高三数学填空题专项练习(含答案解析)
2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)
2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。
2020届高考数学选择题填空题专项练习(文理通用)14 概率(含解析)
2020届高考数学选择题填空题专项练习(文理通用)14概率第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·全国高三专题练习(文))某个微信群在某次进行的抢红包活动中,若某人所发红包的总金额为15元,被随机分配为3.50元,4.75元,5.37元,1.38元,其4份,甲、乙、丙、丁4人参与抢红包,每人只能抢一次,则甲、乙二人抢到的金额之和不低于8元的概率为( )A .13B .12C .23D .34【答案】B 【解析】【分析】计算出基本事件总数及满足条件的基本事件数,代入古典概型概率计算公式,可得答案. 【详解】由题意可得,甲、乙二人抢到的金额的基本事件总数为{}3.50,4.75,{}3.50,5.37,{}3.50,1.38,{}4.75,5.37,{}4.75,1.38,{}5.37,1.38共6种,“甲、乙二人抢到的金额之和不低于8元”包含{}3.50,4.75,{}3.50,5.37,{}4.75,5.37共3种,∴甲、乙二人抢到的金额之和不低于8元的概率3162P ==,故选:B . 【点睛】本题主要考查古典概型的概率计算公式,属于基础题.2.(2020·河北工业大学附属红桥中学高三月考理、文)某人通过普通话二级测试的概率是14,若他连续测试3次(各次测试互不影响),那么其中恰有1次通过的概率是A .164B .116C .2764D .34【答案】C 【解析】【分析】利用n 次独立重复试验中事件A 恰好发生一次的概率计算公式求解. 【详解】∵某人通过普通话二级测试的概率是14,他连线测试3次,∴其中恰有1次通过的概率是p 1231127(1)4464C ⎛⎫=-= ⎪⎝⎭.故选:C . 【点睛】本题考查概率的求法及应用,是基础题,解题时要认真审题,注意n 次独立重复试验中事件A 恰好发生一次的概率计算公式的合理运用.3.(2020·江西高三(文、理))已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.25B.0.2C.0.35D.0.4【答案】A【解析】【分析】当三次投篮恰有两次命中时,就是三个数字xyz中有两个数字在集合{}1,2,3,4,再逐个考察个数据,最后利用古典概型的概率公式计算可得.【详解】由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.共5组随机数,∴所求概率为510.25 204==.【点睛】本题主要考查了随机事件概率的含义及其运算,以及用数值表示随机事件的意义,属于基础题.4.(2020·湖南长沙一中高三月考(理))某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,甲不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.13B.14C.15D.12【答案】A【解析】【分析】根据条件概率的公式与排列组合的方法求解即可.【详解】由题意得学生甲和乙都不是第一个出场,甲不是最后一个出场的概率113333155C C A9A20P==,其中学生丙第一个出场的概率1333255C A3A20P==,所以所求概率为2113PPP==.故选:A【点睛】本题主要考查了根据排列组合的方法求解条件概率的问题,属于中等题型.5.(2020·湖南高三学业考试)在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为( )A .35B .65C .125D .185【答案】C 【解析】【分析】设阴影部分的面积约为S ,由几何概型可得1204200S =,解之可得. 【详解】由题意可得正方形的面积为2×2=4,设阴影部分的面积约为S ,则由几何概型可得1204200S =,解得S 125=故选C . 【点睛】本题考查几何概型,考查模拟方法估计概率,属基础题.6.(2020·湖北黄冈中学高三(理))如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .1πB .12πC .1142π-D .112π- 【答案】D 【解析】【分析】先设出圆O 的半径,然后算出阴影部分的面积,再计算出圆O 的面积,最后利用几何概型公式求出概率.【详解】设圆O 的半径为2,阴影部分为8个全等的弓形组成,设每个小弓形的面积为S ,则2112111424S ππ-=⋅-⨯⨯=,圆O 的面积为224ππ⋅=,在圆O 内随机取一点,则此点取自阴影部分的概率是P ,则82411442S P ππππ-===-,故本题选D. 【点睛】本题考查了几何概型,正确计算出阴影部分的面积是解题的关键,考查了数学运算能力. 7.(2020·新兴县第一中学高三期末(理))现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( )A .710B .35C .12D .25【答案】B 【解析】【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解【详解】由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数这10个数中随机抽取一个数,则它小于8的概率是63105P ==.故选:C . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题8.(2020·湖南长郡中学高三月考(文、理))如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是( )A .π14- B .π12C .π4D .π112-【答案】A【解析】由题意,正方形的面积为22=4.圆锥的底面面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4.故选A . 9.(2020·山西高三月考(理、理))圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线叫做“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯(Reuleaux )命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形,,,ABC A B C 分别以为圆心,边长为半径,作圆弧»»»,,BCCA AB ,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).在图2中的正方形内随机取一点,则这点落在鲁列斯曲边三角形内的概率是A .2π- B .24π- C .2π- D .8π【答案】A【解析】设正方形的边长为1,则正方形的面积为1,鲁列斯曲边三角形的面积为122π-=, 10.(2020·湖南高三期末(理))世界排球比赛一般实行“五局三胜制”,在2019年第13届世界女排俱乐部锦标赛(俗称世俱杯)中,中国女排和某国女排相遇,根据历年数据统计可知,在中国女排和该国女排的比赛中,每场比赛中国女排获胜的概率为23,该国女排获胜的概率为13,现中国女排在先胜一局的情况下获胜的概率为( )A .89B .5781C .2481D .19【答案】A 【解析】【分析】根据比赛情况,按照比赛总场次分类讨论.当总共比赛三场, 中国女排在先胜一局的情况下,则随后两场中国队都获胜;当总共比赛四场,则第二场或第三场中国队获胜,第四场获胜;当总共比赛五场时,则第二场、第三场、第四场中国队获胜一场,第五场中国队获胜即可.根据概率计算,将三种情况下的概率求和即可得解.【详解】每场比赛中国女排获胜的概率为23,该国女排获胜的概率为13,现中国女排在先胜一局的情况下获胜,有以下三种情况:总共比赛三场,则第二场和第三场中国队获胜,所以此种情况下中国队获胜概率为224339⨯=总共比赛四场,则第二场或第三场中国队获胜,该国胜一场.且第四场中国队获胜,则此种情况下中国队获胜的概率为12212833327C ⎛⎫⎛⎫⨯=⎪⎪⎝⎭⎝⎭,总共比赛五场,则第五场中国队获胜,第二场、第三场、第四场中国队获胜一场,此种情况下的概率为2132********C ⎛⎫⎛⎫⨯=⎪⎪⎝⎭⎝⎭,所以中国队获胜的概率为4848927279++=,选:A 【点睛】本题考查了分类讨论求符合要求条件的概率,注意分类讨论要全面,属于中档题.11.(2020·广西柳州高级中学高三开学考试(文、理))不透明的箱子中有形状、大小都相同的5个球,其中2个白球,3个黄球.现从该箱子中随机摸出2个球,则这2个球颜色不同的概率为( )A .310B .25C .35D .710【答案】C 【解析】【分析】先求出基本事件总数2510n C ==,这2个球颜色不同包含的基本事件个数11236M C C ==,由此能求出这2个球颜色不同的概率.【详解】设2只白球分别为1A 2A ,3只红球分别为1B ,2B ,3B ,从5只球中随机摸两只球, 其可能结果组成的基本事件有:{}{}{}{}{}{}{}{}{}{}12111213212223121323,,,,,,,,,,,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10个.两只球颜色不同包含的基本事件有{}{}{}{}{}{}111213212223,,,,,,,,,,,A B A B A B A B A B A B 共6个,所以所求概率为:60.610P ==,故选C . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 12.(2020·广西柳州高级中学高三开学考试(文、理))关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( )A .237B .4715C .1715D .5317【答案】B 【解析】【分析】由试验结果知120对0~1之间的均匀随机数,x y ,满足0101x y ≤<⎧⎨≤<⎩,面积为1,两个数能与1构成钝角三角形三边的数对(,)x y ,满足221x y +<且0101x y ≤<⎧⎨≤<⎩, 1x y +>,面积为142π-,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值. 【详解】由题意,120名同学随机写下的实数对()x y ,落在由0101x y <<⎧⎨<<⎩的正方形内,其面积为1.两个数能与1构成钝角三角形应满足2211x y x y +>⎧⎨+<⎩且0101x y <<⎧⎨<<⎩,此为一弓形区域,其面积为142π-.由题意134421120π-=,解得4715π=,故选B . 【点睛】本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
高考备考数学新定义类创新题选择填空专题练习(含答案)
一、选择题1.定义集合运算:{}|,,A B z z xy x A y B *==∈∈,设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为( ) A .0B .2C .3D .62.已知函数①()1f x x =+;②()22x f x =-;③()1f x x=;④()ln f x x =;⑤()cos f x x =.其中对于()f x 定义域内的任意1x ,都存在2x ,使得()()1212f x f x x x =-成立的函数是( ) A .①③B .②⑤C .③⑤D .②④3.定义平面向量之间的一种运算“⊙”如下,对任意的(),m n =a ,(),p q =b ,令a ⊙mq np =-b 下列说法错误的是( )A .若a 与b 共线,则令a ⊙0=bB .a ⊙=b b ⊙aC .对任意的λ∈R 有()λa ⊙()λ=b abD )(2+⋅a a b 4.我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”, 设ABC △三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积公式”为S .若2sin 24sin a C A =,()()()2sin sin 27sin a C B c b a A -+=-,则用“三斜求积公式”求得的S =( )A B C D 5.设非空集合{}|S x m x n =≤≤满足:当x S ∈时,有2x S ∈,给出如下三个命题:①若1m =,则{}1S =;②若12m =-,则114n ≤≤;③若12n =,则0m ≤≤.其中正确的命题的个数为( )A .0B .1C .2D .36.祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现将曲线2213648x y +=绕y 轴旋转一周得到的几何体叫做椭球体,记为1G ,几何体2G 的三视图如图所示.根据祖暅原理通过考察2G 可以得到1G 的体积,则1G 的体积为( )A. B. C. D.7.对于函数()f x 和()g x ,设(){}0x f x α∈∈=R ,(){}0x g x β∈∈=R ,若存在α、β,使得1αβ-≤,则称()f x 与()g x 互为“零点关联函数”.若函数()1e 2x f x x -=+-与()23g x x ax a -=-+ 互为“零点关联函数”,则实数a 的取值范围为( )A .7,33⎡⎤⎢⎥⎣⎦B .72,3⎡⎤⎢⎥⎣⎦C .[]2,3D .[]2,48.若三个非零且互不相等的实数1x ,2x ,3x 成等差数列且满足123112x x x +=,则称1x ,2x ,3x 成一个“β等差数列”.已知集合{}100, M x x x =≤∈Z ,则由M 中的三个元素组成的所有数列中,“β等差数列”的个数为( ) A .25B .50C .51D .1009.定义域为[],a b 的函数()y f x =的图象的两个端点分别为()(),A a f a ,()(),B b f b ,(),M x y 是()f x 图象上任意一点,其中()()101x a b λλλ=+-<<,向量BN BA λ=.若不等式MN k ≤恒成立,则称函数()f x 在[],a b 上为“k 函数”.已知函数326115y x x x =-+-在[]0,3上为“k 函数”,则实数k 的最小值是( ) A .1B .2C .3D .410.已知函数()f x 的定义域为()0,+∞,若()f x y x=在()0,+∞上为增函数,则称()f x 为“一阶比增函数”;若()2f x y x=在()0,+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω.若函数()322f x x hx hx =--,且()1f x ∈Ω,()2f x ∉Ω,则实数h 的取值范围是( ) A .()0,+∞B .[)0,+∞C .(),0-∞D .(],0-∞11.函数()f x 定义域为D ,若满足①()f x 在D 内是单调函数;②存在[],a b D ⊆使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,那么就称()y f x =为“成功函数”,若函数()()()log 0,1xa f x a t a a =+>≠是“成功函数”,则t 的取值范围为( ) A .()0,+∞B .1,4⎛⎫-∞ ⎪⎝⎭C .10,4⎛⎫⎪⎝⎭D .10,4⎛⎤ ⎥⎝⎦12.已知F 为抛物线2:4C y x =的焦点,A ,B ,C 为抛物线C 上三点,当FA FB FC ++=0时,称ABC △为“和谐三角形”,则“和谐三角形”有( ) A .0个 B .1个 C .3个 D .无数个二、填空题13.如果函数()f x 在区间D 上是凸函数,那么对于区间D 内的任意1x ,2x ,,n x ,都有()()()1212n n f x f x f x x x x f nn ++++++⎛⎫≤ ⎪⎝⎭,若sin y x =在区间()0,π内是凸函数,则在ABC △中,sin sin sin A B C ++的最大值是_____.14卵形线是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线,卡西尼卵形线是平面内与两个定点(叫作焦点)的距离之积等于常数的点的轨迹.某同学类比椭圆与双曲线对卡西尼卵形线进行了相关性质的探究,设()1,0F c -,()2,0F c 是平面内的两个定点,212PF PF a ⋅= (a 是定长),得出卡西尼卵形线的相关结论:①该曲线既是轴对称图形也是中心对称图形; ②若a c =,则曲线过原点; ③若0a c <<,则曲线不存在;④若0c a <<,则222222a c x y a c -++≤≤. 其中正确命题的序号是________.15.记[]x 为不超过x 的最大整数,如[]2.72=,[]1.32-=-,则函数()()[]ln 1f x x x =+-的所有零点之和为________.16.若存在实常数k 和b ,使得函数()f x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+,和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x x =∈R ,()()10g x x x=<,()2eln h x x =(e 为自然对数的底数),有下列命题: ①()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增;②()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-; ③()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]4,1-; ④()f x 和()h x 之间存在唯一的“隔离直线”e y =-.其中真命题的序号为__________.(请填写正确命题的序号)参考答案 1.【答案】D【解析】根据题意,设{}1,2A =,{}0,2B =,则集合A B *中的元素可能为0,2,0,4, 集合元素的互异性,则{}0,2,4A B *=,其所有元素之和为0246++=,故选D . 2.【答案】B【解析】由()()12120f x f x x x +=知,对函数()f x 图象上任意一点()()11,A x f x ,都存在一点()()22,B x f x ,使OA OB ⊥,若斜率都存在,则1OA OB k k =-.对于①,由于()1f x x =+,所以无论两个点如何取,OA 和OB 的斜率均等于1,故①不成立;对于②,由于()22x f x =-,结合图象可得过原点总有两条直线与函数的图象相交,即对函数()f x 图象上任意一点A ,都存在一点B ,使OA OB ⊥,故②成立; 对于③,由于()1f x x=,若()()1212121f x f x x x x x ==-⋅,则()2121x x =-,显然不成立,故③不成立;对于④,由于()ln f x x =,则当11x =时,故0OA k =,直线OA 为x 轴,此时与直线OA 垂直的直线为y 轴,而y 轴与函数()f x 的图象无交点,故④不成立;对于⑤,由于s (o )c f x x =,结合图象可得过原点总有两条直线与函数的图象相交,即对函数()f x 图象上任意一点A ,都存在一点B ,使OA OB ⊥,故⑤成立. 综上可得符合条件的是②⑤,故选B . 3.【答案】B【解析】根据两向量共线的坐标表示可知A 正确, mq np =-ab ,pn mq =-b a ,所以B 不正确;()()mq np λλλλ==-a b ab ,所以C 正确;()()()()()()22222222mq np mp nq m n pq +⋅=-++=++ab a b ,所以D 正确,故选B . 4.【答案】D【解析】由2sin 24sin a C A =,可得224a c a =,24ac ∴=,由()()()2sin sin 27sin a C B c b a A -+=-,可得()()()227a c b c b a a -+=-,整理计算有22227a c b +-=,结合三角形面积公式可得S ==. 故选D . 5.【答案】D【解析】已知非空集合{}|S x m x n =≤≤满足:当x S ∈时,有2x S ∈, 故当x n =时,2n S ∈即2n n ≤,解得01n ≤≤,当x m =时,2m S ∈即2m m ≥,解得0m ≤,或1m ≥;根据m n ≤,得0m ≤; ①若1m =,由11m n =≤≤,可得1m n ==,即{}1S =,故①正确; ②若12m =-,214m S =∈,即12n -≤,且14n ≤,故114n ≤≤,故②正确;③若12n =,由2m S ∈,可得21212m m ⎧⎪⎪⎨≤≤⎪⎪⎩,结合0m ≤,可得0m ≤≤,故③正确;故选D . 6.【答案】D【解析】由三视图可得几何体2G 是一个底面半径为6,高为 在圆柱中挖去一个以圆柱下底面圆心为顶点,上底面为底面的圆锥,则圆柱的体积为2π6⨯⨯=,圆锥的体积21π63⨯⨯⨯=,∴利用祖暅原理可计半椭球的体积为-=,所以1G的体积为2⨯=,故选D . 7.【答案】C【解析】()1e 2x f x x -=+-,()f x 为单调递增的函数,且1x =是函数唯一的零点,由()f x ,()g x 互为“零点相邻函数”,则()g x 的零点在[]0,2之间.(1)当()g x 有唯一的零点时,0Δ=,解得2a =,解得1x =满足题意;(2)当()g x 在[]0,2之间有唯一零点时,()()020g g ≤,解得7,33a ⎡⎤∈⎢⎥⎣⎦;(3)当()g x 在[]0,2之间有两个点时,0Δ>,()()020g g ≥,解得72,3a ⎛⎤∈ ⎥⎝⎦,综上所述,解得[]2,3a ∈,故选C .8.【答案】B【解析】由三个非零且互不相等的实数1x ,2x ,3x 成等差数列且满足123112x x x +=, 知2131232112x x x x x x =++=⎧⎪⎨⎪⎩,消去2x ,并整理得()()131320x x x x +-=,所以13x x =(舍去),312x x =-,于是有2112x x =-.在集合{}100, M x x x =≤∈Z 中,三个元素组成的所有数列必为整数列,所以1x 必能被2整除,且[]150,50x ∈-,10x ≠,故这样的数组共50组,答案选B . 9.【答案】D【解析】当0x =时,5y =-,当3x =时,1y =.所以()0,5A -,()3,1B . 所以()()3201331272761M M x y λλλλλλ=⨯+-⨯=-=-+-+.. 因为向量BN BA λ=,所以()()3,63,6BN λλλ=--=--,所以()()()32323,63,272760,2727MN BN BM λλλλλλλλ=-=-----+-=-, 所以(()322272727271MN λλλλ==-=-,设()()()227101g λλλλ=-<<,()25481g λλλ∴=-',所以函数()g λ在20,3⎛⎫ ⎪⎝⎭单调递增,在2,13⎛⎫ ⎪⎝⎭上单调递减,所以()max 243g g λ⎛⎫== ⎪⎝⎭,所以4k ≥,故选D . 10.