第三章__短路电流计算解析
第三章 电力系统三相短路电流的实用计算
第三章电力系统三相短路电流的实用计算�实际工程中往往只关注短路电流周期分量的起始有效值(次暂态电流)或者任意时间的周期分量有效值的计算。
�求得周期分量的起始有效值后,可选取一个冲击系数,按无限大容量电源供电情况下的三相短路计算冲击电流的方法计算冲击电流和最大有效值电流短路电流计算方法�按计算方法分为:�直接计算法�叠加原理法�按计算手段分为:�手算:简单系统直接计算,复杂系统用叠加原理法,如果计算任意时间的周期分量有效值,用运算曲线;�计算机计算:都是复杂系统,都用叠加原理法。
第一节短路电流交流分量初始值计算�一、计算的条件和近似I′′�二、简单系统的计算�三、复杂系统计算一、计算的条件和近似-电源�(1)精确:依据正常运行时节点电压、电流求电源次暂态电势(包括调相机),并设各电势相位相同。
�(2)近似:令所有发电机电势=1=1。
̇′′Ė′′E一、计算的条件和近似-电网�忽略对地电容和变压器励磁回路;�高压电网忽略电阻;�计算时用标幺制,基准电压取电网平均额定电压,变压器变比取电网平均电压比一、计算的条件和近似-综合负荷�综合负荷对短路电流的影响很难准确计及;�粗略处理:无论是短路前还是短路后,都忽略不计,但对于计算远离短路点的支路负荷有较大影响。
�精确计算:用恒定阻抗来表示,这个阻抗用故障前的潮流计算结果求得。
一、计算的条件和近似-短路点附近电动机�发电厂内部短路,发电厂的厂用电动机倒送短路电流,有称为反馈电流的现象。
�若果在电动机端点发生短路,起反馈的短路电流初始值就等于启动电流标幺值。
电弧电阻�一般设短路处为直接短路,。
实际上短路处有电弧,电弧主要消耗有功功率,其等值电阻 与电弧的长度成比例。
0==f f R z f R叫次暂态短路电流周期分量初始值 次暂态:是只在发生短路过程中计及发电机阻尼的作用。
(1)直接法(2)叠加原理二、简单系统计算I ′′I ′′(1)直接法21311x x I +=′′假设条件:(1)不及负荷对短路电流的影响;(2)故障前空载,电源电压为1;(3)直接接地。
第三章短路电流及其计算
例题 3—2,P60
6、计算示例
例题:已知供电系统如图所示,系统出口断路器的断路容量为 500MVA。 求:1)工厂配电所10kV母线上k1点和车间变电所低压380V母线上 * * k2点短路回路的总电抗标幺值 X k 1 X k 2 ,值; , ( (3 ( 2)k1 ,k2两点的 I k 3) ish ) 及 S k 3 ) 值。 ,
根据
Id * X
I
( 3) 可以分别计算出 k
( (3 (3 I k( 2) , I ''(3) , I 3) , ish ) , I sh ) , S k(3) 。
4、三相短路容量
S
( 3) k
3I dU c S d 3I U C * * X X
( 3) k
5、计算步骤
(1)确定各基准值; (2)分别计算各元件电抗标幺值; (3)根据计算电路绘出等效电路,并将各元件电抗标幺值和短路 计算点一一标出在等效电路上; (4)分别求出各短路计算点的总电抗标幺值; (5)分别计算各短路计算点的各短路参数值; (6)将各计算结果列表。
2、短路电流非周期分量
(波形按指数函数衰减 )
t t
inp inp( 0)e
2 I ' 'e
3、短路瞬时电流
ik i p inp I k .m sin( t k ) inp( 0) e
Rt t L
4、短路冲击电流
ish K sh 2I ''
第三章
短路电流及其计算
本章主要内容:无限大容量电力系统三相短路时的物理过 程及物理量 三相短路及两相和单相短路的计算 短路电流的效应及短路校验条件 第一节 短路的原因、后果、形式及几率
第三章 短路电流计算《供电技术》(第4版)
第3章 短路电流计算
(3-11)
故系统发生三相短路时各相的短路电流表达式:
