2015-2016学年福建省厦门市双十中学高一(上)期中数学试卷(解析版)

合集下载

【全国百强校】福建省福建师范大学附属中学2015-2016学年高一上学期期中考试数学试题解析(解析版)

【全国百强校】福建省福建师范大学附属中学2015-2016学年高一上学期期中考试数学试题解析(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.如果{|1}A x x =>-,那么正确的结论是( ).A .0A ⊆B .{0}A ∈C .{0}A ⊆D .A ∅∈【答案】C考点:元素与集合的关系,集合与集合的关系.2.设f (x )=3x + 3x -8,用二分法求方程3x + 3x -8=0在x ∈(1,2)内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间( ).A .(1.25,1.5)B .(1,1.25)C .(1.5,2)D .不能确定【答案】A【解析】试题分析:根据根的存在性定理,又(1.25)0,(1.5)0f f <>,所以方程的根落在区间(1.25,1.5)上,故选A.考点:应用二分法确定方程的根所属的区间,方程的根的存在性定理.3.若函数()y f x =是函数1x y a a a =≠(>0,且)的反函数,且(2)1f =,则()f x =( ). A .x 2log B .x 24 C .x 21log D .22-x 【答案】A【解析】试题分析:根据反函数的性质,可知点(1,2)在函数1x y a a a =≠(>0,且)的图像上,所以有12a =,解得2a =,根据同底的指对函数互为反函数,所以有2()log f x x =,故选A.考点:反函数的概念,求函数解析式.4.若6.03=a ,2.0log 3=b ,36.0=c ,则( ).A .c b a >>B . b c a >>C .a b c >>D .a c b >>【答案】B考点:指数幂和对数值比较大小.5.高为H 、满缸水量为V 的鱼缸的轴截面如图所示,其底部碰了一个小洞,满缸水从洞中流出,若鱼缸水深为h 时水的体积为v ,则函数v =f (h )的大致图象是( ).【答案】B【解析】试题分析:根据题意有函数的自变量为水深h ,函数值为鱼缸中水的体积,所以当0h =时体积0v =,所以函数图像过原点,故排除A 、C ,根据鱼缸的形状,下边较细,中间较粗,上边较细,所以随着水深的增加,体积的变化速度是先慢后快的,故选B.考点:函数图像的选取.6.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ).A .3y x =B .1y x =+C .21y x =-+D . 2x y -=【答案】B【解析】试题分析:因为A 项是奇函数,C 、D 项中函数在(0,)+∞上是减函数,只有B 项是正确的,故选B. 考点:函数的奇偶性和单调性.7.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ). A .()f x ()g x 是偶函数 B . |()f x |()g x 是奇函数C .()f x |()g x |是奇函数D . |()f x ()g x |是奇函数【答案】C考点:函数的奇偶性.8.{1,2,3},{,}A b a b ==,则从A 到B 的映射共有( )个.A .4个B .6个C .8个D . 9 个【答案】C【解析】试题分析:集合A 中有3个元素,集合B 中有2个元素,所以A 中的每个元素在B 中都有2个元素可以选择与其对应,所以一共有328=种不同的对应关系,故选C.考点:映射.9.函数()log |1|a f x x =+(0>a 且1≠a ).当(1,0)x ∈-时,恒有()0f x >,有( ).A .()f x 在(,0)-∞+上是减函数B .()f x 在(,1)-∞-上是减函数C .()f x 在(0,)+∞上是增函数D . ()f x 在(,1)-∞-上是增函数【答案】D【解析】试题分析:根据题意,当(1,0)x ∈-时,1(0,1)x +∈,而此时log 10a x +>,所以有01a <<,从而能够确定函数在(,1)-∞-上是增函数,在区间(1,)-+∞上是减函数,故选D.考点:函数的单调性.10.已知函数x e a x 0f (x)2x 1x 0⎧+≤=⎨->⎩,若函数)(x f 在R 上有两个不同零点,则a 的取值范围是( ).A. ),1[+∞-B.()+∞-,1C.()0,1-D.[)0,1-【答案】D考点:函数的零点,取值范围问题的求解.【易错点睛】该题属于已知函数零点个数求参数的取值范围问题,属于中档题目,在求解的过程中,一定要把握住函数有两个不同零点的条件,而分段函数应该分段来处理,注意当0x >时,根据所给的函数解析式,求得一个零点12,所以等价于0x e a +=有一个非正根,所以等价于函数,(,0]x a e x =-∈-∞的值域,从而求得结果,一定要注意分段函数分段处理和函数的转化问题.11.函数221ln )(x x x f -=的图象大致是( ).A .B .C .D .【答案】B【解析】试题分析:在同一个坐标系中,画出函数ln y x =和212y x =的图像,能够发现ln y x =的图形始终落在12y x =的图像的上方,故有()0f x <恒成立,故选B. 考点:函数的图像的选取.【方法点睛】该题属于选择函数图像的问题,属于较易题目,在选择函数图像的过程中,注意把握选择函数图像的方法,注意观察函数的定义域,对称性,函数值的符号,函数图像所过的特殊点以及函数图像的对称性、单调性和周期性,结合在一起,肯定能够将对应的函数图像选出来.12.已知函数|lg|,010,()16,10.2x xf xx x<≤⎧⎪=⎨-+>⎪⎩若,,a b c互不相等,且()()(),f a f b f c==则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【答案】C考点:数形结合思想.【方法点睛】该题属于函数的典型题,利用数形结合思想,研究一次函数、对数函数的图象,从而利用()()()f a f b f c==,结合函数的图像以及对数的运算性质,得到abc c=,再从图中确定出c的取值范围,求得abc的取值范围.第Ⅱ卷(共90分)二、填空题(每题4分,满分20分,将答案填在答题纸上)13.函数y=的定义域为.【答案】[1,0)(0,)-+∞考点:函数的定义域.14.已知函数()2log ,0,3,0x x x f x x >⎧=⎨≤⎩则18f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦ . 【答案】127【解析】 试题分析:根据题意有211()log 388f ==-,31(3)327f --==,故答案为127. 考点:分段函数求多层函数值.15.已知偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 单调递增. 若(2)0f =,则满足不等 式()0f x ≤的x 的取值范围是 .【答案】[2, 2]-【解析】试题分析:根据偶函数的性质,可知函数在(,0]-∞上单调减,结合(2)0f =可知,()0f x ≤等价于2x ≤,从而求得x 的取值范围是[2, 2]-.考点:偶函数的性质,不等式的解集.16.函数f (x )=e x 2+2x 的增区间为_______ .【答案】[1,)-+∞【解析】试题分析:222(1)1x x x e e ++-=,根据复合函数的单调性可以确定函数的增区间为函数2(1)1y x =+-的增区间,即[1,)-+∞.考点:复合函数的单调区间.【方法点睛】该题考查的是复合函数的单调区间的求解,属于中档题目,在求解的过程中,注意到复合函数单调性法则,同增异减,因为函数x y e =的是增函数,所以函数22()x x f x e+=的增区间转化为求二次函数2(1)1y x =+-的增区间即可.17.设函数x x f 2)(=,对任意的 x 1、x 2(x 1≠x 2),考虑如下结论:①f (x 1·x 2) = f (x 1) + f (x 2); ②f (x 1 + x 2) = f (x 1)·f (x 2); ③f (-x 1) = 1f (x 1) ;④ f (x 1) -1x 1 < 0 (x 1 ≠ 0); ⑤)2(2)()(2121x x f x f x f +>+ 则上述结论中正确的是 .(只填入正确结论对应的序号)【答案】②③⑤考点:函数的性质.【思路点睛】该题考查的是函数的综合性质,属于较难题目,因为在选的过程中,少一个也不行,这就要求学生对函数的性质掌握的非常熟练,需要明确指数式的运算法则,可以确定②③是正确的,根据自变量的正负确定函数值与1的大小,从而确定④是错误的,结合函数图像的凹凸性,可以快速判断⑤是正确的.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分12分)已知集合}51|{≥-≤=x x x A 或,集合{}22|+≤≤=a x a x B .(1)若1-=a ,求B A 和B A ;(2)若B B A = ,求实数a 的取值范围.【答案】(1)}12|{-≤≤-=x x B A ,}51|{≥≤=x x x B A 或 ;(2)2>a 或3-≤a .【解析】考点:集合的运算及性质.19.(本小题满分12分)求值:(1)()04130.753350.064[(2)]169---⎛⎫--+-+ ⎪⎝⎭; (2)设3436x y ==,求21x y+的值. 【答案】(1)2716; (2)1.【解析】 试题分析:第一小题利用乘方运算的性质,化简每个式子,求和即可得结果,第二小题利用3436x y ==,将,x y 用对数式表示,利用对数式的运算性质,将式子转化为以36为底的对数,利用对数的运算性质求得结果.试题解析:(1)原式1430.41(2)2---=-+-+101114168=-++2716=;……6分 (2)由3436x y ==得36log ;36log 43==y x , ……8分 从而21x y +136log 4log 9log 4log 3log 236log 136log 2363636363643==+=+=+= ……12分考点:指数式的运算性质,利用对数的运算性质求值.20.(本小题满分12分).已知()f x 为定义在[1,1]- 上的奇函数,当时,函数解析式为11()42x x f x =-. (Ⅰ)求()f x 在[0,1]上的解析式;(Ⅱ)求()f x 在[0,1]上的最值.【答案】(Ⅰ)()24x x f x =-;(Ⅱ)最大与最小值分别为0,2-.考点:利用奇函数的定义求函数的解析式,求函数在给定区间上的最值.21.(本小题满分12分).如图,有一块矩形空地ABCD ,要在这块空地上开辟一个内接四边形EFGH 为绿地,使其四个顶点分别落在矩形的四条边上. 已知AB =a (a >2),BC =2,且AE =AH =CF =CG ,设AE =x ,绿地EFGH 面积为y .(1)写出y 关于x 的函数解析式,并求出它的定义域;(2)当AE 为何值时,绿地面积y 最大?并求出最大值。

15-16高一上数学期中考试卷

15-16高一上数学期中考试卷

厦门市第二外国语学校15-16高一上数学期中考试卷15.11.13一.选择题:(本大题12题,每小题5分,共60分,只有一个正确答案。

) 1.设集合A ={3,5,6,8},集合B ={4,5, 7,8},则A ∩B 等于…( )A . {3,4,5,6,7,8}B .{5,8}C .{4,7}D .{3,6} 2.三个变量y 1,y 2,y 3,随着变量x 的变化情况如下表:2 189 则关于x 分别呈对数函数、指数函数、幂函数变化的变量依次为…( ) A .y 1,y 2,y3 B .y 2,y 1,y 3 C .y 3,y 2,y 1D .y 1,y 3,y 23.函数2log (1)y x =-+ )A .{}|x x ≥0B .{}|1x x ≥C . {}|01x x ≤≤D .{}|1x x >4.函数xx f +=11)(的图像大致是…( )5.函数()1,x f x x ⎧=⎨⎩为有理数,为无理数,0, 则()()2ff 等于…( )A .0B .1C .2D .21+6.三个数πln ,3log ,2.02-e 的大小关系为…( )A .πln 3log 22.0<<-eB.22.0ln 3log -<<e π C.πln 3log 2.02<<-e D.22.0ln 3log -<<e π7.函数()3log 82f x x x =-+的零点一定位于区间…( ).A .(1,2)B .(2,3)C .(3,4)D .(5,6)8.()log a f x x = (01)a <<在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为…( ).A .42 B . 22 C . 41 D . 219. 已知函数f (x )=⎩⎨⎧log 2x ,(x >0)2x ,(x ≤0)若f (a )=12,则实数a =( )A .-1B .-1或 2 C. 2D .1或- 210.给出下列四个函数:①()1f x x =+;②()1f x x=;③()22f x x =;④()()2lg 1x f x x =+-.其中在()0,+∞上是增函数的有……( ) A. 0个 B. 1个 C. 2个 D. 3个11.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为…( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G ⎝ ⎛⎭⎪⎫2,12中,可以是“好点”的个数为…( )A . 0个B .1个C . 2个D .3个 二、填空题:(本大题4题,每小题5分,共20分)13.用二分法求方程x 3—6x 2+4=0的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.14.函数f (x )=a x -2+1的图象一定过定点P ,则P 点的坐标是________.15.已知29x =,342=y ,则2x y +的值为 .16.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要清洗的次数是________(lg2≈0.3010).三、解答题(本大题共6小题,共70分.应写出文字说明、证明过程或演算步骤)17.(本题满分10分)已知全集R U =,集合{}14>-<=x x x A 或,{}213≤-≤-=x x B , (1)求B A ; )()(B C A C U U ;(2)若集合{}1212+≤≤-=k x k x M 是集合A 的子集,求实数k 的取值范围.18.(本题满分10分)已知函数0),1(log )1(log )(>--+=a x x x f a a 且1≠a .(1)求)(x f 的定义域;(2)判断)(x f 的奇偶性并予以证明; (3)若1>a 时,求使0)(>x f 的x 的解集.19. (本题满分10分)已知2()1xf x x=+. (1))分别求()⎪⎭⎫⎝⎛+212f f ,()⎪⎭⎫⎝⎛+313f f 的值; (2)试猜测:1()()f x f x+的值;并加以验证。

【百强校】2015-2016学年福建省厦门一中高一上期中数学试卷(带解析)

【百强校】2015-2016学年福建省厦门一中高一上期中数学试卷(带解析)

绝密★启用前【百强校】2015-2016学年福建省厦门一中高一上期中数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:150分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b=a+c ,则角B 的取值范围是( )A .B .C .D .2、已知x,y 满足约束条件,若z=ax+y 的最大值为4,则a 的值为( )A .3B .2C .-2D .-33、方程sin 2x +sin x -1-m=0在实数集上有解,则实数m 的范围为( ) A .B .C .D .4、已知且sin,sin 2,sin 4成等比数列,则的值为( )A .B .C .D .5、数列{a n }中,a n = ,则该数列最大项是( ) A .B .C .D .6、已知数列满足,则前200项的和为( )A .0B .C .D .7、在△ABC 中,角A=60°,AB=2,且△ABC 的面积S △ABC =,则BC 的长为( )A .B .3C .D .78、设0<a <b ,则下列不等式中正确的是( ) A .a <b <<B .a <<<bC .a <<b <D .<a <<b9、函数f (x )=2sin (ωx +φ)对任意x 都有f=f,则f等于( )A .2或0B .-2或2C .0D .-2或010、在等差数列{a n }中,若a 1,a 4是方程x 2-x-6=0的两根,则a 2+a 3的值为( ) A .6 B .-6 C .-1 D .111、与两数的等比中项是( )A .2B .-2C .±2D .以上均不是12、汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油第II卷(非选择题)二、填空题(题型注释)13、已知是方程的两根,且,则的范围是________.14、等差数列{a n},{b n}的前n项和分别为S n,T n,若,则=________.15、等比数列{a n}的前n项和为S n,若,则的值为________.16、在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,则边长c的取值范围是________.三、解答题(题型注释)17、设数列的前n项和为.已知.(I)求的通项公式;(II)若数列满足,的前n项和.①求;②若对于恒成立,求与的范围.18、已知函数.(1)若当时在上恒成立,求范围;(2)解不等式.19、如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C .景区管委会又开发了风景优美的景点D .经测量景点D 位于景点A 的北偏东30°方向上8 km 处,位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知AB =5 km.(1)景区管委会准备由景点D 向景点B 修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(2)求景点C 和景点D 之间的距离.参考数据:sin75°=20、要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需A 、B 、C 三种规格成品,且使所用的钢板的张数最少?21、已知等差数列{a n }的前n 项和为S n ,S 5=35,a 5和a 7的等差中项为13. (1)求a n 及S n ; (2)令b n =(n ∈N *),求数列{b n }的前n 项和T n .22、函数.(1)求函数f (x )的最小正周期;(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且,求△ABC的面积的最大值.参考答案1、D2、B3、B4、C5、C6、B7、A8、B9、B10、D11、C12、D13、14、15、316、(1,3)17、(I)(II)①;②.18、(1);(2)当时得到;当时得到或;当时得到;当时得到或;当时,化为;当时得到;当时得到当时得到.19、(1)公路长为千米;(2)CD=km.20、第一种钢板4张,第二种钢板8张或第一种3张,第二种9张.21、(1),;(2).22、(1)最小正周期为;(2)△ABC的面积的最大值为.【解析】1、试题分析:,即,,则B的范围是.考点:正余弦定理解三角形,基本不等式.【方法点睛】在利用正余弦定理解三角形时,知道三边之间的关系,一般情况下会选择余弦定理,此题求范围问题最容易与基本不等式结合,因为式子中出现平方和即.在由三角函数值的取值范围求角的取值范围时要注意画图象解决,并注意在三角形中角的范围是.2、试题分析:作出不等式组对应的平面区域,如图(阴影部分),则,,若过点A时取得最大值4,则.此时目标函数为,即,平移直线,当直线过点A时截距最大,此时z的最大值为4,符合题意.若过点B时取到最大值4,则,此时目标函数为,即,平移直线,当直线过点A时截距最大,此时z的最大值为6,不符合题意..考点:简单的线性规划.【名师点睛】本题主要考察线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.3、试题分析:,,令,则,,由二次函数的知识知:二次函数的对称轴为,再由二次函数的单调性可得当时,取到最小值,当时取到最大值1.所以结果是B选项.考点:正弦函数的值域,二次函数在闭区间上的值域.4、试题分析:由题意可得,且不为0,则,化简得,,即,解得,因为所以.考点:三角函数的恒等变换.5、试题分析:,当时,,单调递减;当时,,单调递减,所以数列的最大项为第六项.考点:数列的单调性.6、试题分析:由数列递推公式可得,所以数列是以3为周期的数列,前200项有66个周期多两个,则.考点:数列求和.7、试题分析:,则,再由余弦定理得,所以.考点:三角形面积公式;正余弦定理解三角形.【名师点睛】在解决三角形的问题中,(1)面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来;(2)在三角形中,两边和一角知道,该三角形是确定的,其解是唯一的,利用余弦定理求第三边.(3)若是已知两边和一边的对角,该三角形具有不唯一性,通常根据大边对大角进行判断.(4)在三角形中,注意这个隐含条件的使用,在求范围时,注意根据题中条件限制角的范围.8、试题分析:;由基本不等式得,因为,所以等号不成立,所以;,综上.考点:不等式的性质.9、试题分析:说明函数是以为对称轴,而正弦型函数在对称轴的地方取到最大值或最小值,所以.考点:三角函数的性质.10、试题分析:由韦达定理得,再由等差数列下标和的性质可知.考点:等差数列下标和的性质.11、试题分析:等比中项有两个,,与两数的等比中项是.考点:等比中项的定义.12、试题分析:A选项:从图中可以看出乙车的行使速度大于40千米每小时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程大于5千米,所以错误;B选项以相同的速度行驶相同的路程,甲车消耗的汽油最小,B错;C选项:甲车以80千米每小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,C错误;D选项,因为在速度低于80千米每小时,丙的燃油效率高于乙的,所以D正确.考点:函数的图象和图象变化.13、试题分析:设,因为,则,作出不等式组的平面区域,.的几何意义是与连线斜率的取值范围,由图像可知OA的斜率最大,最大斜率为0,OB的斜率最小,最小斜率为,所以,则,令,构造函数,,函数在单调递减,在单调递增,所以当时函数取最小值,最小值为2,当时,函数取最大值,最大值为,所以最后结果是.考点:线性规划.【方法点睛】要充分理解目标函数的几何意义,诸如直线的截距、两点间的距离(或平方)、点到直线的距离、过已知两点的直线斜率等.线性规划问题求解步骤:(1)确定目标函数;(2)作可行域;(3)作基准线(z=0时的直线);(4)平移找最优解;(5)求最值.此题的关键是看清目标函数的几何意义,并结合函数有关知识求最值.14、试题分析:,.考点:等差数列前n 项和公式及等差数列的下标和性质.方法点睛:(1)此题主要考察等差数列前n项和的公式及等差数列下标和的性质,熟练掌握公式是解决此题的基础;(2)解决此题的关键地方在于如何把数列的和转化为项和项之间的关系,可以看一下上边的转化过程,记忆此种题型的解题方法.15、试题分析:若数列是等比数列,则它的前n项和公式为,其中,此题,则.考点:等比数列前n项和.16、试题分析:由余弦定理得,,,则,.考点:正余弦定理解三角形,三角函数的值域.17、试题分析:(1)给出与的关系,求,常用思路:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与的关系,再求,需注意当时的讨论;(2)题目中当时,是等差乘以等比的形式,用错位相减来解决,运算过程一定要注意,这是易错点;(3)最后一问主要是恒成立问题,把它转化为求最值问题,即求的最值,可通过函数单调性来求.试题解析:解:(I)因为所以,,故当时,此时,,即,所以,(Ⅱ)因为,所以当时,所以当时,所以两式相减得所以②由知道递增,而当若对于恒成立,有考点:数列前n项和求数列的通项公式,错位相减求和,恒成立问题.【方法点睛】(1)一般地,如果数列是等差数列,是等比数列,求数列的前项的和时,可采用错位相减法求和,一般是和式两边同乘以等比数列的公比,然后做差求解.(2)恒成立问题一般需转化为最值,利用单调性证明在闭区间的单调性.而数列是一种特殊的函数,所以数列问题可以通过函数知识来解决.18、试题分析:(1)恒成立问题一般需转化为最值,利用单调性证明在闭区间的单调性.含参数的一元二次不等式在某区间内恒成立的问题通常有两种处理方法:一是利用二次函数在区间上的最值来处理;二是分离参数,再去求函数的最值来处理,一般后者比较简单.(2)注意讨论二次项系数是否为0,解含参的一元二次不等式需要从两根的大小以及开口方向以及判别式的正负进行判断.对参数进行的讨论是根据解题的需要自然引出的,并非一开始就对参数加以分类讨论.当二次项系数不含参数且能进行因式分解时,其解法较容易,只讨论根的大小.试题解析:解:(1)只需解得(2)当时得到当时,化为当时得到或当时得到当时得到或当时,化为当时得到当时得到当时得到考点:恒成立问题,含参的一元二次不等式的解法.【方法点睛】解含参一元二次不等式,常涉及对参数的分类讨论以确定不等式的解,这是解含参一元二次不等式问题的一个难点.解含参一元二次不等式时对参数的分类主要依据有三个因素:①比较两根大小;②判别式的符号;③二次项系数的符号.对参数进行的讨论是根据解题的需要而自然引出的,并非一开始就对参数加以分类讨论.当二次项系数不含参数且能进行因式分解时,其解法较容易,只讨论根的大小.解题关键是熟练掌握二次函数的图象特征,做到眼中有题,心中有图.19、试题分析:(1)此题为解三角形的应用问题,一般情况下要理解方向角、方位角、坡角等基本概念,并会通过已知条件正确画出图形,转化为解三角形问题;(2)此题第一问主要考察两边及一边对角的基本题型,这种情况下应注意解的取舍;(3)第二问是两角一边问题,应用正弦定理来解决;(4)计算过程需要注意,化简过程做到准确无误.试题解析:解:(1)在△ABD中,∠ADB=30°,AD=8 km,AB=5 km,设DB=x km,则由余弦定理得52=82+x2-2×8×x·cos30°,即x2-8x+39=0,解得x=4±3.∵4+3>8,舍去,∴x=4-3,∴这条公路长为(4-3)km.(2)在△ADB中,=,∴sin∠DAB===,∴cos∠DAB=.在△ACD中,∠ADC=30°+75°=105°,∴sin∠ACD=sin[180°-(∠DAC+105°)]=sin(∠DAC+105°)=sin∠DACcos105°+cos∠DACsin105°=·+·=.∴在△ACD中,=,∴=,∴CD=km.考点:解三角形的应用.20、试题分析:本题主要考察线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.此题需特别注意第一种和第二种钢板均为整数,所以要找到最优整数解,一般的方法就是画网格.试题解析:解:设需截第一种钢板x张,第二种钢板y张,可得且x、y 都是整数,求使z=x+y取得最小值时的x、y.首先作出可行域,其次平移直线z=x+y,可知直线经过点(),此时x=,y=.z=x+y有最小值11,但(,)不是最优解.首先在可行域内打网格,其次推出点A(,)附近所有整点,接着平移直线l:x+y=0,会发现当平移至B(4,8)、C(3,9)时直线与原点的距离最近,即z的最小值为12.考点:线性规划的应用.21、试题分析:(1)等差数列基本量的求解是等差数列的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用;(2)解题时要善于类比要能正确区分等差、等比的性质,不要把两者的性质搞混了.(3)观测数列的特点形式,看使用什么方法求和.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源和目的.试题解析:解:(1)设等差数列{a n}的公差为d,因为S5=5a3=35,a5+a7=26,所以解得a1=3,d=2,所以a n=3+2(n-1)=2n+1,S n=3n+×2=n2+2n.(2)由(1)知a n=2n+1,所以b n===-,所以T n=++…+=1-=.考点:等差数列求通项公式及前n项和,裂项相消求数列的和.22、试题分析:(1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x ﹣)+,利用周期公式即可求得最小正周期.(2)由三角形面积公式可得,由,结合范围A∈(0,π),可得,由余弦定理可得:b2+c2=4+bc,利用基本不等式可得bc≤4,即可求得△ABC的面积的最大值.解:(1)∵,∴最小正周期T==π.(2),由=sin(2A﹣)+,可得:sin(2A﹣)=1,由A∈(0,π),2A﹣∈(﹣,),即可得:2A﹣=,得到,所以由余弦定理可得:cosA=,解得:c2+b2﹣4=bc,所以,b2+c2=4+bc,由于b2+c2≥2bc,所以4+bc≥2bc解得bc≤4,b=c=2取等号,所以△ABC的面积的最大值为.考点:余弦定理;两角和与差的正弦函数;三角函数的周期性及其求法.。

厦门双十中学2015-2016学年新高一入学考试数学试题参考答案及评分标准

厦门双十中学2015-2016学年新高一入学考试数学试题参考答案及评分标准

厦门双十中学2015级高一入学考试 数学试题参考答案及评分标准()一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 67 8 答案 B C D C A B D D 二、填空题:本大题共8小题,每小题5分,共40分.题号 9 10 11 12 1314 1516 答案348 21 6))(c b a b a +++(467①④三、解答题:本大题共6小题,共70分. 17.(本小题满分10分) 【解析】(1)小晗任意按下一个开关,正好楼梯灯亮的概率是:13··········································· 3分 (2)画树状图得:··········································· 7分∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:62=31. ····················································· 10分18.(本小题满分10分) 【解析】(1)∵原方程有两个不相等的实数根,∴B 2﹣4AC=4-4(k-1)>0,解得k <2. ·············· 3分 (2)当x=3时,得k=-2,解x 2-2x-3=0得x=3或-1,所以方程的另一个根为x=-1,k=-2. ·· 6分 (3)根据勾股定理得:A 2+B 2=C 2=3;因为两条直角边A 和B 恰好是这个方程的两个根, 则A+B=2,因为(A+B )2-2AB=A 2+B 2=3,所以2AB=1,△ABC 的面积为14. ··············· 10分 19.(本小题满分10分) 【解析】(1)时针:y 1=60+12x . ·················································································· 1分 分针:y 2=6x . ······························································································ 2分60+12x =6x ,解得x =12011. ·········································································· 4分 所以在2∶00~2∶15之间,时针与分针重合的时刻是2∶101011. ····························· 5分(注:写2∶12011也可.)(2)方法不惟一.评分要点:正确建立函数关系. ····························································································· 8分求出时针与分针垂直的时刻是7∶54611. ································································10分(注:没有建立函数关系而直接利用方程求出时针与分针垂直的时刻是7∶54611只得2分.)20.(本小题满分10分)【解析】(1)4 5 6;··················································································· 3分(2)不对. ····························································································· 4分∵OP?=?2,PQ?=?3,OQ?=?4,且42≠32?+?22,即OQ2≠PQ2?+?OP2,∴OP与PQ不垂直.∴PQ与⊙O不相切. ············································· 5分(3)①3; ····························································································· 6分②由①知,在⊙O上存在点P,P'到l的距离为3,此时,OP将不能再向下转动,如图3.OP在绕点O左右摆动过程中所扫过的最大扇形就是P'OP.连结P'P,交OH于点D.∵PQ,P'Q'均与l垂直,且PQ?=P'3Q'=,∴四边形PQ Q'P'是矩形.∴OH⊥P P',PD =P'D.由OP?=?2,OD?=?OH-HD?=?1,得∠DOP?=?60°.∴∠PO P'?=?120°.∴所求最大圆心角的度数为120°.························10分21.(本小题满分15分)【解析】(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP ,∠BOC=∠BOG=90°。

