一块儿走,则第二位是男同学走的可能性冇多大?解:已知走了一位女同学,还冇两位女同学和两位男同学,所冇走的可能顺序冇(女,女, 男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第二位是男同学走的可能性为P = - = -.6 220、, 4,(1)根据上表求销售额y对广告费用x的线性回归方程y = bx + a其中/;为9(2)据此模型预报广告费用为6万元时预测销售额为多少万元?解:(1)由上表可知兀=—= 3.5, y = —— = 42 b = 9.44 4・•・ a = y— bx = 42 — 9.4 x 3.5 = 42 — 32.9 = 9」故线性冋归方稈为y = 9.4% + 9.1 (2)将x = 6代入线性冋归方程y = 94x6 + 9」=56.4 + 9.1 = 65.5 (万元)21、(2013年高考福建卷(文))某工厂冇25周岁以上(含25周岁)工人300名,25周岁以下T人200名•为研究工人的口平均生产量是否-与年龄冇关•现采用分层抽样的方法, 从中抽取了100名工人,先统计了他们某丿J的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数 分成 5 组:[50,60), [60,70), [70,80), [80,90), [90,100)分别加以统计,得到如图所 示的频率分布直方图.(1) 从样木中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名"25周 岁以下组”工人的频率.(2) 规楚日平均生产件数不少于80件者为“生产能手”,请你根据己知条件完成2x2的 列联表,并判断是否冇90%的把握认为“生产能手与工人所在的隹龄组冇关” ?附表: P(?»)0.100 0.050 0.010 0.001 k2.7063.841 6.635 10.828 解:(I )由已知得,样木中冇25周岁以上组工人60名,25周岁以下组工人40名 所以,样木中日平均生产件数不足60件的工人中,25周岁以上组工人冇60x0.05 = 3 (人),记为人,心,角;25周岁以下组工人有40x0.05 = 2 (人),记为B } , B 2 从中随机抽収2名工人,所冇可能的结果共冇10 种(出,九),(码舛),(九即,(人,场),仏,即,他,伙),(出,即,(£,%),(BM 其中,至少抽到1名“ 25周岁以下组”工人的可能结果共冇7种,:(人,即,(A 1?B 2),(短,即,(%,%),(£,即,(£4),(目,场)・故所求的概7率:P =— 10仃I )由频率分布苴方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手 60x0.25 = 15 (人),“ 25周岁以下组”中的生产能手40x0.375 = 15 (人),据此可得2x2 列联表如下:牛产能手非生产能手 合计 25周岁以上组 1545 60 25周岁以F 组 1525 40 合计30 70 100 所以得:n(ad -be)2 (a + b)(c + d)(a + c)(b + d)_ 100x(15x25-15x45)2 60x40x30x70 25 ~I4 ul ・79 25周岁以下组因为1.79<2.706,所以没冇90%的把握认为“生产能手与T人所在的年龄组冇关”。