(3) ikA I zm sin t kl [ I m sin( ) I zm sin( kl )]e Tt
fi
(3) ikB I zm sin t 1200 kl [ I m sin( 1200 ) I zm sin( 1200 kl )]e
习惯上把这一短路电流周期分量有效值写作 I K ,即:
(3) I z Ik Ik
第3章 短路电流计算
(3-20)
有限容量电源供电系统:
当电源容量较小,或短路点距电源较近时,对于电源 来说,相当于在发电机端头处短路,由于短路回路阻抗突 然减小(此时短路回路的阻抗几乎是纯感性) ,使发电机 定子电流突然剧增,产生很强的电枢反电势,短路电流周 期分量滞后发电机电势近900,故其方向与转子绕组产生的 磁通相反,产生强去磁作用,使发电机气隙中的合成磁场 削弱,端电压下降(电源电压变化)。其短路电流的非周 期分量与周期分量均发生衰减。 计算方法:根据电源至短路电的转移阻抗——查相应 的发电机运算曲线求取短路参数。
第3章 短路电流计算
(3-3)
图3-1 短路类型及其表示符号
第3章 短路电流计算
(3-4)
二、无限容量电源供电系统短路过程分析
1、无限大容量电源供电系统的概念 所谓无限大容量电 源是指内阻抗为零的电 源。当电源内阻抗为零 时,不管输出的电流如 何变动,电源内部均不 产生压降,电源母线上 的输出电压维持不变。
T fi X kl Rkl , T fi X kl Rkl 0,
1 k sh 2
在工程设计计算中: 高压系统
第3章-短路电流计算
确定合理的主接线方案和运行方式
第三章
短路电流计算
无限大容量供电 系统三相短路分析
第二节
第三章
短路电流计算
一、无限大容量电源概念
无限大容量供电系统定义
内阻为零
端电压恒定不变 短路电流周期分量恒定不变
通常将电源内阻抗小于短路回路总阻抗10%的电源看作无限大
容量供电系统;一般的工矿企业供电系统的短路点离电源的距
产生最大短路电流的条件
最大三相短路电流是指最大短路电 流瞬时值。由ik的公式可以知道,短 路电流瞬时值最大的条件就是短路电 流非周期分量初始值最大的条件。 短路电流非周期初始值既与短路
前的负载情况有关,又与短路发生时
刻、短路后回路性质有关。 因此,当供电回路为空载Im=0或者cosψ=1时,Im与横轴重合。电源 电压过零(电源电压与横坐标重合)时短路,而且短路回路为纯感性, 则短路电流非周期初始值最大。
短路电流计算
无限大电源容量的暂态过程
设电源电压为: 正常运行电流为:
u ph = U phm sin(wt + q) i = I phm sin(wt + q - f )
I phm = U phm / ( R + Rlo )2 + (wl + wLlo )2
式中:I
-短路前电流的幅值
phm
-短路前回路的阻抗角
对于纯感性电路ksh =2;
第三章
有效值,
短路电流计算
短路冲击电流的有效值Ish是指短路后第一个周期的短路电流全电流的
I sh =
I
2 pe (0.01)
+I
第三章 短路电流计算1分析
ip3 2.26 24.67kA 55.75kA I p3 1.31 24.67kA 32.32kA
4) 三相短路容量
'' Sk3 Sd / X (k 2) 100MVA / 5.85 17.09MVA
4) 三相短路容量
'' Sk3 Sd / X (k 2) 100MVA/ 3.60 27.78MVA
两台变压器分列运行情况下: 1)总电抗标么值
X X X X (k 2) 1 2 3 0.4 0.95 4.5 5.85
2) 三相短路电流周期分量有效值 I d2 '' I k3 144.34kA 24.67kA 5.85 X (k 2) 3) 其他三相短路电流
变压器的额定容量,特别注意单位 应与基准容量一致(MVA)
4.限流电抗器的电抗标么值
X % U r.L * XL XL / Xd L 100 3I r.L