2015-2016第二学期厦门双十中学年期中考试卷

2015-2016第二学期厦门双十中学年期中考试卷

2015-2016第二学期厦门双十中学年期中考试卷 数 学 (试卷总分:150 分 答卷时间:120 分钟) 一、选择题(本大题共 10 小题,每小题 4 分,共 40 分,每小题0只有一个选项正确) 1. 化简8的结果是--------------------------------------------------------------------------------------( ) A. 2 B. 4 C. 22 D.±22 2. 在 Rt △ABC 中,∠C=90°,设BC=a 、CA=b 、AB=c 以下式子成立的是---------------( ) A. 2 B. 4 C. 22 D.±22 3. 若式子1-x 有意义,则 x 的取值范围为------------------------------------------------------( )A. x >1 B. x <1 C.x≥1 D.x≤1 4. 下列计算正确的是-------------------------------------------------------------------------------------( )A.3+3=6 B.3 -3 =0 C.3·3=9 D.2)3(-= - 3 5. 下列长度的三条线段能组成直角三角形的是--------------------------------------------------( ) A. 1、1、2 B. 2、3、4, C. 4、 5、6 D. 6、8、11 6. 如图,在 Rt △OAB 中,OA=2,AB=1,OA 在数轴上,点 O 与原点重合,以原点为圆心,线段 OB 长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是-----------------------------------------------------------------------------------------------( ) A.2 B.5 C. 3 D. 25 7. 两条对角线相等且互相垂直平分的四边形是----------------------------------------------------( ) A. 矩形 B. 菱形 C. 正方形 D. 平行四边形 8. 如图,在菱形 ABCD 中,AB=4,∠ABC=60°,E 为 AD 中点,P 为对角线 BD 上一动点,连接 PA 和 PE ,则 PA+PE 的最小值是( ) A. 2 B. 4 C.3 D. 23 9. 一天,小军和爸爸去登山,已知山脚到山顶的路程为 100 米,小君先走了一段路程,爸爸才开始出发,下图中两条线段分别表示小军和爸爸离开山脚登山的路程 S (米)与登山所用的时间 t (分)的关系(从爸爸开始登山时计时),则下列说法错误的是------------------------( ) A. 爸爸登山时,小军已走了50米 B. 爸爸走了5分钟,小军仍在爸爸的前面C. 小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快……………密……………封……………线……………内……………不……………准……………答……………考室N O ._____ 考号N O .______班级______姓名__________ 座号_____ ①考生要写清姓名、班级及座号 ②答题时,字迹要清楚,卷面要整 ③考生不准作弊,否则作零分处理注意事项10. 如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 中点,点E、F 分别在AC、BC 边上运动(点E 不与点A、C 重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,有以下结:①△DEF 是等腰三角形;②四边形CEDF 不可能是正方形;③四边形CEDF 的面积随点E位置改变而发生变化;④点C到线段EF的最大距离为2;⑤AE2+BF2=EF2;⑥EF=2DF.其中结论正确的是---------------------------------------------------()A. 3个B. 4个C. 5个D.6 个二、填空题(本大题有 6 小题,每小题 4 分,共24 分)11.6÷2=;12.三个正方形的面积如图所示,则正方形A 的面积为:;13. 汽车行驶前,油箱中有油55 升,已知每千米汽车耗油0.1 升,油箱中的余油量Q(升)与它行驶的距离s(千米)之间的函数关系式为.14. 如图,☑ABCD 的对角线AC,BD 相交于点O,且AB=5,AO=4,BO=3,则□ABCD 的面积= .15. 根据图中的数据及规律,可以求出AB8 = 。

厦门双十中学2016-2017学年(上)高一期中考试数学试题(有答案)

厦门双十中学2016-2017学年(上)高一期中考试数学试题(有答案)

厦门双十中学2016-2017学年(上)期中考试(试题) 高 一 数 学第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置.1. 设全集U 是实数集R ,{}{}1,02M x x N x x =<=<<都是U 的子集,则图中阴影部分所表示的集合是A .{}12x x ≤<B .{}01x x <<C .{}0x x ≤D .{}2x x <2. 下列函数中与x y =相等的是A .2)(x y =B .2x y =C .x y 2log 2=D .x y 2log 2=3. 若函数()(2)()xf x x x a =-+是奇函数,则a =A . 2-B .2C .12-D .124. 给定映射f :()(),2,2x y x y x y →+-,在映射f 下,(3,1)-的原像为A .(1,3)-B .(5,5)C .(3,1)-D .(1,1)5. 已知函数2,0,()(1),0.x x f x f x x ⎧>=⎨-+≤⎩则(3)f -的值为A .1B .1-C .0D .9-6. 已知,k b ∈R ,则一次函数y kx b =+与反比例函数kby x=在同一坐标系中的图象可以是7. 已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数,设()4log 7a f =,)3(log 2f b =,()0.60.2c f =,则,,a b c 的大小关系是A .b a c <<B .c b a <<C .b c a <<D .c a b <<8. 已知函数32()21f x x x x =+--,可用二分法计算其一个正数零点的近似值(精确度0.1)为参考数据:A .1.5 D .1.18759. 函数(13)2,1(),1xa x x f x a x -+≤⎧=⎨>⎩是R 上的减函数,则实数a 的取值范围为A .1(,1)3B .3[,1)4C .13(,)34D .13(,]3410.当实数k 变化时,对于方程||2||(21)(21)0x x k ----=的解的判断不正确...的是 A .14k <-时,无解 B .14k =-时,有2个解C .104k -<≤时,有4个解 D .0k >时,有2个解第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在答题卷的相应位置.11.函数()1f x x =-的定义域...为 . 12.已知3()2f x ax bx =+-,若(2015)7f =,则(2015)f -的值为 .13.已知全集U =R ,集合2{|0},{|320}A x x a B x x x =-≤=-+≤,且U A B = ðR ,则实数a的取值范围是 .14.已知函数2()f x x ax b =++的零点是3-和1,则函数2()log ()g x ax b =+的零点是 .15.若函数()6,2,2log ,2,a x x f xx x -+≤⎧=⎨+>⎩(0a >,且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是 .16.方程210x -=的解可视为函数y x =的图象与函数1y x=的图象交点的横坐标. 若方程490x ax +-=的各个实根12,,,(4)k x x x k ≤ 所对应的点9(,)(1,2,,)i ix i k x = 均在直线y x =的同侧,则实数a 的取值范围是 ▲ .三、解答题:本大题共6小题,每小题分数见旁注,共76分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答.17.(本小题满分12分)(Ⅰ)求值:2lg5lg400⋅+;(Ⅱ)已知2log 3x =,求8822x xx x--++的值.18.(本小题满分12分)已知集合11{|132},{|24}4x A x a x a B x -=-<<+=<<. (Ⅰ)若1a =,求A B ;(Ⅱ)若A B =∅ ,求实数a 的取值范围. 19.(本小题满分12分)设函数1331()log (9)log ,2739x f x x x =⋅≤≤.(Ⅰ)设3log t x =,用t 表示()f x ,并指出t 的取值范围; (Ⅱ)求()f x 的最值,并指出取得最值时对应的x 的值.20.(本小题满分13分)小张周末自己驾车旅游,早上8点从家出发,驾车3 h 后到达景区停车场,期间由于交通等原因,小张的车所走的路程s (单位:km )与离家的时间t (单位:h )的函数关系式为s(t)=-4t(t -13).由于景区内不能驾车,小张把车停在景区停车场.在景区玩到17点,小张开车从停车场以60 km/h 的速度沿原路返回.(Ⅰ)求这天小张的车所走的路程s (单位:km )与离家时间t (单位:h )的函数解析式; (Ⅱ)在距离小张家48 km 处有一加油站,求这天小张的车途经该加油站的时间.21.(本小题满分13分)已知函数2()1px q f x x +=+(,p q 为常数)是定义在(1,1)-上的奇函数,且1(1)2f =. (Ⅰ)求函数()f x 的解析式;(Ⅱ)判断并用定义证明()f x 在(1,1)-上的单调性; (Ⅲ)解关于x 的不等式(21)()0f x f x -+<.22.(本小题满分14分)已知函数2()2f x x x x a =+-,其中a ∈R .(Ⅰ)当1a =-时,在所给坐标系中作出()f x 的图象;(Ⅱ)对任意[1,2]x ∈,函数()f x 的图象恒在函数()14g x x =-+图象的下方,求实数a的取值范围;(Ⅲ)若关于x 的方程()10f x +=在区间(1,0)-内有两个相异根,求实数a 的取值范围.厦门双十中学2016-2017学年(上)期中考试(答案) 高 一 数 学一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共6小题,每小题4分,共24分.11.【答案】21x x x ≤≠且 【解析】试题分析:根据题意,要使得函数()1f x x =-有意义,则要满足102,1420xx x x -≠⎧∴≤≠⎨-≥⎩且,故可知答案为{}21x x x ≤≠且. 考点:函数定义域点评:解决的关键是根据分母不为零,偶次根式下为非负数,属于基础题。

福建省厦门市双十中学高三数学上学期期中试卷 理(含解析)

福建省厦门市双十中学高三数学上学期期中试卷 理(含解析)

2015-2016学年福建省厦门市双十中学高三(上)期中数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},则M∩N等于()A.{(0,1)} B.(0,1)C.[﹣1,+∞)D.[1,+∞)2.命题“若¬p则q”是真命题,则p是¬q的()条件.A.充分 B.充分非必要C.必要 D.必要非充分3.已知,的夹角是120°,且=(﹣2,﹣4),||=,则在上的投影等于()A.﹣B.C.2 D.4.已知p:存在x∈R,mx2+1≤0,q:任意x∈R,x2+mx+1>0,若p且q为真命题,则实数m的取值范围是()A.m<2 B.﹣2<m<2 C.0<m<2 D.﹣2<m<05.在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B 的值为()A.B.或C.D.或6.已知点C在以O为圆心的圆弧AB上运动(含端点)., =x+2y(x,y∈R),则的取值范围是()A.B.C.D.7.若函数f(x)=sin(x+φ)﹣cos(x+φ)(0<φ<π)为奇函数,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变;再向右平移个单位得到函数g(x),则g(x)的解析式可以是()A.B.C.D.8.已知如图(1)的图象对应的函数为y=f(x),给出①y=f(|x|);②y=|f(x)|﹣a;③y=﹣f(|x|);④y=f(﹣|x|).⑤y=|f(|x|)|﹣a,则如图(2)的图象对应的函数可能是五个式子中的()A.④B.②④ C.①② D.②③④⑤9.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,,若a=f(),,c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<c<b B.b<c<a C.a<b<c D.c<a<b10.若函数f(x)(x∈R)关于对称,且则下列结论:(1)f(x)的最小正周期是3,(2)f(x)是偶函数,(3)f(x)关于对称,(4)f(x)关于对称,正确的有()A.1个B.2个C.3个D.4个11.如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A. B. C. D.12.设函数f(x)=,若f(x)恰有2个零点,则实数a 的取值范围是()A.a≥2 B.≤a<1 C.<a<1 D.a≥2或≤a<1二、填空题:(本大题共4小题,每小题5分,共20分).13.若tan(θ+)=,则sin2θ=.14.设等差数列{a n}前n项和S n,a3+a8+a13=C,a4+a14=2C,其中C<0,则S n在n等于时取到最大值.15.已知f(x)=x2﹣4x+3在[0,a]的值域是[﹣1,3].实数a的取值范围记为集合A,g (x)=cos2x+sinx.记g(x)的最大值为g(a).若g(a)≥b,对任意实数a∈A恒成立,则实数b的取值范围是.16.若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣1对称,则f(x)的最大值为.三、解答题:(本大题共7小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.18题两题选出一题作答,两题都答只给一题的分数.17.已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).(1)当a=0时,求直线l和圆C交点的极坐标(ρ,θ)(其中ρ>0,0<θ<2π);(2)若直线l与圆C交于P、Q两点,P、Q间的劣弧长是,求直线l的极坐标方程.18.(2015秋•厦门校级期中)(1)若不等式|2x﹣1|+|x+2|≥m2+m+2对任意实数x恒成立,求实数m的取值范围;(2)设a,b,c大于0,且1≤++≤(|2x﹣1|+|x+2|)对任意实数x恒成立,求证:a+2b+3c≥9.19.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<)的图象经过点(0,),且相邻两条对称轴间的距离为.(Ⅰ)求函数f(x)的解析式及其单调递增区间;(Ⅱ)在△ABC中,a,b,c分别是角A、B、C的对边,若f()﹣cosA=,且bc=1,b+c=3,求a的值.20.设数列{a n}的前n项和为S n,满足2S n=a n+1﹣2n+1+1,(n∈N*),且a1=1.(1)设c n=(n∈N+),求数列{a n}的通项公式;(2)设数列{b n}满足b n=n(a n+2n),求数列{b n}的前n项和T n.21.已知⊥,|AB1|=3,|AB2|=4, =+.(1)若B1,P,B2三点共线,求||的最小值,并用,表示;(2)设Q是AB1B2的内心,若||≤2,求•的取值范围.22.某山体外围有两条相互垂直的直线型公路,为开发山体资源,修建一条连接两条公路沿山区边界的直线型公路.记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为L.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和80千米,点N到l1的距离为100千米,以l1,l2所在的直线分别为x、y轴建立平面直角坐标系xOy,假设曲线C符合函数y=模型(其中a为常数).(1)设公路L与曲线C相切于P点,P的横坐标为t.①请写出公路L长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路L的长度最短?求出最短长度.(2)在公路长度最短的同时要求美观,需在公路L与山体之间修建绿化带(如图阴影部分),求绿化带的面积.23.设函数f(x)=e mx﹣mx2.(1)当m=2时,求曲线y=f(x)在点(0,f(0))处的切线L1的方程;(2)当m>0时,要使f(x)≥1对一切实数x≥0恒成立,求实数m的取值范围;(3)求证:.2015-2016学年福建省厦门市双十中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},则M∩N等于()A.{(0,1)} B.(0,1)C.[﹣1,+∞)D.[1,+∞)【考点】交集及其运算.【专题】计算题;集合.【分析】求出M中y的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.【解答】解:由M中y=x2+1≥1,即M=[1,+∞),由N中y=ln(x+1)+1,即N=(﹣∞,+∞),则M∩N=[1,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题“若¬p则q”是真命题,则p是¬q的()条件.A.充分 B.充分非必要C.必要 D.必要非充分【考点】必要条件、充分条件与充要条件的判断.【专题】对应思想;综合法;简易逻辑.【分析】原命题和其逆否命题同真假,故只需找出命题“若¬p,则q”的逆否命题即可.【解答】解:四种命题中原命题和其逆否命题同真假,而“若¬p,则q”的逆否命题为“若¬q,则p”即¬q⇒p,p是¬q的必要条件,故选:C.【点评】本题考查四种命题的关系及复合命题真假判断,难度不大.3.已知,的夹角是120°,且=(﹣2,﹣4),||=,则在上的投影等于()A.﹣B.C.2 D.【考点】平面向量数量积的运算.【专题】向量法;平面向量及应用.【分析】由向量模的公式可得||,再由向量投影的概念可得在上的投影等于||cos120°.【解答】解: =(﹣2,﹣4),可得||=2,由题意可得在上的投影为||cos120°=2×(﹣)=﹣.故选B.【点评】本题考查向量的数量积的模的公式,以及向量的投影的计算,考查运算能力,属于基础题.4.已知p:存在x∈R,mx2+1≤0,q:任意x∈R,x2+mx+1>0,若p且q为真命题,则实数m的取值范围是()A.m<2 B.﹣2<m<2 C.0<m<2 D.﹣2<m<0【考点】复合命题的真假.【专题】函数思想;综合法;简易逻辑.【分析】分别求出p,q成立的m的范围,取交集即可.【解答】解:关于p:存在x∈R,mx2+1≤0,∴m<0,关于q:任意x∈R,x2+mx+1>0,则△=m2﹣4<0,解得:﹣2<m<2,若p且q为真命题,则p,q均为真命题,则实数m的取值范围是:﹣2<m<0,故选:D.【点评】本题考查了复合命题的判断,考查函数恒成立问题,是一道基础题.5.在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B 的值为()A.B.或C.D.或【考点】余弦定理.【专题】解三角形.【分析】利用余弦定理表示出cosB,整理后代入已知等式,利用同角三角函数间基本关系化简,求出sinB的值,即可确定出B的度数.【解答】解:∵cosB=,∴a2+c2﹣b2=2accosB,代入已知等式得:2ac•cosBtanB=ac,即sinB=,则B=或.故选:B.【点评】此题考查了余弦定理,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.6.已知点C在以O为圆心的圆弧AB上运动(含端点)., =x+2y(x,y∈R),则的取值范围是()A.B.C.D.【考点】平面向量数量积的运算.【专题】数形结合;换元法;三角函数的图像与性质;平面向量及应用.【分析】以O为原点,OA方向为x轴正方向建立坐标系,分别求出A,B的坐标,进而根据则=(cosα,sinα),根据正弦函数的性质,即可得到的取值范围.【解答】解:建立如图所示的坐标系,可设A(1,0),B(0,1),设∠AOC=α(0≤α≤),则=(cosα,sinα).由=(x,2y)=(cosα,sinα),则=(cosα+sinα)=sin(α+)(0≤α≤),由≤α+≤,可得sin(α+)∈[,1],即有∈[,].故选:B.【点评】本题考查的知识点是平面向量的综合应用,三角函数的性质,其中建立坐标系,分别求出A,B,C点的坐标,将一个几何问题代数化,是解答本题的关键.7.若函数f(x)=sin(x+φ)﹣cos(x+φ)(0<φ<π)为奇函数,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变;再向右平移个单位得到函数g(x),则g(x)的解析式可以是()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;转化思想;分析法;三角函数的求值;三角函数的图像与性质.【分析】化简函数的表达式为一个角的一个三角函数的形式,利用函数是奇函数,求出φ.根据函数y=Asin(ωx+φ)的图象变换规律即可得解.【解答】解:∵f(x)=sin(x+φ)﹣cos(x+φ)=2sin(x+φ﹣),(0<φ<π)为奇函数,∴φ=,f(x)=2sinx,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变,可得函数的解析式为:y=2sin2x;再向右平移个单位得到函数g(x),则g(x)的解析式:g(x)=2sin2(x﹣)=2sin (2x﹣).故选:A.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换,由y=Asin(ωx+φ)的部分图象确定其解析式,考查三角函数的化简,三角函数的奇偶性,考查基本知识的应用能力,计算能力,属于中档题.8.已知如图(1)的图象对应的函数为y=f(x),给出①y=f(|x|);②y=|f(x)|﹣a;③y=﹣f(|x|);④y=f(﹣|x|).⑤y=|f(|x|)|﹣a,则如图(2)的图象对应的函数可能是五个式子中的()A.④B.②④ C.①② D.②③④⑤【考点】函数的图象.【专题】转化思想;分析法;函数的性质及应用.【分析】由图(2)知,图象对应的函数是偶函数,对选项一一利用排除法分析可得答案.【解答】解:由图(2)知,图象对应的函数是偶函数,对于①,当x>0时,y=f(|x|)=y=f(x),其图象在y轴右侧与图一的相同,不合题意,故排除①.对于②,当x>0时,对应的函数是y=f(x)﹣a,是把(1)中图象位于y轴右侧的部分向下平移a个单位得到的,显然不正确,故排除②.对于③,当x>0时,对应的函数是y=﹣f(x),是把(1)中图象位于y轴右侧的部分关于x轴对称得到的,显然不正确,故排除③.对于④,当x>0时,对应的函数是y=f(﹣x),是把(1)中图象位于y轴左侧的部分关于y轴对称得到的,满足条件.对于⑤,当x>0时,对应的函数是y=|f(x)|﹣a,是把(1)中图象位于y轴右侧的部分向下平移a个单位得到的,显然不正确,故排除⑤,故选:A.【点评】本题考查函数的图象、函数的图象与图象变化,考查学生读图能力,分析问题解决问题的能力,属于中档题.9.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,,若a=f(),,c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<c<b B.b<c<a C.a<b<c D.c<a<b【考点】函数的单调性与导数的关系.【专题】函数思想;构造法;导数的概念及应用.【分析】构造函数g(x)=xf(x),判断g(x)的单调性与奇偶性即可得出结论.【解答】解:令g(x)=xf(x),则g(﹣x)=﹣xf(﹣x)=xf(x)∴g(x)是偶函数.g′(x)=f(x)+xf′(x)∵∴当x>0时,xf′(x)+f(x)<0,当x<0时,xf′(x)+f(x)>0.∴g(x)在(0,+∞)上是减函数.∵<ln2<1<∴g()<g(ln2)<g()∵g(x)是偶函数.∴g(﹣)=g(),g(ln)=g(ln2)∴g(﹣)<g(ln)<g()故选:B.【点评】本题考查了导数与函数单调性的关系,函数单调性的应用,属于中档题.10.若函数f(x)(x∈R)关于对称,且则下列结论:(1)f(x)的最小正周期是3,(2)f(x)是偶函数,(3)f(x)关于对称,(4)f(x)关于对称,正确的有()A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【专题】转化思想;函数的性质及应用;简易逻辑.【分析】根据已知中函数f(x)(x∈R)关于对称,且,分析出函数的周期性,对称性和奇偶性,可得答案.【解答】解:∵,∴f(x+3)===f(x),故f(x)的最小正周期是3,故(1)正确;又∵函数f(x)(x∈R)关于对称,∴f(x)=﹣==f(﹣x),即f(x)是偶函数,故(2)正确;又∵f(3﹣x)=f(﹣x)=f(x),故f(x)关于对称,故(3)正确;又∵函数f(x)(x∈R)关于对称,f(x)的最小正周期是3,故f(x)关于对称,故(4)正确;故正确的命题有4个,故选:D【点评】本题考查的知识点是函数的奇偶性,函数的对称性和函数的周期性,其中熟练掌握函数对称性的法则“对称变换二倍减”,是解答的关键.11.如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A. B. C. D.【考点】函数的图象.【专题】数形结合;数形结合法;函数的性质及应用.【分析】通过t=0时y=0,排除选项C、D,利用x的增加的变化率,说明y=sin2x的变化率,得到选项即可.【解答】解:因为当t=0时,x=0,对应y=0,所以选项C,D不合题意,当t由0增加时,x的变化率先快后慢,又y=sin2x在[0,1]上是增函数,所以函数y=f(t)的图象变化先快后慢,所以选项B满足题意,C正好相反,故选:B.【点评】本题考查函数图象的变换快慢,考查学生理解题意以及视图能力,属于中档题.12.设函数f(x)=,若f(x)恰有2个零点,则实数a的取值范围是()A.a≥2 B.≤a<1 C.<a<1 D.a≥2或≤a<1【考点】函数的零点与方程根的关系.【专题】综合题;函数的性质及应用.【分析】分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a 的范围.【解答】解:设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=2x﹣a与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.故选:D.【点评】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.二、填空题:(本大题共4小题,每小题5分,共20分).13.若tan(θ+)=,则sin2θ=.【考点】两角和与差的正切函数.【专题】计算题;函数思想;三角函数的求值.【分析】利用两角和的正切函数,求出正切函数值,然后求解即可.【解答】解:tan(θ+)=,=,可得tanθ=﹣.sin2θ===.故答案为:;【点评】本题考查两角和的正切函数以及三角函数的化简求值,考查计算能力.14.设等差数列{a n}前n项和S n,a3+a8+a13=C,a4+a14=2C,其中C<0,则S n在n等于7 时取到最大值.【考点】等差数列的前n项和.【专题】函数思想;综合法;等差数列与等比数列.【分析】由等差数列的性质和题意可得通项公式,可得前7项为正数,从第8项开始为负数,可得结论.【解答】解:由题意和等差数列的性质可得a3+a8+a13=3a8=C,a4+a14=2a9=2C,∴a8=,a9=C,∴公差d=,∴a1=﹣7×=﹣,∴a n=﹣+(n﹣1)=C(2n﹣15),令a n=C(2n﹣15)≤0可得2n﹣15≥0,解得n≥∴递减的等差数列{a n}前7项为正数,从第8项开始为负数,∴当n=7时,S n取最大值.故答案为:7【点评】本题考查等差数列的前n项和,从数列项的正负入手是解决问题的关键,属基础题.15.已知f(x)=x2﹣4x+3在[0,a]的值域是[﹣1,3].实数a的取值范围记为集合A,g (x)=cos2x+sinx.记g(x)的最大值为g(a).若g(a)≥b,对任意实数a∈A恒成立,则实数b的取值范围是b≤.【考点】函数恒成立问题.【专题】计算题;作图题;函数的性质及应用;三角函数的图像与性质;集合.【分析】作函数f(x)=x2﹣4x+3的图象,从而可得A=[2,4];再化简g(x)=﹣(sinx﹣)2+1+,从而可得g(a)=1+,再求g(a)的最小值即可.【解答】解:作函数f(x)=x2﹣4x+3的图象如下,,∵f(x)=x2﹣4x+3在[0,a]的值域是[﹣1,3],∴2≤a≤4,故A=[2,4];g(x)=cos2x+sinx=1﹣sin2x+sinx=﹣(sinx﹣)2+1+,∵≤≤1,∴g(a)=1+,∵A=[2,4],∴g min(a)=1+=,∵g(a)≥b对任意实数a∈A恒成立,∴b≤,故答案为:b≤.【点评】本题考查了二次函数的性质与应用,三角函数的最值的求法,同时考查了恒成立问题.16.若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣1对称,则f(x)的最大值为 6 .【考点】函数的最值及其几何意义;函数的图象.【专题】综合题;转化思想;分类法;函数的性质及应用.【分析】由题意得f(0)=f(﹣2)=0且f(﹣4)=f(2)=0,由此求出a=4且b=0,可得f(x)=﹣x4﹣x3+x2+4x.利用导数研究f(x)的单调性,可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣1对称,∴f(0)=f(﹣2)=0且f(﹣4)=f(2)=0,即b=0且(1﹣4)[(﹣4)2+a•(﹣4)+b]=0,解之得a=4,b=0,因此,f(x)=(1﹣x2)(x2+4x)=﹣x4﹣x3+x2+4x,求导数,得f′(x)=﹣x3﹣3x2+2x+4=﹣(x+1)(x+1+)(x+1﹣)当x∈(﹣∞,﹣1﹣)∪(﹣1,﹣1+)时,f'(x)>0,当x∈(﹣1﹣,﹣1)∪(﹣1+,+∞)时,f'(x)<0,∴f(x)在(﹣∞,﹣1﹣)单调递增,在(﹣1﹣,﹣1)单调递减,在(﹣1,﹣1+)单调递增,在(﹣1+,+∞)单调递减,故当x=﹣1﹣和x=﹣1+时取极大值,f(﹣1﹣)=f(﹣1+)=6.故答案为:6.【点评】本题给出多项式函数的图象关于x=﹣1对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:(本大题共7小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.18题两题选出一题作答,两题都答只给一题的分数.17.已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).(1)当a=0时,求直线l和圆C交点的极坐标(ρ,θ)(其中ρ>0,0<θ<2π);(2)若直线l与圆C交于P、Q两点,P、Q间的劣弧长是,求直线l的极坐标方程.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】计算题;函数思想;综合法;坐标系和参数方程.【分析】(1)先求出圆的直角坐标方程和直线l:,由此能求出直线l和圆C交点的极坐标.(2)圆心C到直线的距离d是2,直线的直角坐标方程是:,先求出直线直角坐标方程,由此能求出直线l的极坐标方程.【解答】解:(1)∵圆C的参数方程为(θ为参数),∴圆的直角坐标方程是x2+y2=16,….(1分),∵直线l的参数方程为(t为参数),∴当a=0时,直线l:,…(2分)代入x2+y2=16得x=±2,P,Q….(3分)则直线l和圆C交点的极坐标分别是,….(5分)(2)由于P、Q间的劣弧长是,则圆心角,….(6分)圆心C到直线的距离d是2,直线的直角坐标方程是:,….(7分),,直线直角坐标方程是:或,….(8分)直线l的极坐标方程:或….(10分)即或(写成或给满分)【点评】本题考查直线和圆交点的极坐标及直线的极坐标方程的求法,是中档题,解题时要认真审题,注意极坐标和直角坐标的互化公式的合理运用.18.(2015秋•厦门校级期中)(1)若不等式|2x﹣1|+|x+2|≥m2+m+2对任意实数x恒成立,求实数m的取值范围;(2)设a,b,c大于0,且1≤++≤(|2x﹣1|+|x+2|)对任意实数x恒成立,求证:a+2b+3c≥9.【考点】不等式的证明;函数恒成立问题.【专题】函数思想;综合法;函数的性质及应用;推理和证明.【分析】(1)由绝对值的含义,将|2x﹣1|+|x+2|写成分段函数式,分别求出各段的范围,可得最小值,进而得到m2+m+2≤,解不等式可得m的范围;(2)运用两边夹法则,可得++=1,且a,b,c大于0,即有a+2b+3c=(a+2b+3c)(++),展开后运用基本不等式,即可得证.【解答】解:(1)|2x﹣1|+|x+2|=,当x≤﹣2时,﹣1﹣3x递减,取值范围是[5,+∞);当﹣2<x≤时,3﹣x的范围是[,5);当x>时,3x+1的范围是(,+∞).从而|2x﹣1|+|x+2|≥,解不等式m2+m+2≤,得m∈[﹣1,].(2)证明:由(1)知(|2x﹣1|+|x+2|)≥1,则++≤1,又1≤++,则++=1,且a,b,c大于0,即有a+2b+3c=(a+2b+3c)(++)=3+(+)+(+)+(+)≥3+2+2+2=9.当且仅当a=2b=3c=时,等号成立.因此a+2b+3c≥9.【点评】本题考查绝对值函数的最值的求法,不等式恒成立问题的解法和不等式的证明,注意运用函数的单调性求最值,以及基本不等式的运用,属于中档题.19.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<)的图象经过点(0,),且相邻两条对称轴间的距离为.(Ⅰ)求函数f(x)的解析式及其单调递增区间;(Ⅱ)在△ABC中,a,b,c分别是角A、B、C的对边,若f()﹣cosA=,且bc=1,b+c=3,求a的值.【考点】余弦定理;三角函数的周期性及其求法;正弦函数的单调性.【专题】解三角形.【分析】(Ⅰ)把已知点坐标代入求出φ的值,根据题意确定出周期,利用周期公式求出ω的值,即可确定出函数f(x)的解析式,利用正弦函数的单调性确定出单调递增区间即可;(Ⅱ)由第一问确定出的解析式,表示出f(),代入已知等式求出A的度数,利用余弦定理列出关系式,把cosA的值代入,变形后将bc与b+c的值代入即可求出a的值.【解答】解:(Ⅰ)把(0,)代入解析式得:sinφ=,∵0<φ<,∴φ=,∵相邻两条对称轴间的距离为,∴函数的周期为π,即ω=2,∴函数f(x)的解析式为f(x)=sin(2x+),令﹣+2kπ≤2x+≤+2kπ,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z,则f(x)的单调递增区间为[﹣+kπ,+kπ],k∈Z;(Ⅱ)由第一问得:f()=sin(A+),代入得:sin(A+)﹣cosA=sinA+cosA﹣cosA=sinA﹣cosA=sin(A﹣)=,∴A﹣=或,即A=或A=π(舍去),∵bc=1,b+c=3,∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc=(b+c)2﹣3bc=9﹣3=6,则a=.【点评】此题考查了余弦定理,正弦函数的单调性,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.20.设数列{a n}的前n项和为S n,满足2S n=a n+1﹣2n+1+1,(n∈N*),且a1=1.(1)设c n=(n∈N+),求数列{a n}的通项公式;(2)设数列{b n}满足b n=n(a n+2n),求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(1)2S n=a n+1﹣2n+1+1,(n∈N*),当n≥2时,2S n﹣1=a n﹣2n+1,相减可得:,c n=(n∈N+),利用等比数列的通项公式即可得出.(2)利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(1)∵2S n=a n+1﹣2n+1+1,(n∈N*),∴当n≥2时,2S n﹣1=a n﹣2n+1,相减可得:2a n=a n+1﹣a n﹣2n,化为:,∵c n=(n∈N+),∴,∴{c n}是等比数列,公比为,首项为.∴c n+1=,∴c n=﹣1,∴=﹣1,可得a n=3n﹣2n.(2)b n=n(a n+2n)=n•3n,∴数列{b n}的前n项和T n=3+2×32+3×23+…+n•3n,∴3T n=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2T n=3+32+…+3n﹣n•3n+1=﹣n•3n+1=,∴T n=.【点评】本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.21.已知⊥,|AB1|=3,|AB2|=4, =+.(1)若B1,P,B2三点共线,求||的最小值,并用,表示;(2)设Q是AB1B2的内心,若||≤2,求•的取值范围.【考点】平面向量数量积的运算.【专题】综合题;转化思想;配方法;换元法;平面向量及应用.【分析】(1)利用B1,P,B2三点共线, =+,可求得+=1;再结合⊥,|AB1|=3,|AB2|=4,可得||2=λ2+μ2=μ2﹣μ+9,于是可求得||的最小值及取得最小值时λ、μ的值,从而可用,表示;(2)以A为原点,AB1、AB2所在的直线分别为x轴、y轴建立直角坐标系,则B1(3,0),B2(0,4),Q(1,1),P(λ,μ),于是利用||2=(λ﹣1)2+(μ﹣1)2≤4,再令λ﹣1=rcosθ,μ﹣1=sinθ(0<r≤2)可得•=λ2+μ2﹣3λ﹣4μ=r2﹣rcosθ﹣2rsinθ﹣5,利用辅助角公式及配方法即可求得•∈[﹣,2﹣1].【解答】解:(1)∵B1,P,B2三点共线, =+,∴+=1.又⊥,|AB1|=3,|AB2|=4,∴||2=||2+||2=λ2+μ2=μ2﹣μ+9,当时,||min=,此时, =+;(2)以A为原点,AB1、AB2所在的直线分别为x轴、y轴建立直角坐标系,则B1(3,0),B2(0,4),Q(1,1),P(λ,μ),||2=(λ﹣1)2+(μ﹣1)2≤4,令λ﹣1=rcosθ,μ﹣1=sinθ,0<r≤2.=(λ﹣3,μ),=(λ,μ﹣4),•=λ2+μ2﹣3λ﹣4μ=r2﹣rcosθ﹣2rsinθ﹣5=r2﹣rsin(θ+φ)﹣5,其中tanφ=.又r2﹣rsin(θ+φ)﹣5≤r2+r﹣5≤2﹣1,r2﹣rsin(θ+φ)﹣5≥r2﹣r﹣5=(r﹣)2﹣≥﹣,∴•∈[﹣,2﹣1].【点评】本题考查平面向量数量积的运算,突出考查共线向量基本定理、向量垂直性质的应用,也考查了三角换元思想及辅助角公式的综合应用,考查运算能力,属于难题.22.某山体外围有两条相互垂直的直线型公路,为开发山体资源,修建一条连接两条公路沿山区边界的直线型公路.记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为L.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和80千米,点N到l1的距离为100千米,以l1,l2所在的直线分别为x、y轴建立平面直角坐标系xOy,假设曲线C符合函数y=模型(其中a为常数).(1)设公路L与曲线C相切于P点,P的横坐标为t.①请写出公路L长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路L的长度最短?求出最短长度.(2)在公路长度最短的同时要求美观,需在公路L与山体之间修建绿化带(如图阴影部分),求绿化带的面积.【考点】导数在最大值、最小值问题中的应用;函数模型的选择与应用.【专题】转化法;函数的性质及应用;导数的综合应用.【分析】(1)①由题知M(5,80)代入y=,则a=400,进而求出y=,得出坐标N(100,4),利用导数求出斜率,得出直线的方程,进而求出与坐标轴的交点A(0,),B(2t,0),利用勾股定理可得(t∈[5,100]);②运用基本不等式可得最小值,注意求出等号成立的条件;(2)山体与x=5,x=100之间的面积为,得出山体与L1、L2围成的面积是400+400ln20,进而得出绿化带的面积是400+400ln20﹣800=400ln20﹣400.【解答】解:(1)①由题意M(5,80)代入y=,则a=400,∴y=,N(100,4),∴定义域为[5,100].∴P(t,),∵,则公路l的方程:,令x=0,可得y=;令y=0,可得x=2t.∴(t∈[5,100]);②A(0,),B(2t,0),=,当且仅当t=20∈[5,100]时等号成立,所以当t为20时,公路l的长度最短长度是3200千米;(2)山体与x=5,x=100之间的面积为dx=400lnx|=400(ln100﹣ln5)=400ln20,山体与L1、L2围成的面积是400+400ln20,L与y,x轴交点分别是A(0,40),B(40,0),公路与L1、L2围成的面积是800,所以绿化带的面积是400+400ln20﹣800=400ln20﹣400(平方公里).答:当t为20时,公路L的长度最短,最短长度是3200千米;在公路长度最短时,需在公路L与山体之间修建绿化带的面积是400ln20﹣400平方公里.【点评】本题考查了利用导数求直线方程和积分的应用,考查运算求解能力,难点是对题意的理解.23.设函数f(x)=e mx﹣mx2.(1)当m=2时,求曲线y=f(x)在点(0,f(0))处的切线L1的方程;(2)当m>0时,要使f(x)≥1对一切实数x≥0恒成立,求实数m的取值范围;(3)求证:.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】方程思想;导数的概念及应用;导数的综合应用;不等式的解法及应用.【分析】(1)求出f(x)的导数,求得切线的斜率和切点,即可得到所求切线的方程;(2)求出f(x)的导数,设g(x)=f′(x),求出g(x)的导数,讨论m的范围,结合单调性,即可得到m的范围;(3)令m=1,由(2)得e x>x2+1,则,令x=i(i+1)(i=2,3,…n),由裂项相消求和和不等式的性质,即可得证.【解答】解:(1)m=2时,f(x)=e2x﹣2x2,f′(x)=2e2x﹣4x;∴f′(0)=2,又f(0)=1;则切线L1方程为:y=2x+1;(2)f′(x)=me mx﹣2mx,设g(x)=f′(x),g′(x)=m2e mx﹣2m=m(me mx﹣2),令g′(x)=0,由m>0,;①当m≥2时,因为x≥0,则e mx≥1,所以me mx﹣2≥m﹣2≥0,g'(x)≥0,∴f′(x)在[0,+∞)单调递增;∴f′(x)≥f′(0)=m>0;∴f(x)在[0,+∞)单调递增,f(x)≥f(0)=1;所以当m≥2时满足条件;②当时,1≥,x0∈(0,+∞);∴f′(x)在(0,x0)单调递减,在(x0,+∞)单调递增,所以=;∴f(x)在[0,+∞)单调递增,f(x)≥f(0)=1;∴当时满足条件;③当时,,x0∈(0,+∞);∴f′(x)在(0,x0)单调递增,f′(x)=0在(0,x0)至多只有一个零点x1;又因为=,f′(0)=1>0,所以f′(x)=0在(0,x0)有且只有一个零点x1;则当x∈(0,x1)时,f′(x)>0,所以f(x)在(0,x1)单调递增,在(x1,x0)单调递减,所以存在x使得f(x)<f(0)=1,不满足条件.终上所述:当时,f(x)≥1对一切x≥0的实数恒成立.(3)令m=1,由(2)得e x>x2+1,则,令x=i(i+1)(i=2,3,…n),则,当i=1时,,当i=2时,,当i=3时,,…,当i=n时,,所以.【点评】本题考查导数的运用:求切线的方程和单调性,考查不等式恒成立问题和不等式的证明,注意运用分类讨论的思想方法和裂项相消求和及不等式的性质,考查运算能力,属于中档题.。

