2020年暑假七年级数学训练题(期末模拟题) (12)-0717(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年暑假七年级数学训练题(期末模拟题) (12)

一、选择题(本大题共10小题,共30.0分)

1. 25的平方根是( )

A. ±5

B. 5

C. ±√5

D. −5

2. 下列命题是真命题的是( )

A. 相等的角是对顶角

B. 两点之间,直线最短

C. 角平分线上的点到角两边的距离相等

D. 同位角相等

3. 为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析.在此问题中,样本是指( )

A. 80

B. 被抽取的80名初三学生

C. 被抽取的80名初三学生的体重

D. 该校初三学生的体重

4. 若a >b ,则下列不等式正确的是( )

A. 2a <2b

B. a −2>b −2

C. −a 2>−b 2

D. a −b <0

5. 已知二元一次方程3x −y =5,给出下列变形:①y =3x +5,

②x =y+5

3,③−6x +2y =−10,

其中正确的是( ) A. ②

B. ①②

C. ①③

D. ②③ 6. 不等式3x +1<2−2(x −2)的解集在数轴上表示为( )

A.

B. C. D. 7. 如果{x =−2y =1

是方程x −y =2m 的解,那么m 的值是( ) A. 1 B. 12 C. −1 D. −3

2 8. 如图,∠1=80°,∠2=80°,∠3=84°,则∠4=( )

A. 84°

B. 94°

C. 86°

D. 96°

9.如图,有以下条件:①∠1=∠2;②∠3=∠4;③∠1+∠3+∠BGC=

180°;④∠1+∠3=∠2+∠4;⑤∠E=∠F,∠1=∠2;其中能判断

AB//CD的是().

A. ①③⑤

B. ②④⑤

C. ①③④

D. ③④⑤

10.如图,A1(1,0),A2(1,1),A3(−1,1),A4(−1,−1),A5(2,−1),…,按此规律,点A2018的坐标为

()

A. (504,504)

B. (505,−504)

C. (505,505)

D. (−505,505)

二、填空题(本大题共6小题,共24.0分)

11.计算:√12−√3=.

12.不等式5x−3<3x+5的非负整数解是______.

13.为了解一批节能灯的使用寿命,宜采用_________的方式进行调查.(填:“全面调查”或“抽

样调查”)

14.将一副三角板如图放置,∠ABE=30°,∠DAC=45°,若DA//BC,则∠EBC的度数为______.

15.已知点M坐标为(2−a,3a+6),且M点到两坐标轴的距离相等,则点的M坐标是______.

16.图中是三种将多边形(n≥3)分成三角形的不同方法.

它们将多边形分成三角形的个数分别是___ ;___ ;___(用含n的代数式表示).

三、解答题(本大题共8小题,共57.0分)

17. 计算:√9−2−1+√83−|√3−3|;

18. 解方程组:{x +2y =3 (1)

2x +5y =9 (2)

19. 如图,每个格子为一个单位长度,把方格纸中的△ABC 和点D 一起平移,使点D 平移到点D′的

位置

(1)画出平移后三角形;

(2)写出平移后点A′,B′,C′的坐标;

(3)计算△ABC 的面积.

20.解不等式组{2(x−2)≤4x−3

2x−5<1−x,并将解集在数轴上表示出来.

21.某市八年级学生去国防园参加社会实践活动,园内有“制作木飞机”、“遇险急救”、“水上

过浮桥”、“攀岩”(以下分别用A、B、C、D表示)四个项目.为了了解学生对这四个项目的喜爱情况,对全市八年级学生进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的学生有______人;

(2)将两幅不完整的图补充完整;

(3)在扇形统计图中C项目所占扇形的圆心角的度数为_______;

(4)若全市有4000名学生,求估计喜爱A项目的人数.

22.如图,AB//CD,∠B=26°,∠D=39°,求∠BED的度数.

解:过点E作EF//AB,

∴∠1=∠B=26°______

∵AB//CD(已知),EF//AB(所作),

∴EF//CD.(______ )

∴∠2=∠D=39°(______ )

∴∠BED=∠1+∠2=65°.

23.某学校准备购买A、B两种奖品以鼓励品德优秀的学生.如果购买A种20件,B种15件,共需

380元;如果购买A种15件,B种10件,共需280元.

(1)A、B两种奖品每件各多少元?

(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?

24.如图,在平面直角坐标系中,A(a,0),B(0,b),C(3,4),且a、b满足√a−1+|2b−4|=0.

(1)求a、b的值;

(2)求三角形ABC的面积;

(3)设点M在x轴上,且三角形ABM与三角形ABC的面积相等,求点M的坐标.

-------- 答案与解析 --------

1.答案:A

解析:【解答】

解:∵(±5)2=25,

∴25的平方根是±5.

故选A.

根据平方根的定义,结合(±5)2=25即可得出答案.

【分析】

本题考查了平方根的知识,属于基础题,解答本题的关键是掌握平方根的定义,注意一个正数的平方根有两个且互为相反数.

2.答案:C

解析:【分析】

本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.

分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.

【解答】

解:A.相等的角可能是平行线中的同位角,故A错误;

B.两点之间,线段最短,故B错误;

C.角平分线上的点到角两边的距离相等,故C正确;

D.两直线平行,同位角相等,故D错误;

故选C.

3.答案:C

解析:【分析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.

此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.

【解答】

解:样本是被抽取的80名初三学生的体重,

故选C.

4.答案:B

解析:【解答】

解:A、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故A错误;

B、D、不等式的两边都加或都减同一个数或整式,不等号的方向不变,故B正确,D错误;

C、不等式的两边都乘或除以同一个负数,不等号的方向改变,故C错误;

相关文档
最新文档