【答案】C【解析】因为()1f x ∈Ω且()2f x ∉Ω,即()()22f x g x x hx h x==--在()0,+∞是增函数,所以0h ≤,而()()22f x h h x x h x x ==--在()0,+∞不是增函数,而()21hh x x='+, 所以当()h x 是增函数时,有0h ≥,当()h x 不是增函数时,有0h <, 综上所述,可得h 的取值范围是(),0-∞,故选C . 11.【答案】C【解析】∵()()()log 0,1x a f x a t a a =+>≠是“成功函数”,∴()f x 在其定义域内为增函数,()()1log 2x a f x a t x =+=,∴2x x a t a +=,20xx a a t -+=,令20x m c =>,∴20m m t -+=有两个不同的正数根,∴1400t t ->>⎧⎨⎩,解得10,4t ⎛⎫∈ ⎪⎝⎭,故选C .12.【答案】D【解析】抛物线方程为24y x =,A ,B ,C 为曲线C 上三点, 当FA FB FC ++=0时,F 为ABC △的重心,用如下办法构造ABC △,连接AF 并延长至D ,使12FD AF =, 当D 在抛物线内部时,设()00,D x y ,若存在以D 为中点的弦BC , 设()11,B m n ,()22,C m n ,则1202m m x +=,1202n n y +=,1212BC n n k m m -=-,则21122244n m n m ⎧==⎪⎨⎪⎩,两式相减化为()1212124n n n n m m -+=-,121202BC n n k m m y -==-,所以总存在以D 为中点的弦BC , 所以这样的三角形有无数个,故选D . 13.【解析】由题意,知凸函数()f x 满足()()()()12312n n f x f x f x f x x x x f nn +++++++⎛⎫≤ ⎪⎝⎭, 又sin y x =在区间()0,π上是凸函数, 所以πsin sin sin3sin 3sin 33A B CA B C ++++≤==. 14.【答案】①②③④ 【解析】由题意设(),P x y 2a =,即()()22224x c y x c y a ⎡⎤⎡⎤++⋅-+=⎣⎦⎣⎦, ①把方程中的x 被x -代换,方程不变,故此曲线关于y 轴对称;把方程中的y 被y -代换,方程不变, 故此曲线关于x 轴对称;把方程中的x 被x -代换,y 被y -代换,方程不变,故此曲线关于原点对称; 故①正确;②a c =,()0,0代入,方程成立则曲线过原点,故②正确;③∵()12min 2PF PF c +=,(当且仅当,12PF PF c ==时取等号),∴()212min PF PF c =,∴若0a c <<,则曲线不存在,故③正确;④若0c a <<,则类比椭圆的性质,可得222222a c x y a c -≤+≤+,故④正确. 故答案为①②③④. 15.【答案】1e 2e+-【解析】由题意可知[]1x x x -<≤,令()()()ln 11g x x x =+--,()3x ≥.有()1'101g x x =-<+. 所以()g x 在[)3,+∞上单调递减,有()()3ln420g x g <=-<, 所以()()[]ln 1f x x x =+-在[)3,+∞上无零点,只需考虑:()10ln 11x x -<<+=-⎧⎪⎨⎪⎩,()01ln 10x x ≤<+=⎧⎪⎨⎪⎩,()12 ln 11x x ⎧<+=⎪⎨⎪⎩≤,()23ln 12x x ⎧<+=⎪⎨⎪⎩≤, 可得三个零点分别为11e -,e 1-,0,故答案为1e 2e+-.16.【答案】①②④【解析】结合题意逐一考查所给命题的真假:①∵()()()21m x f x g x xx =-=-,x ⎛⎫∈ ⎪⎝⎭,则()322121'20x m x x x x +=+=>, ∴()()()F x f x g x =-在⎛⎫⎪⎝⎭内单调递增,故①对;②、③设()f x 、()g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 成立,即有10Δ≤,240k b +≤,0b ≤,又1kx b x≤+对一切0x <成立,则210kx bx +-≤,即20Δ≤,240b k +≤,0k ≤, 即有24k b ≤-且24b k ≤-,42166440k b k k -⇒-≤≤≤≤,同理可得40b -≤≤,故②对,③错; ④函数()f x 和()h x 的图象在x ),因此若存在()f x 和()g x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线方程为(e y k x -=,即e y kx =-, 由()()ef x kx x -+≥∈R ,可得2e 0x kx -+≥当x ∈R 恒成立, 则0Δ≤,即(20k -≤,故k =,此时直线方程为e y =-,下面证明()e h x ≤-:令()()e e 2eln G x h x x =--=--,则()'x G x x=,当x =()0G x '=,当0x <<时,()0G x '<,当x >()0G x '>,则当x =()G x 取到极小值,极小值是0,也是最小值.所以()()e 0G x h x =--≥,则()e h x ≤-当0x >时恒成立.∴函数()f x 和()g x 存在唯一的隔离直线e y =-,故④正确.故答案为①②④.。
高中数学三角函数专项练习(含答案)
高中数学三角函数专项练习(含答案)一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()333f t f t t ⎛⎫⎛⎫≤-- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________3.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 4.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________. 5.在ABC 中,7AB =3BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △3②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______. 6.若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.7.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .8.已知函数()sin cos f x x x =+,()sin cos g x x x =:①函数()f x 的图象关于点(,0)4π对称;②函数|()|g x 的最小正周期是2π;③把函数f (2x )图象上所有点向右平移8π个单位长度得到的函数图象的对称轴与函数y=()g x 图象的对称轴完全相同;④函数1()()y f x g x =--在R 上的最大值为2.则以上结论正确的序号为_______________ 9.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且222a c b ac +-=,则sin cos A C 的最大值为______.10.已知1OB →=,,A C 是以O 为圆心,0BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.已知ABC 中,角,,A B C 的对边分别为,,a b c .若2222224cos 4sin 33a B b A b c +=-,则cos A 的最小值为( )A B C D .3412.已知()1,0A -,()3,0B ,P 是圆22:45O x y +=上的一个动点,则sin APB ∠的最大值为( )A B C D 13.已知双曲线2221(0)y x b b -=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( )A B C .113D .1114.已知向量a 与b 的夹角为120︒,且2a b ⋅=-,向量c 满足()()101c a b λλλ=+-<<,且a c b c ⋅=⋅,记向量c 在向量a 与b 方向上的投影分别为x 、y .现有两个结论:①若13λ=,则2a b =;②22x y xy ++的最大值为34.则正确的判断是( ) A .①成立,②成立 B .①成立,②不成立 C .①不成立,②成立D .①不成立,②不成立15.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C .105D .25516.已知点1F ,2F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12C .32D .3317.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .918.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()33f π=,且()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1419.在锐角ABC 中,若cos cos sin sin 3sin A C B Ca c A+=,且3sin cos 2C C +=,则a b +的取值范围是( ) A .(6,23⎤⎦B .(0,43⎤⎦C .(23,43⎤⎦D .(6,43⎤⎦20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知1l ,2l ,3l 是同一平面内自上而下的三条不重合的平行直线.(1)如图1,如果1l 与2l 间的距离是1,2l 与3l 间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,求这个正三角形ABC 的边长.(2)如图2,如果1l 与2l 间的距离是1,2l 与3l 间的距离是2,能否把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,如果能放,求BC 和3l 夹角θ的正切值并求该正三角形边长;如果不能,试说明理由.(3)如果边长为2的正三角形ABC 的三顶点分别在1l ,2l ,3l 上,设1l 与2l 间的距离为1d ,2l 与3l 间的距离为2d ,求12d d ⋅的取值范围.22.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.23.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.24.已知函数()2212cos f x x x +-. (1)求()f x 的对称轴; (2)将()f x 的图象向左平移12π个单位后得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.25.已知向量33cos ,sin 22x a x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫- ⎪⎝=⎭,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)用含x 的式子表示a b ⋅及a b +; (2)求函数的()f x a b a b =⋅-+值域.26.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 27.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()132262g x f x π⎛⎫=-+ ⎪⎝⎭,求()g x 在区间[],3ππ-内的所有零点之和.28.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.29.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若ABC ∆是钝角三角形,且面积为24a ,求2b ac 的值.30.已知函数()()()24sin sin cos sin cos sin 142x f x x x x x x π⎛⎫=+++-- ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)若函数()()()12122g x f x af x af x a π⎡⎤⎛⎫=+---- ⎪⎢⎥⎝⎭⎣⎦在,42ππ⎡⎤-⎢⎥⎣⎦的最大值为2,求实数a 的值.【参考答案】一、填空题1.6π2.π6∞⎛⎤- ⎥⎝⎦,3.⎛ ⎝⎭4 5.①③6.[ 78.②③④9.12+10.⎡⎢⎣⎦二、单选题 11.C 12.D 13.A 14.C 15.C 16.C 17.A 18.C 19.D 20.C 三、解答题21.(1)2 ;(2)能放,tan θ=;(3)(]0,1 【解析】 【分析】(1)根据,A C 到直线2l 的距离相等,可得2l 过AC 的中点M ,2l AC ⊥,从而求得边长2AC AM =的值.(2)假设能放,设边长为a ,BC 与3l 的夹角θ,不妨设060θ<≤,可得sin 2a θ=,()sin 601a θ-=,两式相比化简可得sin θa 的值,从而得出结论.(3)利用两角和差的正弦、余弦公式化简()124sin 60sin d d θθ⋅=-为()2sin 2301θ+-,再根据正弦函数的定义和值域求出12d d ⋅的取值范围. 【详解】 (1),A C 到直线2l 的距离相等,∴2l 过AC 的中点M , ∴2l AC ⊥, ∴边长22AC AM ==(2)假设能放,设边长为a ,BC 与3l 的夹角θ, 由对称性,不妨设060θ<≤, ∴sin 2a θ=,()sin 601a θ-=,两式相比可得:()sin 2sin 60θθ=-,即sin sin θθθ-,2sin θθ∴=,tan θ∴=,sin θ∴=,故边长3a ==, 综上可得,能放.(3)()1214sin 60sin 4sin sin 2d d θθθθθ⎫⋅=-=-⎪⎪⎝⎭()1cos 2222sin 23012θθθ⎫+=-=+-⎪⎪⎝⎭. 060θ<≤,30230150θ∴<+≤,()1sin 23012θ≤+≤, 所以()02sin 23011θ≤+-≤, 又10d >,20d >,所以(]120,1d d ⋅∈. 【点睛】本题是一道考查三角函数应用的题目,解题的关键是掌握等边三角形的性质以及三角函数的恒等变换,属于中档题. 22.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.23.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.24.(1)23k x ππ=+(k Z ∈)(2)[]0,2 【解析】(1)利用三角恒等变换,化简函数解析式为标准型,再求对称轴; (2)先求平移后的函数解析式,再求值域. 【详解】(1)()222cos 1f x x x =-+2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭令:262x k πππ-=+,得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+(k Z ∈). (2)将()f x 的图象向左平移12π个单位后得到函数()g x ,所以()12g x f x π⎛⎫=+ ⎪⎝⎭2sin 22sin 2126x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦当0,3x π⎡⎤∈⎢⎥⎣⎦时,有220,3x π⎡⎤∈⎢⎥⎣⎦,故[]sin 20,1x ∈, ()g x ∴的值域为[]0,2. 【点睛】本题考查利用三角恒等变换化简函数解析式,求解函数性质,同时涉及三角函数图象的平移,以及值域的求解问题.属三角函数综合基础题.25.(1)cos 2x a b ⋅=;2cos a b x +=,0,2x π⎡⎤∈⎢⎥⎣⎦(2)()3,12f x ⎡⎤∈--⎢⎥⎣⎦【解析】(1)根据平面向量数量积的坐标表示以及三角恒等变换公式可得a b ⋅,根据a b +=2||a b +可求得结果;(2)利用二倍角的余弦公式化为关于cos x 的二次函数可求得结果. 【详解】(1)因为向量33cos ,sin 22x x a ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 所以23||cos 1a =,2||cos 12x b ==, 所以333coscos sin sin cos()cos 2222222x a x x b x x xx -=+==⋅, ()2222212cos 2121cos 24cos a a b b x a b x x =+⋅+=++++==,2cos a b x +=,0,2x π⎡⎤∈⎢⎥⎣⎦;(2)()2cos22cos 2cos 2cos 1x x x f x x =-=--,又0,2x π⎡⎤∈⎢⎥⎣⎦,∴[]cos 0,1x ∈,()3,12f x ⎡⎤∈--⎢⎥⎣⎦.【点睛】本题考查了平面向量的数量积的坐标运算,考查了求平面向量的模,考查了二倍角的余弦公式,考查了整体换元化为二次函数求值域,属于基础题. 26.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a-+-=+-=>, 则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭,从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 27.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围; (2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答. 【详解】解:(1)因为()sin 2coscos 2sin33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m, 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)由(1)得()1122sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令()0g x =,得sin x =sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=. 【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题. 28.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8153)m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222(503)m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,625(83cos 8sin 64sin cos 3)S θθθθ=-+- ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()83cos 8sin 64sin cos 3f θθθθθ=-+-,0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅, 即222(503)m n mn =++.所以22222()3(503)()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-8sin 64sin cos θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()8cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()164062f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8+.答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()8sin 64sin cos f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.29.(Ⅰ)证明见解析;(Ⅱ)2 【解析】 【分析】(Ⅰ)将正切化弦,结合两角和差正弦公式可求得()sin sin C B C =+,根据三角形内角和可整理为sin sin C A =,则由正弦定理可得到结论;(Ⅱ)利用三角形面积公式可求得1sin 2B =;根据三角形为钝角三角形且(Ⅰ)中的c a =,可知B 为钝角,求得cos B ;利用余弦定理可构造方程求得,a b 之间关系,从而得到所求结果. 【详解】 (Ⅰ)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-则:()sin sin cos cos sin sin C B C B C B C =+=+A B C π++= ()()sin sin sin B C A A π∴+=-= sin sin C A ∴=由正弦定理可知:c a =ABC ∆∴为等腰三角形(Ⅱ)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =ABC ∆为钝角三角形,且a c = B ∴为钝角 cos B ∴=由余弦定理得:(2222222cos 22b a c ac B a a =+-==+2222b b ac a ∴==【点睛】本题考查三角形形状的求解、利用余弦定理、三角形面积公式求解三角形边之间的关系问题,涉及到两角和差正弦公式、三角形内角和、诱导公式、同角三角函数值的求解等知识. 30.(1) 2T π=;(2)2a =-或6a = 【解析】 【分析】(1)根据二倍角公式进行整理化简可得()2sin f x x =,从而可得最小正周期;(2)将()g x通过换元的方式变为21112y t at a =-+--,1t ≤;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得a 的值. 【详解】(1)()2221cos sin cos sin 12f x x x x x π⎡⎤⎛⎫=-++-- ⎪⎢⎥⎝⎭⎣⎦()222sin sin 12sin 12sin x x x x =++--= ∴最小正周期2T π=(2)()1sin2sin cos 12g x a x a x x a =+---令sin cos x x t -=,则()22sin 21sin cos 1x x x t =--=-22221111122242a a y t at a t at a t a ⎛⎫∴=-+--=-+-=--+- ⎪⎝⎭sin cos 4t x x x π⎛⎫=-=- ⎪⎝⎭由42x ππ-≤≤得244x πππ-≤-≤1t ≤①当2a<a <-当t =max 122y a ⎫=--⎪⎭由1222a ⎫--=⎪⎭,解得()817a ==->-)②当12a≤,即2a -≤时当2a t =时,2max 142a y a =- 由21242a a -=得2280a a --=,解得2a =-或4a =(舍去) ③当12a>,即2a >时 当1t =时,max 12a y =-,由122a-=,解得6a = 综上,2a =-或6a = 【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围.。