福建省厦门双十中学高三数学上学期期中试卷 文(含解析)

福建省厦门双十中学高三数学上学期期中试卷 文(含解析)

福建省厦门双十中学2015届高三上学期期中数学试卷(文科)一、选择题:(每小题5分,共60分)1.(5分)已知集合A={x|﹣1≤x≤2,x∈Z},集合B={0,2,4},则A∪B 等于()A.{﹣1,0,1,2,4} B.{﹣1,0,2,4} C.{0,2,4} D. {0,1,2,4}2.(5分)如图在复平面内,复数z1,z2对应的向量分别是,则复数z1﹣z2的值是()A.﹣1+2i B.﹣2﹣2i C.1+2i D.1﹣2i3.(5分)若向量,则下列结论正确的是()A.B.C.D.4.(5分)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.1765.(5分)已知双曲线﹣=1(a>0)的离心率为2,则a=()A.2 B.C.D.16.(5分)已知函数f(x)=,若f[f(0)]=4a,则实数a等于()A.B.C.2 D.97.(5分)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4 B.6 C.8 D.128.(5分)“a<﹣1”是“一元二次方程x2+x+a=0有一个正根和一个负根”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(5分)当x>1时,不等式x+恒成立,则实数a的取值范围是()A.(﹣∞,2] B.[2,+∞)C.[3,+∞)D.(﹣∞,3]10.(5分)已知函数f(x)=cos,则函数f(x)满足()A.f(x)的最小正周期是2πB.若f(x1)=f(x2),则x1=x2C.f(x)的图象关于直线x=对称;D.当x∈[﹣,]时,f(x)的值域为[﹣,]11.(5分)若x,y满足且z=ax+2y仅在点(1,0)处取得最小值,则实数a的取值范围是()A.a∈(﹣4,0] B.a∈[0,2)C.a∈(﹣4,2)D.a∈(﹣4,0)∪(0,2)12.(5分)已知函数f(x)=x3﹣3x,若△ABC中,角C是钝角,那么()A.f(sinA)>f(cosB)B.f(sinA)<f(cosB) C. f(sinA)>f (sinB)D.f(sinA)>f(sinB)二.填空题(每题4分,共16分)13.(4分)函数的定义域为.14.(4分)已知α为钝角,且,则sin2α=.15.(4分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为.16.(4分)给出下列四个命题中:①命题:∃x∈R,sinx+cosx=;②∃x∈(﹣∞,0),2x<3x③∀x∈R,e x≥x+1④对∀(x,y)∈{(x,y)|4x+3y﹣10=0},则x2+y2≥4.其中所有真命题的序号是.三.解答题17.(12分)已知△ABC中,A(2,﹣1),B(4,3),C(3,﹣2),求:(1)BC边上的高所在直线方程的一般式;(2)求△ABC的面积.18.(12分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsinA=3csinB,a=3,.(Ⅰ)求b的值;(Ⅱ)求的值.19.(12分)已知等差数列{a n}的前n项和为S n,且a2=5,S5=55.(Ⅰ)求a n及S n;(Ⅱ)若数列{}的前n项和T n,试求T n并证明不等式≤T n<1成立.20.(12分)已知椭圆E的方程:=1(a>b>0),它的两个焦点为,P为椭圆的一点(点P在第三象限上),且△PF1F2的周长为20+10,C(﹣2,0).(Ⅰ)求椭圆E的方程;(Ⅱ)求出椭圆的左顶点M的坐标,MP交圆P与另一点N的坐标,若点A在椭圆E上,使得=﹣32,求点A的坐标.21.(12分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂商拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量P万件与促销费用x万元满足P=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品P万件还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求.(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;(Ⅱ)促销费用投入多少万元时,厂家的利润最大?22.(14分)已知函数f(x)=xlnx+1,g(x)=ax﹣1﹣lnx(Ⅰ)求f(x)的最小值;(Ⅱ)讨论函数g(x)的单调性;(Ⅲ)是否存在常数K,使≤ex﹣f'(x)恒成立,若存在,求出K的最大值,若不存在,说明理由.福建省厦门双十中学2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题:(每小题5分,共60分)1.(5分)已知集合A={x|﹣1≤x≤2,x∈Z},集合B={0,2,4},则A∪B 等于()A.{﹣1,0,1,2,4} B.{﹣1,0,2,4} C.{0,2,4} D. {0,1,2,4}考点:并集及其运算.专题:计算题.分析:先求出集合A={x|﹣1≤x≤2,x∈Z}={﹣1,0,1,2},集合B={0,2,4},再由并集的运算法则求A∪B.解答:解:∵集合A={x|﹣1≤x≤2,x∈Z}={﹣1,0,1,2},集合B={0,2,4},∴A∪B={﹣1,0,1,2,4}.故选A.点评:本题考查集合的并集的运算,解题时要认真审题,熟练掌握并集的概念和运算法则.2.(5分)如图在复平面内,复数z1,z2对应的向量分别是,则复数z1﹣z2的值是()A.﹣1+2i B.﹣2﹣2i C.1+2i D.1﹣2i考点:复数的代数表示法及其几何意义.专题:计算题.分析:根据两个复数的加减法的几何意义,复数z1﹣z2的值就是=﹣对应的复数.解答:解:根据两个复数的加减法的几何意义可得,复数z1﹣z2的值就是=﹣对应的复数.即(﹣2﹣i)﹣(i)=﹣2﹣2i,故选B.点评:本题主要考查两个复数的加减法的几何意义,属于基础题.3.(5分)若向量,则下列结论正确的是()A.B.C.D.考点:平面向量数量积的运算;向量的模;平行向量与共线向量;数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由给出的两个向量的坐标,求出的坐标,然后直接进行数量积的坐标运算求解.解答:解:由,则.所以.则.故选C.点评:本题考查了平面向量数量积的坐标运算,考查了利用数量积判断两个向量的垂直关系,解答的关键是熟记数量积的坐标运算公式,是基础题.4.(5分)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得 a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.5.(5分)已知双曲线﹣=1(a>0)的离心率为2,则a=()A.2 B.C.D.1考点:双曲线的简单性质.专题:计算题.分析:根据双曲线的离心率e=,得到关于a的等式,从而求出a的值.解答:解:双曲线的离心率e==2,解答a=1.故选D.点评:本题考查了双曲线的简单性质,属于基础题型.6.(5分)已知函数f(x)=,若f[f(0)]=4a,则实数a等于()A.B.C.2 D.9考点:函数的值.专题:计算题.分析:先求出f(0)=2,再令f(2)=4a,解方程4+2a=4a,得a值.解答:解:由题知f(0)=2,f(2)=4+2a,由4+2a=4a,解得a=2.故选C.点评:此题是分段函数当中经常考查的求分段函数值的小题型,主要考查学生对“分段函数在定义域的不同区间上对应关系不同”这个本质含义的理解.7.(5分)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4 B.6 C.8 D.12考点:抛物线的定义.专题:计算题.分析:先根据抛物线的方程求得抛物线的准线方程,根据点P到y轴的距离求得点到准线的距离进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,进而求得答案.解答:解:抛物线y2=8x的准线为x=﹣2,∵点P到y轴的距离是4,∴到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B点评:本题主要考查了抛物线的定义.充分利用了抛物线上的点到准线的距离与点到焦点的距离相等这一特性.8.(5分)“a<﹣1”是“一元二次方程x2+x+a=0有一个正根和一个负根”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:令f(x)=x2+x+a,f(0)<0,再根据充分必要条件的定义可判断.解答:解:令f(x)=x2+x+a,∵一元二次方程x2+x+a=0有一个正根和一个负根,∴f(0)<0,∴a<0,根据充分必要条件的定义可判断:“a<﹣1”是“一元二次方程x2+x+a=0有一个正根和一个负根”的充分而不必要条件,故选:A.点评:本题考查了充分必要条件的定义,函数的性质,属于简单题目.9.(5分)当x>1时,不等式x+恒成立,则实数a的取值范围是()A.(﹣∞,2] B.[2,+∞)C.[3,+∞)D.(﹣∞,3]考点:基本不等式.专题:计算题.分析:由题意当x>1时,不等式x+恒成立,由于x+的最小值等于3,可得a≤3,从而求得答案.解答:解:∵当x>1时,不等式x+恒成立,∴a≤x+对一切非零实数x>1均成立.由于x+=x﹣1++1≥2+1=3,当且仅当x=2时取等号,故x+的最小值等于3,∴a≤3,则实数a的取值范围是(﹣∞,3].故选D.点评:本题考查查基本不等式的应用以及函数的恒成立问题,求出x+的最小值是解题的关键.10.(5分)已知函数f(x)=cos,则函数f(x)满足()A.f(x)的最小正周期是2πB.若f(x1)=f(x2),则x1=x2C.f(x)的图象关于直线x=对称;D.当x∈[﹣,]时,f(x)的值域为[﹣,]考点:两角和与差的正弦函数;运用诱导公式化简求值;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:利用三角恒等变换可得f(x)=sin2x,再利用正弦函数的图象与性质对A,B,C,D四个选项逐一分析判断即可.解答:解:对于A,∵f(x)=cos=﹣•(﹣sin2x)=sin2x,∴其周期T=π,排除A;对于B,若f(x1)=f(x2),则x1=kπ+x2,或x1=﹣x2,故B错误;对于C,∵f()=sin=﹣为最小值,故f(x)的图象关于直线x=对称,C正确;对于D,当x∈[﹣,]时,2x∈[﹣,],sin2x∈[﹣,1],f(x)的值域为[﹣,],故D错误;故选:C.点评:本题考查三角恒等变换,着重考查正弦函数的图象与性质,属于中档题.11.(5分)若x,y满足且z=ax+2y仅在点(1,0)处取得最小值,则实数a的取值范围是()A.a∈(﹣4,0] B.a∈[0,2)C.a∈(﹣4,2)D.a∈(﹣4,0)∪(0,2)考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的意义,确定目标函数的斜率关系即可得到结论.解答:解:画出区域图,可知当a=0时,z=2y,即,符合题意;当a>0时,,斜率,即0<a<2时符合题意;当a<0时,,斜率,即﹣4<a<0时符合题意;综上,a∈(﹣4,2),故选:C.点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键,要注意对a进行分类讨论.12.(5分)已知函数f(x)=x3﹣3x,若△ABC中,角C是钝角,那么()A.f(sinA)>f(cosB)B.f(sinA)<f(cosB) C. f(sinA)>f (sinB)D.f(sinA)>f(sinB)考点:函数单调性的性质.专题:函数的性质及应用.分析:由∠C为钝角,可得A+B<90°,从而可得sinA<cosB,且sinA与cosB都是(0,1)上的数,根据函数y=f(x)在(0,1)上是减函数,即可得到结论.解答:解:∵∠C为钝角,∴A+B<90°,∴A<90°﹣B,且A 与90°﹣B都是锐角,∴sinA<sin(90°﹣B),∴sinA<cosB,且sinA与cosB都是(0,1)上的数,∵f(x)=x3﹣3x,∴函数y=f(x)在(0,1)上是减函数,∴f(sinA)>f(cosB).故选A.点评:本题考查函数的单调性,考查诱导公式的运用,属于基础题.二.填空题(每题4分,共16分)13.(4分)函数的定义域为..考点:函数的定义域及其求法.专题:计算题.分析:求解该函数的定义域,只要让分子的根式内部的代数式大于等于0,分母不等于0,取交集即可.解答:解:要使原函数有意义,则,解得:,且x≠0.所以原函数的定义域为.故答案为.点评:本题考查了函数定义域及其求法,属于以函数的定义为平台,求集合的交集的基础题,也是2015届高考常会考的题型.14.(4分)已知α为钝角,且,则sin2α=﹣.考点:同角三角函数间的基本关系;二倍角的正弦.专题:计算题.分析:利用诱导公式化简已知等式的左边,求出sinα的值,再由α为钝角,得到cosα的值小于0,利用同角三角函数间的基本关系求出cosα的值,将所求式子利用二倍角的正弦函数公式化简后,把sinα与cosα的值代入即可求出值.解答:解:∵cos(+α)=﹣sinα=﹣,∴sinα=,又α为钝角,∴cosα=﹣=﹣,则sin2α=2sinαcosα=﹣.故答案为:﹣点评:此题考查了诱导公式,同角三角函数间的基本关系,以及二倍角的正弦函数公式,熟练掌握公式及基本关系是解本题的关键.15.(4分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为(x﹣2)2+(y﹣1)2=4.考点:圆的标准方程.专题:直线与圆.分析:由圆心在直线x﹣2y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.解答:解:设圆心为(2t,t),半径为r=|2t|,∵圆C截x轴所得弦的长为2,∴t2+3=4t2,∴t=±1,∵圆C与y轴的正半轴相切,∴t=﹣1不符合题意,舍去,故t=1,2t=2,∴(x﹣2)2+(y﹣1)2=4.故答案为:(x﹣2)2+(y﹣1)2=4.点评:此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.16.(4分)给出下列四个命题中:①命题:∃x∈R,sinx+cosx=;②∃x∈(﹣∞,0),2x<3x③∀x∈R,e x≥x+1④对∀(x,y)∈{(x,y)|4x+3y﹣10=0},则x2+y2≥4.其中所有真命题的序号是③④.考点:命题的真假判断与应用.专题:简易逻辑.分析:根据正弦型函数的图象和性质,及存在性命题真假判断的方法可判断①;根据指数函数的图象和性质,及不等式的基本性质,可判断②;构造函数f(x)=e x﹣(x+1),利用导数法判断函数的最值,可判断③;根据点到直线的距离,两点之间的距离,可判断④解答:解:对于①,∵,,故①错;对于②,当x∈(﹣∞,0),>1,故2x>3x,故②错;对于③,设f(x)=e x﹣(x+1),f'(x)=e x﹣1,可知f(x)在(﹣∞,0)减,在(0,+∞)递增,f(x)min=f(0)=0;故③正确;对于④,x2+y2为原点到4x+3y﹣10=0上动点的距离的平方,由原点到直线4x+3y﹣10=0的距离为2,故x2+y2≥4,故④正确.故答案为:③④点评:本题以命题的真假判断为载体考查了正弦型函数的图象和性质,指数函数的图象和性质,不等式的基本性质,导数法判断函数的最值,点到直线的距离,两点之间的距离,难度中档.三.解答题17.(12分)已知△ABC中,A(2,﹣1),B(4,3),C(3,﹣2),求:(1)BC边上的高所在直线方程的一般式;(2)求△ABC的面积.考点:直线的一般式方程与直线的垂直关系;三角形的面积公式.专题:直线与圆.分析:(1)由斜率公式可得k BC=5,由垂直关系可得AD所在直线斜率,可得直线的方程;(2)由(1)易得BC的方程为y﹣3=5(x﹣4),可得点A到直线BC距离和|BC|,由三角形的面积公式可得.解答:解:(1)∵A(2,﹣1),B(4,3),C(3,﹣2),∴直线BC的斜率k BC==5,∴由垂直关系可得BC边上的高AD所在直线斜率k=,∴AD所在直线方程y+1=(x﹣2),化为一般式可得x+5y+3=0;(2)由(1)BC的斜率为5,∴BC的方程为y﹣3=5(x﹣4),化为一般式可得5x﹣y﹣17=0,∴点A到直线BC距离为=,由两点间的距离公式可得|BC|==,∴S△ABC=××=3.点评:本题考查直线的一般式方程和垂直关系,涉及三角形的面积公式,属基础题.18.(12分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsinA=3csinB,a=3,.(Ⅰ)求b的值;(Ⅱ)求的值.考点:余弦定理;同角三角函数间的基本关系;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦;正弦定理.专题:解三角形.分析:(Ⅰ)直接利用正弦定理推出bsinA=asinB,结合已知条件求出c,利用余弦定理直接求b的值;(Ⅱ)利用(Ⅰ)求出B的正弦函数值,然后利用二倍角公式求得正弦、余弦函数值,利用两角差的正弦函数直接求解的值.解答:解:(Ⅰ)在△ABC中,有正弦定理,可得bsinA=asinB,又bsinA=3csinB,可得a=3c,又a=3,所以c=1.由余弦定理可知:b2=a2+c2﹣2accosB,,即b2=32+12﹣2×3×cosB,可得b=.(Ⅱ)由,可得sinB=,所以cos2B=2cos2B﹣1=﹣,sin2B=2sinBcosB=,所以===.点评:本题考查余弦定理,正弦定理以及二倍角的正弦函数与余弦函数,两角和与差的三角函数,同角三角函数的基本关系式的应用,考查计算能力.19.(12分)已知等差数列{a n}的前n项和为S n,且a2=5,S5=55.(Ⅰ)求a n及S n;(Ⅱ)若数列{}的前n项和T n,试求T n并证明不等式≤T n<1成立.考点:数列与不等式的综合;等差数列的前n项和;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,利用a2=5,S5=55求出首项与公差,即可求解a n及S n;(Ⅱ)化简,利用裂项法求出前n项和T n,通过判断前n项和T n的单调性,求出最小值即可证明结果.解答:解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,∵a2=5,S9=99,∴,得a5=11∴3d=a5﹣a2=6,∴d=2,a1=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∴a n=2n+1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∴=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)又因为,所以所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题考查数列求和,等差数列的应用,数列的函数的特征,数列与不等式的关系,是中档题.20.(12分)已知椭圆E的方程:=1(a>b>0),它的两个焦点为,P为椭圆的一点(点P在第三象限上),且△PF1F2的周长为20+10,C(﹣2,0).(Ⅰ)求椭圆E的方程;(Ⅱ)求出椭圆的左顶点M的坐标,MP交圆P与另一点N的坐标,若点A在椭圆E上,使得=﹣32,求点A的坐标.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)直接利用已知条件列出方程组,求出椭圆的几何量,即可求椭圆E的方程;(Ⅱ)若以点P为圆心的圆过椭圆的左顶点M与点C(﹣2,0),MP交圆P与另一点N,设A(x,y),通过=﹣32,求解求点A的坐标.解答:解:(Ⅰ)依题意得:,…(1分)则有…﹣﹣﹣﹣…(2分)∴a=10,b=5,…(4分)椭圆E的方程:…(5分)(Ⅱ)由( 1 )得M(﹣10,0),C(﹣2,0)…(6分)设点P(m,n),则有,又:,∴n=﹣4,即P(﹣6,﹣4),…(8分)∵P为MN的中点,可得N(﹣2,﹣8)…(9分)设A(x,y),∴,∴…(10分)∴,…(11分)得x=﹣6,y=﹣4时,∴A(﹣6,﹣4)…﹣﹣﹣…(12分)点评:本题考查椭圆的标准方程的求法,直线与椭圆的位置关系的应用,考查转化思想以及计算能力.21.(12分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂商拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量P万件与促销费用x万元满足P=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品P万件还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求.(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;(Ⅱ)促销费用投入多少万元时,厂家的利润最大?考点:根据实际问题选择函数类型.专题:应用题;函数的性质及应用.分析:(Ⅰ)根据产品的利润=销售额﹣产品的成本建立函数关系;(Ⅱ)利用导数基本不等式可求出该函数的最值,注意等号成立的条件.解答:解:(Ⅰ)由题意知,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)将代入化简得:(0≤x≤a).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)当a≥1时,x∈(0,1)时y'>0,所以函数在(0,1)上单调递增x∈(1,a)时y'<0,所以函数在(1,a)上单调递减促销费用投入1万元时,厂家的利润最大;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)当a<1时,因为函数在(0,1)上单调递增在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)(注:当a≥1时,也可:,当且仅当时,上式取等号)点评:本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.22.(14分)已知函数f(x)=xlnx+1,g(x)=ax﹣1﹣lnx(Ⅰ)求f(x)的最小值;(Ⅱ)讨论函数g(x)的单调性;(Ⅲ)是否存在常数K,使≤ex﹣f'(x)恒成立,若存在,求出K的最大值,若不存在,说明理由.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)求出函数f(x)的定义域以及导数,通过令f'(x)>0,令f'(x)<0解得函数的单调区间,然后求解f(x)的最小值.(Ⅱ)求出g(x)的定义域,,通过当a≤0时,g'(x)<0,g(x)单调递减函数,当a>0时,令g'(x)=0,通过列表可以推出:当a>0 时,g(x)在区间上是单调增函数,在上(0,)是单调递减函数.(Ⅲ)转化,恒成立,为K≤(ex﹣1﹣lnx)•f(x)恒成立,利用(Ⅱ)g(x)=ex﹣1﹣lnx在区间上是减函数,在区间上是增函数,当时,g(x)=ex﹣1﹣lnx的最小值,由(Ⅰ)可知,当时,f(x)取得最小值,从而函数y=(ex﹣1﹣lnx)•f(x)在时,取得最小值,求出K的最大值.解答:解:(Ⅰ)f(x)的定义域为(0,+∞)f(x)的导数f'(x)=1+lnx.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令f'(x)>0,解得;令f'(x)<0,解得.从而f(x)在单调递减,在单调递增.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以,当时,f(x)取得最小值1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)∵g(x)=ax﹣1﹣lnx,∴f(x)的定义域为(0,+∞),当a≤0时,f'(x)<0,f(x)在(0,+∞)是单调递减函数;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)当a>0时,令f'(x)=0,∴的变化情况如下表:x (0,)f′(x)﹣0 +f(x)↘极小值↗从上表可以看出:当a>0 时,f(x)在区间上是单调增函数﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)在上(0,)是单调递减函数﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)∵ex﹣f'(x)=ex﹣1﹣lnx所以,恒成立即K≤(ex﹣1﹣lnx)•f(x)恒成立﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)由(Ⅱ)可知,当a=e,g(x)=ex﹣1﹣lnx在区间上是减函数,在区间上是增函数故当时,g(x)=ex﹣1﹣lnx的最小值为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)又由(Ⅰ)可知,当时,f(x)取得最小值=1>0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣12 分故函数y=(ex﹣1﹣lnx)•f(x)当时,取得最小值∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)即K的最大值为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题考查函数的导数的综合应用,利用函数的导数求解最值,难度大是压轴题.。