2 Ud Sd X % U r.L L Sd 100 3I r.L (cU n )2
* 利用其等效电路图进行电路化简求总电抗标么值 X 。
选择和检验电器、电线电缆的基本依据。在继电保护装置的
整定及灵敏系数检验时,还需计算不对称短路的最小短路电 流值;在检验电器及载流导体的电动力稳定和热稳定时,还 要用到三相短路电流峰值、三相稳态短路电流。另外,在计 算大中型电动机的起动压降时,要用到三相短路容量;在验 算接地装置的接触电压与跨步电压时,要用到单相对地短路 电流等。
试求工厂变电所在系统最大运行方式下,10kV母线上k-1点短路和两台变压 器并联运行和分列运行两种情况下低压380V母线上k-2点三相短路时的三相 短路电流和短路容量。
第三章--输电线路相间短路电流保护
I I set . x
x.max
②当相邻元件故障切除后,本保护要可靠返回
Iss.max Ires
电流整定值为:
K K I K I set.x
rel ss
res
l . max
2、保护动作时间
tn t(n1)max t
t(n1)max —为下一相邻母线上所接保护的最大动作时间。
第二节 限时电流速断保护
作用:与无时限电流速断保护配合作为被保护线路相间 短路的主保护。 原理:反映被保护元件电流升高而带有较小时间动作的 保护。 一、接线图(单相原理图)
二、动作电流整定原则
1、保护动作电流的整定计算 ①基本依据 与相邻线路无时限电流速断保护(或主保 护)配合。
②基本公式
I K I set 1
三、对无时限电流速断保护的评价
优点:动作迅速,简单可靠。
缺点:不能保护本线路的全长,故不能单独使用,而且 它的保护范围随运行方式的变化而变化。当运行方式变 化很大、被保护的线路很短时,甚至没有保护区
无时限电流速断保护不能保护线路全长,而且保护 范围受系统运行方式影响,为克服这一缺点,可采用具 有自适应功能的电流速断保护。自适应继电保护是根据 电力系统运行方式和故障类型的变化,而实时地改变保 护装置的动作特性,或整定值的一种保护。其目的是使 保护装置适应这些变化,进一步改善保护性能。
缺点:动作时间长,而且越靠近电源端其动作时限越大, 对靠电源端的故障不能快速切除。
第四节 电流保护的接线方式 电流保护的接线方式,指的是电流继电器线圈与电 流互感器二次绕组之间的连接方式。
①完全星型接线 ②不完全星型接线 ③两相差电流接线
两相三继电器接线
03-短路电流计算2014资料
5
短路电流计算步骤
高压/低压 变压器额定值
功率因数 同时系数 暂载率 预见的增长系数
-馈电线 -额定电流 -电压降
导体特性 母线: 长度 宽度 厚度 电缆: 绝缘材料 单芯或多芯 长度 截面 环境: 环境温度 敷设方式 并列敷设回路数
上方侧短路容量 Ssc Usc (%)
在变压器出线端 Isc 总配电柜引出线 Isc 二次配电柜的首端 Isc 末端配电柜的首端 Isc
A信 25kA
B Isc3≈?kA
信
举例:
已知:变电所母线预期三相短路电流为25kA,出线电缆为铜芯交联电缆, 截面185mm2,长度50m,请估算下级配电柜预期三相短路电流值。
施耐德电气2014年青年设计师培训
16
短路电流速查表
详见附录 第67页
施耐德电气2014年青年设计师培训
17
两台变压器并联运行时的短路
计算回路末端的短路电流
IscB =
U U/ IscA+ Zc
= IscA
U U + Zc IscA
IscA:上级短路电流 IscB: 线路末端短路电流 Zc: 回路阻抗
U: 系统标称相电压
施耐德电气2014年青年设计师培训
12
短路电流速查表
施耐德电气2014年青年设计师培训
13
短路电流的计算方法(续)
Ie: 变压器二次侧额定电流
Uk:变压器阻抗电压(%)
信
举例:
已知:三相电力变压器 S=1000KVA, 10/0.4KV, 变压器阻抗电压Uk=6%, 计算变压器二次侧预期三相短路电流。
施耐德电气2014年青年设计师培训
15