高三数学填空题练习试题集
高三数学填空题练习试题答案及解析1.函数的定义域为_____________.【答案】(0,1]【解析】有,可得0<x≤1【考点】函数的定义域2.设f(x)是定义在R上的奇函数,当x<0时,f(x)=x+e x(e为自然对数的底数),则f(ln 6)的值为________.【答案】ln 6-【解析】由f(x)是奇函数得f(ln 6)=-f(-ln 6)=-(-ln 6)-e-ln 6=ln 6-.3.函数的最大值为 .【答案】【解析】函数的定义域为,设,,则,所以,当时,.【考点】函数最值.4.若x,y满足约束条件,则的最大值为 .【答案】【解析】画出可行域,如图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,即将直线经过可行域,尽可能向上移动到点时,.【考点】线性规划.5.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,,则的周长的取值范围是_______________.【答案】.【解析】易知圆的圆心坐标为,则圆心为抛物线的焦点,圆与抛物线在第一象限交于点,作抛物线的准线,过点作垂直于直线,垂足为点,由抛物线的定义可知,则,当点位于圆与轴的交点时,取最大值,由于点在实线上运动,因此当点与点重合时,取最小值为,此时与重合,由于、、构成三角形,因此,所以,因此的周长的取值范围是.6.设,向量且,则.【答案】【解析】因为a⊥c,b∥c,所以有2x-4=0且2y+4=0,解得x=2,y=-2,即,所以,则.7.甲、乙两地都位于长江下游,根据天气预报记录知,一年中下雨天甲市占20%,乙市占18%,假定在这段时间内两市是否降雨相互之间没有影响,则甲、乙两市同时下雨的概率为________.【答案】0.036【解析】设甲市下雨为事件A,乙市下雨为事件B,由题设知,事件A与B相互独立,且P(A)=0.2,P(B)=0.18,则P(AB)=P(A)P(B)=0.2×0.18=0.036.8.某程序框图如右图所示,则输出的结果S为.【答案】【解析】第一次运行,,不满足;第二次运行,,不满足;第三次运行,,满足,输出S为.【考点】算法与程序框图9.设x>0,y>0,a=x+y,b=·,则a与b的大小关系是.【答案】b<a【解析】当sin θ=0时,cos2θ=1,∴b=x<x+y=a即b<a,当cos θ=0时,sin2θ=1,b=y<x+y=a,即b<a,当sin θ≠0且cos θ≠0时,∵x>0,y>0,∴x<x+y,y<x+y,∴<,<,∴b=·<·==x+y=a.综上b<a.10.已知G是△ABC的重心,O是空间与G不重合的任一点,若++=λ,则λ=.【答案】3【解析】因为+=,+=,+=,且++=0,所以++=3.11.设a>0,b>0,若lga和lgb的等差中项是0,则+的最小值是.【答案】2【解析】由已知得lga+lgb=0,即ab=1,于是+==a+b≥2=2,当且仅当a=b=1时取等号,故+的最小值是2.12.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小值为________.【答案】【解析】y′=2x-,令y′=1,得方程2x2-x-1=0,解得x=-(舍去)或x=1,故与直线y=x-2平行且与曲线y=x2-ln x相切的直线的切点坐标为(1,1),该点到直线y=x-2的距离d =即为所求13.若函数f(x)=-x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是______.【答案】(0,1)∪(2,3)【解析】对f(x)求导,得f′(x)=-x+4-=.由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,所以t<1<t+1或t<3<t+1,解得0<t<1或2<t<3.14.在平面直角坐标系中,若中心在坐标原点上的双曲线的一条准线方程为,且它的一个顶点与抛物线的焦点重合,则该双曲线的渐进线方程为 .【答案】【解析】因为抛物线的焦点为所以又所以而双曲线的渐近线方程为即.解答本题需注意双曲线的焦点位置.【考点】双曲线的渐近线及准线,抛物线焦点.15.已知定义在上的偶函数满足:,且当时,单调递减,给出以下四个命题:①;②为函数图像的一条对称轴;③函数在单调递增;④若关于的方程在上的两根,则.以上命题中所有正确的命题的序号为_______________.【答案】①②④【解析】∵,∴当时,,∴,又∵函数是偶函数,∴,∴①正确;∵,,∴,∴,又是函数图像的对称轴,∴是函数图像的对称轴,∴②正确;∵函数的周期是4,∴在上的单调性与上的单调性相同,∴在上为减函数,∴③错误;∵是函数图像的对称轴,∴方程的两根关于对称,∴,∴④正确.【考点】1.函数的周期性;2.函数的奇偶性;3.函数的对称性;4.函数的单调性.16.已知点,过点的直线总与线段有公共点,则直线的斜率取值范围为______(用区间表示).【答案】【解析】如图,,根据斜率的定义可知,当直线逆时针转时,斜率增大,当直线顺时针转时,斜率减小,故直线的斜率取值范围为.【考点】直线斜率的计算、直线斜率的定义.17.函数的最小正周期为 .【答案】【解析】因为,,所以,函数的最小正周期为.【考点】三角函数的和差倍半公式,三角函数的性质.18.设与抛物线的准线围成的三角形区域(包含边界)为,为内的一个动点,则目标函数的最大值为 .【答案】3【解析】由题意,抛物线的准线,它和不等式共同围成的三角形区域为,目标函数为,作出可行域如下图,由图象可知当直线经过点时,直线的截距最小,此时最大,点的坐标为,此时,故答案为:3.【考点】简单线性规划.19.曲线与直线所围成的平面图形的面积为.【答案】【解析】画出图形可知,所求面积,而,,,故.【考点】定积分求面积.20.在正项等比数列中,,,则满足的最大正整数的值为 .【答案】12【解析】设正项等比数列首项为,公比为,由题意可得解得,,故其通项公式为.记,由,即化简得,,因此只须即,解得由于为正整数,因此最大为的整数部分,也就是12.故答案为12.【考点】等比数列的求和公式,一元二次不等式的解法.21.在中,分别是的对边,已知,若,则的面积等于 .【答案】【解析】因为,所以,,∴.由余弦定理得,∴.∴.【考点】1.余弦定理;2.三角形面积公式;3.平方关系.22.在处有极大值,则常数的值为________.【答案】6【解析】由题意知在处导数为零且时,,而,所以,解得,而当时,,不合题意,所以.【考点】利用导数求函数的极值、利用导数判断函数单调性.23.在展开式中的系数为,则实数的值为 .【答案】【解析】通项公式:,所以展开式中的系数为,解得:.【考点】1.二项式通项;2.二项式系数.24.设AB是椭圆的长轴,点C在上,且,若AB=4,,则的两个焦点之间的距离为________【答案】【解析】不妨设椭圆的标准方程为,于是可算得,得.【考点】考查椭圆的定义及运算,属容易题。
名校高三数学理科不等式填空题强化提高训练(含答案)
高三数学理科不等式填空题强化提高训练1,则关于a 的不等式()()0422<-+-a f a f 的解集是_______. 2.已知22(0),()(0)x x x f x x x x ⎧+⎪=⎨-+<⎪⎩≥,则不等式2(1)12f x x -+<的解集是3.已知实数,x y 满足143x y+≤,则z x y =-的最大值是 . 4.已知在平面直角坐标系中,(0,0)O ,1(1,)2M ,(0,1)N ,(2,3)Q ,动点(,)P x y 满足不等式0OP OM ≤⋅1≤,01OP ON ≤⋅≤,则w OQ OP =⋅的最大值为________5.若不等式组50,5,02x y y kx x -+≥⎧⎪≥+⎨⎪≤≤⎩表示的平面区域是一个锐角三角形,则实数k 的取值范是6.设变量,x y 满足5218020 30 x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线20kx y -+=经过该可行域,则k 的最大值为7.已知()1f x x x =-||+||,若()()g x f x a =-的零点个数不为0,则a 的最小值为 .8.若2x >,则12x x +-的最小值为9.过定点P (1,2)的直线在x y 轴与轴正半轴上的截距分别为a b 、,则422a b +的最小值为10.已知x ,y 都在区间(0,1]内,且xy =13,若关于x ,y 的方程44-x +33-y -t =0有两组不同的解(x ,y ),则实数t 的取值范围是_ __ .11.设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最小值时,2x y z +-的最大值为12.设实数,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数)0,0(>>+=b a b y a x z 的最大值为9,则d =ba +4的最小值为__ ___13.设实数y x ,满足(22)(42)0020x y x y x y -+--≤⎧⎪≤≤⎨⎪≥⎩,若目标函数,(0,0)m z x y m n n =+>>的最大值为10,则12m n+的最小值为14.已知函数x x x f 2)(2-=,点集}2)()(|),{(≤+=y f x f y x M ,}0)()(|),{(≥-=y f x f y x N ,则N M 所构成平面区域的面积为____ .15.定义在R 上的函数)(x f y =是增函数,且函数)3(-=x f y 的图象关于(3,0)成中心对称,若t s ,满足不等式22(2)(2)f s s f t t -≥--,当41≤≤s 时,则s s t 222-+的取值范围为___ _.16.若关于x 的不等式()2121x x a a x R ---≥++∈的解集为空集,则实数a 的取值范围是17.设向量()b a ,=α,()n m ,=β,其中R n m b a ∈,,,≤ 恒成立,可以证明(柯西)不等式()()()22222n m b a bn am ++≤+(当且仅当α∥β,即bm an =时等号成立),己知+∈R y x ,,若k x y <+恒成立,利用可西不等式可求得实数k 的取值范围是18.函数32)(2+-=x x x f ,若a x f -)(<2恒成立的充分条件是21≤≤x ,则实数a 的取值范围是 19.定义:{}123min ,,,,n a a a a 表示123,,,,n a a a a 中的最小值.若定义()f x ={}2min ,5,21x x x x ---,对于任意的n *∈N ,均有(1)(2)(21)(2)()f f f n f n kf n +++-+≤成立,则常数k 的取值范围是20.在A B C ∆中,已知9=⋅AC AB ,C A B sin cos sin ⋅=,6=∆ABC S ,P 为线段AB 上的点,且y x +=xy 的最大值为 .21.已知不等式222xy ax y ≤+对于[]1,2x ∈,[]2,3y ∈恒成立,则实数a 的取值范围是___________22.已知函数f (x )=271x ax ax ++++,a ∈R .若对于任意的x ∈N *,f (x )≥4恒成立,则a 的取值范围是23.在平面直角坐标系中,不等式组⎩⎨⎧≤-≤x y a x 2,表示的平面区域的面积为4,则实数a 的值是24.函数()0ay x x x=+>有如下性质:若常数0a >,则函数在(上是减函数,在)+∞ 上是增函数.已知函数()mf x x x=+(m R ∈为常数),当()0,x ∈+∞时,若对任意x N ∈,都有()()4f x f ≥,则实数m 的取值范围是25.给定区域D :44420x y x y x y x +≥⎧⎪+≤⎪⎨+≥⎪⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定_____个不同的三角形.26.命题:“存在实数x ,满足不等式2(1)10m x mx m +-+-≤”是假命题,则实数m 的取值范围是_________ 27.已知正数,,a b c 满足a b ab +=,a b c abc ++=,则c 的取值范围是______.28.已知a b >,且1ab =,则221a b a b++-的最小值是 .29.已知集合A ={(x ,y )| ⎩⎨⎧x ≥12x -y ≤1},集合B ={(x ,y )|3x +2y -m =0},若A ∩B φ≠,则实数m 的最小值等于_____参考答案12.)2,1(- 3.4 4.4 5. )0,1(- 6 .1 7.1 8.4 9.32 10.2459512≤<t 11.2 12.34 13.4 14.π2 15.⎥⎦⎤⎢⎣⎡-24,21 16.1-<a 或0>a 17.10 18.41<<a 19. ⎥⎦⎤⎢⎣⎡-0,21 20.3 21.1-≥a 22.31≥a 23.224.[]20,12 25.25 26.332>m 27 .⎥⎦⎤⎝⎛34,1 28.32 29.5 (填空)24.(填)27.。
高中数学三角函数专项练习题(含答案)
高中数学三角函数专项练习题(含答案)一、填空题1.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为___________.2.已知)2,0F为椭圆2222:1(0)x y C a b a b+=>>的右焦点,过点F 的直线l 与椭圆C 交于,A B 两点,P 为AB 的中点,O 为坐标原点.若△OFP 是以OF 为底边的等腰三角形,且△OFP 外接圆的面积为23π,则椭圆C 的长轴长为___________. 3.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 4.已知点A 为直线:3l y x =上一点,且A 位于第一象限,点()10,0B ,以AB 为直径的圆与l 交于点C (异于A ),若60CBA ∠≥,则点A 的横坐标的取值范围为___________.5.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,32b =7sin BAD ∠=,2cos 4BAC ∠=,则AD =__________. 6.在平面直角坐标系中,对任意角α,设α的终边上异于原点的任意一点P 的坐标为(,)x y ,它与原点的距离是r .我们规定:比值,,r r xx y y分别叫做角α的正割、余割、余切,分别记作sec α,csc α,cot α,把sec ,csc ,cot y x y x y x ===分别叫做正割函数、余割函数、余切函数,则下列叙述正确的有___________(填上所有正确的序号) ①3cot14π=; ②sin csc 1αα⋅=;③sec y x =的定义域为{}|,Z x x k k π≠∈;④22sec csc 4αα+;⑤2cot 1cot22cot ααα-=.7.在ABC 中,AB BC ≠,O 为ABC 的外心,且有AB BC AC +=,sin (cos cos sin 0C A A A +=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.8.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________. 9.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______. 10.设向量OA a =,OB b =,OC c =,2a b a b ==⋅=,点C 在AOB ∠内,且向量c 与向量a c -的夹角为3π,则||||c c b -的取值范围是____________. 二、单选题11.已知双曲线2221(0)y x b b-=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( )A B C .113D .1112.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④13.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .⎫⎪⎪⎣⎭B .⎛ ⎝⎦C .12⎛ ⎝⎦D .⎫⎪⎪⎣⎭14.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且()222S a b c =--,则222b c bc+的取值范围为( )A .4359,1515⎛⎫ ⎪⎝⎭B .4322,15⎡⎫⎪⎢⎣⎭C .5922,15⎡⎫⎪⎢⎣⎭D .)22,⎡+∞⎣15.在棱长为2的正方体1111ABCD A B C D -中,N 为BC 的中点.当点M 在平面11DCC D 内运动时,有//MN 平面1A BD ,则线段MN 的最小值为( ) A .1B .62C .2D .316.在三棱锥A BCD -中,5,2,2AC AD AB CD BC BD ======,则这个三棱锥的外接球的半径为( ) A .2105B .2103C .253D .2517.高斯是世界四大数学家之一,一生成就极为丰硕,以他的名字“高斯”命名的成果达110个,属数学家中之最.对于高斯函数[]y x =,[]x 表示不超过实数x 的最大整数,如[]1.71=,[]1.22-=-,{}x 表示x 的非负纯小数,即{}[]x x x =-.若函数{}1log a y x x=-+(0a >且1a ≠)有且仅有3个零点,则实数a 的取值范围为( ) A .(]3,4B .()3,4C .[)3,4D .[]3,418.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒19.在ABC 中,若22sin cos 1A B +=,则8cos AB BCBC A AC+的取值范围为( )A .)43,8⎡⎣B .)43,7⎡⎣C .()7,8D .(0,4320.设锐角ABC ∆的三个内角,,A B C 的对边分别为,,a b c 且1c =,2A C =,则ABC ∆周长的取值范围为( ) A .(0,22)+B .(0,33)C .(22,33)+D .(22,33]三、解答题21.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:cos()cos cos sin sin αβαβαβ-=+ 具体过程如下:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角αβ,.它们的终边与单位圆O 的交点分别为A ,B .则(cos ,sin ),(cos ,sin )OA OB ααββ→→== 由向量数量积的坐标表示,有: cos cos sin sin OA OB αβαβ→→⋅=+设,OA OB →→的夹角为θ,则||||cos cos cos cos sin sin OA OB OA OB θθαβαβ→→→→⋅=⋅==+另一方面,由图3.1—3(1)可知,2k απβθ=++;由图可知,2k απβθ=+-.于是2,k k Z αβπθ-=±∈.所以cos()cos αβθ-=,也有cos()cos cos sin sin αβαβαβ-=+, 所以,对于任意角,αβ有:cos()cos cos sin sin αβαβαβ-=+(()C αβ-)此公式给出了任意角,αβ的正弦、余弦值与其差角αβ-的余弦值之间的关系,称为差角的余弦公式,简记作()C αβ-.有了公式()C αβ-以后,我们只要知道cos ,cos ,sin ,sin αβαβ的值,就可以求得cos()αβ-的值了.阅读以上材料,利用下图单位圆及相关数据(图中M 是AB 的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题: (1)判断1OC OMOM→→→=是否正确?(不需要证明)(2)证明:sin sin 2sincos22αβαβαβ+-+=(3)利用以上结论求函数()sin 2sin(2)3f x x x π=++的单调区间.22.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.23.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知3sin cos 022A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,且2sin 6sin sin A B C =⋅. (1)求A ;(2)若()b c a R λλ+=∈,求λ的值.24.已知函数()sin cos cos 63f x x x x a ππ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求常数a 的值;(2)求函数()f x 的单调递增区间; (3)求使()0f x <成立的实数x 的取值集合.25.已知ABC ∆的外接圆...,内角A ,B ,C 的对边分别为a ,b ,c ,又向量()sin sin ,m A C b a =--,sin sin 4n A C B ⎛⎫=+ ⎪ ⎪⎝⎭,且m n ⊥. (1)求角C ;(2)求三角形ABC 的面积S 的最大值并求此时ABC ∆的周长. 26.设函数2()cos sin 2f x x a x a =-+++(a ∈R ). (1)求函数()f x 在R 上的最小值;(2)若不等式()0f x <在[0,]2π上恒成立,求a 的取值范围;(3)若方程()0f x =在(0,)π上有四个不相等的实数根,求a 的取值范围.27.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .28.已知函数()f x 的图象是由函数()sin g x x =的图象经如下变换得到:先将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向左平移3π个单位长度.(1)求函数(2)y f x =在[0,]π上的单调递增区间;(2)已知关于x 的方程2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β.求26cos(22)m αβ--的值.29.已知函数()()()21?0f x cos x sin x x ωωωω=>,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值.30.设向量a =(2sin 2x cos 2xx ),b =(cos x ,sin x ),x ∈[-6π,3π],函数f (x )=2a •b .(1)若|a b |,求x 的值;(2)若f (x )-m m 的取值范围.【参考答案】一、填空题12.3.47,912ππ⎧⎫⎨⎬⎩⎭4.)1⎡++∞⎣5.4 6.②④⑤7.4333-89.1310. 二、单选题 11.A12.B 13.A 14.C 15.B 16.A 17.C 18.C 19.A 20.C 三、解答题21.(1)正确;(2)见解析;(3)单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】 【分析】 (1) 因为对1||n n →→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,即可判断出正确;(2)在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,表示出OC →,OM →的坐标,由纵坐标对应相等化简即可证得结论; 即sin sin 2sincos22αβαβαβ+-+=(3)由(2)结论化简可得222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭借助正弦型函数的性质即可求得结果. 