福建省厦门双十中学2015-2016学年高一上学期期中考试数学试卷答案

福建省厦门双十中学2015-2016学年高一上学期期中考试数学试卷答案

厦门双十中学2015-2016学年(上)期中考试 高一数学参考答案及评分标准(2015-11-10) 一、选择题:本大题共10小题,每小题5分,共50分. 题号 1 2 3 4 5 6 7 8 9 10 答案 A C B DA B A D D C 二、填空题:本大题共6小题,每小题4分,共24分. 题号11 12 13 14 15 16 答案或 【解析】 试题分析:根据题意,要使得函数有意义,则要满足,故可知答案为. 考点:函数定义域 点评:解决的关键是根据分母不为零,偶次根式下为非负数,属于基础题。

12.【答案】 【解析】 试题分析:显然,所以【答案】 15.【答案】 【解析】当,,要使函数的值域为,只需的值域包含于,故,所以,所以,解得或() 6分 (),所以,8分 所以. 12分 注意:公式化简正确,结果算错扣2分. 18.(本小题满分12分) 【解析】 (),,2分 由可得,解得,所以4分 所以. 6分 (),则,解得;8分 若,则,由于,所以或,10分 解得或11分 综上,实数a的取值范围是:. 12分 注意:未讨论空集统一扣2分,未注意端点取等号统一扣1分,同一错误不重复扣分. 19.(本小题满分12分) 【解析】 (),,所以,即 此时, 即,其中6分 ()()7分 又,在单调递增,在单调递减,8分 所以当,即,即时,取得最大值;,即,即时,取得最小值()依题意得, 当0≤t≤3时,s(t)=-t(t-13), s(3)=-×3×(3-13)=10. 2分 即小张家距离景点10 km, 小张的车在景点逗留时间为1-8-3=(h). ∴当3<t≤时,s(t)=10, 小张从景点回家所花时间为=2(h), ∴当<t≤11时,s(t)=10+60(t-)=60t-0. 7分 综上所述,这天小张的车所走的路程 s(t)= ()当0≤t≤3时,令-t(t-13)=得t2-13t+12=0,解得t=1或t=12(舍去), 当<t≤11时,令60t-0=2×10-=,解得t=. 答:小张这天途经该加油站的时间分别为9点和1时分. 21.(本小题满分13分) 【解析】 ()解得,所以()在上单调递增,证明如下:,则,从而 所以,所以在上单调递增,即()在上单调递增,所以11分 解得. 13分 22.(本小题满分14分) 【解析】(Ⅰ)依题意,,据此可作出图像如下: 4分 ()由题意,对任意,即恒成立,只需 分 另一方面, 当时,在和上均递增,,则在R上递增,分 当时,在和上递增,在上递减,分 故在上恒单调递增,从而在上也恒单调递增,分 则,即,解得, 故实数的取值范围是. 分 (),考虑在区间内有两个不同的零点即可. 此时,,即,10分 则由() 当时,在R上递增,在区间内至多有一个根,不符合要求,舍去;故. 11分 当时,,可得(不符合,舍去)或,但,不在区间内,因此12分 当时,内必有两个不同的零点,从而, 所以解得. 14分 注:本题作图解析式未处理但图能做对的不扣分;作图时没有标注重要点坐标的扣1分.。

【全国百强校】福建省厦门双十中学2015-2016学年高一上学期期中考试化学试题(原卷版)

【全国百强校】福建省厦门双十中学2015-2016学年高一上学期期中考试化学试题(原卷版)

福建省厦门双十中学2015-2016学年高一上学期期中考试化学试题说明:1.本试卷分A、B两卷,A满分100分,B卷满分50分,考试时间120分钟。

2.作答时,请将选择题答案填涂在答题卡上,非选择题写在答题卷相应的位置。

3.可能用到的相对原子质量:H 1 He 4 C 12 N 14 O 16 Al 27 S 32Cl 35.5 Cu 64 Ba 137A卷(100分)一、选择题(本题共16小题,每小题3分,共48分,每小题只有一个正确答案)1.氧化还原反应与四种基本类型反应的关系如图所示,则下列化学反应属于阴影部分的是A.Cl2+2KBr==2Br2+2FeCl3B.2Na2O2+2CO2=2Na2CO3+O2C.4Fe(OH)2+O2+2H2O=4Fe(OH)3Na2CO3+H2O+CO2↑D.2NaHCO2.分类法在化学学科发展中起到了非常重要的作用,下列分类标准合理的是A.根据是否含有氧元素,将物质分为氧化剂和还原剂B.根据是否具有丁达尔现象,将分散系分为溶液、胶体和浊液C.根据水溶液是否能够导电,将物质分为电解质和非电解质D.根据反应中是否有电子转移,将化学反应分为氧化还原反应和非氧化还原反应3.下列实验现象的叙述,正确的是A.钠在氧气中燃烧,火焰呈黄色,产生白色固体B.红热的铜丝在氯气里剧烈燃烧,生成棕黄色的烟C.氢气在氯气中燃烧,发出苍白色火焰,同时产生白烟D.钠投入水中,将沉在水底并熔化成小球,且有气泡产生4.下列有关氯气的叙述中,正确的是A.氯气、氯水、液氯是同一种物质,只是状态不同B.氯水和液氯都可以使干燥的布条褪色C.用氯气消毒过的自来水配制硝酸银溶液时,药品不会变质D.氯水溶液呈浅绿色,且有刺激性气味,说明氯水中有Cl2存在5.下列处置、操作或现象的描述中正确的是A.用pH试纸测量新制氯水的pHB.用托盘天平称量5.57gKCl固体C.金属钠着火燃烧时,用泡沫灭火器灭火D.有大量的氯气泄漏时,应用浸有弱碱性溶液的毛巾捂住口鼻向高处跑6.下列有关胶体的性质说法中正确的是A.溶液澄清透明,胶体浑浊不透明B.加热和搅拌不可能引起胶体聚沉C.将一束强光通过淀粉溶液时,能产生丁达尔现象D.大气中PM2.5(直径≤2.5×10-6m的可吸入颗粒),一定属于胶体7.下列物质放置在空气中,不是因发生氧化还原反应...........而变质的是A.金属钠B.氢氧化钠C.过氧化钠D.氯水8.下列物质中含有自由移动的Cl-的是A.氯化钾溶液B.氯化钠固体C.氯酸钾溶液D.液氯9.在某无色透明的酸性.......溶液中,能共存的离子组是A.Na+、K+、SO42-、HCO3-B.Cu2+、K+、SO42-、NO3-C.Na+、K+、Cl-、NO3-D.Ba2+、K+、SO42-、Cl-10.下列数量的物质中含原子数最多的是是A.0.4mol氧气B.标准状况下5.6L二氧化碳C.4℃时5.4mL水(水的密度为1g/mL)D.10g氦气11.下列物质间的每一个转化,不能..都通过一步反应实现的是A.Ca→CaO→CaCl2B.O2→CuO→Cu(OH)2C.C→CO2→Na2CO3D.NaOH →Na2CO3→NaCl12.下列离子方程式书写正确的是A.氯气通入水中:Cl2+H2O=2H++Cl-+ClO-B.盐酸滴入澄清石灰水中:Ca(OH)2+2H+=Ca2++2H2OC.氢氧化钡溶液与稀硫酸反应:Ba2++SO42-=BaSO4↓D.铜与硝酸银溶液反应:Cu+2Ag+=Cu2++2Ag13.在反应3S+6KOH=2K2S+K2SO3+3H2O中,被还原的硫和被氧化的硫的质量比为:A.2:1 B.1:2 C.3:1 D.1:314.在2009年10月1日,新的饮用矿泉水强制性国家标准《饮用天然矿泉水》正式实施,其中“溴酸盐”(BrO3-) 这一潜在致癌物质被做了严格限制。

2015-2016年福建省厦门市双十中学高一上学期期中数学试卷带答案

2015-2016年福建省厦门市双十中学高一上学期期中数学试卷带答案

2015-2016学年福建省厦门市双十中学高一(上)期中数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置.1.(5分)设全集U是实数集R,M={x|x<1},N={x|0<x<2}都是U的子集,则图中阴影部分所表示的集合是()A.{x|1≤x<2}B.{x|0<x<1}C.{x|x≤0}D.{x|x<2}2.(5分)下列函数中与函数y=x相等的函数是()A.B.y=C.D.y=log22x3.(5分)若函数是奇函数,则a=()A.﹣2 B.2 C.D.4.(5分)给定映射f:(x,y)→(2x+y,x﹣2y),在映射f下,(3,﹣1)的原像为()A.(﹣1,3)B.(5,5) C.(3,﹣1)D.(1,1)5.(5分)已知函数则f(﹣3)的值为()A.1 B.﹣1 C.0 D.﹣96.(5分)已知k,b∈R,则一次函数y=kx+b与反比例函数在同一坐标系中的图象可以是()A. B.C.D.7.(5分)已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<a B.b<c<a C.b<a<c D.a<b<c8.(5分)若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确到0.1)为()A.1.2 B.1.3 C.1.4 D.1.59.(5分)函数是R上的减函数,则实数a的取值范围为()A. B. C.D.10.(5分)当实数k变化时,对于方程(2|x|﹣1)2﹣(2|x|﹣1)﹣k=0的解的判断不正确的是()A.时,无解 B.时,有2个解C.时,有4个解 D.k>0时,有2个解二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在答题卷的相应位置.11.(4分)函数的定义域为.12.(4分)已知f(x)=ax3+bx﹣2,若f(2015)=7,则f(﹣2015)的值为.13.(4分)已知全集U=R,集合A={x|x﹣a≤0},B={x|x2﹣3x+2≤0},且A∪∁U B=R,则实数a的取值范围是.14.(4分)已知函数f(x)=x2+ax+b的零点是﹣3和1,则函数g(x)=log2(ax+b)的零点是.15.(4分)若函数(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.16.(4分)方程x2+﹣1=0的解可视为函数y=x+的图象与函数y=的图象交点的横坐标.若x4+ax﹣9=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是.三、解答题:本大题共6小题,每小题分数见旁注,共76分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答.17.(12分)(1)求值:lg5•lg400+(lg2)2;(2)已知x=log23,求的值.18.(12分)已知集合.(Ⅰ)若a=1,求A∩B;(Ⅱ)若A∩B=∅,求实数a的取值范围.19.(12分)设函数.(Ⅰ)设t=log3x,用t表示f(x),并指出t的取值范围;(Ⅱ)求f(x)的最值,并指出取得最值时对应的x的值.20.(13分)小张周末自己驾车旅游,早上8点从家出发,驾车3h后到达景区停车场,期间由于交通等原因,小张的车所走的路程s(单位:km)与离家的时间t(单位:h)的函数关系式为s(t)=﹣4t(t﹣13).由于景区内不能驾车,小张把车停在景区停车场.在景区玩到17点,小张开车从停车场以60km/h的速度沿原路返回.(Ⅰ)求这天小张的车所走的路程s(单位:km)与离家时间t(单位:h)的函数解析式;(Ⅱ)在距离小张家48km处有一加油站,求这天小张的车途经该加油站的时间.21.(13分)已知函数(p,q为常数)是定义在(﹣1,1)上的奇函数,且.(Ⅰ)求函数f(x)的解析式;(Ⅱ)判断并用定义证明f(x)在(﹣1,1)上的单调性;(Ⅲ)解关于x的不等式f(2x﹣1)+f(x)<0.22.(14分)已知函数f(x)=x2+2x|x﹣a|,其中a∈R.(Ⅰ)当a=﹣1时,在所给坐标系中作出f(x)的图象;(Ⅱ)对任意x∈[1,2],函数f(x)的图象恒在函数g(x)=﹣x+14图象的下方,求实数a的取值范围;(Ⅲ)若关于x的方程f(x)+1=0在区间(﹣1,0)内有两个相异根,求实数a 的取值范围.2015-2016学年福建省厦门市双十中学高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置.1.(5分)设全集U是实数集R,M={x|x<1},N={x|0<x<2}都是U的子集,则图中阴影部分所表示的集合是()A.{x|1≤x<2}B.{x|0<x<1}C.{x|x≤0}D.{x|x<2}【解答】解:由Venn图可知阴影部分对应的集合为N∩(∁U M),∵M={x|x<1},∴∁U M={x|x≥1},又N={x|0<x<2},∴N∩(∁U M)={x|1≤x<2},故选:A.2.(5分)下列函数中与函数y=x相等的函数是()A.B.y=C.D.y=log22x【解答】解:函数y=x的定义域为R,对应关系为y=x.对于A,函数y=的定义域为[0,+∞),故与y=x不是相同函数,故A错误;对于B,函数解析式可化为y=|x|,所以对应关系不同,故B错误;对于C.定义域为(0,+∞),故C错误;对于D,易知函数,该函数的定义域为R,所以该函数与y=x相同.故选:D.3.(5分)若函数是奇函数,则a=()A.﹣2 B.2 C.D.【解答】解:若是奇函数,则f(﹣x)=﹣f(x),即=﹣,即(x+2)(x﹣a)=(x﹣2)(x+a),则x2+(2﹣a)x﹣2a=x2+(a﹣2)x﹣2a,即(2﹣a)x=(a﹣2)x,则2﹣a=a﹣2,得a=2,故选:B.4.(5分)给定映射f:(x,y)→(2x+y,x﹣2y),在映射f下,(3,﹣1)的原像为()A.(﹣1,3)B.(5,5) C.(3,﹣1)D.(1,1)【解答】银:设在映射f下,(3,﹣1)的原像为:(x,y),则2x+y=3,x﹣2y=﹣1,解得:x=1,y=1,故在映射f下,(3,﹣1)的原像为:(1,1)故选:D.5.(5分)已知函数则f(﹣3)的值为()A.1 B.﹣1 C.0 D.﹣9【解答】解:函数,则f(﹣3)=﹣f(﹣2)=f(﹣1)=﹣f(0)=f(1)=1.故选:A.6.(5分)已知k,b∈R,则一次函数y=kx+b与反比例函数在同一坐标系中的图象可以是()A. B.C.D.【解答】解:当k<0,b<0时,一次函数y=kx+b的图象,反比例函数,A、B、C、D不成立.当k<0,b>0,一次函数y=kx+b的图象,反比例函数,A不成立,B成立,C、D不成立.当k>0,b<0时,一次函数y=kx+b的图象,反比例函数,A、B、C、D不成立.当k>0,b>0时,一次函数y=kx+b的图象,反比例函数,A、B、C、D不成立.当k<0,b>0,一次函数y=kx+b的图象,反比例函数,B成立;故选:B.7.(5分)已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<a B.b<c<a C.b<a<c D.a<b<c【解答】解:f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,要得函数在(0,+∞)上是减函数,图象越靠近y轴,图象越靠上,即自变量的绝对值越小,函数值越大,由于0<0.20.6<1<log47<log49=log23,可得b<a<c,故选:C.8.(5分)若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确到0.1)为()A.1.2 B.1.3 C.1.4 D.1.5【解答】解:由图中参考数据可得f(1.43750)>0,f(1.40625)<0,又因为题中要求精确到0.1,所以近似根为1.4故选:C.9.(5分)函数是R上的减函数,则实数a的取值范围为()A. B. C.D.【解答】解:∵函数是R上的减函数,∴,解得:a∈,故选:D.10.(5分)当实数k变化时,对于方程(2|x|﹣1)2﹣(2|x|﹣1)﹣k=0的解的判断不正确的是()A.时,无解 B.时,有2个解C.时,有4个解 D.k>0时,有2个解【解答】解:令t=2|x|﹣1,则t∈[0,+∞),方程即t2﹣t﹣k=0,即k=t2﹣t.由于t2﹣t=(t﹣)2﹣≥﹣,当t=时,取得最小值﹣,当k<﹣时,方程无解,故A正确;当k=﹣时,方程有两解,且为x=±log2,故B正确;当k>0时,方程t2﹣t﹣k=0的判别式△=1+4k>0,两根异号,则方程有两解,故D正确;当k=0时,方程即为t2﹣t=0,求得t=0,或t=1,此时x=0或±1,有三个解,故C不正确.故选:C.二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在答题卷的相应位置.11.(4分)函数的定义域为{x|x≤2且x≠1} .【解答】解:根据题意,要使得函数有意义,要满足,故可知答案为{x|x≤2且x≠1}.故答案为:{x|x≤2且x≠1}12.(4分)已知f(x)=ax3+bx﹣2,若f(2015)=7,则f(﹣2015)的值为﹣11.【解答】解:∵f(x)=ax3+bx﹣2,∴f(x)+2=ax3+bx,是奇函数,设g(x)=f(x)+2,则g(﹣x)=﹣g(x),即f(﹣x)+2=﹣(f(x)+2)=﹣2﹣f(x),即f(﹣x)=﹣4﹣f(x),若f(2015)=7,则f(﹣2015)=﹣4﹣f(2015)=﹣4﹣7=﹣11,故答案为:﹣11.13.(4分)已知全集U=R,集合A={x|x﹣a≤0},B={x|x2﹣3x+2≤0},且A∪∁U B=R,则实数a的取值范围是a≥2.【解答】解:∵全集U=R,B={x|x2﹣3x+2≤0}={x|1≤x≤2},∴∁U B={x|x<1或x>2}.∵A={x|x﹣a≤0}={x|x≤a},A∪(∁U B)=R,∴a≥2,则a的取值范围为a≥2.故答案为:a≥2.14.(4分)已知函数f(x)=x2+ax+b的零点是﹣3和1,则函数g(x)=log2(ax+b)的零点是2.【解答】解:∵函数f(x)=x2+ax+b的零点是﹣3和1,∴方程x2+ax+b=0的根是﹣3和1;∴﹣3+1=﹣a,﹣3•1=b;解得a=2,b=﹣3;故令函数g(x)=log2(2x﹣3)=0解得,x=2;故答案为:2.15.(4分)若函数(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是(1,] .【解答】解:x≤2时,﹣x+6≥4;∴f(x)的值域为[4,+∞);∴x>2时,2+log a x≥4恒成立;∴log a x≥2,a>1;∴log a2≥2;∴2≥a2;解得;∴实数a的取值范围为.故答案为:.16.(4分)方程x2+﹣1=0的解可视为函数y=x+的图象与函数y=的图象交点的横坐标.若x4+ax﹣9=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是(﹣∞,﹣24)∪(24,+∞).【解答】解:如图x4+ax﹣9=0的各个实根x1,x2,…,x k(k≤4)可看做是函数y=x3+a的图象与函数y=的图象的交点C,D的横坐标∵函数y=的图象与y=x的交点为A(3,3),B(﹣3,﹣3),函数y=x3+a的图象可看做是将函数y=x3纵向平移|a|的结果,其图象为关于(0,a)对称的增函数当函数y=x3+a的图象过点A(3,3)时,a=﹣24当函数y=x3+a的图象过点B(﹣3,﹣3)时,a=24∴要使函数y=x3+a的图象与函数y=的图象的交点C、D均在直线y=x的同侧只需使函数y=x3+a的图象与y=x的交点横坐标大于3或小于﹣3∴数形结合可得a<﹣24或a>24故答案为(﹣∞,﹣24)∪(24,+∞)三、解答题:本大题共6小题,每小题分数见旁注,共76分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答.17.(12分)(1)求值:lg5•lg400+(lg2)2;(2)已知x=log23,求的值.【解答】解:(1)lg5•lg400+(lg2)2=lg5(lg4+lg100)+=2lg5•lg2+2lg5+2lg22=2lg2(lg5+lg2)+2lg5=2lg2+2lg5=2(lg5+lg2)=2;(2)∵x=log23,∴===.18.(12分)已知集合.(Ⅰ)若a=1,求A∩B;(Ⅱ)若A∩B=∅,求实数a的取值范围.【解答】解:(Ⅰ)当a=1时,A={x|0<x<5},由<2x﹣1<4,得﹣2<x﹣1<2,解得:﹣1<x<3,∴B={x|﹣1<x<3},则A∩B={x|0<x<3};(Ⅱ)若A=∅,则a﹣1≥3a+2,解得:a≤﹣;若A≠∅,则a>﹣,由A∩B=∅,得到a﹣1≥3或3a+2≤﹣1,解得:﹣<a≤﹣1或a≥4,综上,实数a的取值范围是{x|x≤﹣1或x≥4}.19.(12分)设函数.(Ⅰ)设t=log3x,用t表示f(x),并指出t的取值范围;(Ⅱ)求f(x)的最值,并指出取得最值时对应的x的值.【解答】解:(Ⅰ)设t=log3x,由,即有﹣2≤log3x≤3,即﹣2≤t≤3.此时,f(x)=﹣log3(9x)•(log3x﹣1)=﹣(log3x+2)(log3x﹣1)=﹣t2﹣t+2,即f(x)=﹣t2﹣t+2,其中﹣2≤t≤3;(Ⅱ)由(Ⅰ)可得,,又﹣2≤t≤3,函数y=﹣t2﹣t+2在单调递增,在单调递减,所以当,即,即时,f(x)取得最大值;所以当t=3,即log3x=3,即x=27时,f(x)取得最小值﹣10.20.(13分)小张周末自己驾车旅游,早上8点从家出发,驾车3h后到达景区停车场,期间由于交通等原因,小张的车所走的路程s(单位:km)与离家的时间t(单位:h)的函数关系式为s(t)=﹣4t(t﹣13).由于景区内不能驾车,小张把车停在景区停车场.在景区玩到17点,小张开车从停车场以60km/h的速度沿原路返回.(Ⅰ)求这天小张的车所走的路程s(单位:km)与离家时间t(单位:h)的函数解析式;(Ⅱ)在距离小张家48km处有一加油站,求这天小张的车途经该加油站的时间.【解答】解:(Ⅰ)依题意得,当0≤t≤3时,s(t)=﹣4t(t﹣13),∴s(3)=﹣4×3×(3﹣13)=120.(2分)即小张家距离景点120 km,小张的车在景点逗留时间为17﹣8﹣3=6(h).(3分)∴当3<t≤9时,s(t)=120,(4分)小张从景点回家所花时间为=2(h),(5分)∴当9<t≤11时,s(t)=120+60(t﹣9)=60t﹣420.(7分)综上所述,这天小张的车所走的路程s(t)=(8分)(Ⅱ)当0≤t≤3时,令﹣4t(t﹣13)=48,得t2﹣13t+12=0,解得t=1或t=12(舍去),(10分)当9<t≤11时,令60t﹣420=2×120﹣48=192,解得t=.(12分)答:小张这天途经该加油站的时间分别为9点和18时(12分).(13分)21.(13分)已知函数(p,q为常数)是定义在(﹣1,1)上的奇函数,且.(Ⅰ)求函数f(x)的解析式;(Ⅱ)判断并用定义证明f(x)在(﹣1,1)上的单调性;(Ⅲ)解关于x的不等式f(2x﹣1)+f(x)<0.【解答】解:(Ⅰ)依题意,,解得p=1,q=0,所以.(Ⅱ)函数f(x)在(﹣1,1)上单调递增,证明如下:任取﹣1<x1<x2<1,则x1﹣x2<0,﹣1<x1x2<1,从而f(x1)﹣f(x2)=﹣==<0,所以f(x1)<f(x2),所以函数f(x)在(﹣1,1)上单调递增.(Ⅲ)原不等式可化为:f(2x﹣1)<﹣f(x),即f(2x﹣1)<f(﹣x),由(Ⅱ)可得,函数f(x)在(﹣1,1)上单调递增,所以,解得,即原不等式解集为.22.(14分)已知函数f(x)=x2+2x|x﹣a|,其中a∈R.(Ⅰ)当a=﹣1时,在所给坐标系中作出f(x)的图象;(Ⅱ)对任意x∈[1,2],函数f(x)的图象恒在函数g(x)=﹣x+14图象的下方,求实数a的取值范围;(Ⅲ)若关于x的方程f(x)+1=0在区间(﹣1,0)内有两个相异根,求实数a 的取值范围.【解答】解:(Ⅰ)依题意当a=﹣1时,,据此可作出图象如下:(Ⅱ)由题意,对任意x∈[1,2],f(x)<g(x),即f(x)+x<14恒成立,只需(f(x)+x)max<14.另一方面,f(x)=,即f(x)=.当a≥0时,f(x)在(﹣∞,a)和(a,+∞)上均递增,∵f(a)=a2,则f(x)在R上递增,当a<0时,f(x)在(﹣∞,a)和上递增,在上递减,故f(x)在x∈[1,2]上恒单调递增,从而y=f(x)+x在x∈[1,2]上也恒单调递增,则(f(x)+x)max=f(2)+2=4+4|2﹣a|+2<14,即|2﹣a|<2,解得0<a<4,故实数a的取值范围是(0,4).(Ⅲ)记F(x)=f(x)+1,考虑F(x)在区间(﹣1,0)内有两个不同的零点即可.此时,,即,则由(Ⅱ)可知,当a≥0时,F(x)=f(x)+1在R上递增,方程f(x)+1=0在区间(﹣1,0)内至多有一个根,不符合要求,舍去;故a<0.当x≤a时,令F(x)=0,可得(不符合x≤a,舍去)或,但,不在区间(﹣1,0)内.当x>a时,F(x)=3x2﹣2ax+1在区间(﹣1,0)内必有两个不同的零点,从而(﹣1,0)⊆(a,+∞),所以,解得.。