短路电流估算方法举例(续)
电气工程基础第三章
_ 0.01 Tfi
I zm (1 e
_ 0.01 Tfi
0.01 Tfi
)
令冲击系数ksh为
k sh 1 e
在高压系统中 k sh 1.8 在低压系统中 k sh 1.3
ish 2.55I z ish 1.84I z
Iz
是短路电流周期分量有效值。
一般而言,电力线路故障大致分为二大类型:瞬时故障和 永久故障。 瞬时故障通过重合闸装臵可恢复供电,多属于雷电等过电 压引起的闪络,但不会引起致命的绝缘损害。但故障点往 往是薄弱点,需要尽快找到加以处理并及时排除。排除时 间长短直接影响到供电系统的供电保障和电力系统安全运 行。 永久故障是指导体之间以及包括一个或多个导体对地的短 路故障,此类故障发生时,不可能成功重合闸,多由机械 外力造成,其中常见的、对电力系统危害比较严重的有: 短路、断路以及各种复杂故障。而短路故障是电力系统危 害最严重的故障。
供电系统各元件的电抗值
(1)系统电源电抗Xs
Xs U av 3I
(3) k
2 U av (3) 3I k U av
2 U av Sk
S k —系统(电源)母线上的短路容量;
(2)变压器电抗XT 当忽略变压器的电阻时,变压器的电抗 X T
2 Uav X T ZT uk % SNT
k
k
(3)
两 相 短 路
(2)
两 相 接 地 短 路 单 相 接 地 短 路
k (1,1)
k
(1)
三、短路的现象及后果
现象:电流剧烈增加;电压大幅度下降; 后果: (1) 短路电流产生的热量,使导体温度急剧上升,会使绝缘 损坏; (2)短路电流产生的电动力,会使设备载流部分变形或损坏; (3)短路会使系统电压骤降,影响系统其他设备的正常运行; (4)严重的短路会影响系统的稳定性; (5)短路还会造成大面积停电; (6)不对称短路的短路电流会对通信和电子设备等产生电磁干 扰等。
第三章 电力系统的短路电流计算
直流电流的初值越大,暂态过程中短路冲击电流也就越大。
直流分量的起始值大小与电源电压的初始角 α 及短路前回路 中电流值 Im 0 及 ϕ 角等有关。
出现最大的短路冲击电流的条件:
图3-3为t=0时刻A相相量图 U& mA:电源电压; I&mA 0 :短路前的电流; I& pmA :短路电流交流分量; 相量在时间轴t上的投影
短路前瞬间电流
短路后瞬间电流
( ) 从而 c = Im 0 sin α −ϕ 0 − I pm sin(α −ϕ )
[ ( ) ] iA = I pm sin(ωt + α −ϕ )+ Im 0 sin α −ϕ 0 − I pm sin(α −ϕ ) e−t Ta
( ) iB = I pm sin ωt + α − 1200 −ϕ
后的T/2时刻出现。
在f=50Hz的情况下,大约 为0.01s时出现冲击电流最 大值。
iM = I pm + I pme−0.01 Ta
( ) = 1 + e−0.01 Ta I pm
= K M I pm
KM:冲击系数,表示冲击电流为短路电流交流分量幅值的倍数。
冲击系数的变化范围 1 ≤ KM ≤ 2
3.3.1 同步发电机在空载情况下突然三相短路的物理过程
同步发电机稳态对称运行时,电枢反应磁动势的大 小固定,在空间以同步速度旋转,由于它与转子没有相 对运动,因而不会在转子绕组中感应出电流。
当发电机端部突然三相短路时,定子电流在数值上将 急剧变化,由于电感回路的电流不能突变,定子绕组中必 然有其他电流自由分量产生,从而引起电枢反应磁通变化。 此变化又会影响到转子,在转子绕组中感应出电流,进一 步影响定子电流的变化。
电力系统的短路电流计算及分析
电力系统的短路电流计算及分析第一章:引言电力系统是现代工业生产以及现代社会运转不可或缺的基础设施。
电力系统中最常见的故障之一就是短路故障,因此短路电流计算及分析是电力系统安全运行的重要组成部分。
本文将介绍电力系统短路电流的定义及计算方法,并探讨短路电流对电力设备运行及保护系统的影响。