【详解】(1) 因为对于非零向量1,||n n n →→→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,所以1OC OMOM→→→=正确;(2) 因为M 为AB 的中点,则OM AB ⊥,从而在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,又cos ,sin 22OC αβαβ→++⎛⎫= ⎪⎝⎭,cos cos sin sin 22OM αβαβ→++⎛⎫=⎪⎝⎭,所以1sin sin sin22cos 2αβαββα++⎛⎫=⎪-⎝⎭, 即sin sin 2sincos22αβαβαβ+-+=(3)因为222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭令222262k x k πππππ-+≤+≤+,解得: 36k x k ππππ-+≤≤+所以()f x 的单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦令3222262k x k πππππ+≤+≤+,解得: 263k x k ππππ+≤≤+ 所以()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【点睛】本题考查向量在证明三角恒等式中的应用,考查类比推理,考查正弦型函数的单调性,难度较难.22.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1 =sin2x ﹣1=(sin2x +1), 令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.23.(1)3A π=;(2)λ=. 【解析】 【分析】(1)根据诱导公式、正弦定理、同角三角函数基本关系式,结合已知等式,化简tan A =(0,)A π∈,可得A 的值;(2)由已知根据余弦定理可得2223a a bc λ+=,利用正弦定理可得26a bc =,联立即可解得λ的值. 【详解】(13sin cos 022A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭cos sin 0A a B ⇒+=,cos sin sin 0B A A B ⇒+=(0,)sin 0B B π∈∴≠,tan (0,)3A A A ππ∴=∈∴=;(2)22sin 6sin sin 6A B C a ac =⋅⇒=,2222222cos )(3a b c bc B b c b bc bc c +⋅=++=--=-,而()b c a R λλ+=∈,22()3a a bc λ=-,而26a ac =,所以有2302λλλλ=⇒=>∴=【点睛】本题考查了诱导公式、正弦定理、同角三角函数基本关系式、余弦定理,考查了数学运算能力.24.(1)1a =-(2)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭【解析】(1)化简()f x ,求最大值,即可求解;(2)应用整体思想,结合正弦函数的递增区间,即可得出结论; (3)运用正弦函数图像,即可求解. 【详解】 解:()sin cos cos sincoscos sinsin cos 6633f x x x x x x a ππππ=-++++11cos cos cos 22x x x x x a =-+++cos x x a =++12cos 2x x a ⎫=++⎪⎪⎝⎭2sin 6x a π⎛⎫=++ ⎪⎝⎭. (1)函数()f x 的最大值为21a +=,所以1a =-. (2)由22,262k x k k Z πππππ-+≤+≤+∈,解得222,33k x k k Z ππππ-+≤≤+∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭,所以722,666k x k k Z πππππ-+<+<+∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭. 【点睛】本题考查三角函数恒等变换,化简解析式,考查三角函数的性质以及三角不等式,属于中档题.25.(1) 3C π=. (2) max S =【解析】 【分析】(1)由0m n m n ⊥⇒⋅=,利用坐标表示化简,结合余弦定理求角C (2)利用(1)中222c a b ab =+-,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长. 【详解】(1)∵0m n m n ⊥⇒⋅=,∴()())sin sin sin sin sin 0A C A C b a B -+-=,且2R =)22022a c b a R R ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 化简得:222c a b ab =+-.由余弦定理:2222cos c a b ab C =+-,∴12cos 1cos 2C C =⇒=,∵0C π<<,∴3C π=.(2)∵()22222sin 6a b ab c R C +-===,∴2262a b ab ab ab ab =+-≥-=(当且仅当a b =时取“=”)1sin 2S ab C ==≤所以,max S =ABC ∆为正三角形,此时三角形的周长为 【点睛】本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题.26.(1)2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩(2)(,1)a ∈-∞-(3)12a -<<-【解析】 【分析】(1)通过换元法将函数变形为二次函数,同时利用分类讨论的方法求解最大值; (2)恒成立需要保证max ()0f x <即可,对二次函数进行分析,根据取到最大值时的情况得到a 的范围;(3)通过条件将问题转化为二次函数在给定区间上有两个零点求a 的范围,这里将所有满足条件的不等式列出来,求解出a 的范围. 【详解】解:(1)令sin x t =,[1,1]t ∈-,则2()()1f x g t t at a ==+++,对称轴为2a t =-. ①12a -<-,即2a >,min ()(1)2f x g =-=.②112a -≤-≤,即22a -≤≤,2min ()()124a a f x g a =-=-++.③12a->,即2a <-,min ()(1)22f x g a ==+.综上可知,2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩ (2)由题意可知,max ()0f x <,2()()1f xg t t at a ==+++,[0,1]t ∈的图象是开口向上的抛物线,最大值一定在端点处取得,所以有(0)10,(1)220,g a g a =+<⎧⎨=+<⎩故(,1)a ∈-∞-. (3)令sin x t =,(0,)x π∈.由题意可知,当01t <<时,sin x t =有两个不等实数解,所以原题可转化为2()10g t t at a =+++=在(0,1)内有两个不等实数根.所以有201,24(1)0,12(0)10,(1)220,a a a a g a g a ⎧<-<⎪⎪⎪∆=-+>⇒-<<-⎨⎪=+>⎪=+>⎪⎩【点睛】(1)三角函数中,形如2()sin sin f x a x b x c =++或者2()cos cos f x a x b x c =++都可以采用换元法求解函数最值;(2)讨论二次函数的零点的分布,最好可以采用数形结合的方法解决问题,这样很大程度上减少了遗漏条件的可能.27.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==,所以集合{S =0. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33,,022S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 28.(1)(2 )y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦(2)6-【解析】【分析】(1)先求出()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,再利用三角函数的图像和性质求函数(2)y f x =在[0,]π上的单调递增区间;(2)先化简得2()422f x g x π⎛⎫-+ ⎪⎝⎭223x π⎛⎫=-+ ⎪⎝⎭,再利用三角函数的性质求出cos)αβ-(的值得解. 【详解】(1)将()sin g x x =图象上所有点的纵坐标伸长到原来的2倍,得到2sin y x =的图象, 再将2sin y x =的图象向左平移3π个单位长度后得到2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭.(2)2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令222232k x k πππππ-++,k ∈Z51212k x k ππππ-+,k ∈Z ,又[0,]x π∈所以(2)y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦.(2)2()422f x g x π⎛⎫-+ ⎪⎝⎭24sin 4sin 232x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222cos 24cos 23x x π⎛⎫=-+- ⎪⎝⎭23cos 22x x =-+223x π⎛⎫=-+ ⎪⎝⎭.因为2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β,所以23x m π⎛⎫-= ⎪⎝⎭在[0,)π内有两个不同的解α,β,且52,333x πππ⎡⎫-∈-⎪⎢⎣⎭, 所以2233ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或22333ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.于是56παβ+=或116παβ+=. 当56παβ+=时,5cos()cos 6παβαα⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭5cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭ sin 23πα⎛⎫=-= ⎪⎝⎭当116παβ+=时, 11cos()cos 6παβαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭113cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭ sin 23πα⎛⎫=--= ⎪⎝⎭,因此,26cos(22)m αβ--()2262cos ()1m αβ=---22621612m m ⎛⎫=⋅--=- ⎪⎝⎭. 【点睛】本题主要考查三角函数图像的变换和三角函数的单调区间的求法,考查三角函数图像的零点问题,考查三角恒等变换和求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.29.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2) 15. 【解析】 【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果.【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤,∴32(2)113sin x πω-≤+-≤,∴()f x 的最大值为1,最小值为3-. 又()()121,3f x f x ==-,且12min 2x x π-=,∴函数()f x 的最小正周期为22ππ⨯=,∴1ω=,∴()2(2)13f x sin x π=+-.由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈.(2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,∴4sin 35πβ⎛⎫-= ⎪⎝⎭.∵2,33ππβ⎛⎫∈ ⎪⎝⎭,∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭.∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭, ∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响. (2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解.30.(1)π4x =;(2)2⎤⎦.【解析】 【分析】(1)根据|a |=b |,利用化简函数化简解得x 的值; (2根据f (x )=2a •b .结合向量的坐标运算,根据x ∈[6π-,3π],求解范围,)﹣f (x )﹣m ≤m 的取值范围. 【详解】解:(1)由|a b |, 可得222a b =;即4sin 2x =2(cos 2x +sin 2x ) 即sin 2x =12;∴sin x = ∵x ∈[-6π,3π], ∴x =4π(2)由函数f (x )=2a •b =2sin2x 2x=sin2x +1122-cos2x )=sin2x x (2x -3π)∵x ∈[-6π,3π], ∴2x -3π∈[-23π,3π],2≤2sin (2x -3π)要使f (x )-m则2m m ⎧-≤⎪⎨≥⎪⎩2m ≤故得m 的取值范围是2]. 【点睛】本题考查三角函数的化简能力和向量的运算,考查转化思想以及计算能力.。
高考数学三轮复习高考填空真题强化练习(含详解详析)
2009高考数学三轮复习高考 填空真题强化练习(含详解详析)1.集合∈=<--∈=x B x x R x A {},06|{2R| }2|2|<-x ,则B A = . 2.曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为a 则,61= .3.已知α、β均为锐角,且αβαβαtan ),sin()cos(则-=+= . 4.nnn n n 231233232lim +-+∞→= .5.某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 .6.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号). ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形7.复数3123ii ++的值是 。
8.213(21)lim21n n n n →∞+++-=-+ 。
9.已知()33,,,sin ,45παβπαβ⎛⎫∈+=-⎪⎝⎭12sin()413πβ-=,则co s ()4πα+= 。
10.在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a = 。
11.设0,1a a >≠,函数2lg(23)()xx f x a-+=有最大值,则不等式()2log 570a x x -+>的解集为 。
12.已知变量,x y 满足约束条件14,2 2.x y x y ≤+≤-≤-≤若目标函数z ax y =+(其中0a >)仅在点()3,1处取得最大值,则a 的取值范围为 。
13.复数322i i +的虚部为________.14.已知x,y 满足⎪⎩⎪⎨⎧≥≤+≤-1421x y x y x ,则函数z = x+3y 的最大值是________. 15.若函数f(x) =R ,则a 的取值范围为_______. 16.设{n a }为公比q>1的等比数列,若2004a 和2005a 是方程24830x x -+=的两根,则=+20072006a a __________.17. 某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选, 则不同的选课方案有___________种。
高考数学解三角形选择填空专题练习(含答案)
高考数学解三角形选择填空专题练习一、选择题1.在ABC △中,内角A ,B ,C 所对的边为a ,b ,c ,60B =︒,4a =,其面积S =则c =( )A .15B .16C .20D .2.在ABC △中,1a =,π6A ∠=,π4B ∠=,则c =( )A B C D 3.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若1cos 2b a Cc =+,则角A 为( )A .60︒B .120︒C .45︒D .135︒4.ABC △中A ,B ,C 的对边分别是a ,b ,c 其面积2224a b c S +-=,则中C 的大小是( )A .30︒B .90︒C .45︒D .135︒5.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C ,cos cos 2b A a B +=,则ABC △的外接圆面积为( ) A .4πB .8πC .9πD .36π6.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为( )A .B .mC .mD .m 27.在ABC △中,a ,b ,c 分别是A ,B ,C 所对的边,若cos 4cos a C c A =-,π3B =,a =,则cosC =( )A .14B C D8.在ABC △中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足2cos cos cos b B a C c A =+,若b 则a c +的最大值为( )A .B .3C .32D .99.在ABC △中,若22tan tan A a B b =,则ABC △的形状是( ) A .等腰或直角三角形 B .直角三角形 C .不能确定D .等腰三角形10.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,且4442222a b c c a b++=+,若C 为锐角,则sin B A +的最大值为( )AB 1C D11.已知锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,若2B A =,则sin a Ab的取值范围是( )A .⎝⎭B .⎝⎭C .12⎛ ⎝⎭D .12⎫⎪⎪⎝⎭12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A 是B 和C 的等差中项,0AB BC ⋅>,a =,则ABC △周长的取值范围是( )A .⎝⎭B .⎭C .⎝⎭D .⎝⎭二、填空题13.在ABC △中,3AB =,4AC =,3BC =,D 为BC 的中点,则AD =__________.14.在ABC △中,三个内角A ∠,B ∠,C ∠所对的边分别是a ,b ,c ,若()2sin cos 2sin cos b C A A C +=-,且a =ABC △面积的最大值是________.15在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的角平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A 、B 、C 成等差数列,b ABC △面积的取值范围是__________.参考答案 1.【答案】C【解析】由三角形面积公式可得11sin 4sin 6022ABC S ac B c ==⨯⨯⨯︒=△据此可得20c =.本题选择C 选项. 2.【答案】A【解析】由正弦定理sin sin a bA B =可得π1sinsin 4πsin sin 6a Bb A ⨯===,且()()cos cos cos cos sin sin C A B A B A B =-+=--=由余弦定理可得c =,故选A . 3.【答案】A【解析】1cos 2b a C C =+,1sin sin cos sin 2B A C C ∴=+,()1sin sin cos cos sin sin cos sin 2A C A C A C A C C +=+=+,1cos sin sin 2A C C =,1cos 2A =,60A =︒,故选A .4.【答案】C【解析】∵ABC △中,1sin 2S ab C =,2222cos a b c ab C +=-,且2224a b c S +-=,∴11sin cos 22ab C ab C =,即tan 1C =,则45C =︒.故选C . 5.【答案】D【解析】由cos cos 22sin sin sin b A a B a b cR A B C+====⎧⎪⎨⎪⎩,可得1sin cos sin cos B A A B R +=, 所以()1sin A B R +=,即1sin C R=,又cos C ,所以1sin 3C =,所以3R =,所以ABC △的外接圆面积为24π36πs R ==.故选D . 6.【答案】A【解析】在ABC △中,50m AC =,45ACB ∠=︒,105CAB ∠=︒,即30ABC ∠=︒,则由正弦定理sin sin AB ACACB ABC=∠∠,得50sin 2m 1sin 2AC ACB AB ABC ∠===∠,故选A .【解析】由余弦定理知,222222422b a c b c a a c ab bc +-+-⋅=-⋅,即4b =,由正弦定理知43πsin sin 3A =,解得sin A =,因为a b <,所以π4A =,()cos cos cos cos sin sin C A B A B A B =-+=-+=,故选D . 8.【答案】A【解析】2cos cos cos b B a C c A =+,则2sin cos sin cos sin cos B B A C C A =+, 所以()2sin cos sin sin B B A C B =+=,1cos 2B =,π3B =.又有2222231cos 222a cb ac B ac ac +-+-===,将式子化简得223a c ac +=+,则()()2233334a c a c ac ++=+≤+,所以()2134a c +≤,a c +≤A . 9.【答案】A【解析】由正弦定理有2222tan 4sin tan 4sin A R AB R B=,因sin 0A >,故化简可得 sin cos sin cos A A B B =,即sin2sin2A B =,所以222πA B k =+或者22π2πA B k +=+,k ∈Z .因A ,()0,πB ∈,()0,πA B +∈,故A B =或者π2A B +=,所以ABC △的形状是等腰三角形或直角三角形.故选A . 10.