厦门双十中学部数学高一上期中经典习题(培优练)

厦门双十中学部数学高一上期中经典习题(培优练)

一、选择题1.(0分)[ID :11822]函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,42.(0分)[ID :11800]设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2B .4C .6D .83.(0分)[ID :11798]在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件4.(0分)[ID :11782]设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( )A .1-B .13-C .12-D .135.(0分)[ID :11775]已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>6.(0分)[ID :11774]若函数()(1)(0x xf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .7.(0分)[ID :11789]设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( )A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =8.(0分)[ID :11786]若01a b <<<,则b a , a b , log b a , 1log ab 的大小关系为( )A .1log log bab aa b a b >>>B .1log log a bb ab a b a >>>C .1log log b ab aa ab b >>>D .1log log a bb aa b a b >>>9.(0分)[ID :11767]若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<10.(0分)[ID :11766]函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)11.(0分)[ID :11748]已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),af 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<12.(0分)[ID :11743]设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13.(0分)[ID :11734]已知函数()f x =2log (1),(1,3)4,[3,)1x x x x ⎧+∈-⎪⎨∈+∞⎪-⎩,则函数[]()()1g x f f x =-的零点个数为( )A .1B .3C .4D .614.(0分)[ID :11732]方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)15.(0分)[ID :11768]已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( ) A .a c b >> B .b c a >> C .b a c >> D .a b c >>二、填空题16.(0分)[ID :11912]已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += .17.(0分)[ID :11911]已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.18.(0分)[ID :11907]已知函数()()22log f x x a =+,若()31f =,则a =________.19.(0分)[ID :11906]1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.20.(0分)[ID :11892]若1∈{}2,a a, 则a 的值是__________21.(0分)[ID :11887]已知函数()2()lg 2f x x ax =-+在区间(2,)+∞上单调递增,则实数a 的取值范围是______.22.(0分)[ID :11873]函数y =√1−x 2+lg(2cosx −1)的定义域为______________. 23.(0分)[ID :11867]已知函数1)4f x +=-,则()f x 的解析式为_________. 24.(0分)[ID :11839]用{}min ,,a b c 表示,,a b c 三个数中最小值,则函数{}()min 41,4,8f x x x x =++-+的最大值是 .25.(0分)[ID :11837]已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为___________. 三、解答题26.(0分)[ID :12016]已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且(0)1f =.(1)求()f x 的解析式;(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 27.(0分)[ID :12012]已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2x g x k =-;(1)求m 的值;(2)当[1,2]x ∈时,记()f x 、()g x 的值域分别是A 、B ,若A B A ⋃=,求实数k 的取值范围;28.(0分)[ID :11974]已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.29.(0分)[ID :11966]我校高一年级某研究小组经过调查发现:提高北环隧道的车辆通行能力可有效改善交通状况,在一般情况下,隧道内的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米,车流密度指每千米道路上车辆的数量)的函数.当隧道内的车流密度达到210辆/千米时,将造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为60千米/小时,研究表明:当30210x ≤≤时,车流速度v 是车流密度x 的一次函数.(1)求函数()v x 的表达式;(2)当车流密度为多大时,车流量(单位时间内通过某观测点的车辆数,单位:辆/小时) ()()f x x v x =⋅可以达到最大,并求出最大值.30.(0分)[ID :11952]设a 为实数,函数()()21f x x x a x R =+-+∈.(1)若函数()f x 是偶函数,求实数a 的值; (2)若2a =,求函数()f x 的最小值;(3)对于函数()y m x =,在定义域内给定区间,a b ,如果存在()00x a x b <<,满足()0()()m b m a m x b a-=-,则称函数()m x 是区间,a b 上的“平均值函数”,0x 是它的一个“均值点”.如函数2yx 是[]1,1-上的平均值函数,0就是它的均值点.现有函数()21g x x mx =-++是区间[]1,1-上的平均值函数,求实数m 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.C 3.B 4.B 5.A 6.A 7.D 8.D 9.B 10.B 11.B 12.C 13.C 14.C 15.B二、填空题16.【解析】若则在上为增函数所以此方程组无解;若则在上为减函数所以解得所以考点:指数函数的性质17.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属18.-7【解析】分析:首先利用题的条件将其代入解析式得到从而得到从而求得得到答案详解:根据题意有可得所以故答案是点睛:该题考查的是有关已知某个自变量对应函数值的大小来确定有关参数值的问题在求解的过程中需19.2【解析】【分析】先求f(2)再根据f(2)值所在区间求f(f(2))【详解】由题意f(2)=log3(22–1)=1故f(f(2))=f(1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数20.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填21.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得22.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx-1>0⇒-1≤x≤1cosx>12cosx>12⇒x∈-π3+2kππ3+2kπ23.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点24.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题25.【解析】【分析】分两种情况讨论分别利用分段函数的解析式求解方程从而可得结果【详解】因为所以当时解得:舍去;当时解得符合题意故答案为【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断.【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1, f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B . 【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.2.C解析:C 【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.3.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.4.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-,即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.5.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .6.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.7.D解析:D 【解析】试题分析:奇函数()f x 在[]1,1-上是增函数, 且()11f -=-,在[]1,1-最大值是21,121t at ∴≤-+,当0t ≠时, 则220t at -≥成立, 又[]1,1a ∈-,令()[]22,1,1r a ta t a =-+∈-, 当0t >时,()r a 是减函数, 故令()10r ≥解得2t ≥, 当0t <时,()r a 是增函数, 故令()10r -≥,解得2t ≤-,综上知,2t ≥或2t ≤-或0t =,故选D. 考点:1、函数的奇偶性与单调性能;2、不等式恒成立问题.【方法点晴】本题主要考查函数的奇偶性与单调性能、不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在yg x 上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得t 的范围.8.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 9.B解析:B 【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.10.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.11.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.12.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.13.C解析:C 【解析】 【分析】令[]()()10g x f f x =-=,可得[]()1f f x =,解方程()1f x =,结合函数()f x 的图象,可求出答案. 【详解】令[]()()10g x f f x =-=,则[]()1f f x =,令()1f x =,若2log (1)1x +=,解得1x =或12x =-,符合(1,3)x ∈-;若411x =-,解得5x =,符合[3,)x ∈+∞.作出函数()f x 的图象,如下图,(]1,0x ∈-时,[)()0,f x ∈+∞;()0,3x ∈时,()()0,2f x ∈;[3,)x ∈+∞时,(]()0,2f x ∈.结合图象,若()1f x =,有3个解;若1()2f x =-,无解;若()5f x =,有1个解. 所以函数[]()()1g x f f x =-的零点个数为4个. 故选:C.【点睛】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.14.C解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.15.B解析:B 【解析】 【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系. 【详解】()()f x f x -=,则函数()y f x =为偶函数,函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.二、填空题16.【解析】若则在上为增函数所以此方程组无解;若则在上为减函数所以解得所以考点:指数函数的性质解析:32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-.考点:指数函数的性质.17.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】 【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩,由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.18.-7【解析】分析:首先利用题的条件将其代入解析式得到从而得到从而求得得到答案详解:根据题意有可得所以故答案是点睛:该题考查的是有关已知某个自变量对应函数值的大小来确定有关参数值的问题在求解的过程中需解析:-7 【解析】分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.19.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.20.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填解析:-1 【解析】 因为{}21,a a∈,所以1a =或21a=,当1a =时,2a a =,不符合集合中元素的互异性,当21a =时,解得1a =或1a =-,1a =-时2a a ≠,符合题意.所以填1a =-.21.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得 解析:(],3-∞【解析】 【分析】根据复合函数单调性同增异减,以及二次函数对称轴列不等式组,解不等式组求得实数a 的取值范围. 【详解】要使()f x 在()2,+∞上递增,根据复合函数单调性,需二次函数22y x ax =-+对称轴在2x =的左边,并且在2x =时,二次函数的函数值为非负数,即2222220a a ⎧≤⎪⎨⎪-+≥⎩,解得3a ≤.即实数a 的取值范围是(],3-∞.【点睛】本小题主要考查复合函数的单调性,考查二次函数的性质,属于中档题.22.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x ∈-π3+2kππ3+2kπ 解析:[−1,1]【解析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】由题意得:{1−x 2≥02cosx −1>0 ⇒{−1≤x ≤1cosx >12 cosx >12 ⇒x ∈(−π3+2kπ,π3+2kπ),k ∈Z ∴函数定义域为:[−1,1] 【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.23.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点 解析:2()23(1)f x x x x =--≥【解析】 【分析】利用换元法求解析式即可 【详解】令11t =≥,则()21x t =-故()()214f t t =--=223(1)t t t --≥ 故答案为2()23(1)f x x x x =--≥ 【点睛】本题考查函数解析式的求法,换元法是常见方法,注意新元的范围是易错点24.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题解析:6 【解析】试题分析:由414,418,48x x x x x x +>++>-++>-+分别解得1, 1.4,2x x x >>>,则函数()8,2{4,1241,1x x f x x x x x -+≥=+<<+≤则可知当2x =时,函数{}()min 41,4,8f x x x x =++-+取得最大值为6 考点:分段函数的最值问题25.【解析】【分析】分两种情况讨论分别利用分段函数的解析式求解方程从而可得结果【详解】因为所以当时解得:舍去;当时解得符合题意故答案为【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考解析:34a =-【分析】分0a >,0a <两种情况讨论,分别利用分段函数的解析式求解方程()()11f a f a -=+,从而可得结果.【详解】 因为2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩所以,当0a >时,()()2(1)(11)21a f a f a a a a -+=-+=⇒--+,解得:3,2a =-舍去;当0a <时,()()2(1)(11)21a f a f a a a a ++=--=⇒--+,解得34a =-,符合题意,故答案为34-. 【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.三、解答题 26.(1)2()1f x x x =-+;(2)39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3){}0[1,4)⋃.【解析】试题分析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,列出方程,求得,,a b c 的值,即可求解函数的解析式;(2)由()g x ,根据函数()g x 在[1,5]-上是单调函数,列出不等式组,即可求解实数t 的取值范围;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,即要求函数()h x 在(1,2)-上有唯一的零点,分类讨论即可求解实数m 的取值范围.试题解析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,故220a a b =⎧⎨+=⎩, 又由(0)1f =得1c =,解得1a =,1b =-,1c =,所以2()1f x x x =-+;(2)因为22221(21)()()2(21)1124t t g x f x tx x t x ++⎛⎫=-=-++=-+- ⎪⎝⎭, 又函数()g x 在[1,5]-上是单调函数,故2111t +≤-或2151t +≥,解得32t ≤-或92t ≥,故实数t 的取值范围是39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,(1,2)x ∈-,即要求函数()h x 在(1,2)-上有唯一的零点, ①(1)0h -=,则4m =,代入原方程得1x =-或3,不合题意;②若(2)0h =,则1m =,代入原方程得0x =或2,满足题意,故1m =成立; ③若0∆=,则0m =,代入原方程得1x =,满足题意,故0m =成立; ④若4m ≠且1m ≠且0m ≠时,由(1)40{(2)10h m h m -=->=-<得14m <<,综上,实数m 的取值范围是{}0[1,4)⋃. 考点:函数的解析式;函数的单调性及其应用.27.(1) 0 ; (2) [0,1] 【解析】 【分析】(1)根据幂函数的定义有2(=11)m -,求出m 的值,然后再根据单调性确定出m 的值. (2)根据函数()f x 、()g x 的单调性分别求出其值域,再由A B A ⋃=得B A ⊆,再求k 的取值范围. 【详解】(1) 函数2242()(1)mm f x m x -+=-为幂函数,则2(=11)m -,解得:0m =或2m =.当0m =时,2()f x x =在(0,)+∞上单调递增,满足条件. 当2m =时,2()f x x -=在(0,)+∞上单调递减,不满足条件. 综上所述0m =.(2)由(1)可知, 2()f x x =,则()f x 、()g x 在[1,2]单调递增,所以()f x 在[1,2]上的值域[1,4]A =,()g x 在[1,2]的值域[2,4]B k k =--. 因为A B A ⋃=,即B A ⊆,所以2144k k -≥⎧⎨-≤⎩,即10k k ≥⎧⎨≤⎩,所以01k ≤≤.所以实数k 的取值范围是[0,1].【点睛】本题考查幂函数的概念,函数值域和根据集合的包含关系求参数的范围,属于基础题.28.(1)1()f x x -=;(2)存在,6a =.【解析】【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论.【详解】(1)因为幂函数2242()(22)mm f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+, 假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减, 所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立. 【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准.29.(1) 60,030()170,302103x v x x x ≤≤⎧⎪=⎨-+≤≤⎪⎩;(2) 当车流密度为105辆/小时车流量达到最大值3675【解析】 【分析】(1)根据题意可知, ()v x 为分段函数,且当030x ≤≤时()60v x =,再根据当30x =与210x =时()v x 的值,设()v x ax b =+代入求解即可.(2)根据(1)中的分段函数解析式,求出()()f x x v x =⋅的解析式,再分段求解函数的最大值分析即可. 【详解】(1)由题意可知, 当030x ≤≤时()60v x =,当210x =时, ()0v x =,又当30210x ≤≤时,车流速度v 是车流密度x 的一次函数,故设()v x ax b =+,所以02106030a b a b =+⎧⎨=+⎩,解得1370a b ⎧=-⎪⎨⎪=⎩ ,故当30210x ≤≤时,1()703v x x =-+. 故60,030()170,302103x v x x x ≤≤⎧⎪=⎨-+≤≤⎪⎩. (2)由题, 260,030()()170,302103x x f x x v x x x x ≤≤⎧⎪=⋅=⎨-+≤≤⎪⎩,故当030x ≤≤时,()f x 最大值为(30)1800f =. 当30210x ≤≤时, 21703()f x x x -+=开口向下且对称轴为70105123x =-=⎛⎫⨯- ⎪⎝⎭,故此时()f x 最大值为2(105)10517031053675f -⨯+⨯==.综上,当车流密度为105辆/小时车流量达到最大值3675 【点睛】本题主要考查了分段函数与二次函数在实际中的模型运用,需要根据题意设函数方程求解参数,再根据二次函数性质求最值,属于中档题.30.(1);(2);(3)()0,2【解析】试题分析:(1)考察偶函数的定义,利用通过整理即可得到;(2)此函数是一个含有绝对值的函数,解决此类问题的基本方法是写成分段函数的形式,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+<,要求函数的最小值,要分别在每一段上求出最小值,取这两段中的最小值;(3)此问题是一个新概念问题,这种类型都可转化为我们学过的问题,此题定义了一个均值点的概念,我们通过概念可把题目转化为“存在()01,1x ∈-,使得()0g x m =”从而转化为一元二次方程有解问题.试题解析:解:(1)()f x 是偶函数,()()f x f x ∴-=在R 上恒成立,即()2211x x a x x a -+--+=+-+,所以x a x a +=-得0ax =x R ∈0a ∴=(2)当2a =时,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+<所以()f x 在[)2,+∞上的最小值为()25f =, ()f x 在(),2-∞上的的最小值为f ()=, 因为<5,所以函数()f x 的最小值为. (3)因为函数()21g x x mx =-++是区间[]1,1-上的平均值函数,所以存在()01,1x ∈-,使()0(1)(1)1(1g g g x --=--) 而(1)(1)1(1g g m --=--),存在()01,1x ∈-,使得()0g x m = 即关于x 的方程21x mx m -++=在()1,1-内有解;由21x mx m -++=得210x mx m -+-=解得121,1x x m ==-所以111m -<-<即02m <<故m 的取值范围是()0,2考点:函数奇偶性定义;分段函数求最值;含参一元二次方程有解问题.。