第二章:电力系统短路电流的定义短路电流是指由于电力系统中短路故障所引起的电流。
短路故障正常情况下不会发生,但由于设备老化、损坏或者操作疏忽,可能会导致短路故障的发生。
短路电流是电力系统中最大的电流,其大小取决于电力系统的构成、电压等级以及短路元件的电气特性。
第三章:短路电流计算及分析3.1 短路电流计算方法短路电流的计算方法有多种,其中最常用的方法有两种:对称分量法和电抗分布法。
对称分量法是指在三相电力系统中,将短路电流分解为正序、负序和零序三个分量的和。
其中正序短路电流在三相平衡的情况下具有最大值,负序短路电流在不平衡的情况下具有最大值。
电抗分布法是指根据电力系统中各个元件的等效电气特性,采用电抗分布图的方法计算短路电流。
该方法可用于计算任意电力系统的短路电流,精度较高。
3.2 短路电流分析短路电流对电力设备的运行及保护系统有重要影响,常见的影响有以下几个方面:(1)设备的承受能力电力系统中各个设备的额定电流都是有限的,当短路电流超出设备的承受能力时,设备可能会出现损坏或烧毁的情况。
(2)保护装置的选择及设置保护系统中的保护装置需要根据短路电流的大小来选择及设置,如果短路电流被高估或低估,都可能导致保护系统的失效。
(3)接地保护电力系统中的中性点需要接地保护,当短路电流超过中性点接地保护的额定电流时,就会引起接地故障。
(4)电磁暂态短路电流在短时间内变化较大,可能会对电力系统中的电磁暂态产生影响,如引起电气设备的振荡、闪络等故障。
第四章:结论电力系统中的短路电流计算及分析是电力系统安全运行的重要组成部分,正确计算和分析短路电流有助于预防短路故障的发生,保障电力系统的稳定运行。
第三章电力系统三相短路电流的实用计算
第三章 电力系统三相短路电流的实用计算上一章讨论了一台发电机的三相短路电流,其阐发过程已经相当复杂,并且还不是完全严格的。
那么,对于包含有许多台发电机的实际电力系统,在进行短路电流的工程实际计算时,不成能也没有必要作如此复杂的阐发。
实际上工程计算时,只要求计算短路电流基频交流分量的初始值I ''即可。
1、I ''假设取 1.8M K =2.551.52M ch M ch i i I I I I ''==''==2、求I ''的方法:〔1〕手算 〔2〕计算机计算〔3〕运算曲线法:不单可以求0t =时刻的I ',还可以求任意时刻t 的t I 值。
§3-1I ''的计算〔I ''-周期分量起始有效值〕一、计算I ''的条件和近似1、电源参数的取用〔1〕发电机: 以101E ''和d X ''等值〔且认为d q X X ''''=,即都是隐极机〕 101101101d E U jI X ''''=+ 〔3-1〕101E ''在0t =时刻不突变。
〔2〕调相机: 与发电机一样,以101E ''和d X ''等值 但应注意:当调相机短路前为欠激运行时,∵101101E U ''< ∴不提供§3-2应用运算曲线法求任意时刻周期分量有效值tI由上章的阐发可知,即使是一台发电机,要计算其任意时刻的短路电流,也是较繁的。
首先必需知道各时间常数、电抗、电势参数,然后进行指数计算。
这对工程上的实用计算显然不适合的。
50年代以来,我国电力部分持久采用畴前苏联引进的一种运算曲线法来计算的。
此刻试行据我国的机组参数绘制的运算曲线,下面介绍这种曲线的制定和应用。
第三章电力系统三相短路电流的实用计算
为短路电流周期分量是不衰减的,而求得的短路电流周 期分量的有效值即为起始次暂态电流 I 。
例3-1 (P66)
条件与近似
第三章 电力系统三相短路电流的实用计算 a)直接法(如图(3-1)所示)
假设条件: 1.所接负荷为综荷
2. E 1 0
短路电流为:
1 1 I f x1 x2
第三章 电力系统三相短路电流的实用计算
(a)
(b)
(a)等值网络 (b)分解后正常、故障运行网络 图3-4 计及负荷时计算短路电流等值网络