【答案】A 【解析】4442222a b c c a b++=+ 444222222222222a b c a c b c a b a b ∴++--+=,即()2222222a b c a b +-=,由余弦定理2222cos c a b ab C =+-,得2222cos a b c ab C +-=,代入上式,222224cos 2a b C a b ∴=,解得cos C ∴= C 为锐角,πA B C ++=,π4C ∴=,3π4B A =-,3π0,4A ⎛⎫∈ ⎪⎝⎭, ()3πsin sin 4B A A A A ϕ⎛⎫∴=-=+≤ ⎪⎝⎭1tan 3ϕ=,故选A .【解析】∵2B A =,∴sin sin22sin cos B A A A ==, 由正弦定理得2cos b a A =,∴12cos a b A =,∴sin sin 1tan 2cos 2a A A Ab A ==.∵ABC △是锐角三角形,∴π02π022π0π32A B A C A <⎧⎪⎪⎪⎨<<=<<=-<⎪⎪⎪⎩,解得ππ64A <<,tan 1A <<11tan 22A <<.即sin a A b的值范围是12⎫⎪⎪⎝⎭,故选D . 12.【答案】B【解析】∵A 是B 和C 的等差中项,∴2A B C =+,∴π3A =, 又0AB BC ⋅>,则()cos π0B ->,从而π2B >,∴π2π23B <<,∵21sin sin s s 3πin in a b c A B C ====,∴sin b B =,2πsin sin 3c C B ⎛⎫==-⎪⎝⎭, 所以ABC △的周长为2πsin sin 3π6l a b c B B B ⎛⎫⎛⎫=++=++-++ ⎪ ⎪⎝⎭⎝⎭, 又π2π23B <<,π2π5π366B <+<,1sin 26πB ⎛⎫<+< ⎪⎝⎭l <<.故选B . 13.【答案】2【解析】在ABC △中,根据余弦定理,可得2223341cos 2339B +-==⨯⨯,在ABD △中,根据余弦定理,可得222331413232294AD ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,所以AD =. 14.【解析】()2sin cos 2sin cos b C A A C +=-,()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B ∴=-+=-+=-, 则2sin cos b B A -=,结合正弦定理得2cos sin a A A -=,即tan A =,2π3A ∠=,由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥,故4bc ≤,11sin 422ABC S bc A =≤⨯=△15.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin601sin60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=, 因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当23c a ==时取等号,则4a c +的最小值为9. 16.【答案】⎝⎦【解析】∵ABC △中A ,B ,C 成等差数列,∴π3B =.由正弦定理得2sin sin sin sin 3a cb A C B ===,∴2sin a A =,2sinc C =,∴12πsin sin sin 23ABC S ac B A C A A ⎛⎫===- ⎪⎝⎭△21331cos2sin sin cos sin22242AA A A A A A A ⎫-=+==+⎪⎪⎝⎭3πsin2246A A A ⎛⎫==-+ ⎪⎝⎭, ∵ABC △为锐角三角形,∴π022ππ032A A <<<-<⎧⎪⎪⎨⎪⎪⎩,解得ππ62A <<.∴ππ5π2666A <-<,∴1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭π26A ⎛⎫-≤ ⎪⎝⎭,故ABC △面积的取值范围是⎝⎦.。
2023年新高考数学选择填空专项练习题(附答案解析)
则该展开式中 x3 的系数是( )
A.-184
B.-84
C.-40
D.320
A
a+x3 [∵ x
x-2 x
6
的展开式中各项系数和为
3,令
x=1,得(1+a)(1-2)6
=3,解得 a=2.
又
2+x3 x
x-2 x
6
=2
x-2 x
6
+x3
x-2 x
6
,
x
x-2 x
6
的展开式中含
x4 的项的系数为
C16(-2)1=-12,常数项为
C36(-2)3
=-160,
2+x3 ∴x
x-2 x
6
的展开式中
x3
项的系数是
2×(-12)+1×(-160)=-184.
故选 A.]
12.(2019·潮州模拟)若 A、B、C、D、E 五位同学站成一排照相,则 A、B
2023 年新高考数学选择填空专项练习题
一、选择题
1.已知集合 A={2,3,4},集合 B={m,m+2},若 A∩B={2},则 m=( )
A.0
B.1
C.2
D.4
A [因为 A∩B={2},所以 m=2 或 m+2=2.当 m=2 时,A∩B={2,4},不
符合题意;当 m+2=2 时,m=0.故选 A.]
M∪∁RN=R.故选 B.]
5.设 a∈R,i 为虚数单位.若复数 z=a-2+(a+1)i 是纯虚数,则复数a-3i 2-i
在复平面上对应的点的坐标为( )
1,-8 A. 5 5
-7,-4 B. 5 5
第1页共6页
-4,7 C. 5 5
7,-4 D. 5 5
高考数学三角函数选择填空专题练习(含答案)
高考数学三角函数选择填空专题练习一、选择题1.为了得到函数sin 2y x =的图象,只需把函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移π12个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向右平移π6个单位长度 2.若3tan 4x =,则ππtan tan 2424x x ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭( ) A .2- B .2 C .32 D .32-3.已知函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为πB .()f x 的图象关于直线8π3x =对称 C .()f x 的一个零点为π6 D .()f x 在区间π03⎛⎫⎪⎝⎭,上单调递减4.函数()()π2sin 03f x x ωω⎛⎫=+> ⎪⎝⎭的图象在[]0,1上恰有两个最大值点,则ω的取值范围为( )A .[]2π,4πB .9π2π,2⎡⎫⎪⎢⎣⎭C .13π25π,66⎡⎫⎪⎢⎣⎭ D .25π2π,6⎡⎫⎪⎢⎣⎭5.已知函数()()πsin 0,0,2f x A x A ωϕϕω⎛⎫=+>>< ⎪⎝⎭为π2,且()f x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称,则下列判断正确的是( )A .要得到函数()f x 的图象,只需将2y x =的图象向右平移π6个单位 B .函数()f x 的图象关于直线5π12x =对称C .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为D .函数()f x 在ππ,63⎡⎤⎢⎥⎣⎦上单调递增6.函数()πsin sin 3f x x x ⎛⎫=++ ⎪⎝⎭的最大值为( )A B .2C .D .47.已知函数()cos sin f x x x =-在[],a a -上是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π8.已知A 是函数()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值,若存在实数1x ,2x 使得对任意实数x总有()()()12f x f x f x ≤≤成立,则12A x x ⋅-的最小值为( ) A .π2018B .π1009C .2π1009D .π40369.如图,己知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象关于点()2,0M 对称,且()f x 的图象上相邻的最高点与最低点之间的距离为4,将()f x 的图象向右平移13个单位长度,得到函数()g x 的图象;则下列是()g x 的单调递增区间的为( )A .713,33⎡⎤⎢⎥⎣⎦B .410,33⎡⎤⎢⎥⎣⎦C .17,33⎡⎤⎢⎥⎣⎦D .1016,33⎡⎤⎢⎥⎣⎦10.已知函数()2sin 22sin f x x x =-,给出下列四个结论( )①函数()f x 的最小正周期是π;②函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数;③函数()f x 图像关于π,08⎛⎫- ⎪⎝⎭对称;④函数()f x 的图像可由函数2y x =的图像向右平移π8个单位,再向下平移1个单位得到. 其中正确结论的个数是( ) A .1B .2C .3D .411.已知()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)()()12''0f x f x ==,12x x -的最小值为π2,()π3f x f x ⎛⎫=- ⎪⎝⎭,将()f x 的图像向左平移π6个单位得()g x ,则()g x 的单调递减区间是( )A .ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈ZB .π2πππ63k k ⎡⎤++⎢⎥⎣⎦,,()k ∈ZC .π5ππ,π36k k ⎡⎤++⎢⎥⎣⎦,()k ∈ZD .π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z12.已知函数()sin sin3f x x x =-,[]0,2πx ∈,则()f x 的所有零点之和等于( ) A .8π B .7π C .6π D .5π二、填空题13.已知α为第一象限角,sin cos αα-=,则()cos 2019π2α-=__________. 14.已知tan 2α=,则2cos sin2αα+=__________.15.已知πtan 26α⎛⎫-= ⎪⎝⎭,π7π,66α⎡⎤∈⎢⎥⎣⎦,则2sin cos 222ααα=_____.16.已知函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =,且当π6x =-时,()f x 取得最大值,则当ω取最小值时,下列说法正确的是___________.(填写所有正确说法的序号) ①23ω=;②()01f =-; ③当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 单调递减;④函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称.参考答案 1.【答案】B【解析】ππsin 2sin 2126y x x ⎡⎤⎛⎫==-+⎪⎢⎥⎝⎭⎣⎦,故应向右平移π12个单位长度.故选B . 2.【答案】C【解析】因为2tan1tan 14tanππ3222tan tan 2tan 242421tan 1tan 1tan 222x x xx x x x x x+-⎛⎫⎛⎫++-=+=== ⎪ ⎪⎝⎭⎝⎭-+-, 故选C . 3.【答案】B【解析】函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,周期为2ππ2T ==,故A 正确;函数图像的对称轴为2ππ2π32x k +=+,ππ122k k x ∈⇒=-+Z ,k ∈Z ,8π3x =不是对称轴,故B 不正确; 函数的零点为2π2π3x k +=,ππ32k k x ∈⇒=-+Z ,k ∈Z ,当1k =时,得到一个零点为π6,故C 正确; 函数的单调递减区间为2ππ3π2π,π322x k k ⎛⎫+∈++ ⎪⎝⎭,k ∈Z ,解得x 的范围为ππ5π,π122122k k ⎛⎫-++ ⎪⎝⎭,k ∈Z ,区间π0,3⎛⎫⎪⎝⎭是其中的一个子区间,故D 正确.故答案为B .4.【答案】C 【解析】由题意得π5π32ω+≥,π9π32ω+<,13π25π66ω∴≤<,故选C . 5.【答案】A【解析】因为()f xA =,又图象相邻两条对称轴之间的距离为π2,故π22T =, 即2ω=,所以()()2f x x ϕ=+, 令π12x =-,则ππ6k ϕ-+=即ππ6k ϕ=+,k ∈Z , 因π2ϕ<,故π6ϕ=,()π26f x x ⎛⎫=+ ⎪⎝⎭.πππ22266y x x x ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故向右平移π6个单位后可以得到()π26f x x ⎛⎫+ ⎪⎝⎭,故A 正确;5π5ππ01266f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故函数图像的对称中心为5π,012⎛⎫⎪⎝⎭,故B 错; 当ππ66x -≤≤时,πππ2662x -≤+≤,故()min f x =,故C 错; 当ππ63x ≤≤时,ππ5π2266x ≤+≤,()π26f x x ⎛⎫=+ ⎪⎝⎭在ππ,63⎡⎤⎢⎥⎣⎦为减函数,故D 错. 综上,故选A . 6.【答案】A【解析】函数()π1sin sin sin sin 32f x x x x x x ⎛⎫=++=++ ⎪⎝⎭31πsin cos 226x x x x x ⎫⎛⎫=+=+=+≤⎪ ⎪⎪⎝⎭⎭A . 7.【答案】A【解析】()'sin cos f x x x =--,由题设,有()'0f x ≤在[],a a -上恒成立,π04x ⎛⎫+≥ ⎪⎝⎭,故3ππ2π2π44k x k -≤≤+,k ∈Z .所以3π2π4π2π4k a a k -≤-⎧⎪≤⎨+⎪⎪⎪⎩,因0a >,故0k =即π04a <≤,a 的最大值为π4,故选A .8.【答案】B 【解析】()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭112018cos2018cos2018201822x x x x =++π2018cos 20182sin 20186x x x ⎛⎫=+=+ ⎪⎝⎭,()max 2A f x ∴==,周期2ππ20181009T ==, 又存在实数1x ,2x ,对任意实数x 总有()()()12f x f x f x ≤≤成立,()()2max 2f x f x ∴==,()()1min 2f x f x ==-,12A x x ⋅-的最小值为1π21009A T ⨯=,故选B .9.【答案】D【解析】由图象可知A =()f x 的图象上相邻的最高点与最低点之间的距离为4, 所以(22242T ⎛⎫+= ⎪⎝⎭,解得4T =,即2π4w =,即π2w =,则()π2f x x ϕ⎛⎫=+ ⎪⎝⎭,因为函数()f x 关于点()2,0M 对称,即()20f =π202ϕϕ⎛⎫⨯+= ⎪⎝⎭,解得0ϕ=,所以()π2f x x ⎛⎫= ⎪⎝⎭,将()f x 的图象向右平移13个单位长度,得到()g x 的图象,即()π1ππ2326g x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由ππππ2π2π2262k x k -+≤-≤+,k ∈Z ,得244433k x k -+≤≤+,k ∈Z ,当1k =时,101633x ≤≤,即函数的单调增区间为1016,33⎡⎤⎢⎥⎣⎦,故选D . 10.【答案】B【解析】()2πsin 22sin sin 2cos21214f x x x x x x ⎛⎫=-=+-+- ⎪⎝⎭∴函数()f x 的最小正周期2ππ2T ==,故①正确 令ππ3π2π22π242k x k +≤+≤+,解得π5πππ88k x k +≤≤+, 当0k =时,()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数,故②正确令π204x +=,解得π8x =-,则()f x 图像关于π,18⎛⎫-- ⎪⎝⎭对称,故③错误 ()π214f x x ⎛⎫+- ⎪⎝⎭,可以由()2f x x =的图象向左平移π8个单位,再向下平移一个单位得到,故④错误,综上,正确的结论有2个,故选B . 11.【答案】A【解析】∵()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)由()()12''0f x f x ==可得,1x ,2x 是函数的极值点, ∵12x x -的最小值为π2,∴1ππ22T ω⋅==,2ω∴=,()()sin 2f x x θ∴=+, 又()π3f x f x ⎛⎫=- ⎪⎝⎭,∴()f x 的图象的对称轴为π6x =,ππ2π62k θ∴⨯+=+,k ∈Z ,令0k =可得π6θ=,()πsin 26f x x ⎛⎫∴=+ ⎪⎝⎭,将()f x 的图象向左平移π6个单位得()ππsin 2cos 266g x x x ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭的图象,令2π22ππk x k ≤≤+,πππ2k x k ∴≤≤+, 则()cos 2g x x =的单调递减区间是ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈Z ,故选A . 12.【答案】B【解析】由已知函数()sin sin3f x x x =-,[]0,2πx ∈,令()0f x =,即sin sin30x x -=,即2sin sin3sin cos2cos sin 2sin cos22sin cos x x x x x x x x x x ==+=+, 即()2sin cos22cos 10x x x +-=,解得sin 0x =或2cos22cos 10x x +-=, 当sin 0x =,[]0,2πx ∈时,0x =或πx =或2πx =;当2cos22cos 10x x +-=时,即222cos 2cos 20x x +-=,解得cos x =, 又由[]0,2πx ∈,解得π4x =或3π4或5π4或7π4, 所以函数()f x 的所有零点之和为π3π5π7π0π2π7π4444++++++=,故选B .13. 【解析】()cos 2019π2cos2αα-=-,因为sin cos αα-=,所以11sin23α-=,2sin23α∴=,因为sin cos 0αα->,α为第一象限角, 所以ππ2π2π42k k α+<<+,k ∈Z ,π4π24ππ2k k α∴+<<+,k ∈Z ,所以cos2α=. 14.【答案】1【解析】tan 2α=,∴原式22222cos 2sin cos 12tan 1221sin cos tan 121ααααααα+++⨯====+++. 故答案为1.15.【解析】原式1ππsin sin cos 236αααα⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,因为π7π,66α⎡⎤∈⎢⎥⎣⎦,所以[]π0,π6α-∈,因πtan 26α⎛⎫-= ⎪⎝⎭,所以πcos 6α⎛⎫-= ⎪⎝⎭.16.【答案】①④【解析】函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =, 则ππ2sin 1033f ωϕ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,π1sin 32ωϕ⎛⎫+= ⎪⎝⎭,ππ2π36k ωϕ+=+或()5π2π6k k +∈Z ,()ππ2π62n n ωϕ-+=+∈Z , 两式相减得()243k n ω=-±,又0ω>,则min 23ω=, 此时2π5π2π96k ϕ+=+,k n =,11π2π18k ϕ∴=+, 又πϕ<,则11π18ϕ=,()211π2sin 1318f x x ⎛⎫∴=+- ⎪⎝⎭,当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 先减后增,函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称,()11π02sin1118f =-≠-, 故填①④.。
高考数学选择、填空题专项汇编题(共40套)[附答案]
三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。
(完整版)高三数学选择、填空题专项训练(共40套)[附答案]
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556 B.-6556 C.-6516 D. 6516 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34. 函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2 B.22 C.4 D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒)12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒) 12 12.4 12.8 13 12.2 12.8 12.3 12.5三基小题训练二1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量 OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( ) A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠TEF DO C B A8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132- 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________. 14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
2023年新高考数学选择填空专项练习题六(附答案解析)
∴1= an
1- 1 an an-1
+
1-1 an-1 an-2
+…+
1-1 a2 a1
+1 a1
第2页共7页
=2n-1+2n-2+…+2+1=2n-1=2n-1. 2-1
∴an=2n-1 1.故选 B.] 8.甲、乙、丙三人中,一人是教师,一人是记者,一人是医生.已知:丙 的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下 列判断正确的是( ) A.甲是教师,乙是医生,丙是记者 B.甲是医生,乙是记者,丙是教师 C.甲是医生,乙是教师,丙是记者 D.甲是记者,乙是医生,丙是教师 C [由甲的年龄和记者不同与记者的年龄比乙小可以推得丙是记者,再由丙 的年龄比医生大,可知甲是医生,故乙是教师,故选 C.] 9.已知抛物线 C:y2=8x 与直线 y=k(x+2)(k>0)相交于 A,B 两点,F 为 抛物线 C 的焦点,若|FA|=2|FB|,则 AB 的中点的横坐标为( ) A.5 B.3 C.5 D.6
i
i
虚数,则 a-2=0,a+2≠0.