《解析》福建省厦门双十中学2014-2015学年高一上学期期中数学试卷Word版含解析

《解析》福建省厦门双十中学2014-2015学年高一上学期期中数学试卷Word版含解析

2014-2015学年福建省厦门双十中学高一(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)Q为有理数集,设集合A={x∈Q|x>﹣1},则()A.φ∉A B.∉A C.∈A D.{}⊆A2.(3分)如图,U是全集,M、P是U的子集,则阴影部分所表示的集合是()A.M∩(∁U P)B.M∩P C.(∁U M)∩P D.(∁U M)∩(∁U P)3.(3分)函数f(x)=的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2)D. [1,+∞)4.(3分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(b,c)和(c,+∞)内B.(﹣∞,a)和(a,b)内C.(a,b)和(b,c)内D.(﹣∞,a)和(c,+∞)内5.(3分)设a=20.3,b=0.32,c=log20.3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a6.(3分)已知函数f(x)满足f(x﹣1)=lgx,则不等式f(x)<0的解集为()A.(﹣∞,1)B.(1,2)C.(﹣∞,0)D.(﹣1,0)7.(3分)已知函数f(x)=log2x的反函数为g(x),则g(1﹣x)的图象为()A.B.C.D.8.(3分)若函数f(x)=(m2﹣m﹣1)x m是幂函数,则f(x)一定()A.是偶函数B.是奇函数C.在x∈(﹣∞,0)上单调递减D.在x∈(0,+∞)上单调递减9.(3分)某渔场鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际的养殖量x要小于m,留出适当的空闲量,已知鱼群的年增加量y(吨)和实际养殖量x(吨)与空闲率(空闲量与最大养殖量的比值叫空闲率)的乘积成正比(设比例系数k>0),则鱼群年增长量的最大值为()A.B.C.D.10.(3分)已知函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]内,函数g(x)=f(x)﹣log m(x+2)有两个零点,则实数m的取值范围是()A.(0,)B.(0,]C.[3,+∞)D.(1,3]二、填空题:本大题4小题,每小题4分,共16分.把答案填在答题卡相应位置.11.(4分)f(x)的图象如图,则f(x)的值域为.12.(4分)若lg2=a,lg3=b,则log43=.(用a,b表示)13.(4分)若B={﹣1,3,5},试写出一个集合A=,使得f:x→2x﹣1是A到B的映射.14.(4分)计算机成本不断降低,若每隔3年计算机价格降低原来的,现在价格为8100的计算机,则9年后价格可将为.15.(4分)已知函数f(x)=,某同学利用计算器,算得f(x)的部分与x的值如表:x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …f(x)…﹣0.4697 ﹣0.4412 ﹣0.3889 ﹣0.30 ﹣0.1667 00.1667 0.30 0.3889 …请你通过观察,研究后,描述出关于f(x)的正确的一个性质(不包括定义域)16.(4分)关于函数f(x)=(a>0,a≠1),有以下命题:①函数图象关于轴对称;②当a>1时,函数在(1,+∞)上为增函数;③当0<a<1时,函数有最大值,且最大值为a2;④函数的值域为(a2,+∞).其中正确命题的序号是.(写出所有正确命题的序号)三、解答题(本大题共6小题,满分52分,解答题写出必要的文字说明,推演步骤.)17.(8分)已知集合M={x|﹣ax2+2x+1=0}只有一个元素,,B={y|y=﹣x2+2x﹣1}.(1)求A∩B;(2)设N是由a可取的所有值组成的集合,试判断N与A∩B的关系.18.(8分)通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:f(x)=(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?19.(8分)已知函数f(x)=4x﹣a•2x+1﹣2.(Ⅰ)若a=1,求f(log23)的值;(Ⅱ)某同学研究的值域时的过程如下,请你判断是否正确,如果不正确,请写出正确的过程.f(x)=(2x)2﹣2a•2x﹣2=(2x﹣a)2﹣a2﹣2∴f(x)的值域为[﹣a2﹣2,+∞).20.(8分)函数f(x)=x2和g(x)=log3(x+1)的部分图象如图所示,设两函数的图象交于点O(0,0),A(x0,y0).(Ⅰ)请指出图中曲线C1,C2分别对应哪一个函数?(Ⅱ)求证x0∈(,1);(Ⅱ)请通过直观感知,求出使f(x)>g(x)+a对任何1<x<8恒成立时,实数a的取值范围.21.(10分)定义在(0,+∞)函数f(x)满足:①当时x>1,f(x)<﹣2;②对任意x,y∈(0,+∞),总有f(xy)=f(x)+f(y)+2.(Ⅰ)求出f(1)的值;(Ⅱ)解不等式f(x)+f(x﹣1)>﹣4;(Ⅲ)写出一个满足上述条件的具体函数(不必说明理由,只需写出一个就可以).22.(10分)已知函数f(x)=为偶函数.(Ⅰ)求实数a的值;(Ⅱ)判断f(x)的单调性,并证明你的判断.(Ⅲ)是否存在实数λ,使得当x∈[,](m>0,n>0)时,函数f(x)的值域为[2﹣λm,2﹣λn],若存在,求出λ的取值范围,若不存在说明理由.2014-2015学年福建省厦门双十中学高一(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)Q为有理数集,设集合A={x∈Q|x>﹣1},则()A.φ∉A B.∉A C.∈A D.{}⊆A考点:元素与集合关系的判断.专题:计算题;集合.分析:注意到集合A中的元素是有理数,从而判断.解答:解:由题意,∅⊆A,∉A,故选B.点评:本题考查了元素与集合的关系及集合与集合的关系,属于基础题.2.(3分)如图,U是全集,M、P是U的子集,则阴影部分所表示的集合是()A.M∩(∁U P)B.M∩P C.(∁U M)∩P D.(∁U M)∩(∁U P)考点:Venn图表达集合的关系及运算.专题:计算题.分析:U为全集,M,P是集合U的子集,分析阴影部分元素满足的性质,可得答案.解答:解:由已知中阴影部分在集合M中,而不在集合P中故阴影部分所表示的元素属于M,不属于P(属于N的补集)即(C U P)∩M故选A.点评:本题考查了Venn图表达集合的关系及集合运算,其中正确理解阴影部分元素满足的性质是解答本题的关键.3.(3分)函数f(x)=的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2)D. [1,+∞)考点:函数的定义域及其求法.专题:计算题.分析:利用分式分母不为零,偶次方根非负,得到不等式组,求解即可.解答:解:由题意解得x∈[1,2)∪(2,+∝)故选A点评:本题是基础题,考查函数定义域的求法,注意分母不为零,偶次方根非负,是解题的关键.4.(3分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(b,c)和(c,+∞)内B.(﹣∞,a)和(a,b)内C.(a,b)和(b,c)内D.(﹣∞,a)和(c,+∞)内考点:函数零点的判定定理.专题:函数的性质及应用.分析:由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.解答:解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f(c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选C.点评:熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.5.(3分)设a=20.3,b=0.32,c=log20.3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a考点:对数值大小的比较.专题:计算题.分析:要比较三个数字的大小,可将a,b,c与中间值0,1进行比较,从而确定大小关系.解答:解:∵0<0.32<1log20.3<020.3>1∴log20.3<0.32<20.3,即c<b<a故选B.点评:本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.6.(3分)已知函数f(x)满足f(x﹣1)=lgx,则不等式f(x)<0的解集为()A.(﹣∞,1)B.(1,2)C.(﹣∞,0)D.(﹣1,0)考点:对数函数的图像与性质.专题:函数的性质及应用.分析:求出函数f(x)的解析式,然后再求不等式f(x)<0的解集.解答:解:令x﹣1=t,∴x=t+1,t+1>0,所以f(t)=lg(t+1),函数f(x)的解析式为:f(x)=lg(x+1),不等式f(x)<0化为lg(x+1)<0即:lg(x+1)<0所以不等式的解集为:(﹣1,0)故选D.点评:本题考查其他不等式的解法,对数的运算性质,考查计算能力,是基础题.7.(3分)已知函数f(x)=log2x的反函数为g(x),则g(1﹣x)的图象为()A.B.C.D.考点:反函数.专题:函数的性质及应用.分析:函数f(x)=log2x的反函数为g(x)=2x,可得g(1﹣x)=21﹣x=,利用指数函数的单调性及其x=0时的函数值即可得出.解答:解:函数f(x)=log2x的反函数为g(x)=2x,则g(1﹣x)=21﹣x=,当x=0时,g(1)=1,再利用单调性可知图象为C.故选:C.点评:本题考查了互为反函数的求法、指数函数的单调性,属于基础题.8.(3分)若函数f(x)=(m2﹣m﹣1)x m是幂函数,则f(x)一定()A.是偶函数B.是奇函数C.在x∈(﹣∞,0)上单调递减D.在x∈(0,+∞)上单调递减考点:幂函数的概念、解析式、定义域、值域.专题:函数的性质及应用.分析:根据幂函数的定义得m2﹣m﹣1=1求出m的值,再判断出函数f(x)的奇偶性、单调区间,即可得到正确答案.解答:解:因为函数f(x)=(m2﹣m﹣1)x m是幂函数,所以m2﹣m﹣1=1,即m2﹣m﹣2=0,解得m=2或m=﹣1,即f(x)=x2或,因为f(x)=x2是偶函数,在(﹣∞,0)上递减,在(0,+∞)上递增,是奇函数,在(﹣∞,0),(0,+∞)上递减,所以f(x)一定在(﹣∞,0)上递减,故选:C.点评:本题考查幂函数的定义,以及幂函数的性质,属于基础题.9.(3分)某渔场鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际的养殖量x要小于m,留出适当的空闲量,已知鱼群的年增加量y(吨)和实际养殖量x(吨)与空闲率(空闲量与最大养殖量的比值叫空闲率)的乘积成正比(设比例系数k>0),则鱼群年增长量的最大值为()A.B.C.D.考点:函数最值的应用.专题:应用题;函数的性质及应用.分析:由题意可得,y=kx•,(k>0,0<x<m),利用基本不等式求最值.解答:解:由题意可得,y=kx•,(k>0,0<x<m),≤()2=,(当且仅当x=m﹣x,即x=时,等号成立)故选B.点评:本题考查了实际问题转化为数学问题的能力,属于中档题.10.(3分)已知函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]内,函数g(x)=f(x)﹣log m(x+2)有两个零点,则实数m的取值范围是()A.(0,)B.(0,]C.[3,+∞)D.(1,3]考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:把函数的零点转化为两函数图象的交点,求出函数f(x)的解析式,利用数形结合即可得到结论.解答:解:∵f(x)+1=,当x∈[0,1]时,f(x)=x,∴x∈(﹣1,0)时,x+1∈(0,1),则f(x)+1==,∴f(x)═﹣1,若函数g(x)=f(x)﹣log m(x+2)有两个零点,则由g(x)=f(x)﹣log m(x+2)=0得f(x)=log m(x+2)有两个根,即y=f(x)与y=g(x)=log m(x+2)的图象有两个交点,函数图象如图,当0<m<1时,函数y=log m(x+2)单调递减,此时不满足条件,当m>1时,函数y=log m(x+2)单调递增,若两函数有两个交点,则满足当x=1时,g(1)≤1,即log m3≤1,解得m≥3,故选:C点评:本题考查了利用函数零点的存在性求变量的取值范围,考查了函数零点与函数图象与x轴的交点之间的关系,体现了数形结合的思想,和应用图象解决问题的能力.二、填空题:本大题4小题,每小题4分,共16分.把答案填在答题卡相应位置.11.(4分)f(x)的图象如图,则f(x)的值域为[﹣4,3].考点:函数的图象与图象变化.专题:函数的性质及应用.分析:利用函数的图象求函数的最大值和最小值,从而求得函数的值域.解答:解:由函数的图象可得,当x=5时,函数取得最小值为﹣4,函数的最大值为3,故函数的值域为[﹣4,3],故答案为[﹣4,3].点评:本题主要考查函数的图象的特征,利用函数的图象求函数的最大值和最小值,属于基础题.12.(4分)若lg2=a,lg3=b,则log43=.(用a,b表示)考点:对数的运算性质.专题:函数的性质及应用.分析:由已知得log43===.解答:解:∵lg2=a,lg3=b,∴log43===.故答案为:.点评:本题考查对数值的求法,是基础题,解题时要认真审题,注意换底公式的合理运用.13.(4分)若B={﹣1,3,5},试写出一个集合A={0,2,3},使得f:x→2x﹣1是A到B 的映射.考点:映射.专题:函数的性质及应用.分析:根据映射的定义,分别令2x﹣1=﹣3,﹣1,3,解得x的对应值,即可得到集合A.解答:解:根据映射的定义,分别令2x﹣1=﹣1,3,5,解得x=0,2,3,从而得到集合A={0,2,3},故答案为{0,2,3}.点评:本题主要考查映射的定义,属于基础题.14.(4分)计算机成本不断降低,若每隔3年计算机价格降低原来的,现在价格为8100的计算机,则9年后价格可将为300.考点:数列的应用.专题:计算题.分析:由题意,逐次计算出三年后,六年后,九年后的价格即可解答:解:由题意,现在价格为8100的计算机,三年后价格8100×.六年年后价格8100×()2.九年后价格8100×()3=300.故答案为300.点评:本题属于简单应用题,根据题意依次求解,属于数列的简单应用15.(4分)已知函数f(x)=,某同学利用计算器,算得f(x)的部分与x的值如表:x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …f(x)…﹣0.4697 ﹣0.4412 ﹣0.3889 ﹣0.30 ﹣0.1667 00.1667 0.30 0.3889 …请你通过观察,研究后,描述出关于f(x)的正确的一个性质在R上递增(不包括定义域)考点:函数单调性的判断与证明.专题:计算题;函数的性质及应用.分析:通过自变量x的增加,函数值随着增加,则函数f(x)=在R上递增.再由单调性定义加以证明即可.解答:解:通过自变量x的增加,函数值随着增加,则函数f(x)=在R上递增.证明:设m<n,则f(m)﹣f(n)==,由于m<n,则2m<2n,即2m﹣2n<0,又2m>0,2n>0,则f(m)﹣f(n)<0,即有函数f(x)=在R上递增.故答案为:在R上递增点评:本题考查函数的性质和运用,考查通过图象观察得到结论,再由单调性定义证明的方法,属于基础题.16.(4分)关于函数f(x)=(a>0,a≠1),有以下命题:①函数图象关于轴对称;②当a>1时,函数在(1,+∞)上为增函数;③当0<a<1时,函数有最大值,且最大值为a2;④函数的值域为(a2,+∞).其中正确命题的序号是①②③.(写出所有正确命题的序号)考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①利用偶函数的概念与性质可判断①;②令g(x)==|x|+=,利用复合函数的单调性可判断②;③利用y=|x|+≥2(当且仅当|x|=1,即x=±1时取“=”)及复合函数的性质可判断,当0<a<1时,函数的最值,可判断③;④利用②③的结论可判断④.解答:解:①,∵f(x)的定义域为{x|x≠0},且f(﹣x)===f(x),∴f(x)为偶函数,其图象关于y轴对称,即函数图象关于轴对称,故①正确;②,令g(x)==|x|+=,当x>1时,g′(x)=1﹣>0,y=g(x)在(1,+∞)上为增函数;当a>1时,函数y=a x在(1,+∞)上为增函数,由复合函数的单调性质可得,当a>1时,函数y=f(x)在(1,+∞)上为增函数,故②正确;③,由于y=|x|+≥2(当且仅当|x|=1,即x=±1时取“=”),当0<a<1时,函数y=a x在(0,1),(﹣∞,﹣1)单调递减;在(1,+∞),(﹣1,0)上单调递增,∴0<a<1,x=±1时函数有最大值,且最大值为a2,故③正确;④,当a>1时,函数的值域为(a2,+∞);当0<a<1时,函数的值域为(0,a2],故④错误.综上所述,正确命题的序号是①②③,故答案为:①②③.点评:本题考查函数的性质,着重考查函数的奇偶性、对称性、复合函数的单调性及函数的值域,考查转化思想.三、解答题(本大题共6小题,满分52分,解答题写出必要的文字说明,推演步骤.)17.(8分)已知集合M={x|﹣ax2+2x+1=0}只有一个元素,,B={y|y=﹣x2+2x﹣1}.(1)求A∩B;(2)设N是由a可取的所有值组成的集合,试判断N与A∩B的关系.考点:交集及其运算;集合关系中的参数取值问题.专题:计算题.分析:(1)由x+1≥0,得A={x|x≥﹣1};由y=﹣x2+2x﹣1=﹣(x﹣1)2,得B={y|y≤0},由此能求出A∩B.(2)由集合M={x|﹣ax2+2x+1=0}只有一个元素,解得a=0,或a=﹣1.故N={﹣1,0},由此得到N⊊(A∩B).解答:解:(1)由x+1≥0,得x≥﹣1,∴A={x|x≥﹣1};由y=﹣x2+2x﹣1=﹣(x﹣1)2,得y≤0,∴B={y|y≤0},∴A∩B={x|﹣1≤x≤0}.(2)∵集合M={x|﹣ax2+2x+1=0}只有一个元素,∴当a=0时,方程2x+1=0只有一个实数解,符合题意;当a≠0时,△=4﹣4(﹣a)=0,解得a=﹣1.∴N={﹣1,0},∴N⊊(A∩B).点评:本题考查交集及其运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.18.(8分)通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:f(x)=(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?考点:函数模型的选择与应用.专题:应用题.分析:(1)求学生的接受能力最强其实就是要求分段函数的最大值,方法是分别求出各段的最大值取其最大即可;(2)令f(x)=55,分段求出x,两个时间之差就是持续的时间,最后和13分钟比较大小即可.解答:解:(1)当0<x≤10时,f(x)=﹣0.1x2+2.6x+43=﹣0.1(x﹣13)2+59.9,为开口向下的二次函数,对称轴为x=13故f(x)递增,最大值为f(10)=59;当10<x≤16时,f(x)=59;当30≥x>16时,f(x)为减函数,且f(x)<59,因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间.(2)当0<x≤10时,令f(x)=55,解得x=6或x=20(舍去),当16<x≤30时,令f(x)=55,解得x=17因此学生达到(含超过)55的接受能力的时间为17﹣6=11<13,故老师不能在学生一直达到所需接受能力的状态下讲授完这个难题.点评:本题考查分段函数,考查分段函数图象和增减性,此题学生容易出错,原因是学生把分段函数定义理解不清,自变量取值不同,函数解析式不同是分段函数最显著的特点.19.(8分)已知函数f(x)=4x﹣a•2x+1﹣2.(Ⅰ)若a=1,求f(log23)的值;(Ⅱ)某同学研究的值域时的过程如下,请你判断是否正确,如果不正确,请写出正确的过程.f(x)=(2x)2﹣2a•2x﹣2=(2x﹣a)2﹣a2﹣2∴f(x)的值域为[﹣a2﹣2,+∞).考点:复合函数的单调性.专题:函数的性质及应用.分析:(Ⅰ)若a=1,根据对数的运算法则即可求f(log23)的值;(Ⅱ)利用换元法结合一元二次函数的性质即可求出函数的值域.解答:解:(Ⅰ)若a=1,f(x)=4x﹣2x+1﹣2.则f(log23)==()2﹣2×3﹣2=9﹣6﹣2=1;(Ⅱ)不正确:f(x)=(2x)2﹣2a•2x﹣2=(2x﹣a)2﹣a2﹣2,令t=2x,则t>0,则函数等价为y=g(t)=(t﹣a)2﹣a2﹣2,若a≤0,则函数在(0,+∞)上为增函数,此时y=g(t)>g(0)=﹣2,若a>0,则当t=a时,函数取得最小值,此时y=g(t)≥g(t)=﹣a2﹣2,综上当a≤0时,函数的值域为(﹣2,+∞),当a>0时,函数的值域为[﹣a2﹣2,+∞).点评:本题主要考查与指数函数有关的性质是运算,利用换元法结合一元二次函数的性质是解决本题的关键.20.(8分)函数f(x)=x2和g(x)=log3(x+1)的部分图象如图所示,设两函数的图象交于点O(0,0),A(x0,y0).(Ⅰ)请指出图中曲线C1,C2分别对应哪一个函数?(Ⅱ)求证x0∈(,1);(Ⅱ)请通过直观感知,求出使f(x)>g(x)+a对任何1<x<8恒成立时,实数a的取值范围.考点:对数函数的图像与性质.专题:计算题;作图题;函数的性质及应用.分析:(Ⅰ)由图象特征可知,C1是g(x)=log3(x+1)的图象,C2对应f(x)=x2;(Ⅱ)令F(x)=f(x)﹣g(x)=x2﹣log3(x+1),利用函数的零点判定定理证明;(Ⅲ)由(Ⅱ)知,F(1)=1﹣log32>0,且由图象可知,a<1﹣log32.解答:解:(Ⅰ)C1是g(x)=log3(x+1)的图象,C2对应f(x)=x2;(Ⅱ)证明:令F(x)=f(x)﹣g(x)=x2﹣log3(x+1),∵F()=﹣log3(+1)=log32﹣<0,F(1)=1﹣log32>0,故存在x0∈(,1),使F(x0)=0,即x0是函数f(x)=x2和g(x)=log3(x+1)的图象的交点;(Ⅲ)由(Ⅱ)知,F(1)=1﹣log32>0,且由图象可知,a<1﹣log32.点评:本题考查了幂函数与对数函数的区别及函数图象的应用,属于中档题.21.(10分)定义在(0,+∞)函数f(x)满足:①当时x>1,f(x)<﹣2;②对任意x,y∈(0,+∞),总有f(xy)=f(x)+f(y)+2.(Ⅰ)求出f(1)的值;(Ⅱ)解不等式f(x)+f(x﹣1)>﹣4;(Ⅲ)写出一个满足上述条件的具体函数(不必说明理由,只需写出一个就可以).考点:抽象函数及其应用.专题:计算题;函数的性质及应用.分析:(Ⅰ)令x=y=1,则f(1)=f(1)+f(1)+2,从而解得;(Ⅱ)令y=,x>1,则有f(1)=f(x)+f(y)+2,从而可推出f(y)>﹣2,则f(x)+f (x﹣1)>﹣4可化为即f(x(x﹣1))>﹣2,从而解得;(Ⅲ)f(x)=x﹣2.解答:解:(Ⅰ)令x=y=1,则f(1)=f(1)+f(1)+2;则f(1)=﹣2;(Ⅱ)令y=,x>1,则有f(1)=f(x)+f(y)+2,则f(y)=﹣4﹣f(x),又∵x>1时,f(x)<﹣2;∴f(y)>﹣2,f(x)+f(x﹣1)>﹣4可化为f(x(x﹣1))﹣2>﹣4,即f(x(x﹣1))>﹣2,故,解得,1<x<;(Ⅲ)f(x)=x﹣2.点评:本题考查了抽象函数的性质判断与应用,属于中档题.22.(10分)已知函数f(x)=为偶函数.(Ⅰ)求实数a的值;(Ⅱ)判断f(x)的单调性,并证明你的判断.(Ⅲ)是否存在实数λ,使得当x∈[,](m>0,n>0)时,函数f(x)的值域为[2﹣λm,2﹣λn],若存在,求出λ的取值范围,若不存在说明理由.考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:(Ⅰ)根据函数奇偶性的定义即可求实数a的值;(Ⅱ)根据函数单调性的定义即可证明f(x)的单调性.(Ⅲ)根据函数的单调性将条件关系转化为一元二次方程根的取值范围即可.解答:解:(Ⅰ)∵f(x)==为偶函数,∴f(﹣x)==,即﹣(a+1)=a+1,解得a=﹣1.(Ⅱ)当a=﹣1时,f(x)=,则函数f(x)在(0,+∞)上为增函数,在(﹣∞,0)为减函数.证明:设0<x1<x2,则f(x1)﹣f(x2)===.∵0<x1<x2,∴x1+x2>0,x1﹣x2<0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).故函数f(x)在(0,+∞)上为增函数,同理可证在(﹣∞,0)为减函数.(Ⅲ)∵函数f(x)在(0,+∞)上为增函数∴若存在实数λ,使得当x∈[,](m>0,n>0)时,函数f(x)的值域为[2﹣λm,2﹣λn],则满足,即,即m,n是方程x2﹣λx+1=0的两个不等的正根.则满足,即,解得λ>2,故存在λ>2,使得结论成立.点评:本题主要考查函数奇偶性和单调性的应用以及一元二次方程根与系数之间的关系,综合考查函数的性质.。

福建省厦门双十中学2014-2015学年高一上学期期中数学试卷(Word版含解析)

福建省厦门双十中学2014-2015学年高一上学期期中数学试卷(Word版含解析)

2014-2015学年福建省厦门双十中学高一(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)Q为有理数集,设集合A={x∈Q|x>﹣1},则()A.φ∉A B.∉A C.∈A D.{}⊆A2.(3分)如图,U是全集,M、P是U的子集,则阴影部分所表示的集合是()A.M∩(∁U P)B.M∩P C.(∁U M)∩P D.(∁U M)∩(∁U P)3.(3分)函数f(x)=的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2)D. [1,+∞)4.(3分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(b,c)和(c,+∞)内B.(﹣∞,a)和(a,b)内C.(a,b)和(b,c)内D.(﹣∞,a)和(c,+∞)内5.(3分)设a=20.3,b=0.32,c=log20.3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a6.(3分)已知函数f(x)满足f(x﹣1)=lgx,则不等式f(x)<0的解集为()A.(﹣∞,1)B.(1,2)C.(﹣∞,0)D.(﹣1,0)7.(3分)已知函数f(x)=log2x的反函数为g(x),则g(1﹣x)的图象为()A.B.C.D.8.(3分)若函数f(x)=(m2﹣m﹣1)x m是幂函数,则f(x)一定()A.是偶函数B.是奇函数C.在x∈(﹣∞,0)上单调递减D.在x∈(0,+∞)上单调递减9.(3分)某渔场鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际的养殖量x要小于m,留出适当的空闲量,已知鱼群的年增加量y(吨)和实际养殖量x(吨)与空闲率(空闲量与最大养殖量的比值叫空闲率)的乘积成正比(设比例系数k>0),则鱼群年增长量的最大值为()A.B.C.D.10.(3分)已知函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]内,函数g(x)=f(x)﹣log m(x+2)有两个零点,则实数m的取值范围是()A.(0,)B.(0,]C.[3,+∞)D.(1,3]二、填空题:本大题4小题,每小题4分,共16分.把答案填在答题卡相应位置.11.(4分)f(x)的图象如图,则f(x)的值域为.12.(4分)若lg2=a,lg3=b,则log43=.(用a,b表示)13.(4分)若B={﹣1,3,5},试写出一个集合A=,使得f:x→2x﹣1是A到B的映射.14.(4分)计算机成本不断降低,若每隔3年计算机价格降低原来的,现在价格为8100的计算机,则9年后价格可将为.15.(4分)已知函数f(x)=,某同学利用计算器,算得f(x)的部分与x的值如表:x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …f(x)…﹣0.4697 ﹣0.4412 ﹣0.3889 ﹣0.30 ﹣0.1667 00.1667 0.30 0.3889 …请你通过观察,研究后,描述出关于f(x)的正确的一个性质(不包括定义域)16.(4分)关于函数f(x)=(a>0,a≠1),有以下命题:①函数图象关于轴对称;②当a>1时,函数在(1,+∞)上为增函数;③当0<a<1时,函数有最大值,且最大值为a2;④函数的值域为(a2,+∞).其中正确命题的序号是.(写出所有正确命题的序号)三、解答题(本大题共6小题,满分52分,解答题写出必要的文字说明,推演步骤.)17.(8分)已知集合M={x|﹣ax2+2x+1=0}只有一个元素,,B={y|y=﹣x2+2x﹣1}.(1)求A∩B;(2)设N是由a可取的所有值组成的集合,试判断N与A∩B的关系.18.(8分)通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:f(x)=(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?19.(8分)已知函数f(x)=4x﹣a•2x+1﹣2.(Ⅰ)若a=1,求f(log23)的值;(Ⅱ)某同学研究的值域时的过程如下,请你判断是否正确,如果不正确,请写出正确的过程.f(x)=(2x)2﹣2a•2x﹣2=(2x﹣a)2﹣a2﹣2∴f(x)的值域为[﹣a2﹣2,+∞).20.(8分)函数f(x)=x2和g(x)=log3(x+1)的部分图象如图所示,设两函数的图象交于点O(0,0),A(x0,y0).(Ⅰ)请指出图中曲线C1,C2分别对应哪一个函数?(Ⅱ)求证x0∈(,1);(Ⅱ)请通过直观感知,求出使f(x)>g(x)+a对任何1<x<8恒成立时,实数a的取值范围.21.(10分)定义在(0,+∞)函数f(x)满足:①当时x>1,f(x)<﹣2;②对任意x,y∈(0,+∞),总有f(xy)=f(x)+f(y)+2.(Ⅰ)求出f(1)的值;(Ⅱ)解不等式f(x)+f(x﹣1)>﹣4;(Ⅲ)写出一个满足上述条件的具体函数(不必说明理由,只需写出一个就可以).22.(10分)已知函数f(x)=为偶函数.(Ⅰ)求实数a的值;(Ⅱ)判断f(x)的单调性,并证明你的判断.(Ⅲ)是否存在实数λ,使得当x∈[,](m>0,n>0)时,函数f(x)的值域为[2﹣λm,2﹣λn],若存在,求出λ的取值范围,若不存在说明理由.2014-2015学年福建省厦门双十中学高一(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)Q为有理数集,设集合A={x∈Q|x>﹣1},则()A.φ∉A B.∉A C.∈A D.{}⊆A考点:元素与集合关系的判断.专题:计算题;集合.分析:注意到集合A中的元素是有理数,从而判断.解答:解:由题意,∅⊆A,∉A,故选B.点评:本题考查了元素与集合的关系及集合与集合的关系,属于基础题.2.(3分)如图,U是全集,M、P是U的子集,则阴影部分所表示的集合是()A.M∩(∁U P)B.M∩P C.(∁U M)∩P D.(∁U M)∩(∁U P)考点:Venn图表达集合的关系及运算.专题:计算题.分析:U为全集,M,P是集合U的子集,分析阴影部分元素满足的性质,可得答案.解答:解:由已知中阴影部分在集合M中,而不在集合P中故阴影部分所表示的元素属于M,不属于P(属于N的补集)即(C U P)∩M故选A.点评:本题考查了Venn图表达集合的关系及集合运算,其中正确理解阴影部分元素满足的性质是解答本题的关键.3.(3分)函数f(x)=的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2)D. [1,+∞)考点:函数的定义域及其求法.专题:计算题.分析:利用分式分母不为零,偶次方根非负,得到不等式组,求解即可.解答:解:由题意解得x∈[1,2)∪(2,+∝)故选A点评:本题是基础题,考查函数定义域的求法,注意分母不为零,偶次方根非负,是解题的关键.4.(3分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(b,c)和(c,+∞)内B.(﹣∞,a)和(a,b)内C.(a,b)和(b,c)内D.(﹣∞,a)和(c,+∞)内考点:函数零点的判定定理.专题:函数的性质及应用.分析:由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.解答:解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f(c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选C.点评:熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.5.(3分)设a=20.3,b=0.32,c=log20.3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a考点:对数值大小的比较.专题:计算题.分析:要比较三个数字的大小,可将a,b,c与中间值0,1进行比较,从而确定大小关系.解答:解:∵0<0.32<1log20.3<020.3>1∴log20.3<0.32<20.3,即c<b<a故选B.点评:本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.6.(3分)已知函数f(x)满足f(x﹣1)=lgx,则不等式f(x)<0的解集为()A.(﹣∞,1)B.(1,2)C.(﹣∞,0)D.(﹣1,0)考点:对数函数的图像与性质.专题:函数的性质及应用.分析:求出函数f(x)的解析式,然后再求不等式f(x)<0的解集.解答:解:令x﹣1=t,∴x=t+1,t+1>0,所以f(t)=lg(t+1),函数f(x)的解析式为:f(x)=lg(x+1),不等式f(x)<0化为lg(x+1)<0即:lg(x+1)<0所以不等式的解集为:(﹣1,0)故选D.点评:本题考查其他不等式的解法,对数的运算性质,考查计算能力,是基础题.7.(3分)已知函数f(x)=log2x的反函数为g(x),则g(1﹣x)的图象为()A.B.C.D.考点:反函数.专题:函数的性质及应用.分析:函数f(x)=log2x的反函数为g(x)=2x,可得g(1﹣x)=21﹣x=,利用指数函数的单调性及其x=0时的函数值即可得出.解答:解:函数f(x)=log2x的反函数为g(x)=2x,则g(1﹣x)=21﹣x=,当x=0时,g(1)=1,再利用单调性可知图象为C.故选:C.点评:本题考查了互为反函数的求法、指数函数的单调性,属于基础题.8.(3分)若函数f(x)=(m2﹣m﹣1)x m是幂函数,则f(x)一定()A.是偶函数B.是奇函数C.在x∈(﹣∞,0)上单调递减D.在x∈(0,+∞)上单调递减考点:幂函数的概念、解析式、定义域、值域.专题:函数的性质及应用.分析:根据幂函数的定义得m2﹣m﹣1=1求出m的值,再判断出函数f(x)的奇偶性、单调区间,即可得到正确答案.解答:解:因为函数f(x)=(m2﹣m﹣1)x m是幂函数,所以m2﹣m﹣1=1,即m2﹣m﹣2=0,解得m=2或m=﹣1,即f(x)=x2或,因为f(x)=x2是偶函数,在(﹣∞,0)上递减,在(0,+∞)上递增,是奇函数,在(﹣∞,0),(0,+∞)上递减,所以f(x)一定在(﹣∞,0)上递减,故选:C.点评:本题考查幂函数的定义,以及幂函数的性质,属于基础题.9.(3分)某渔场鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际的养殖量x要小于m,留出适当的空闲量,已知鱼群的年增加量y(吨)和实际养殖量x(吨)与空闲率(空闲量与最大养殖量的比值叫空闲率)的乘积成正比(设比例系数k>0),则鱼群年增长量的最大值为()A.B.C.D.考点:函数最值的应用.专题:应用题;函数的性质及应用.分析:由题意可得,y=kx•,(k>0,0<x<m),利用基本不等式求最值.解答:解:由题意可得,y=kx•,(k>0,0<x<m),≤()2=,(当且仅当x=m﹣x,即x=时,等号成立)故选B.点评:本题考查了实际问题转化为数学问题的能力,属于中档题.10.(3分)已知函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]内,函数g(x)=f(x)﹣log m(x+2)有两个零点,则实数m的取值范围是()A.(0,)B.(0,]C.[3,+∞)D.(1,3]考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:把函数的零点转化为两函数图象的交点,求出函数f(x)的解析式,利用数形结合即可得到结论.解答:解:∵f(x)+1=,当x∈[0,1]时,f(x)=x,∴x∈(﹣1,0)时,x+1∈(0,1),则f(x)+1==,∴f(x)═﹣1,若函数g(x)=f(x)﹣log m(x+2)有两个零点,则由g(x)=f(x)﹣log m(x+2)=0得f(x)=log m(x+2)有两个根,即y=f(x)与y=g(x)=log m(x+2)的图象有两个交点,函数图象如图,当0<m<1时,函数y=log m(x+2)单调递减,此时不满足条件,当m>1时,函数y=log m(x+2)单调递增,若两函数有两个交点,则满足当x=1时,g(1)≤1,即log m3≤1,解得m≥3,故选:C点评:本题考查了利用函数零点的存在性求变量的取值范围,考查了函数零点与函数图象与x轴的交点之间的关系,体现了数形结合的思想,和应用图象解决问题的能力.二、填空题:本大题4小题,每小题4分,共16分.把答案填在答题卡相应位置.11.(4分)f(x)的图象如图,则f(x)的值域为[﹣4,3].考点:函数的图象与图象变化.专题:函数的性质及应用.分析:利用函数的图象求函数的最大值和最小值,从而求得函数的值域.解答:解:由函数的图象可得,当x=5时,函数取得最小值为﹣4,函数的最大值为3,故函数的值域为[﹣4,3],故答案为[﹣4,3].点评:本题主要考查函数的图象的特征,利用函数的图象求函数的最大值和最小值,属于基础题.12.(4分)若lg2=a,lg3=b,则log43=.(用a,b表示)考点:对数的运算性质.专题:函数的性质及应用.分析:由已知得log43===.解答:解:∵lg2=a,lg3=b,∴log43===.故答案为:.点评:本题考查对数值的求法,是基础题,解题时要认真审题,注意换底公式的合理运用.13.(4分)若B={﹣1,3,5},试写出一个集合A={0,2,3},使得f:x→2x﹣1是A到B 的映射.考点:映射.专题:函数的性质及应用.分析:根据映射的定义,分别令2x﹣1=﹣3,﹣1,3,解得x的对应值,即可得到集合A.解答:解:根据映射的定义,分别令2x﹣1=﹣1,3,5,解得x=0,2,3,从而得到集合A={0,2,3},故答案为{0,2,3}.点评:本题主要考查映射的定义,属于基础题.14.(4分)计算机成本不断降低,若每隔3年计算机价格降低原来的,现在价格为8100的计算机,则9年后价格可将为300.考点:数列的应用.专题:计算题.分析:由题意,逐次计算出三年后,六年后,九年后的价格即可解答:解:由题意,现在价格为8100的计算机,三年后价格8100×.六年年后价格8100×()2.九年后价格8100×()3=300.故答案为300.点评:本题属于简单应用题,根据题意依次求解,属于数列的简单应用15.(4分)已知函数f(x)=,某同学利用计算器,算得f(x)的部分与x的值如表:x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …f(x)…﹣0.4697 ﹣0.4412 ﹣0.3889 ﹣0.30 ﹣0.1667 00.1667 0.30 0.3889 …请你通过观察,研究后,描述出关于f(x)的正确的一个性质在R上递增(不包括定义域)考点:函数单调性的判断与证明.专题:计算题;函数的性质及应用.分析:通过自变量x的增加,函数值随着增加,则函数f(x)=在R上递增.再由单调性定义加以证明即可.解答:解:通过自变量x的增加,函数值随着增加,则函数f(x)=在R上递增.证明:设m<n,则f(m)﹣f(n)==,由于m<n,则2m<2n,即2m﹣2n<0,又2m>0,2n>0,则f(m)﹣f(n)<0,即有函数f(x)=在R上递增.故答案为:在R上递增点评:本题考查函数的性质和运用,考查通过图象观察得到结论,再由单调性定义证明的方法,属于基础题.16.(4分)关于函数f(x)=(a>0,a≠1),有以下命题:①函数图象关于轴对称;②当a>1时,函数在(1,+∞)上为增函数;③当0<a<1时,函数有最大值,且最大值为a2;④函数的值域为(a2,+∞).其中正确命题的序号是①②③.(写出所有正确命题的序号)考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①利用偶函数的概念与性质可判断①;②令g(x)==|x|+=,利用复合函数的单调性可判断②;③利用y=|x|+≥2(当且仅当|x|=1,即x=±1时取“=”)及复合函数的性质可判断,当0<a<1时,函数的最值,可判断③;④利用②③的结论可判断④.解答:解:①,∵f(x)的定义域为{x|x≠0},且f(﹣x)===f(x),∴f(x)为偶函数,其图象关于y轴对称,即函数图象关于轴对称,故①正确;②,令g(x)==|x|+=,当x>1时,g′(x)=1﹣>0,y=g(x)在(1,+∞)上为增函数;当a>1时,函数y=a x在(1,+∞)上为增函数,由复合函数的单调性质可得,当a>1时,函数y=f(x)在(1,+∞)上为增函数,故②正确;③,由于y=|x|+≥2(当且仅当|x|=1,即x=±1时取“=”),当0<a<1时,函数y=a x在(0,1),(﹣∞,﹣1)单调递减;在(1,+∞),(﹣1,0)上单调递增,∴0<a<1,x=±1时函数有最大值,且最大值为a2,故③正确;④,当a>1时,函数的值域为(a2,+∞);当0<a<1时,函数的值域为(0,a2],故④错误.综上所述,正确命题的序号是①②③,故答案为:①②③.点评:本题考查函数的性质,着重考查函数的奇偶性、对称性、复合函数的单调性及函数的值域,考查转化思想.三、解答题(本大题共6小题,满分52分,解答题写出必要的文字说明,推演步骤.)17.(8分)已知集合M={x|﹣ax2+2x+1=0}只有一个元素,,B={y|y=﹣x2+2x﹣1}.(1)求A∩B;(2)设N是由a可取的所有值组成的集合,试判断N与A∩B的关系.考点:交集及其运算;集合关系中的参数取值问题.专题:计算题.分析:(1)由x+1≥0,得A={x|x≥﹣1};由y=﹣x2+2x﹣1=﹣(x﹣1)2,得B={y|y≤0},由此能求出A∩B.(2)由集合M={x|﹣ax2+2x+1=0}只有一个元素,解得a=0,或a=﹣1.故N={﹣1,0},由此得到N⊊(A∩B).解答:解:(1)由x+1≥0,得x≥﹣1,∴A={x|x≥﹣1};由y=﹣x2+2x﹣1=﹣(x﹣1)2,得y≤0,∴B={y|y≤0},∴A∩B={x|﹣1≤x≤0}.(2)∵集合M={x|﹣ax2+2x+1=0}只有一个元素,∴当a=0时,方程2x+1=0只有一个实数解,符合题意;当a≠0时,△=4﹣4(﹣a)=0,解得a=﹣1.∴N={﹣1,0},∴N⊊(A∩B).点评:本题考查交集及其运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.18.(8分)通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:f(x)=(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?考点:函数模型的选择与应用.专题:应用题.分析:(1)求学生的接受能力最强其实就是要求分段函数的最大值,方法是分别求出各段的最大值取其最大即可;(2)令f(x)=55,分段求出x,两个时间之差就是持续的时间,最后和13分钟比较大小即可.解答:解:(1)当0<x≤10时,f(x)=﹣0.1x2+2.6x+43=﹣0.1(x﹣13)2+59.9,为开口向下的二次函数,对称轴为x=13故f(x)递增,最大值为f(10)=59;当10<x≤16时,f(x)=59;当30≥x>16时,f(x)为减函数,且f(x)<59,因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间.(2)当0<x≤10时,令f(x)=55,解得x=6或x=20(舍去),当16<x≤30时,令f(x)=55,解得x=17因此学生达到(含超过)55的接受能力的时间为17﹣6=11<13,故老师不能在学生一直达到所需接受能力的状态下讲授完这个难题.点评:本题考查分段函数,考查分段函数图象和增减性,此题学生容易出错,原因是学生把分段函数定义理解不清,自变量取值不同,函数解析式不同是分段函数最显著的特点.19.(8分)已知函数f(x)=4x﹣a•2x+1﹣2.(Ⅰ)若a=1,求f(log23)的值;(Ⅱ)某同学研究的值域时的过程如下,请你判断是否正确,如果不正确,请写出正确的过程.f(x)=(2x)2﹣2a•2x﹣2=(2x﹣a)2﹣a2﹣2∴f(x)的值域为[﹣a2﹣2,+∞).考点:复合函数的单调性.专题:函数的性质及应用.分析:(Ⅰ)若a=1,根据对数的运算法则即可求f(log23)的值;(Ⅱ)利用换元法结合一元二次函数的性质即可求出函数的值域.解答:解:(Ⅰ)若a=1,f(x)=4x﹣2x+1﹣2.则f(log23)==()2﹣2×3﹣2=9﹣6﹣2=1;(Ⅱ)不正确:f(x)=(2x)2﹣2a•2x﹣2=(2x﹣a)2﹣a2﹣2,令t=2x,则t>0,则函数等价为y=g(t)=(t﹣a)2﹣a2﹣2,若a≤0,则函数在(0,+∞)上为增函数,此时y=g(t)>g(0)=﹣2,若a>0,则当t=a时,函数取得最小值,此时y=g(t)≥g(t)=﹣a2﹣2,综上当a≤0时,函数的值域为(﹣2,+∞),当a>0时,函数的值域为[﹣a2﹣2,+∞).点评:本题主要考查与指数函数有关的性质是运算,利用换元法结合一元二次函数的性质是解决本题的关键.20.(8分)函数f(x)=x2和g(x)=log3(x+1)的部分图象如图所示,设两函数的图象交于点O(0,0),A(x0,y0).(Ⅰ)请指出图中曲线C1,C2分别对应哪一个函数?(Ⅱ)求证x0∈(,1);(Ⅱ)请通过直观感知,求出使f(x)>g(x)+a对任何1<x<8恒成立时,实数a的取值范围.考点:对数函数的图像与性质.专题:计算题;作图题;函数的性质及应用.分析:(Ⅰ)由图象特征可知,C1是g(x)=log3(x+1)的图象,C2对应f(x)=x2;(Ⅱ)令F(x)=f(x)﹣g(x)=x2﹣log3(x+1),利用函数的零点判定定理证明;(Ⅲ)由(Ⅱ)知,F(1)=1﹣log32>0,且由图象可知,a<1﹣log32.解答:解:(Ⅰ)C1是g(x)=log3(x+1)的图象,C2对应f(x)=x2;(Ⅱ)证明:令F(x)=f(x)﹣g(x)=x2﹣log3(x+1),∵F()=﹣log3(+1)=log32﹣<0,F(1)=1﹣log32>0,故存在x0∈(,1),使F(x0)=0,即x0是函数f(x)=x2和g(x)=log3(x+1)的图象的交点;(Ⅲ)由(Ⅱ)知,F(1)=1﹣log32>0,且由图象可知,a<1﹣log32.点评:本题考查了幂函数与对数函数的区别及函数图象的应用,属于中档题.21.(10分)定义在(0,+∞)函数f(x)满足:①当时x>1,f(x)<﹣2;②对任意x,y∈(0,+∞),总有f(xy)=f(x)+f(y)+2.(Ⅰ)求出f(1)的值;(Ⅱ)解不等式f(x)+f(x﹣1)>﹣4;(Ⅲ)写出一个满足上述条件的具体函数(不必说明理由,只需写出一个就可以).考点:抽象函数及其应用.专题:计算题;函数的性质及应用.分析:(Ⅰ)令x=y=1,则f(1)=f(1)+f(1)+2,从而解得;(Ⅱ)令y=,x>1,则有f(1)=f(x)+f(y)+2,从而可推出f(y)>﹣2,则f(x)+f(x﹣1)>﹣4可化为即f(x(x﹣1))>﹣2,从而解得;(Ⅲ)f(x)=x﹣2.解答:解:(Ⅰ)令x=y=1,则f(1)=f(1)+f(1)+2;则f(1)=﹣2;(Ⅱ)令y=,x>1,则有f(1)=f(x)+f(y)+2,则f(y)=﹣4﹣f(x),又∵x>1时,f(x)<﹣2;∴f(y)>﹣2,f(x)+f(x﹣1)>﹣4可化为f(x(x﹣1))﹣2>﹣4,即f(x(x﹣1))>﹣2,故,解得,1<x<;(Ⅲ)f(x)=x﹣2.点评:本题考查了抽象函数的性质判断与应用,属于中档题.22.(10分)已知函数f(x)=为偶函数.(Ⅰ)求实数a的值;(Ⅱ)判断f(x)的单调性,并证明你的判断.(Ⅲ)是否存在实数λ,使得当x∈[,](m>0,n>0)时,函数f(x)的值域为[2﹣λm,2﹣λn],若存在,求出λ的取值范围,若不存在说明理由.考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:(Ⅰ)根据函数奇偶性的定义即可求实数a的值;(Ⅱ)根据函数单调性的定义即可证明f(x)的单调性.(Ⅲ)根据函数的单调性将条件关系转化为一元二次方程根的取值范围即可.解答:解:(Ⅰ)∵f(x)==为偶函数,∴f(﹣x)==,即﹣(a+1)=a+1,解得a=﹣1.(Ⅱ)当a=﹣1时,f(x)=,则函数f(x)在(0,+∞)上为增函数,在(﹣∞,0)为减函数.证明:设0<x1<x2,则f(x1)﹣f(x2)===.∵0<x1<x2,∴x1+x2>0,x1﹣x2<0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).故函数f(x)在(0,+∞)上为增函数,同理可证在(﹣∞,0)为减函数.(Ⅲ)∵函数f(x)在(0,+∞)上为增函数∴若存在实数λ,使得当x∈[,](m>0,n>0)时,函数f(x)的值域为[2﹣λm,2﹣λn],则满足,即,即m,n是方程x2﹣λx+1=0的两个不等的正根.则满足,即,解得λ>2,故存在λ>2,使得结论成立.点评:本题主要考查函数奇偶性和单调性的应用以及一元二次方程根与系数之间的关系,综合考查函数的性质.。