第三章 电力系统三相短路电流的实用计算
(c)
(d) 图3-5 不计及负荷短路电流计算等值网络
正常运行方式为空载运行,网络各点电压为1;
故障分量网络中, U f 0 1
U1 Z11 Z U 2 21 U i Z i1 Z f 1 U f U n Z n1 Z12 Z 22 Zi 2 Zf2 Zn2 Z1i Z1 f Z 2i Z 2 f Z ii Z fi Z ni Z if Z ff Z nf Z1n 0 Z1 f Z2 n 0 Z2 f Z in Z if (3-16) Z fn I f Z ff Z nn 0 Z nf
同步发电机计算方法与调相机类似;
异步电动机短路失去电源后能提供短路电流。
突然短路瞬间,异步电动机在机械和电磁惯性作用下,
定转子绕组中均感应有直流分量电流,当端电压低于 次暂态电动势时,就向外供应短路电流。
第3章 短路电流及其计算
2019/12/14
第二节 无限大容量电力系统三相短路时的物理过程
• 无限大容量系统的概念
无限大容量只是一个相对概念,指电源系统的容量相对 于用户容量大得多,在发生三相短路时电源系统的阻抗远远 小于短路回路的总阻抗,以致无论用户负荷如何变化甚至发 生短路,系统的母线电压都能基本维持不变。
第三章 短路电流及其计算
2019/12/14
2019/12/14
第二章电力负荷及短路计算 第一节 短路故障的原因、后果及其形式
一、 短路故障的原因 在工厂供配电系统的设计和运行中,不仅要考虑
系统的正常运行状态,还要考虑系统的不正常运行状 态和故障情况,最严重的故障是短路故障。短路故障 是指运行中的电力系统或工厂供配电系统的相与相或 相与地之间发生的金属性非正常连接。即不同相之间, 相对中线或地线之间的直接金属性连接或经小阻抗连 接。短路产生的原因主要是系统中带电部分的电气绝 缘出现破坏。
(1)用欧姆值法进行短路计算的步骤归纳为: 绘制短路回路等效电路 计算短路回路中各元件的阻抗值 求等效阻抗,化简电路 计算三相短路电流周期分量有效值及其它短 路参数 列短路计算表
2019/12/14
(2)用标幺值法进行短路计算的步骤归纳为: 选择基准容量、基准电压、计算短路点的基准电流 绘制短路回路的等效电路 计算短路回路中各元件的电抗标幺值 求总电抗标幺值,化简电路 计算三相短路电流周期分量有效值及其他短路参数 列短路计算表
1 T
T
0 (ip
tia
p)t2dt
I2(
第三章 短路电流计算
当 t = 0时,由于短路电路存在着电感,因此电流不会突变
,即ik0=i0,可求得积分常数,即
C I k.m sin k I m sin
则 i I sin(t ) (I sin I sin )et / kT k.m k k.m k m
ik iDC ik短路电流周期分量; i
第三章
短路电流计算
第一节 概述 第二节 无限大容量电源供电系统短路过程分析
(重点)
第三节
高压电网短路电流计算
(重点)
第四节
低压电网短路电流的计算
(重点)
第五节 短路电流的效应 (重点)
第一节
一、短路的原因及其后果
概
述
短路 ——指两个或多个导电部分之间意外的或有意的形成的 导电通路,此通路迫使这些导电部分之间的电位差等于或接 近于零。 短路的原因: (1)电气绝缘损坏
3 4.5 100 10 kVA S U % * * d k 4.5 X3 X4 100 1000kVA 100 SrT
3.求k-1点的短路电路总阻抗标么值及三相短路电流和短 路容量 1)总电抗标么值
* * * X X X (k 1) 1 2 0.4 0.95 1.35
(2)误操作
(3)鸟兽危害 短路的现象: 电流剧烈增加;
系统中的电压大幅度下降。
短路电流往往要比正常负荷电流大十几倍或几十倍。
短路的危害:
短路电流的热效应会使设备发热急剧增加,可能导致设 备过热而损坏甚至烧毁; 短路电流产生很大的电动力,可引起设备机械变形、扭 曲甚至损坏; 短路时系统电压大幅度下降,严重影响电气设备的正常