∴“a=2”是“复数 z=a+2i-1+i(a∈R)为纯虚数”的充要条件.故选 i
C.] 3.已知平面向量 a,b 满足|a|=3,|b|=2,且(a+b)(a-2b)=4,则向量 a,
b 的夹角为( )
A.π B.π C.π D.2π 643 3
D [∵(a+b)(a-2b)=4,∴a2-a·b-2b2=4,
2 A [根据题意,设 AB 的中点为 G, 抛物线 C:y2=8x 的准线为 l:x=-2,焦点为 F(2,0), 直线 y=k(x+2)恒过定点 P(-2,0). 如图过 A、B 分别作 AM⊥l 于 M,BN⊥l 于 N, 由|FA|=2|FB|,则|AM|=2|BN|, 即点 B 为 AP 的中点.连接 OB,则|OB|=1|AF|,
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
高三数学真题卷(含答案)
高三数学真题卷一、单选题1.已知()y f x =是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则()2f -=( )A .﹣2B .2C .﹣6D .62.如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列说法错误的是( )A .浮萍每月的增长率为1B .第6个月时,浮萍面积就会超过260mC .浮萍每月增加的面积都相等D .若浮萍蔓延到24m ,29m ,236m 所经过的时间分别是1t ,2t ,3t ,则123t t t +=3.农业农村部于2021年2月3日发布信息:全国按照主动预防、内外结合、分类施策、有效处置的总体要求,全面排查蝗灾隐患.为了做好蝗虫防控工作,完善应急预案演练,专家假设蝗虫的日增长率为6%,最初有0N 只,则大约经过( )天能达到最初的1200倍.(参考数据:ln1.060.0583≈,ln1.60.4700≈,ln12007.0901≈,ln 20007.6009≈)A .122 B .124 C .130 D .1364.已知圆锥的侧面展开图为一个半圆,则该圆锥的底面半径与母线长的比为( ) A .28B .12C .14D .245.圆22:(2)(3)6C x y -+-=截直线:(1)10l a x y a +--+=的最短弦长为( ) A .1B .22C .4D .86.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.已知一个5次多项式为()54322341f x x x x x x =+-+-+,用秦九韶算法求这个多项式当2x = 时3v 的值为( )A .5 B .14 C .27 D .557.将函数()sin 2f x x =的图象向左平移3π个单位后与()y g x =的图象重合,则( ) A .()sin 23g x x π⎛⎫=+ ⎪⎝⎭ B .()sin 23g x x π=-⎛⎫ ⎪⎝⎭ C .()2sin 23g x x π⎛⎫=+ ⎪⎝⎭ D .()sin 26g x x π⎛⎫=+ ⎪⎝⎭8.若向量a ,b 为单位向量,27a b -=,则向量a 与向量b 的夹角为( ) A .30B .60︒C .120︒D .150︒9.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3,5,7a b c ===,则ABC 的面积为( ) A .1534B .1532C .152D .154 10.若2x >,则2242x x y x -+=-的最小值为( )A .4 B .5C .6D .811.椭圆C :2214924x y +=的焦点为1F ,2F ,点P 在椭圆上,若18PF =,则12PF F △的面积为( )A .48B .40C .28D .2412.定义在R 上的函数()3f x x m =-+与函数()()g x f x kx =-在[]1,2上具有相同的单调性,则k 的取值范围是( )A .(],12-∞- B .[)3,∞-+ C .()3,-+∞ D .(],3-∞- 二、填空题13.已知命题“2,10x R x ax ∀∈-+≥”为真命题,则实数a 的取值范围是___________. 14.用反证法证明命题“若1x <-,则20x x +>”时,正确的假设为_________. 15.已知数列{n a }的通项公式为2215n n a n -=-,前n 项和为n S ,当n S 取得最小值时,n 的值为___________.16.已知A 、B 、C 、D 为空间不共面的四个点,且222BC BD AB ===,则当三棱锥A BCD -体积最大时,其外接球的表面积为______. 三、解答题17.书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解当地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示: (1)求t 的值;(2)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅 读时间位于[)50,60,[)60,70和[)80,90的年轻人中抽取5人,再从中任选2人 进行调查,求其中至少有1人每天阅读时间位于[)80,90的概率.18.在数列{}n a 中,11a =,122nn n a a +=+.(1)设12nn n a b -=,证明:数列{}n b 是等差数列;(2)求数列{}n a 的通项公式n a .19.如图,四棱锥P ABCD -的底面是矩形,平面PAB ⊥平面,,1ABCD PA PB PA PB BC ⊥===,E ,F 分别是,PA CD 的中点.(1)求证:EF 平面PBC :(2)求点P 到平面BEF 的距离.20.双曲线()2222:10,0x y C a b a b-=>>的离心率为2,经过C 的焦点垂直于x 轴的直线被C 所截得的弦长为12.(1)求C 的方程;(2)设A ,B 是C 上两点,线段AB 的中点为()5,3M ,求直线AB 的方程.21.已知函数2()(2)ln (0)f x ax a x x a =-++>. (1)讨论函数()f x 的单调性;(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,求实数a 的取值范围.22.平面直角坐标系中,直线l 的参数方程为2,.x t y =-⎧⎪⎨=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为sin tan 4ρθθ=. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点(2,0)P ,直线l 交曲线C 于A ,B 两点,求11||||PA PB +的值.参考答案:1.A 【解析】 【分析】利用奇函数()()f x f x =--的特点,先求得参数,然后根据奇函数特点求值即可 【详解】()y f x =是定义在R 上的奇函数则有:()010f a =+= 解得:1a =-当0x ≥时,()2f x x x =-,则()()222f f -=-=-故选:A 2.C 【解析】 【分析】由图象过(1,2)点,可得函数关系式y =2t .再由1222(21)122t t t t t+--==,可判断A ;当t =6时,计算函数值可判断B ;计算第二个月比第一个月增加量,和第三个月比第二个月增加量,比较可判断C ;运用指数与对数互化得t 1,t 2,t 3,可判断D. 【详解】图象过点()1,2点,12a ∴=,即2a = 2t y ∴=()122122122tt t t t+--∴== ∴每月的增长率为1,A 正确; 当6t =时,626460y ==>,B 正确;第二个月比第一个月增加()2221222m y y -=-=第三个月比第二个月增加()3223221224m y y y y -=-=≠-,C 错误;142t =,292t =,3362t= 12log 4t ∴=,22log 9t =,32log 63t =122223log 4log 9log 63t t t ∴+=+==,D 正确.故选:C.3.A 【解析】 【分析】设经过n 天后蝗虫数量达到原来的1200倍,列出方程,结合对数的运算性质即可求解 【详解】由题意可知,蝗虫最初有0N 只且日增长率为6%; 设经过n 天后蝗虫数量达到原来的1200倍,则 ()0016%1200nN N +=,∴1.061200n =,∴ 1.06ln1200log 1200121.614ln1.06n ==≈, ∴*n ∈N ,∴大约经过122天能达到最初的1200倍. 故选:A. 4.B 【解析】 【分析】设圆锥的底面半径为r ,母线长为l ,利用已知条件可得出关于r 、l 的等量关系式,即可得解. 【详解】设圆锥的底面半径为r ,母线长为l ,则r l 2π=π,解得12r l =.故选:B. 5.C 【解析】 【分析】首先判断出直线过定点,再结合圆的几何性质可得到答案. 【详解】因为()()110,a x x y -+-+=所以直线过定点()1,2P则PC ==结合圆的几何性质可知其最短弦长为 4.=故选:C 6.B 【解析】 【分析】把多项式改写成用加(减)法和乘法形式,然后根据定义依次计算可得. 【详解】由已知()54322341f x x x x x x =+-+-+((((2)3)4)1)1x x x x x =+-+-+,2x =时,1224v =+=,21235v v =⨯-=,322414v v =⨯+=.故选:B . 7.C 【解析】 【分析】利用三角函数的图象变换可求得函数()g x 的解析式. 【详解】由已知可得()2sin 2sin 2333g x f x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+=+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 故选:C. 8.C 【解析】 【分析】对27a b -=两边平方,再根据向量a ,b 为单位向量,可得1cos ,2a b 〈〉=-,由此即可求出结果. 【详解】因为27a b -=,所以22447a a b b -⋅+=,又向量a ,b 为单位向量,所以54cos ,7a b -〈〉=,所以[]1cos ,,,0,π2a b a b =-∈,即120,a b 〈〉=︒,故向量a 与向量b 的夹角为120︒. 故选:C. 9.A 【解析】 【分析】由余弦定理计算求得角C ,根据三角形面积公式计算即可得出结果. 【详解】由余弦定理得2222223571cos 22352a b c C ab +-+-===-⨯⨯,0πC <<,∴23C π=,∴11sin 3522ABCSab C ==⨯⨯=, 故选:A . 10.C 【解析】 【分析】化简原式得22442222x x y x x x -+==-++--,然后利用基本不等式求解【详解】因为2x >,所以20x ->,所以2244222622x x y x x x -+==-++≥=--, 当且仅当422x x -=-,即4x =时等号成立,故42y x x =+-,的最小值为6. 故选:C . 11.D 【解析】 【分析】根据给定条件结合椭圆定义求出2||PF ,再判断12PF F △形状计算作答. 【详解】椭圆C :2214924x y +=的半焦距5c =,长半轴长7a =,由椭圆定义得21||2||6PF a PF =-=, 而12||10F F =,且2221212||||||F F PF PF =+,则有12PF F △是直角三角形,12121||||242PF F SPF PF =⋅=, 所以12PF F △的面积为24. 故选:D 12.B 【解析】 【分析】判定函数()f x 单调性,再利用导数结合函数()g x 在[]1,2的单调性列式计算作答. 【详解】由函数()3f x x m =-+得:()230f x x '=-≤,当且仅当0x =时取“=”,则()f x 在R 上单调递减,于是得函数()3x m kx g x -+-=在[]1,2上单调递减,即[]1,2x ∀∈,()230x x k g -'=-≤,即23k x ≥-,而23x -在[]1,2上单调递减,当1x =时,2max (3)3x -=-,则3k ≥-,所以k 的取值范围是[)3,∞-+. 故选:B13.[]22-, 【解析】 【分析】根据命题“2,10x R x ax ∀∈-+≥”为真命题,由()240a ∆=--≤求解. 【详解】因为命题“2,10x R x ax ∀∈-+≥”为真命题, 所以()240a ∆=--≤,即24a ≤, 解得22a -≤≤,所以实数a 的取值范围是[]22-,, 故答案为:[]22-,14.20x x +≤ 【解析】 【分析】根据反证法是命题的否定的一个运用,用反证法证明命题时,可以设其否定成立进行推证可得答案. 【详解】由于反证法是命题的否定的一个运用,故用反证法证明命题时,则其反设需满足条件不变,结论设为相反,所以用反证法证明命题“若1x <-,则20x x +>”时,正确的假设为20x x +≤.故答案为:20x x +≤. 15.7 【解析】 【分析】首先求出数列的正负项,再判断n S 取得最小值时n 的值. 【详解】当()()022150n a n n ≤⇔--≤,*n N ∈, 解得:2,3,4,5,6,7n =, 当1n =和8n ≥时,0n a >, 所以n S 取得最小值时,7n =. 故答案为:7 16.18π 【解析】 【分析】由题可得当BA 、BC 、BD 两两垂直时,三棱锥的体积最大,将三棱锥补形为一个长宽高分别为. 【详解】当BA 、BC 、BD 两两垂直时,如图三棱锥A BCD -的底面BCD △的面积和高同时取得最大值,则三棱锥的体积最大,此时将三棱锥补形为一个长宽高分别为的长方体, 长方体的外接球即为三棱锥的外接球,球的半径r =,表面积为24π18πr =. 故答案为:18π. 17.(1)0.020t = (2)710【解析】 【分析】(1)由频率之和为1求参数t .(2)由分层抽样的比例可得抽取的5人中[)50,60,[)60,70和[)80,90分别为:1人,2人,2人,再应用列举法写出所有基本事件,根据古典概型的概率计算即可. (1)根据频率分布直方图得:()0.0070.01020.043101t +++⨯=, 解得0.020t =; (2)由于[)50,60,[)60,70和[)80,90的频率之比为:0.010:0.020:0.0201:2:2=, 故抽取的5人中,[)50,60,[)60,70和[)80,90别为:1人,2人,2人, 记[)50,60的1人为a ,[)60,70的2人为b ,c ,[)80,90的2人为A ,B ,故随机抽取2人共有{},a b ,{},a c ,{},a A ,{},a B ,{},b c ,{},b A ,{},b B ,{},c A ,{},c B ,{},A B 10种,其中至少有1人每天阅读时间位于[)80,90的包含{},a A ,{},a B ,{},b A ,{},b B ,{},c A ,{},c B ,{},A B 共7种,故概率710P =. 18.(1)证明见解析 (2)12n n a n -=⋅ 【解析】 【分析】 (1)由已知得11122n n n n a a +-=+,由12nn n a b -=,利用等差数列的定义可得答案; (2)由(1)n b n =可得n a . (1)由122nn n a a +=+得11122n n n n a a +-=+,∴12nn n a b -=,∴11n n b b +=+, 又11b =,∴{}n b 是首项为1公差为1的等差数列. (2)由(1){}n b 为等差数列,11b =,∴n b n =,12nn n a b -=, 所以12n n a n -=⋅.19.(1)证明见解析【解析】 【分析】(1)通过作辅助线,证明平面OEF ∴平面PBC ,再根据面面平行的性质,证明结论; (2)先求三棱锥F PBE -的体积F PBE V -,再求出BEF 的面积,根据等体积法,即P BEF F PBE V V --=,即可求点P 到平面BEF 的距离.