福建省厦门双十中学高三数学上学期期中试卷 理(含解析)

福建省厦门双十中学高三数学上学期期中试卷 理(含解析)

福建省厦门双十中学2015届高三上学期期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置.1.(5分)命题“对任意的x∈R,x2+1>0”的否定是()A.不存在x∈R,x2+1>0 B.存在x∈R,x2+1>0C.存在x∈R,x2+1≤0D.对任意的x∈R,x2+1≤02.(5分)已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},则A∪B=()A.{0,1,3} B.{1,2,4} C.{0,1,2,3} D.{0,1,2,3,4}3.(5分)sinα≠sinβ是α≠β的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若a,b,c为实数,且a<b<0,则下列命题正确的是()A.ac2<bc2B.<C.>D.a2>ab>b25.(5分)已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()A.B.C.D.6.(5分)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7 B.﹣6 C.﹣5 D.﹣37.(5分)设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF (O为坐标原点)的面积为4,则抛物线方程为()A.y2=±4x B.y2=4x C.y2=±8x D.y2=8x8.(5分)下列函数存在极值的是()A.y=2x+cosx B.y=e x﹣lnxC.y=x3+3x2+3x﹣1 D.y=lnx﹣9.(5分)定义:|×|=||•||•sinθ,其中θ为向量与的夹角,若||=2,||=5,•=﹣6,则|×|=()A.8 B.﹣8 C.8或﹣8 D.610.(5分)已知函数f(x)是定义在R上的偶函数,对于任意x∈R都有f(x+4)=f(x)+f (2)成立,当x1,x2∈[0,2]且x1≠x2时,都有>0.给出下列命题:①函数f(x)一定是周期函数;②函数f(x)在区间[﹣6,﹣4]上为增函数;③直线x=﹣4是函数f(x)图象的一条对称轴;④函数f(x)在区间[﹣6,6]上有且仅有4个零点.其中正确命题的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共5小题,每小题4分,共20分.请把答案填在答题卷的相应位置. 11.(4分)设,则=.12.(4分)已知双曲线C1:﹣=1(a>0,b>0)与双曲线C2:﹣=1有相同的渐近线,则C1的离心率=.13.(4分)已知=2,=3,=4,…,若=7,(a、b均为正实数),则类比以上等式,可推测a、b的值,进而可得a+b=.14.(4分)若定义在[a,b]上的函数f(x)=x3﹣3x2+1的值域为[﹣3,1],则b﹣a的最大值是.15.(4分)已知A i(i=1,2,3,…,n,n≥3,n∈N*)是△AOB所在的平面内的n个相异点,且•=.给出下列命题:①||=||=…=||=;②||的最小值不可能是||;③点A,A1,A2,…,A n在一条直线上;④向量及在向量的方向上的投影必相等.其中正确命题的序号是.(请填上所有正确命题的序号)三、解答题:本大题共6小题,每小题分数见旁注,共80分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答.16.(13分)已知全集U=R,m>0,集合A={x|x2﹣x﹣12<0},B={x||x﹣3|≤m}.(1)当m=2时,求A∩(∁U B);(2)命题p:x∈A,命题q:x∈B,若p是q的充分条件,求实数m的取值范围.17.(13分)已知向量=(sinx,﹣cosx),=(cosx,cosx),记函数f(x)=•.(1)求f(x)的最小正周期及单调递增区间;(2)设△ABC的内角A,B,C的对边分别是a,b,c,且c=,f(C)=,若向量=(1,sinA)与=(2,sinB)共线,求a,b的值.18.(13分)平面直角坐标系中,点M的坐标是(3,),曲线C1的参数方程为(α为参数),在以坐标原点为极点、x轴的非负半轴为极轴建立的极坐标系中,曲线C2的极坐标方程为ρ=4sinθ.(1)将曲线C1和C2化成普通方程,并求曲线C1和C2公共弦所在直线的极坐标方程;(2)若过点M,倾斜角为的直线l与曲线C1交于A,B两点,求||•||的值.19.(13分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂商拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量P万件与促销费用x万元满足P=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品P万件还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求.(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;(Ⅱ)促销费用投入多少万元时,厂家的利润最大?20.(14分)已知中心在坐标原点O,焦点在x轴上的椭圆C的离心率为,且经过点M(1,).(1)求椭圆C的方程;(2)若F是椭圆C的右焦点,过F的直线交椭圆C于M、N两点,T为直线x=4上任意一点,且T不在x轴上,(ⅰ)求•的取值范围;(ⅱ)若OT平分线段MN,证明:TF⊥MN(其中O为坐标原点).21.(14分)已知函数f(x)=(a∈R),曲线y=f(x)在点(1,f(1))处的切线方程为y=x﹣1.(1)求实数a的值,并求f(x)的单调区间;(2)试比较20142015与20152014的大小,并说明理由;(3)是否存在k∈Z,使得kx>f(x)+2对任意x>0恒成立?若存在,求出k的最小值;若不存在,请说明理由.福建省厦门双十中学2015届高三上学期期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置.1.(5分)命题“对任意的x∈R,x2+1>0”的否定是()A.不存在x∈R,x2+1>0 B.存在x∈R,x2+1>0C.存在x∈R,x2+1≤0D.对任意的x∈R,x2+1≤0考点:命题的否定.专题:简易逻辑.分析:全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x2+1>0”的否定是:存在x∈R,x2+1≤0.故选:C.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.2.(5分)已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},则A∪B=()A.{0,1,3} B.{1,2,4} C.{0,1,2,3} D.{0,1,2,3,4}考点:并集及其运算.专题:计算题.分析:由A与B交集的元素为1,得到1属于A且属于B,得到a2=1,求出a的值,进而求出b的值,确定出A与B,找出既属于A又属于B的元素,即可确定出两集合的并集.解答:解:∵A={3,a2},集合B={0,b,1﹣a},且A∩B={1},∴a2=1,解得:a=1或a=﹣1,当a=1时,1﹣a=1﹣1=0,不合题意,舍去;当a=﹣1时,1﹣a=1﹣(﹣1)=2,此时b=1,∴A={3,1},集合B={0,1,2},则A∪B={0,1,2,3}.故选C点评:此题考查了交、并集及其运算,是一道基本题型,熟练掌握交、并集的定义是解本题的关键.3.(5分)sinα≠sinβ是α≠β的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:由sinα≠sinβ,得α≠β,但由α≠β不能得到sinα≠sinβ.由此能求出结果.解答:解:∵sinα≠sinβ,∴α≠β,但由α≠β不能得到sinα≠sinβ.故sinα≠sinβ是α≠β的充分不必要条件.故选A.点评:本题考查必要条件、充分条件和充要条件的求法,是基础题,解题时要认真审题,仔细解答.4.(5分)若a,b,c为实数,且a<b<0,则下列命题正确的是()A.ac2<bc2B.<C.>D.a2>ab>b2考点:不等式比较大小;不等关系与不等式.专题:不等式的解法及应用.分析:本题可以利用基本不等关系,判断选项中的命题是否正确,正确的可加以证明,错误的可以举反例判断,得到本题结论.解答:解:选项A,∵c为实数,∴取c=0,ac2=0,bc2=0,此时ac2=bc2,故选项A不成立;选项B,=,∵a<b<0,∴b﹣a>0,ab>0,∴>0,即,故选项B不成立;选项C,∵a<b<0,∴取a=﹣2,b=﹣1,则,,∴此时,故选项C不成立;选项D,∵a<b<0,∴a2﹣ab=a(a﹣b)>0,∴a2>ab.∴ab﹣b2=b(a﹣b)>0,∴ab>b2.故选项D正确,故选D.点评:本题考查了基本不等关系,本题难度不大,属于基础题.5.(5分)已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:先由函数f(x)的图象判断a,b的范围,再根据指数函数的图象和性质即可得到答案.解答:解:由函数的图象可知,﹣1<b<0,a>1,则g(x)=a x+b为增函数,当x=0时,y=1+b>0,且过定点(0,1+b),故选:C点评:本题考查了指数函数和二次函数的图象和性质,属于基础题.6.(5分)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7 B.﹣6 C.﹣5 D.﹣3考点:简单线性规划.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.解答:解:由z=2x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线y=,由图象可知当直线y=,过点C时,直线y=截距最大,此时z最小,由,解得,即C(3,4).代入目标函数z=2x﹣3y,得z=2×3﹣3×4=6﹣12=﹣6.∴目标函数z=2x﹣3y的最小值是﹣6.故选:B.点评:本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.7.(5分)设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF (O为坐标原点)的面积为4,则抛物线方程为()A.y2=±4x B.y2=4x C.y2=±8x D.y2=8x考点:抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先根据抛物线方程表示出F的坐标,进而根据点斜式表示出直线l的方程,求得A的坐标,进而利用三角形面积公式表示出三角形的面积建立等式取得a,则抛物线的方程可得.解答:解:抛物线y2=ax(a≠0)的焦点F坐标为,则直线l的方程为,它与y轴的交点为A,所以△OAF的面积为,解得a=±8.所以抛物线方程为y2=±8x,故选C.点评:本题主要考查了抛物线的标准方程,点斜式求直线方程等.考查学生的数形结合的思想的运用和基础知识的灵活运用.8.(5分)下列函数存在极值的是()A.y=2x+cosx B.y=e x﹣lnxC.y=x3+3x2+3x﹣1 D.y=lnx﹣考点:函数在某点取得极值的条件.专题:计算题;导数的概念及应用.分析:由极值的定义确定是否存在极值,注意导数有正有负且有0.解答:解:选项A:y′=2﹣sinx>0,故不存在极值;选项B:y′=e x﹣有正有负且有零点,故存在极值;选项C:y′=3x2+6x+3=3(x+1)2≥0,故不存在极值;选项D:y′=+>0,故不存在极值.故选B.点评:本题考查了函数存在极值的条件,属于基础题.9.(5分)定义:|×|=||•||•s inθ,其中θ为向量与的夹角,若||=2,||=5,•=﹣6,则|×|=()A.8 B.﹣8 C.8或﹣8 D.6考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量数量积运算和新定义即可得出.解答:解:由数量积可得=10cosθ,解得,∵0≤θ≤π,∴.∴|×|===8.故选A.点评:正确理解向量数量积运算和新定义是解题的关键.10.(5分)已知函数f(x)是定义在R上的偶函数,对于任意x∈R都有f(x+4)=f(x)+f (2)成立,当x1,x2∈[0,2]且x1≠x2时,都有>0.给出下列命题:①函数f(x)一定是周期函数;②函数f(x)在区间[﹣6,﹣4]上为增函数;③直线x=﹣4是函数f(x)图象的一条对称轴;④函数f(x)在区间[﹣6,6]上有且仅有4个零点.其中正确命题的个数是()A.1 B.2 C.3 D.4考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①,令x=﹣2,易求f(﹣2)=0,利用f(x)为偶函数可知f(2)=0,于是可得f (x+4)=f(x),可判断①;②,依题意易知函数f(x)在区间[﹣6,﹣4]上为减函数,可判断②;③,利用偶函数f(x)是周期为4的函数的性质可判断③;④,利用函数的单调性质及周期性可判断④.解答:解:对于①,∵对于任意x∈R都有f(x+4)=f(x)+f(2)成立,∴令x=﹣2,则f(2)=f(﹣2)+f(2),∴f(﹣2)=0,又函数f(x)是定义在R上的偶函数,∴f(2)=0,∴f(x+4)=f(x),∴函数f(x)是周期为4的函数,故①正确;对于②,∵x1,x2∈[0,2]且x1≠x2时,都有>0,∴偶函数y=f(x)在区间[0,2]上是增函数,在[﹣2,0]上是减函数,又其周期为4,∴函数f(x)在区间[﹣6,﹣4]上为减函数,故②错误;对于③,∵y=f(x)为偶函数,∴直线x=0(即y轴)是函数f(x)图象的一条对称轴,又函数f(x)是周期为4的函数,∴直线x=﹣4是函数f(x)图象的一条对称轴,故③正确;对于④,∵f(﹣2)=f(2)=0,函数f(x)是周期为4的函数,∴f(﹣6)=f(﹣2)=0,f(6)=f(2)=0,又y=f(x)在区间[﹣6,﹣4],[﹣2,0],[2,4]上均为减函数;在区间[﹣4,﹣2],[0,2],[4,6]上是增函数,∴函数f(x)在区间[﹣6,6]上有且仅有4个零点,故④正确.综上所述,正确命题的个数是3个,故选:C.点评:本题考查抽象函数的应用,突出考查函数的单调性、周期性、对称性与函数的零点,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.请把答案填在答题卷的相应位置. 11.(4分)设,则=.考点:定积分的简单应用.专题:计算题.分析:分段函数的积分必须分段求解,故先将原式化成再分别求各个和式的积分,最后只要求出被积函数的原函数,结合积分计算公式求解即可.解答:解:===x3|01+(2x﹣x2)|12=(﹣0)﹣(2﹣)=故答案为:点评:本题主要考查定积分、定积分的应用、导数等基础知识,考查运算求解能力、化归与转化思想.属于基础题.12.(4分)已知双曲线C1:﹣=1(a>0,b>0)与双曲线C2:﹣=1有相同的渐近线,则C1的离心率=.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线C1:﹣=1(a>0,b>0)与双曲线C2:﹣=1有相同的渐近线,可得==2,利用,即可求出C1的离心率.解答:解:∵双曲线C1:﹣=1(a>0,b>0)与双曲线C2:﹣=1有相同的渐近线,∴==2,∴=,故答案为:.点评:本题主要考查了双曲线的标准方程,双曲线的几何性质,属基础题13.(4分)已知=2,=3,=4,…,若=7,(a、b均为正实数),则类比以上等式,可推测a、b的值,进而可得a+b=55.考点:类比推理.专题:计算题;推理和证明.分析:观察所给的等式,照此规律,第7个等式中:a=7,b=72﹣1=48,即可写出结果.解答:解:观察下列等式=2,=3,=4,…,照此规律,第7个等式中:a=7,b=72﹣1=48,∴a+b=55,故答案为:55点评:本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系.14.(4分)若定义在[a,b]上的函数f(x)=x3﹣3x2+1的值域为[﹣3,1],则b﹣a的最大值是4.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用.分析:本题先通过导函数研究函数的极值,再利用方程得到相应的边界点,然后解不等式得到x的取值范围,从而得到最大的区间[a,b],求出b﹣a的最大值,得到本题结论.解答:解:∵函数f(x)=x3﹣3x2+1,∴f′(x)=3x2﹣6x=3x(x﹣2),∴当x<0时,f′(x)>0,函数f(x)在(﹣∞,0)上单调递增;当0<x<2时,f′(x)<0,函数f(x)在(0,2)上单调递减;当x>2时,f′(x)>0,函数f(x)在(2,+∞)上单调递增.∴当x=0时,f(x)有极大值,f(0)=1,当x=2时,f(x)有极小值,f(2)=23﹣3×22+1=﹣3,∵当f(x)=1时,x=0或x=3,当f(x)=﹣3时,x=2或x=﹣1,∴若﹣3≤f(x)≤1,则﹣1≤x≤3.∴定义在[a,b]上的函数f(x)=x3﹣3x2+1的值域为[﹣3,1],则b﹣a的最大值是1﹣(﹣3)=4.故答案为:4.点评:本题考查了导函数与函数的最值,还考查了数形结合思想,本题难度适中,计算量略大,属于中档题.15.(4分)已知A i(i=1,2,3,…,n,n≥3,n∈N*)是△AOB所在的平面内的n个相异点,且•=.给出下列命题:①||=||=…=||=;②||的最小值不可能是||;③点A,A1,A2,…,A n在一条直线上;④向量及在向量的方向上的投影必相等.其中正确命题的序号是③④.(请填上所有正确命题的序号)考点:命题的真假判断与应用.专题:平面向量及应用;简易逻辑.分析:由条件利用两个向量的数量积的定义,可得和在上的投影相等,从而得出结论.解答:解:如图,由•=,可得||•||cos∠A i OB=||•||cos∠AOB,故有||cos∠A i OB=||cos∠AOB,即和在上的投影相等,即点A、A i在同一条垂直于直线OB的直线l上,如图所示,故③④正确,①不正确.由图可知,当A i位于所在直线上时||有最小值,故②不正确.∴正确的命题是③④.故答案为:③④.点评:本题主要考查两个向量的数量积的定义及向量在向量上的投影,关键是对题意的理解,是中档题.三、解答题:本大题共6小题,每小题分数见旁注,共80分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答.16.(13分)已知全集U=R,m>0,集合A={x|x2﹣x﹣12<0},B={x||x﹣3|≤m}.(1)当m=2时,求A∩(∁U B);(2)命题p:x∈A,命题q:x∈B,若p是q的充分条件,求实数m的取值范围.考点:必要条件、充分条件与充要条件的判断;交、并、补集的混合运算.专题:集合.分析:(1)当m=2时,求出集合A,B,即可求A∩(∁U B);(2)若p是q的充分条件,建立集合关系即可求实数m的取值范围解答:解:(1)由x2﹣x﹣12<0,解得﹣3<x<4,即A=(﹣3,4),当m=2时,B={x||x﹣3|≤2}={x|1≤x≤5},则∁U B={x|x>5或x<1},则A∩(∁U B)={x|﹣3<x<1},(2)若p是q的充分条件,则A⊆B,由m>0知B={x||x﹣3|≤m}={x|3﹣m≤x≤3+m},则,即,即m≥6,故实数m的取值范围是[6,+∞).点评:本题主要考查函数的基本运算以及充分条件和必要条件的应用,根据条件求出函数的定义域和值域是解决本题的关键.17.(13分)已知向量=(sinx,﹣cosx),=(cosx,cosx),记函数f(x)=•.(1)求f(x)的最小正周期及单调递增区间;(2)设△ABC的内角A,B,C的对边分别是a,b,c,且c=,f(C)=,若向量=(1,sinA)与=(2,sinB)共线,求a,b的值.考点:余弦定理;平面向量数量积的运算;两角和与差的正弦函数.专题:三角函数的图像与性质;解三角形.分析:(1)函数化简为:f(x)=sin(2x﹣)﹣,即可求得f(x)的最小正周期及单调递增区间;(2)由f(C)=可求C的值,根据向量m与n共线可求得b=2a,再根据a2+b2﹣ab=3,进而解得a,b的值.解答:解:(1)依题意,f(x)=sinxcosx﹣cos2x=sin2x﹣=sin2x﹣cos2x ﹣=sin(2x﹣)﹣(3分)所以最小正周期T==π,(4分)令2kπ≤2x﹣≤2kπ,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,所以f(x)的单调递增区间是:[k,k],k∈Z.(6分)(2)由f(C)=sin(2C﹣)﹣=,得sin(2C﹣)=1,(7分)因为0<C<π,所以﹣<2C﹣<,所以2C﹣=,解得C=,(8分)因为向量m=(1,sinA)与n=(2,sinB)共线,所以sinB=2sinA,由正弦定理得b=2a,…①(9分)在△ABC中,由余弦定理得,即a2+b2﹣ab=3,…②(11分)由①②,解得a=1,b=2.(13分)点评:本题主要考察了平面向量数量积的运算,余弦定理、两角和与差的正弦函数公式的综合应用,属于中档题.18.(13分)平面直角坐标系中,点M的坐标是(3,),曲线C1的参数方程为(α为参数),在以坐标原点为极点、x轴的非负半轴为极轴建立的极坐标系中,曲线C2的极坐标方程为ρ=4sinθ.(1)将曲线C1和C2化成普通方程,并求曲线C1和C2公共弦所在直线的极坐标方程;(2)若过点M,倾斜角为的直线l与曲线C1交于A,B两点,求||•||的值.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)曲线C1和C2消去参数方程中的参数,得到普通方程,再利用参数求出公共弦所在直线的极坐标方程,得到本题结论;(2)利用直线l的参数方程,求出对应参数t1•t2的值,得到||•||的值,得到本题结论.解答:解:(1)∵曲线C1的参数方程为(α为参数),∴C1的普通方程:(x﹣1)2+y2=1,…①∵C2:ρ2=4ρsinθ,∴x2+y2=4y,即x2+(y﹣2)2=4,…②①﹣②可得,x﹣2y=0,∴曲线C1和C2公共弦所在直线的极坐标方程为ρcosθ﹣2ρsinθ=0,tanθ=,(ρ∈R).(2)依题意,直线l的参数方程为(T为参数),点A、B分别对应参数t1,t2,代入C1的方程:(3+)2+(+)2=1,∴整理得t2+5t+6=0,∴t1t2=6,∴MA|•|MB|=6.点评:本题考查了参数方程转化为普通方程,以及参数方程的应用,本题难度不大,属于基础题.19.(13分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂商拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量P万件与促销费用x万元满足P=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品P万件还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求.(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;(Ⅱ)促销费用投入多少万元时,厂家的利润最大?考点:根据实际问题选择函数类型.专题:应用题;函数的性质及应用.分析:(Ⅰ)根据产品的利润=销售额﹣产品的成本建立函数关系;(Ⅱ)利用导数基本不等式可求出该函数的最值,注意等号成立的条件.解答:解:(Ⅰ)由题意知,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)将代入化简得:(0≤x≤a).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)当a≥1时,x∈(0,1)时y'>0,所以函数在(0,1)上单调递增x∈(1,a)时y'<0,所以函数在(1,a)上单调递减促销费用投入1万元时,厂家的利润最大;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)当a<1时,因为函数在(0,1)上单调递增在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)(注:当a≥1时,也可:,当且仅当时,上式取等号)点评:本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.20.(14分)已知中心在坐标原点O,焦点在x轴上的椭圆C的离心率为,且经过点M(1,).(1)求椭圆C的方程;(2)若F是椭圆C的右焦点,过F的直线交椭圆C于M、N两点,T为直线x=4上任意一点,且T不在x轴上,(ⅰ)求•的取值范围;(ⅱ)若OT平分线段MN,证明:TF⊥MN(其中O为坐标原点).考点:直线与圆锥曲线的关系;平面向量数量积的运算;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)椭圆C的方程为=1a>0,b>0,运用方程组求解,(2)(ⅰ)分类①若直线l斜率不存在,②若直线l斜率存在,利用韦达定理求解,(ⅱ)求出直线OT的斜率k′==,TF的斜率k TF==﹣,根据斜率判断.解答:解:(1)设椭圆C的方程为=1a>0,b>0,则解得a2=4,b2=3,所以椭圆C:=1,(2)(ⅰ)易得F(1,0)①若直线l斜率不存在,则l:x=1,此时M(1,),n(1,﹣),=,②若直线l斜率存在,设l:y=k(x﹣1),M(x1,y1),N(x2,y2),则由消去y得:(4k2+3)x2﹣8k2x+4k2﹣12=0,∴x1+x2=,x1x2=,∴=(x1﹣1,y1)•(x2﹣1,y2)=(1+k2)[x1x2﹣(x1+x2)+1]=,∵k2≥0∴0≤1∴3<4∴﹣3≤综上,的取值范围为[﹣3,),(ⅱ)线段MN的中点为Q,则由(ⅰ)可得,x Q==,y Q=k(x Q﹣1)=,所以直线OT的斜率k′==,所以直线OT的方程为:y=﹣x,从而T(4,﹣),此时TF的斜率k TF==﹣,所以k TF k MN=﹣•k=﹣1,所以TF⊥MN.点评:本题综合考查了椭圆的方程,性质,结合韦达定理求解,运算量较大,属于难题.21.(14分)已知函数f(x)=(a∈R),曲线y=f(x)在点(1,f(1))处的切线方程为y=x﹣1.(1)求实数a的值,并求f(x)的单调区间;(2)试比较20142015与20152014的大小,并说明理由;(3)是否存在k∈Z,使得kx>f(x)+2对任意x>0恒成立?若存在,求出k的最小值;若不存在,请说明理由.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)由求导公式求出导数,再由切线的方程得f′(1)=1,列出方程求出a的值,代入函数解析式和导数,分别求出f′(x)>0、f′(x)<0对应的x的范围,即求出函数f(x)的单调区间;(2)解法一:根据函数f(x)的单调性得:>,由对数的运算律、单调性化简即可,解法二:将化为:,由二项式定理化简=,再由放缩法和裂项相消法进行化简;(3)先将kx>f(x)+2分离出k:,构造函数g(x)=,再求出此函数的导数g′(x)并化简,再构造函数并二次求导,通过特殊函数值的符号,确定函数零点所在的区间,列出表格判断出g(x)的单调性,从而求出g(x)的最大值,再由自变量的范围确定出g(x)的最大值的范围,从而求出满足条件的k的最小值.解答:解:(1)依题意,(x>0),(1分)所以=,由切线方程得f′(1)=1,即=1,解得a=0,此时(x>0),,(3分)令f′(x)>0得,1﹣lnx>0,解得0<x<e;令f′(x)<0得,1﹣lnx<0,解得x>e,所以f(x)的增区间为(0,e),减区间为(e,+∞).(5分)(2)解法一:由(1)知,函数f(x)在(e,+∞)上单调递减,所以f>f,即>,则2015ln2014>2014ln2015,所以ln20142015>ln20152014,即20142015>20152014(9分)解法二:=,因为==1+1+++…+<2+<2+<2+(1﹣)+()+…+(﹣)=3﹣<3,所以,所以20142015>20152014.(9分)(3)若kx>f(x)+2对任意x>0恒成立,则,记g(x)=,只需k>g(x)max.又=,(10分)记h(x)=1﹣2x﹣2lnx(x>0),则,所以h(x)在(0,+∞)上单调递减.又h(1)=﹣1<0,=1﹣+ln2>1﹣+ln2=ln>0,所以存在唯一,使得h(x0)=0,即1﹣2x0﹣2lnx0=0,(11分)当x>0时,h(x)、g′(x)、g(x)的变化情况如下:x (0,x0)x0(x0,+∞)h(x)+ 0 ﹣g′(x)+ 0 ﹣g(x)↗极大值↘(12分)所以g(x)max=g(x0)=,又因为1﹣2x0﹣2lnx0=0,所以2x0+2lnx0=1,所以g(x0)===,因为,所以,所以,(13分)又g(x)max≥g(1)=2,所以,因为k>g(x)max,即k>g(x0),且k∈Z,故k的最小整数值为3.所以存在最小整数k=3,使得kx>f(x)+2对任意x>0恒成立.(14分)点评:本题考查导数的几何意义,导数与函数的单调性、最值之间的关系,恒成立问题转化为求函数的最值,以及构造法、二次求导判断函数的单调性,考查分析问题、解决问题的能力,化简计算能力.。