4)三相短路容量
供配电技术第3章-短路电流计算
图3-3无限大功率电源供电系统三相短路时的短路电流波形图
图3-4 三相短路时的相量图
产生最严重短路电流的条件: (1)短路瞬时电压过零 α=0或1800 (2)短路前空载或 cosΦ1 (3)短路回路纯电感 ΦK=900
将I=0,a=0,øk=90o代入上式,得
图3-5 最严重三相短路时的电流波形图
I
* K
2
1
X
* KL
1 7.516
0.133
IK2
Id
I
* K
144.3 0.133 19.192kA
ish.k 2 1.84I K 2 1.84 19.192 35.313kA
SK2
Sd
X
* K
2
100 0.133 13.3MVA
5.计算K2点三相短路流经变压器3T一次绕组的短路电流 I'K2
电动机对冲击短路电流的影响,如图3-9所示。
图3-9 电动机对冲击短路电流的影响示意图
电动机提供的冲击短路电流可按下式计算
式中,Ksh·M为电动机的短路电流冲击系数,低压电动机取1.0,高压 电机取 1.4~1.6; 为电动机的次暂态电势标幺值; 为电动机的次暂态电抗标幺值 IN·M为电动机额定电流。
稳态短路电流有效值是短路电流非周期分量衰减完后的短路电流有效值,用I∞ 表示。 在无限大容量系统中,I∞=Ip。 6.短路容量 SK 三相短路容量是选择断路器时,校验其断路能力的依据,它根据计算电压即平均
额定电压进行计算,即
3.3无限大功率电源供电系统三相短路电流的计算
3.3.1 标幺制
用相对值表示元件的物理量,称为标幺制。标幺值没有单位。
图3-7 例3-1供电系统图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当在t=0时刻,发生短路
K
ua U m sin(t )
负
ub U m sin(t 120 )
~
载
uc U m sin(t 240 )
K
(R, L)线路负载 (R, L)工作负载 ik
z
z
~ u Um sin(t )
M 图3-3无限大系统三相短路电路图
图3-4 无限大系统三相短路单相等值电路图
3
接地电阻测量仪
4
接地变压器
预备知识
为三相变压器(或三相电抗器),常用来为无中性点的系统提供一个人工的、 可带负载的中性点,供系统接地使用。
其接地方式有:直接接地,与接地电抗器、电阻或消弧线圈组合接地。 接地变压器可带一个供连续使用的低电压的二次绕组作为变电站辅助电源。
A
B C
接地变压器外部
AB C
z
z
~ u Um sin(t )
短路时刻(t=0)前,供电回路的电压电流方程为:
u U i Im
m sin(t ) sin(t
率
Im
|
Um Z Z'
|
arctan (L L' ) R R
13
第二节 三相短路过渡过程分析
一 无限大容量三相短路分析
15
第二节 三相短路过渡过程分析
一 无限大容量三相短路分析
将A带入 ik 的表达式,得到短路后短路电流随时间变化的表达式:
t
ik I pm sin(t k ) [Im sin( ) I pm sin( k )]e Ta
周期分量部分ip
非周期分量部分iap
Ta
:非周期分量衰减时间常数,Ta
L R
第四节 短路电流计算 第五节 电网短路电流计算中的特殊问题 第六节 短路电流力效应和热效应分析
1
预备知识
小接地系统与大接地系统
❖ 小接地系统
❖ 大接地系统
电源中性点与大地隔离或经大电抗线圈连接。 电源中性点与大地直接金属性连接。
A
A
B
B
C
C
常用于工业企业供电系统
常用于高压输电系统
2
接地装置
由接地连接线和接地体构成
决定非周期分量按指数规律衰减的快慢
接地变压器内部
5
预备知识
消弧线圈
消弧线圈是一个装设于配电网中性点的可调电感线圈,当电网发生单相 接地故障时,消弧线圈的作用是提供一个电感电流,补偿单相接地的电容电 流,使电容电流减小到规定值以下;同时,也使得故障相接地电弧两端的恢 复电压速度降低,达到自动熄灭电弧的目的。