(1)取AB 的中点O ,连接,OE OF ,因为E ,F 分别是,PA CD 的中点,所以,OE PB OF BC ∥∥,故OE ∴平面,PBC OF ∴平面PBC ,,,OE OF O OE OF =⊂ 平面OEF , 因此,平面OEF ∴平面PBC ,又EF ⊂平面OEF , 所以EF ∴平面PBC . (2)连接OP ,因为,1PA PB PA PB ⊥==,E 是P A 的中点,所以PBE △的面积为1124PBESPB PE =⋅=,AB ==, 由(1)知OF AB ⊥,因为平面PAB ⊥平面ABCD , 所以OF ⊥平面PAB ,又1OF BC ==,所以三棱锥F PBE -的体积11312F PBE PBE V SOF -=⋅=,在BCF △中,122FC AB ==,所以BF ==在PBE △中,BE =在FOE 中,1122OE PB ==,所以EF ==在BEF 中,EF EB =,故底边BF =所以BEF 的面积为:12BEFS==设点P 到平面BEF 的距离h ,则三棱锥P BEF -的体积为13P BEF BEFV Sh -=⋅,又因为112P BEF F PBE V V --==,所以11123h =,解得h =,所以点P 到平面BEF . 20.(1)221412x y -=(2)522y x =- 【解析】 【分析】(1)根据已知条件求得,a b ,由此求得C 的方程.(2)结合点差法求得直线AB 的斜率,从而求得直线AB 的方程. (1)因为C 的离心率为22,可得223b a =.将x 22221x y a b-=可得2b y a =±,由题设26b a=.解得2a =,212b =,b =所以C 的方程为221412x y -=.(2)设()11,A x y ,()22,B x y ,则22111412x y -=,22221412x y -=. 因此222212120412x x y y ---=,即()()()()121212120412x x x x y y y y +-+--=. 因为线段AB 的中点为()5,3M ,所以1210x x +=, 126y y +=,从而12125y y x x -=-,于是直线AB 的方程是522y x =-. 21.(1)答案见解析 (2)10,e ⎛⎤ ⎥⎝⎦【解析】 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论对a 进行分类讨论,由min e ()f x ≤-,结合构造函数法以及导数来求得a 的取值范围.(1)已知函数2()(2)ln f x ax a x x =-++,定义域为(0,)+∞, 212(2)1(1)(21)()2(2)ax a x ax x f x ax a x x x-++--=-++==', ∴当02a <<时,11>,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减; ∴当2a =时,2142()0x f x x⎛⎫- ⎪⎝⎭'=≥,函数()f x 在(0,)+∞单调递增; ∴当2a >时,11<,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减. 综上所述,02a <<时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减;2a =时,()f x 在(0,)+∞单调递增;2a >时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减.(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,即使得min e ()f x ≤-.由(1),可知当1a ≥时,()f x 在[1,)+∞上单调递增,()min (1)2f f x ==-, 不满足min e ()f x ≤-; 当01a <<时,11>min 11()1ln f x f a a a ⎛⎫==--- ⎪⎝⎭,所以e 11ln a a ---≤-,即1ln 1e a a +≥-,令1()ln (01)g x x x x =+<<,∴22111()0xg x x x x -='=-<,∴1()ln g x x x=+在(0,1)上单调递减, 又∴1e 1e g ⎛⎫=- ⎪⎝⎭,由1ln 1e a a +≥-,得10e a <≤.综上,实数a的取值范围为10,e ⎛⎤⎥⎝⎦.22.(1)2)y x=-,24(0)y x x =≠ 【解析】 【分析】(1)将直线l 的参数消去化为普通方程,利用极值互化公式将曲线C 的极坐际方程; (2)注意到直线l 直线l 经过点()2,0P ,倾斜角为120α=︒,写出其标准形式00cos sin x x t y y t αα=+⎧⎨=+⎩的参数方程,利用参数的几何意义和韦达定理求得结果. (1)解:∴直线l 的参数方程为2x t y =-⎧⎪⎨=⎪⎩(t 为参数),消去t 2y +=,即为直线l 的普通方程;曲线C 的极坐际方程为sin tan 4ρθθ=,由极直互化公式sin ,tan y y xρθθ== 即得4yy x⨯=,即24(0)y x x =≠,即为曲线C 的直角坐标方程. (2)解:由直线l的普通方程为2)y x =-,可知直线l 经过点()2,0P ,倾斜角为120︒,∴直线l的标准参数方程122x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),代入曲线C 的直角坐标方程24(0)y x x =≠中化简得238320t t +-=. 设交点,A B 所对应的参数为12,t t ,则1212832,33t t t t +=-=-,∴12t t -===.∴12121212121111332||||3t t t t PA PB t t t t t t +=-+=+===。
高三数学多空题、答案不唯一型填空题专项练(二)
高三数学多空题、答案不唯一型填空题专项练(二)1.直线l :(2a -1)x +(a -3)y +4-3a =0与圆(x -2)2+y 2=9相交于A ,B 两点,则|AB |的最小值为________;此时a =________. 答案 27 43解析 ∵直线l :(2a -1)x +(a -3)y +4-3a =0恒过定点(1,1),且点(1,1)在圆内,∴当圆心与点(1,1)的连线与直线AB 垂直时,弦长|AB |最小. ∵圆心(2,0)与点(1,1)间的距离为(2-1)2+(0-1)2=2,圆的半径为3,∴弦长|AB |的最小值为29-2=27.∵圆心(2,0)与点(1,1)连线的斜率为1-01-2=-1,∴此时直线l 的斜率为1,则-2a -1a -3=1,解得a =43.2.已知ω>0,φ>0,函数f (x )=2cos ⎝ ⎛⎭⎪⎫3x +π3+1的图象向右平移φ个单位长度得到函数g (x )的图象.若g (x )与h (x )=4sin ⎝ ⎛⎭⎪⎫ωx -π6的极值点完全相同,则ω=________,φ的最小值为________. 答案 3 π3解析 函数f (x )=2cos ⎝ ⎛⎭⎪⎫3x +π3+1的图象向右平移φ个单位长度得到函数g (x )=2cos ⎝ ⎛⎭⎪⎫3x -3φ+π3+1的图象,若g (x )与h (x )=4sin ⎝ ⎛⎭⎪⎫ωx -π6=4cos ⎝ ⎛⎭⎪⎫ωx -2π3的极值点完全相同,则2π3=2π|ω|,∴ω=3(负值已舍去).当cos ⎝ ⎛⎭⎪⎫3x -3φ+π3=cos ⎝ ⎛⎭⎪⎫3x -2π3时,则-3φ+π3=-2π3+2k π,k ∈Z ,即φ=π3-2k π3,k ∈Z .又φ>0,∴φmin =π3.当cos ⎝ ⎛⎭⎪⎫3x -3φ+π3=-cos ⎝ ⎛⎭⎪⎫3x -2π3时,则3x -3φ+π3+⎝ ⎛⎭⎪⎫-3x +2π3=π+2k π,k ∈Z ,∴φ=-23k π,k ∈Z .又φ>0,∴φmin =2π3.综上可得φ的最小值为π3.3. 2021年是中国传统的“牛”年,可以在平面直角坐标系中用抛物线与圆勾勒出牛的形象.已知抛物线Z :x 2=4y 的焦点为F ,圆F :x 2+(y -1)2=4与抛物线Z 在第一象限的交点为P ⎝ ⎛⎭⎪⎫m ,m 24,直线l :x =t (0<t <m )与抛物线Z 的交点为A ,直线l 与圆F 在第一象限的交点为B ,则m =________;△FAB 周长的取值范围为________. 答案 2 (4,6)解析由⎩⎪⎨⎪⎧x 2=4y ,x 2+(y -1)2=4,x >0,y >0,解得⎩⎪⎨⎪⎧x =2,y =1,∴m =2.由⎩⎪⎨⎪⎧x =t ,x 2=4y ,解得⎩⎨⎧x =t ,y =t 24,∴A ⎝ ⎛⎭⎪⎫t ,t 24.由⎩⎪⎨⎪⎧x =t ,x 2+(y -1)2=4,解得⎩⎪⎨⎪⎧x =t ,y =1+4-t 2,∴B (t ,1+4-t 2).设点A 在抛物线准线上的射影为点C ,则由抛物线的定义,得|AF |=|AC |,∴△FAB 的周长=|FA |+|FB |+|AB |=|AC |+|AB |+|BF |=|BC |+2=4-t 2+4.∵t ∈(0,2),∴4-t 2+4∈(4,6),即△FAB 周长的取值范围为(4,6).4.四棱锥P-ABCD 各顶点都在球心为O 的球面上,且PA ⊥平面ABCD ,底面ABCD 为矩形,PA =AB =2,AD =4,则球O 的体积是________;设E ,F 分别是PB ,BC 的中点,则平面AEF 被球O 所截得的截面圆面积为________. 答案 86π14π3解析 由题意知球心O 为PC 的中点,∴球O 的直径2R =22+22+42=26,∴R =6,∴V 球=43π×(6)3=86π.设球心O 到平面AEF 的距离为d ,截面圆半径为r ,由题设知球心O 到平面AEF 的距离等于点B 到平面AEF 的距离,如图,连接OA ,OE ,OF ,由等体积法得,V O-AEF =V E-ABF ,易知AE =2,AF =22,EF =6,则AE 2+EF 2=AF 2,∴AE ⊥EF ,∴13×12×2×6·d =13×12×2×2×1,得d =233,∴r 2=R 2-d 2=6-43=143,故截面圆面积为πr 2=14π3. 5.已知△ABC 是边长为2的等边三角形,点M 是△ABC 所在平面内的一点,且满足CM →=2CA →+3CB →,则MA →·MB →=________,CM →与CB →所成角的余弦值为________. 答案 4841919解析 法一 ∵CM →=2CA →+3CB →,∴CM→-CB →=2(CA →+CB →). 取AB 的中点N ,连接CN (图略), 可得BM→=4CN →且|CN →|= 3. ∵△ABC 是等边三角形,∴CN ⊥AB ,即CN →·AB →=0,∴MA →·MB →=(MB →+BA →)·MB →=MB →2+BA →·MB → =16CN →2+AB →·4CN →=16CN →2=48. CM→=CB →+BM →=CB →+4CN →,CN →·CB →=|CN →|·|CB →|cos 30°=3×2×32=3. 设CM→与CB →所成的角为θ,则 cos θ=CM →·CB→|CM →|·|CB →|=(CB →+4CN →)·CB →|CB →+4CN →|·|CB →|=CB →2+4CN →·CB→CB →2+16CN →2+8CN →·CB →·|CB →|=4+124+48+24×2=41919.法二 建立以点B 为坐标原点,以边BC 所在直线为x 轴,过点B 且垂直于BC 的直线为y 轴的平面直角坐标系(图略),则A (1,3),B (0,0),C (2,0), ∴CA→=(-1,3),CB →=(-2,0).∴CM→=2CA →+3CB →=2(-1,3)+3(-2,0)=(-8,23), ∴点M 的坐标为(-6,23), ∴MA→=(7,-3),MB →=(6,-23), ∴MA →·MB →=42+6=48. 设CM→与CB →所成的角为θ, 则cos θ=CM →·CB→|CM →||CB →|=1664+12×2=41919.6.已知直线l :x +2y -5=0,定点A (1,2),动点P 到定点A 的距离与到直线l 的距离相等,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F ,Q 是动点P 轨迹上一点,则点P 的轨迹方程为________;若|FQ |的最小值恰为双曲线C 的虚半轴长,则双曲线C 的离心率为________. 答案 y =2x5解析 由已知得点A 在直线l 上,因而动点P 的轨迹为过点A 且与直线l 垂直的直线,则由点斜式,得点P 的轨迹方程为y -2=2(x -1),即y =2x .|FQ |的最小值即点F 到直线y =2x 的距离,且|FQ |min =b .则y =2x 为双曲线C 的一条渐近线,从而ba =2,所以离心率e =1+⎝ ⎛⎭⎪⎫b a 2= 5. 7.某校学生去工厂进行劳动实践,加工制作某种零件.如图,将边长为10 2 cm 的正方形铁皮剪掉阴影部分四个全等的等腰三角形,然后将△P 1AB ,△P 2BC ,△P 3CD ,△P 4DA 分别沿AB ,BC ,CD ,DA 翻折,使得P 1,P 2,P 3,P 4重合并记为点P ,制成正四棱锥P-ABCD 形状的零件.当该四棱锥体积最大时,AB =________ cm ;此时该四棱锥外接球的表面积S =________ cm 2.答案 8676π5解析 取P 1P 2的中点E ,连接BE ,BD ,设AB =x ,则DB =2x ,BE =102-2x 2,P 1B 2=(52)2+⎝ ⎛⎭⎪⎫102-2x 22=100-10x +12x 2. 则PB 2=100-10x +12x 2.连接AC ,BD ,设AC ∩BD =F ,连接PF ,则PF ⊥平面ABCD , PF 2=PB 2-BF 2=⎝ ⎛⎭⎪⎫100-10x +12x 2-⎝ ⎛⎭⎪⎫22x 2=100-10x ,∴V P-ABCD =13S 四边形ABCD ·PF =13x 2·100-10x =13x 4·(100-10x ). 设f (x )=x 4·(100-10x )(0<x <10),则f ′(x )=4x 3·(100-10x )+x 4·(-10)=50x 3(8-x ), 当x ∈(0,8)时,f ′(x )>0,当x ∈(8,10)时,f ′(x )<0, ∴f (x )在(0,8)上单调递增,在(8,10)上单调递减,∴当x =8 cm 时,四棱锥P-ABCD 的体积最大,此时AB =8 cm ,PF =2 5 cm.设四棱锥外接球的球心为O,则O在直线PF上,设半径为R,连接AO,则根据OA2=OF2+AF2得R2=(R-25)2+(42)2,∴R=135,∴S=676π5(cm2).8.如图,正三棱柱ABC-A′B′C′的所有棱长均为2,O是BC的中点,P是平面BB′C′C内一点,且PA=2,则点P的轨迹长度为________;当PC′的长最小时,三棱锥O-PAA′的体积为________.答案π15 15解析因为三棱柱ABC-A′B′C′是正三棱柱,O是BC的中点,所以OA⊥平面BB′C′C,又OP⊂平面BB′C′C,所以OA⊥OP.因为PA=2,OA=3,所以OP=1,故点P的轨迹是在平面BB′C′C内,以O 为圆心,1为半径的半圆,其长度为π.在平面BB′C′C内,当PC′的长最小时,O,P,C′三点共线.过点O作OO′⊥B′C′于点O′,连接O′A′,易知O,A,A′,O′四点共面.过P作PQ⊥OO′于点Q,又OA⊥平面BB′C′C,PQ⊂平面BB′C′C所以PQ⊥OA,则PQ⊥平面OAA′O′,即PQ是三棱锥P-OAA′的高.连接OC ′,因为PQ ∥O ′C ′,所以PQ O ′C ′=OPOC ′,又OC ′=5,OP =1,O ′C ′=1,所以PQ =55,所以V O-PAA ′=V P-OAA ′=13·S △OAA ′·PQ =13×12×2×3×55=1515. 9.已知直线l 与抛物线C :y 2=8x 相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 并延长交C 于另一点Q ,则△PTQ 面积的最小值为________;若|TF |=5,则|PQ |的值为________. 答案 16 252解析 抛物线的焦点为F (2,0),设直线PQ 的方程为x =ny +2, 由⎩⎪⎨⎪⎧x =ny +2,y 2=8x消去x 并化简得y 2-8ny -16=0,Δ=64n 2+64>0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=8n ,y 1y 2=-16. 设抛物线在P 点处的切线方程为x =my +t , 由⎩⎪⎨⎪⎧x =my +t ,y 2=8x消去x 并化简得y 2-8my -8t =0,由Δ1=64m 2+32t =0,得t =-2m 2, 故y 2-8my +16m 2=0,即(y -4m )2=0, 所以y 1=4m ,t =-y 218,所以抛物线在P 点处的切线方程为x =y 14y -y 218.同理求得抛物线在Q 点处的切线方程为x =y 24y -y 228. 由⎩⎪⎨⎪⎧x =y 14y -y 218,x =y 24y -y 228,解得⎩⎪⎨⎪⎧x =y 1·y 28,y =y 1+y 22,即⎩⎪⎨⎪⎧x =-2,y =4n ,也即两条切线的交点(-2,4n )在抛物线的准线x =-2上,故T (-2,4n ). 点T 到直线PQ :x -ny -2=0的距离 d =|-4n 2-4|n 2+1=4n 2+1,|PQ|=x1+p2+x2+p2=ny1+4+ny2+4=n(y1+y2)+8=8n2+8,所以S△PTQ=12·|PQ|·d=16(n2+1)32,当n=0时,△PTQ的面积取得最小值,为16.当|TF|=5时,由两点间的距离公式得|TF|=(-2-2)2+(4n-0)2=16n2+16=5,则16n2+16=25,所以|PQ|=8n2+8=252.10.在三棱锥P-ABC中,PA=BC=5,PB=AC=13,PC=AB=10,则异面直线PC与AB所成角的余弦值为________,三棱锥P-ABC的体积为________.答案45 2解析法一根据题意可将三棱锥P-ABC补形为长、宽、高分别为2,1,3的长方体PMAE-NCDB,如图所示.连接面对角线DE交AB于点R,则PC∥DE,易知∠ARE为锐角,所以∠ARE为异面直线PC与AB所成的角.在△ARE中,cos∠ARE=RA2+RE2-AE22RA·RE=⎝⎛⎭⎪⎫1022+⎝⎛⎭⎪⎫1022-122×102×102=45,故异面直线PC与AB所成角的余弦值为45.V P-ABC=V长方体-V A-CDB-V A-PEB-V A-PMC-V P-NCB=3×2×1-4×13×12×2×1×3=2.法二 根据题意可将三棱锥P-ABC 补形为长、宽、高分别为2,1,3的长方体PMAE-NCDB ,如图所示,以N 为坐标原点,NC ,NB ,NP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (1,2,3),B (0,2,0),C (1,0,0),P (0,0,3), 所以AB→=(-1,0,-3),PC →=(1,0,-3), 所以cos 〈AB →,PC →〉=AB →·PC →|AB →|·|PC →|=-1×1+(-3)×(-3)10×10=45,故异面直线PC 与AB 所成角的余弦值为45.V P-ABC =V 长 方体-V A-CDB -V A-PEB -V A-PMC -V P-NCB =3×2×1-4×13×12×2×1×3=2.11.蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动,如图所示.已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =10 cm ,AC =15 cm ,则点A 到平面BCD 的距离为________ cm ,该“鞠”的表面积为________ cm 2.答案 152 700π3解析 由已知得△ABD ,△CBD 均为等边三角形.如图,设球心为O ,△BCD 的中心为O ′,取BD 的中点F ,连接AF ,CF ,OO ′,OB ,O ′B ,AO ,则AF ⊥BD ,CF ⊥BD ,得BD ⊥平面AFC ,且可求得AF =CF =5 3 cm.而AC =15 cm ,所以∠AFC =120°.在平面AFC 中过点A 作CF 的垂线,与CF 的延长线交于点E ,由BD ⊥平面AFC ,得BD ⊥AE ,又BD ∩CE =F ,BD ,CE ⊂平面BCD ,故AE ⊥平面BCD . 过点O 作OG ⊥AE 于点G ,则四边形O ′EGO 是矩形,则O ′B =BC sin 60°×23=10×32×23=1033(cm),O ′F =12O ′B =12×1033=533(cm),AE =AF sin 60°=53×32=152(cm),故点A 到平面BCD 的距离为152 cm ,EF =AF sin 30°=53×12=532(cm). 设球的半径为R cm ,OO ′=x cm , 则由OO ′2+O ′B 2=OB 2,OG 2+AG 2=OA 2, 得x 2+1003=R 2,⎝ ⎛⎭⎪⎫532+5332+⎝ ⎛⎭⎪⎫152-x 2=R 2, 解得x =5,R =1753.故三棱锥A-BCD 外接球的表面积 S =4πR 2=4π⎝⎛⎭⎪⎫17532=700π3(cm 2).12.牛顿迭代法又称牛顿—拉夫逊方法,它是牛顿在17世纪提出的一种近似求解方程的方法.具体步骤如下:设r 是函数y =f (x )的一个零点,任意选取x 0作为r 的初始近似值,过点(x 0,f (x 0))作曲线y =f (x )的切线l 1,设l 1与x 轴交点的横坐标为x 1,并称x 1为r 的1次近似值;过点(x 1,f (x 1))作曲线y =f (x )的切线l 2,设l 2与x 轴交点的横坐标为x 2,并称x 2为r 的2次近似值.一般地,过点(x n ,f (x n ))(n ∈N )作曲线y =f (x )的切线l n +1,记l n +1与x 轴交点的横坐标为x n +1,并称x n +1为r 的n +1次近似值.设f (x )=x 3+x -1(x ≥0)的零点为r ,取x 0=0,则r 的2次近似值为________;设a n =3x 3n +x n 2x 3n +1,n ∈N *,数列{a n }的前n 项积为T n ,若对任意n ∈N *,T n <λ恒成立,则整数λ的最小值为________.答案 34 2解析 f ′(x )=3x 2+1,则f ′(0)=1,f (0)=-1,所以l 1:y -(-1)=x ,即l 1:y =x -1,则x 1=1,则f ′(1)=4,f (1)=1,所以l 2:y -1=4(x -1),即l 2:y =4x -3,则x 2=34,即r 的2次近似值为34.因为f ′(x n )=3x 2n +1,f (x n )=x 3n +x n -1,所以l n +1:y -(x 3n +x n -1)=(3x 2n +1)(x -x n ),所以x n +1=2x 3n +13x 2n +1, 且x 1=1,则x n +1x n =2x 3n +13x 3n +x n =1a n ,即a n =x n x n +1, 所以T n =a 1a 2a 3·…·a n =x 1x 2·x 2x 3·x 3x 4·…·x n x n +1=x 1x n +1=1x n +1. 易知函数f (x )在[0,+∞)上单调递增,f ⎝ ⎛⎭⎪⎫12<0,f (1)>0,所以函数f (x )的零点r ∈⎝ ⎛⎭⎪⎫12,1,即12<x n +1<1,所以1<1x n +1<2,即1<T n <2,所以λ≥2,则整数λ的最小值为2. 13.球面几何是几何学的一个重要分支,在航海、航空、卫星定位等方面都有广泛的应用.如图,A ,B ,C 是球面上不在同一大圆(大圆是过球心的平面与球面的交线)上的三点,经过这三点中任意两点的大圆的劣弧分别为AB ︵,BC ︵,CA ︵,由这三条劣弧组成的图形称为球面△ABC .已知地球半径为R ,北极为点N ,P ,Q 是地球表面上的两点.若P ,Q 在赤道上,且经度分别为东经40°和东经80°,则球面△NPQ 的面积为________;若NP =NQ =PQ =263R ,则球面△NPQ 的面积为________.答案 29πR 2 πR 2解析 如图1,作出球的一条直径NN ′,由于P ,Q 在赤道上,且经度分别为东经40°和东经80°,则球面△NPQ 的面积是月牙形NPN ′Q 面积的一半,且二面角P-ON-Q 为29π,所以月牙形NPN ′Q 的面积是球的表面积的19,从而球面△NPQ 的面积为29πR 2.如图2,作出球的直径NN ′,PP ′,QQ ′,则相应的球面三角形和月牙形的面积的关系为S 球面△NPQ +S 球面△Q ′NP =S 月牙形QNQ ′P ,S 球面△NPQ +S 球面△P ′QN =S 月牙形PNP ′Q ,S 球面△N ′P ′Q ′+S 球面△Q ′NP ′=S 月牙形NQ ′N ′P ′,三式相加得,2S 球面△NPQ +S 球面△N ′P ′Q ′+S 球面△Q ′NP +S 球面△P ′QN +S 球面△Q ′NP ′=S 月牙形QNQ ′P +S 月牙形PNP ′Q +S 月牙形NQ ′N ′P ′,由对称性知,S 球面△NPQ =S 球面△N ′P ′Q ′,所以3S 球面△NPQ +S 球面△Q ′NP +S 球面△P ′QN +S 球面△Q ′NP ′=S 月牙形QNQ ′P +S 月牙形PNP ′Q +S 月牙形NQ ′N ′P ′.因为球面△NPQ ,球面△Q ′NP ,球面△P ′QN ,球面△Q ′NP ′恰好组成一个半球面,所以S球面△NPQ +S 球面△Q ′NP +S 球面△P ′QN +S 球面△Q ′NP ′=2πR 2,所以2S 球面△NPQ +2πR 2=S 月牙形QNQ ′P +S 月牙形PNP ′Q +S 月牙形NQ ′N ′P ′.设球心为O ,二面角N-QO-P ,二面角Q-OP-N ,二面角Q-ON-P 分别为α,β,γ,则S 月牙形QNQ ′P =α2π·4πR 2=2αR 2,S 月牙形PNP ′Q =β2π·4πR 2=2βR 2,由对称性知,二面角Q ′-ON-P ′等于二面角Q-ON-P ,所以S 月牙形NQ ′N ′P ′=2γR 2.下面,我们求α,β,γ,如图3,由于NP =NQ =PQ =263R ,所以三棱锥O-NPQ 为正三棱锥,由对称性知,α=β=γ,作QT ⊥ON ,垂足为T ,连接PT ,则PT ⊥ON ,所以∠QTP =γ.因为NQ =263R ,OQ =ON =R ,所以在△OQN 中,由余弦定理得,cos ∠QON =OQ 2+ON 2-QN 22OQ ·ON =-13,图3所以∠QON 是钝角,所以T 在NO 的延长线上.设OT =x ,则QT 2=OQ 2-OT 2=QN 2-NT 2,即R 2-x 2=⎝ ⎛⎭⎪⎫263R 2-(R +x )2, 解得x =13R ,所以QT =223R ,所以TP =223R ,所以QT =TP =33QP .在△QTP 中,由余弦定理得,cos ∠QTP =-12,所以∠QTP =23π(也可利用等腰三角形进行计算),故α=β=γ=23π,所以S 月牙形QNQ ′P +S 月牙形PNP ′Q +S 月牙形NQ ′N ′P ′=4πR 2,球面△NPQ 的面积为πR 2.14.能说明“存在x 0,使得f (-x 0)=-f (x 0),f (x )不是奇函数”为真命题的一个函数为________.答案 f (x )=⎩⎨⎧x 2,x ≥0,x 2-1,x <0(答案不唯一) 解析 令f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,x 2-1,x <0,则存在x 0=22,使得f ⎝ ⎛⎭⎪⎫-22=-f ⎝ ⎛⎭⎪⎫22,但f (x )不是奇函数(答案不唯一).15.若实数α,β满足方程组⎩⎨⎧1+2cos α=2cos β,3+2sin α=2sin β,则β的一个值是________. 答案 2π3⎝⎛答案不唯一,满足β=2π3+2k π(k ∈Z ) )或β=2k π(k ∈Z )中的一个即可解析 由⎩⎪⎨⎪⎧1+2cos α=2cos β,3+2sin α=2sin β,得⎩⎪⎨⎪⎧2cos α=2cos β-1,2sin α=2sin β-3,所以(2cos β-1)2+(2sin β-3)2=4,则4-4cos β-43sin β+4=4,即3sin β+cos β=1,所以sin ⎝ ⎛⎭⎪⎫β+π6=12, 则β+π6=π6+2k π或β+π6=5π6+2k π(k ∈Z ),所以β=2k π或β=2π3+2k π(k ∈Z ),这里只需写出一个即可.16.函数概念最早出现在格雷戈里的文章《论圆和双曲线的求积》中.他定义函数是这样一个量:它是从一些其他量出发,经过一系列代数运算而得到的,或者经过任何其他可以想象到的运算得到的.若一个量c =a +b ,而c 所对应的函数值f(c)可以通过f(c)=f(a)·f(b)得到,并且对另一个量d,若d>c,则都可以得到f(d)>f(c).根据自己所学的知识写出一个能够反映f(c)与c的函数关系式:________.答案f(c)=2c(答案不唯一)解析若f(x)=2x,则得f(c)=2c,f(a)·f(b)=2a·2b=2a+b.因为c=a+b,所以2c=2a+b,则f(c)=f(a)·f(b)成立①.又由f(x)=2x在R上是增函数,且d>c,则f(d)>f(c)成立②.结合①②得f(c)与c的函数关系式可以为f(c)=2c.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.O是锐角△ABC所在平面内的一定点,动点P满足:,λ∈(0,+∞),则动点
P的轨迹一定通过△ABC的心.
2.对于使﹣x2+2x≤M成立的所有常数M中,我们把M的最小值l做﹣x2+2x的上确界,若a,b∈R+,且a+b=1,则﹣
﹣的上确界为.
3.如图,正方体ABCD﹣A1B1C1D1的棱长为1,点M在AB上,且AM=,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xoy中,动点P的轨迹方程是.
4.设函数f(x)=a1+a2x+a3x2+…+a n x n﹣1,f(0)=,数列{a n}满足f(1)=n2•a n,则数列{a n}的通项=.
5.函数f(x)是奇函数,且在[﹣1,1]是单调增函数,又f(﹣1)=﹣1,则满足f(x)≤t2+2at+1对所有的x∈[﹣1,1]及a∈[﹣1,1]都成立的t的范围是.
6.已知O为坐标原点,,,=(0,a),,记、、
中的最大值为M,当a取遍一切实数时,M的取值范围是.
7.已知三数x+log272,x+log92,x+log32成等比数列,则公比为.
8.(5分)已知5×5数字方阵:中,,则
=.
9.(5分)已知函数f(x)=x2﹣cosx,x∈,则满足f(x0)>f()的x0的取值范围为.
10.(5分)甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有公里.
11.(5分)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣|x ﹣3|.若函数的所有极大值点均落在同一条直线上,则c=.
12.(5分)设F1,F2分别是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点M,使
=0,O为坐标原点,且|MF1|=|MF2|,则该双曲线的离心率为.
13.(5分)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是.
14.(5分)设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平
面内的一点,且满足=•+(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有
下列命题:
①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;
②若QA=QP,则;
③若QA>QP,∠BAC=90°,则;
④若QA>QP,则P在△ABC内部的概率为(S△ABC,S⊙O分别表示△ABC与⊙O的面积).
其中不正确的命题有(写出所有不正确命题的序号).
参考答案
解:∵=
∴=+)
++
﹣=
a=时取等号.﹣的上确界是﹣
]=x,
x
=
,
=××…××,
=××…××,
,
.
解:∵,,),
M
2
2,∴2
∴
∴
,
在
公里
,
时,函数取极大值
≤4
,
共线,
∴
=0
|=
a=
e==
+1
解:∵+
∴
+=
== =
解:∵=•+
∴﹣=•),
∴
|c•cos
的中点,∴
∴,故②。