消弧线圈的电抗或电流通过有载(无载)分接开关调节。
检修后忘却拆除地线合闸等非正常操作(人员过失)。
(4)鸟兽跨越在裸露导体上等意外故障。
9
第一节 概述
三 短路的危害
(1)短路产生很大的热量,导体温度升高,将导体绝缘破坏。 (2)短路产生巨大的电动力,使电气设备受到机械破坏。 (3)短路使系统电压降低,电流升高,电器设备正常工作受到破坏。 (4)短路造成停电,给国民经济带来损失,给人民生活带来不便。 (5)严重的短路将影响电力系统运行的稳定性,使同步发电机失步。 (6)单相短路产生不平衡磁场,对通信线路和弱电设备产生严重电磁干扰。
6
原理——根据系统运行方式及发展情况,确定消弧线圈在过补偿条件下的额定容量, 即可确定在接地故障时可提供的电感电流。增设消弧线圈二次电容负荷绕组,同时在 该消弧线圈的二次绕组上并联若干只(一般为四至五只)低压电容器,通过控制器控 制二次电容器投入的数量,来调节消弧线圈二次容抗的大小,从而改变消弧线圈一次 侧电感电流的大小。
电力系统正常运行时,消弧线圈装置工作在最大过补偿状态,保证电网中性点不高 于电网额定相电压的15%,控制器实时监测电网线路的对地总容抗,从而计算出所需 补偿的电感电流值。
调容式消弧线圈装置装置构成图
7
第一节 概述
一 短路的种类
三相交流系统危害较大的短路类型主要有:三相短路 k(3,) 两相短路 k (2),单相短路 k(1)和 两相接地短路 k (1,(1) 仅大接地系统有)。(a、b为小接地系统,c、d为大接地系统)
(3)Ish 短路电流最大有效值(有效值)。
(4)I 短路电流稳态值(有效值)。
12
第二节 三相短路过渡过程分析
一 无限大容量三相短路分析
ua U m sin(t )
负
ub U m sin(t 120 )
~
载
uc U m sin(t 240 )
M
(R, L)线路负载 (R, L)工作负载 i
10
第一节 概述
四 短路电流计算的目的
(1)正确选择和校验各种电器设备。 (2)计算和整定保护短路的继电保护装置。 (3)选择限制短路电流的电器设备。 (4)研究短路对用户工作的影响。
11
第一节 概述
五 短路电流计算的主要参数
(1) I "次暂态短路电流(有效值)。
(2)ish短路电流最大值(瞬时值) 。
其中:
k
I pm
为为短短路路回电路流i的周p 阻期抗分ia角量p (,幅周值期k,分Iapmr量cta|UnZm非| R周L 期分量)
由于感性电路在短路瞬间电流不能突变i0 i0 ,由此特征求解A值:
Im sin(t ) I pm sin(t k ) A
得: A Im sin( ) I pm sin( k )
第三章 短路电流计算
本章讨论供配电系统在短路故障情况下的短路电流计算方法, 其目的主要是供母线,电缆,设备的选择和继电保护整定计算用。
短路是指电力系统正常运行之外的相与相或相与地之间的 “短接”。短接包括:1.金属性连接 2.经小阻抗连接 第一节 概述 第二节 三相短路过渡过程分析 第三节 供电系统电气元件参数计算
5%
10%
65%
8
20%
第一节 概述
二 短路的原因
元件损坏、气象条件恶化 、人员过失 、其他原因。
(1)电力系统中电器设备载流导体的绝缘损坏。
造成绝缘损坏的原因主要有设备绝缘自然老化,操作过电压,大气 过电压,绝缘受到机械损伤等。
(2)气象条件恶化 (3)运行人员不遵守操作规程,如带负荷拉、合隔离开关,
从短路时刻(t=0)开始,短路回路的电压方程为:
Um
sin(t
)
R ik
L
dik dt
为电源电压初相角
为电源电压角频率
14
第二节 三相短路过渡过程分析
一 无限大容量三相短路分析
求解上述微分方程,得到: ik
Um sin(t
|Z|
k )
Rt
Ae L
Rt
I pm sin(t k ) Ae L