福建省厦门双十中学高三数学上学期期中试题 理

福建省厦门双十中学高三数学上学期期中试题 理

福建省厦门双十中学2015届高三数学上学期期中试题 理第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置. 1. 命题“对任意的x ∈R ,x 2+1>0”的否定是( ▲ )A .不存在x ∈R ,x 2+1>0 B .存在x ∈R ,x 2+1>0 C .存在x ∈R ,x 2+1≤0D .对任意的x ∈R ,x 2+1≤02. 已知集合{}23,A a =,集合{}0,,1B b a =-,且{}1AB =,则A B =( ▲ )A .{}0,1,3B .{}0,1,2,3C .{}1,2,4D .{}0,1,2,3,43. “sin α≠sin β”是“α≠β”的( ▲ )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. 若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ▲ )A .ac 2<bc 2B .1a <1bC .b a >a bD .a 2>ab >b 25. 已知函数f (x )=(x -a )(x -b )(其中a >b )的图像如下图所示,则函数g (x )=a x+b 的图象是( ▲ )6. 设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则23z x y =-的最小值是( ▲ )A .3-B .12C .6-D .12-7. 设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A . 若△OAF (O为坐标原点)的面积为4,则抛物线的方程为( ▲ ) A .y 2=4x B .y 2=8xC .y 2=±4xD .y 2=±8x8. 下列函数存在极值的是( ▲ )A. 2cos y x x =+B. ln xy e x =-C. 32331y x x x =++-D. 1ln y x x=-9. 定义:sin a b a b θ⨯=⋅⋅,其中θ为向量a与b的夹角,若2,5,6a b a b ==⋅=-,则a b ⨯=( ▲ ) A .6B .8C .-8D .8或-810.已知函数()f x 是定义在R 上的偶函数,对于任意x ∈R 都有(4)()(2)f x f x f +=+成立,当12,[0,2]x x ∈且12x x ≠时,都有1212()()0f x f x x x ->-. 给出下列命题:①函数()f x 一定是周期函数; ②函数()f x 在区间[6,4]--上为增函数;③直线4x =-是函数()f x 图像的一条对称轴; ④函数()f x 在区间[6,6]-上有且仅有4个零点.其中正确命题的个数是( ▲ ) A .1 B .2 C .3 D .4第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.请把答案填在答题卷的相应位置.11.已知函数2,01()2,12x x f x x x ⎧<≤=⎨-<≤⎩,则20()f x dx ⎰等于 ▲ .12.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:y 216-x 24=1有相同的渐近线,则C 1的离心率= ▲ . 13.已知2+23=223,3+38=338,4+415=4415,…,若7+a b =7a b,(a 、b 均为正实数),则类比以上等式,可推测a 、b 的值,进而可得a +b = ▲ . 14.若定义在],[b a 上的函数13)(23+-=x x x f 的值域为]1,3[-,则a b -的最大值是 ▲ .15.已知*(1,2,3,,,3,)i A i n n n N =≥∈是△AOB 所在的平面内的n 个相异点,且OA i ⋅=⋅. 给出下列命题:①12n OA OA OA OA ====;的最小值不可能是OB ;③点12,,,,n A A A A 在一条直线上;④向量及i 在向量的方向上的投影必相等.其中正确命题的序号是 ▲ .(请填上所有正确命题的序号)三、解答题:本大题共6小题,每小题分数见旁注,共80分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答. 16.(本小题满分13分)已知全集U =R ,0m >,集合2{|120},{|3}A x x x B x x m =--<=-≤. (1)当2m =时,求()UAB ð;(2)命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数m 的取值范围.17.(本小题满分13分)已知向量a =()3sin x ,-cos x ,b =()cos x ,cos x ,记函数f (x )=a ·b . (1)求f (x )的最小正周期及单调递增区间;(2)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且c =3,f (C )=12,若向量m =()1,sin A 与n =()2,sin B 共线,求a ,b 的值.18.(本小题满分13分)平面直角坐标系中,点M 的坐标是,曲线1C 的参数方程为1cos ,sin ,x y αα=+⎧⎨=⎩(α为参数),在以坐标原点为极点、x 轴的非负半轴为极轴建立的极坐标系中,曲线2C 的极坐标方程为4sin ρθ=.(1)将曲线1C 和2C 化成普通方程,并求曲线1C 和2C 公共弦所在直线的极坐标方程; (2)若过点M ,倾斜角为3π的直线l 与曲线1C 交于A ,B 两点,求MA MB ⋅的值. 19.(本小题满分13分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销. 经调查测算,该促销产品在“双十一”的销售量p 万件与促销费用x 万元满足231p x =-+(其中a x ≤≤0,a 为正常数).已知生产该产品还需投入成本102p +万元(不含促销费用),产品的销售价格定为20(4)p+元/件,假定厂家的生产能力完全能满足市场的销售需求. (1)将该产品的利润y 万元表示为促销费用x 万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.20.(本小题满分14分)已知中心在坐标原点O ,焦点在x 轴上的椭圆C 的离心率为12,且经过点M (1,32).(1)求椭圆C 的方程;(2)若F 是椭圆C 的右焦点,过F 的直线交椭圆C 于M 、N 两点,T 为直线x =4上任意一点,且T 不在x 轴上,(ⅰ)求FM →·FN →的取值范围;(ⅱ)若OT 平分线段MN ,证明:TF ⊥MN (其中O 为坐标原点).21.(本小题满分14分)已知函数ln ()xf x x a=+(a ∈R ),曲线()y f x =在点(1,(1))f 处的切线方程为1y x =-.(1)求实数a 的值,并求()f x 的单调区间; (2)试比较20152014与20142015的大小,并说明理由;(3)是否存在k ∈Z ,使得()2kx f x >+对任意0x >恒成立?若存在,求出k 的最小值;若不存在,请说明理由.厦门双十中学2014-2015学年(上)期中检测 高三数学(理科)参考答案及评分标准(2014-11-13)17.(本小题满分13分) 【解析】 (1)依题意,21cos 2111()cos cos 22cos 2sin(2)2222262x f x x x x x x x x π+=-=-=--=--··········································· 3分 所以最小正周期22T ππ==, ····························· 4分 令222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k Z ππππ-≤≤+∈,所以()f x 的单调递增区间是:[,],63k k k Z ππππ-+∈. ·················· 6分 (2)由11()sin(2)622f C C π=--=,得sin(2)16C π-=, ················· 7分因为0C π<<,所以112666C πππ-<-<,所以262C ππ-=,解得3C π=, ········ 8分因为向量m =()1,sin A 与n =()2,sin B 共线,所以sin 2sin B A =,由正弦定理得2b a =,…① ····································· 9分在△ABC中,由余弦定理得2222cos3c a b ab π=+-,即223a b ab +-=,……………………② ·························· 11分 由①②,解得1,2a b ==. ······························· 13分18.(本小题满分13分)【解析】(1) 依题意,1C 的普通方程:22(1)1x y -+=,………………………………① ········· 2分对2C ,24sin ρρθ=,所以224x y y +=,即22(2)4x y +-=,……② ········· 4分 ①-②可得,20x y -=, ····························· 6分 所以曲线1C 和2C 公共弦所在直线的极坐标方程为c o s 2s i n 0ρθρθ-=,1tan ()2R θρ=∈. ································ 7分 (注:本次考试,直线的极坐标方程若只写“cos 2sin 0ρθρθ-=”,或者“1tan 2θ=”均给分!) (2)解法一:依题意,直线l的参数方程为13,2,x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),点A 、B 分别对应参数12,t t , ···· 9分代入1C的方程:221(31))122t +-+=,整理得2560t t ++=,所以126t t =, ····12分 所以126MA MB t t ⋅==. ······························· 13分解法二(注:了解即可!):设曲线1C 的圆心为(1,0)C ,半径1r =, 则由圆幂定理得2222()()(31)0)16MA MB MC r MC r MC r ⋅=+-=-=-+-=. ········· 13分19.(本小题满分13分) 【解析】(1)由题意知,)210()204(p x p py +--+=, ······················ 3分 将231p x =-+代入化简得:x x y -+-=1416(0x a ≤≤). ··············· 6分 (2)13)1(14217)114(17=+⨯+-≤+++-=x x x x y , ················· 8分 当且仅当1,114=+=+x x x 即时,上式取等号. ······················ 9分 当1a ≥时,促销费用投入1万元时,厂家的利润最大; ··················· 10分当1a <时,)114(17+++-=x x y 在[]0,a 上单调递增, ················· 11分 所以x a =时,函数有最大值,即促销费用投入a 万元时,厂家的利润最大. ·········· 12分 综上,当1a ≥时,促销费用投入1万元,厂家的利润最大;当1a <时,促销费用投入a 万元,厂家的利润最大. ················· 13分 20.(本小题满分14分) 【解析】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>,则222221,2191,4,c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪⎪=+⎪⎩解得224,3a b ==,所以椭圆22:143x y C +=. ··············· 4分 (2)(ⅰ)易得(1,0)F , ··································· 5分①若直线l 斜率不存在,则1:=x l ,此时)23,1(M ,)23,1(-N ,⋅=49-; ···· 6分②若直线l 斜率存在,设)1(:-=x k y l ,),(),,(2211y x N y x M ,则 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 消去y 得:01248)34(2222=-+-+k x k x k ············· 7分 ∴3482221+=+k k x x ,341242221+-=⋅k k x x ······················· 8分∴⋅),1(),1(2211y x y x -⋅-=]1)()[1(21212++-+=x x x x k =21149k +-- ···· 9分∵02≥k ∴11102≤+<k ∴411432<+-≤k ∴493-<⋅≤-FM综上,FN FM ⋅的取值范围为]49,3[--. ······················ 10分(ⅱ)线段MN 的中点为Q ,则由(ⅰ)可得,2122243,(1)24343Q Q Q x x k kx y k x k k +-===-=++, ··········································· 11分所以直线OT 的斜率3'4QQ y k x k==-,所以直线OT 的方程为:34y x k =-, ·········· 12分 从而3(4,)T k -,此时TF 的斜率30141TF k k k--==--, ···················13分 所以11TF MN k k k k⋅=-⋅=-,所以TF ⊥MN . ························ 14分21.(本小题满分14分) 【解析】(1)依题意,2ln '()()x ax x f x x a +-=+, ··························· 1分 所以211'(1)(1)1a f a a+==++,又由切线方程可得'(1)1f =,即111a =+,解得0a =, 此时ln ()x f x x =,21ln '()xf x x -=, ·························· 3分令'()0f x >,所以1ln 0x ->,解得0x e <<;令'()0f x <,所以1ln 0x -<,解得x e >, 所以()f x 的增区间为:(0,)e ,减区间为:(,)e +∞. ···················· 5分 (2)解法一:由(1)知,函数()f x 在(,)e +∞上单调递减,所以(2014)(2015)f f >,即2015201420152014ln 2014ln 2015201420152015ln 20142014ln 2015ln 2014ln 201520142015>⇔>⇔>⇔> ··········································· 9分 解法二:201420142015201520151201420142014⎛⎫=⨯ ⎪⎝⎭,因为 201420142233201420142014201420142015112014201411111()()()20142014201411122!3!2014!1112122320132014111112(1)()()223201320141320143C C C ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭=+++++<++++<++++⨯⨯⨯=+-+-++-=-< 所以2014201520153120142014<<,所以2014201520152014<. ··················· 9分 (3)若()2kx f x >+对任意0x >恒成立,则2ln 2x k x x >+,记2ln 2()x g x x x=+,只需ma x ()k g x >.又32312ln 2122ln '()xx xg xx x x---=-=, ························ 10分 记()122ln h x x x =--,则2'()20h x x=--<,所以()h x 在(0,)+∞上单调递减.又(1)10h =-<,311ln 21ln 2ln 02h ==>-+=>,所以存在唯一0x ∈,使得0()0h x =,即00122ln 0x x --=, ············11分 当0x >时,(),'(),()h x g x g x 的变化情况如下:12分所以00max 022ln ()()x x g x g x x+==,又因为00122ln 0x x --=,所以0022ln 1x x +=,所以200000220000(22ln )212111()()222x x x x gx x x x x +++===⋅+, 因为0(2x ∈,所以01x ∈,所以03()12g x << ··············13分 又max ()(1)2g x g ≥=,所以02()1g x ≤<因为max ()k g x >,即0()k g x >,且k ∈Z ,故k 的最小整数值为3.所以存在最小整数3k =,使得()2kx f x >+对任意0x >恒成立. ·············· 14分。

厦门双十中学2015—2016学年高三上期中考

厦门双十中学2015—2016学年高三上期中考

厦门双十中学2015—2016学年高三(上)期中考地理试题(本卷满分:150分; 考试时间:120分钟)说明:请把I 卷的答案用2B 铅笔填涂在答题卡的相应位置,把II 卷的答案用黑色签字笔直接写在答题卡的相应位置。

Ⅰ卷(选择题, 70分)本卷共35题,每小题2分,共70分。

在每小题给出的四个选项中,只有一个选项是最符合题意要求的。

城市热岛效应是指城市中的气温明显高于外围郊区的现象,热岛强度是用城市和郊区两个代表性观测点的气温差值来表示,图1示意近年来珠江三角洲城市群热岛强度的时间分布。

读图完成1~2题。

1. 导致该城市群大部分时间热岛强度夜大于昼的主要因素是A. 昼夜长短B. 大气逆辐射C. 建筑密度D. 人口密度2. 下列措施可降低热岛强度的是A. 加快工业化步伐,促进城市化进程B. 建筑外墙深色化,以增强吸热能力C. 夏季鼓励使用空调,为城市降温D. 增加市区绿地面积,适度设置水景图2表示一年中大气上界单位面积水平面上每日接收到的太阳辐射随纬度的变化,单位为MJ/m 2,图中阴影部分表示没有太阳辐射。

读图完成3~4题。

3. 图中M 日最接近 A. 春分日 B. 夏至日 C. 秋分日 D. 冬至日图1图24. a 、b 两点太阳辐射差异的影响因素主要为A. 太阳高度B. 白昼长短C. 海陆位置D. 天气状况图3表示某河流水文测站春夏秋冬四季气温、降水量和径流分配状况。

读图完成5~7题。

5. 该河流可能分布在A .恒河流域B .尼罗河流域C .长江流域D .亚马孙河流域6. 该地河流的主要补给形式是A .积雪融水补给为主B .雨水补给C .地下水补给D .湖泊水补给7. 该地河流的径流量最低的月份出现在A .1月B .2月C .11月D .12月 图4示意我国某区域冬小麦和冬油菜适宜种植区的北界的变化。

读图完成8~10题。

8. 冬小麦、冬油菜适宜种植区北界推移的最可能的原因是A .气候变暖B .种植习惯变化C .机械化程度提高D .化肥、农药使用量增加9. 据图推测该区域农业生产可能发生的变化是A .棉花、玉米的种植面积缩小B .春小麦的种植面积扩大C .复种指数有所增加D .作物适宜种植高度有所下降10.根据图中冬小麦和冬油菜种植界线的变化,可推测A .沿海地区的低地可能被淹没B .北温带耕作区向低纬方向扩展C .高纬度地区降水减少D .中纬度地区粮食产量增加浙江古代盛产青瓷,其中越窑生产的青瓷(越瓷)远销东亚、东南亚、南亚、西亚和非洲东部地区等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年福建省厦门市双十中学高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题卷的相应位置.1.设全集U是实数集R,M={x|x<1},N={x|0<x<2}都是U的子集,则图中阴影部分所表示的集合是()A.{x|1≤x<2} B.{x|0<x<1} C.{x|x≤0} D.{x|x<2}【考点】Venn图表达集合的关系及运算.【专题】数形结合;定义法;集合.【分析】由图象可知阴影部分对应的集合为N∩(∁U M),然后根据集合的基本运算求解即可.【解答】解:由Venn图可知阴影部分对应的集合为N∩(∁U M),∵M={x|x<1},∴∁U M={x|x≥1},又N={x|0<x<2},∴N∩(∁U M)={x|1≤x<2},故选:A.【点评】本题主要考查集合的基本运算,利用图象先确定集合关系是解决本题的关键,比较基础.2.下列函数中与函数y=x相等的函数是()A.B.y=C.D.y=log22x【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】判断函数相等,先求出每个函数的定义域,然后判断与y=x的定义域是否相同,然后再判断解析式是否相同或可以化成相同的情况,即对应关系是否相同y=|x|.【解答】解:函数y=x的定义域为R,对应关系为y=x.对于A,函数y=的定义域为[0,+∞),故与y=x不是相同函数,故A错误;对于B,函数解析式可化为y=|x|,所以对应关系不同,故B错误;对于C.定义域为(0,+∞),故C错误;对于D,易知函数,该函数的定义域为R,所以该函数与y=x相同.故选D.【点评】本题考查了函数相等的概念,主要是从定义域、对应关系两个方面来考虑.3.若函数是奇函数,则a=()A.﹣2 B.2 C. D.【考点】函数奇偶性的判断.【专题】方程思想;定义法;函数的性质及应用.【分析】根据函数奇偶性的定义建立方程关系进行求解即可.【解答】解:若是奇函数,则f(﹣x)=﹣f(x),即=﹣,即(x+2)(x﹣a)=(x﹣2)(x+a),则x2+(2﹣a)x﹣2a=x2+(a﹣2)x﹣2a,即(2﹣a)x=(a﹣2)x,则2﹣a=a﹣2,得a=2,故选:B.【点评】本题主要考查函数奇偶性的应用,利用函数奇偶性的定义建立方程关系是解决本题的关键.4.给定映射f:(x,y)→(2x+y,x﹣2y),在映射f下,(3,﹣1)的原像为()A.(﹣1,3)B.(5,5) C.(3,﹣1)D.(1,1)【考点】映射.【专题】方程思想;对应思想;函数的性质及应用.【分析】设在映射f下,(3,﹣1)的原像为:(x,y),则2x+y=3,x﹣2y=﹣1,解得答案.【解答】银:设在映射f下,(3,﹣1)的原像为:(x,y),则2x+y=3,x﹣2y=﹣1,解得:x=1,y=1,故在映射f下,(3,﹣1)的原像为:(1,1)故选:D【点评】本题考查的知识点是映射,由象求原象就是解方程(组).5.已知函数则f(﹣3)的值为()A.1 B.﹣1 C.0 D.﹣9【考点】函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用函数的解析式化简求解即可.【解答】解:函数,则f(﹣3)=﹣f(﹣2)=f(﹣1)=﹣f(0)=f(1)=1.故选:A.【点评】本题考查分段函数的应用,函数值的求法,考查计算能力.6.已知k,b∈R,则一次函数y=kx+b与反比例函数在同一坐标系中的图象可以是()A. B.C.D.【考点】函数的图象.【专题】计算题;函数思想;数形结合法;函数的性质及应用.【分析】通过K的讨论,判断函数的图象即可.【解答】解:当k<0,b<0时,一次函数y=kx+b的图象,反比例函数,A、B、C、D不成立.当k<0,b>0,一次函数y=kx+b的图象,反比例函数,A不成立,B成立,C、D不成立.当k>0,b<0时,一次函数y=kx+b的图象,反比例函数,A、B、C、D不成立.当k>0,b>0时,一次函数y=kx+b的图象,反比例函数,A、B、C、D不成立.当k<0,b>0,一次函数y=kx+b的图象,反比例函数,B成立;故选:B.【点评】本题考查直线方程与反比例函数图象的判断,考查计算能力.7.已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f (log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<a B.b<c<a C.b<a<c D.a<b<c【考点】奇偶性与单调性的综合;对数值大小的比较.【专题】综合题;函数的性质及应用.【分析】由f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,可得出自变量的绝对值越小,函数值越大,由此问题转化为比较自变量的大小,问题即可解决.【解答】解:f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,要得函数在(0,+∞)上是减函数,图象越靠近y轴,图象越靠上,即自变量的绝对值越小,函数值越大,由于0<0.20.6<1<log47<log49=log23,可得b<a<c,故选C.【点评】本题解答的关键是根据函数的性质得出自变量的绝对值越小,函数值越大这一特征,由此转化为比较自变量的大小,使得问题容易解决.这也是本题解答的亮点.8.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确到0.1)为()A.1.2 B.1.3 C.1.4 D.1.5【考点】二分法求方程的近似解.【专题】应用题.【分析】由图中参考数据可得f(1.43750>0,f(1.40625)<0,又因为题中要求精确到0.1可得答案.【解答】解:由图中参考数据可得f(1.43750)>0,f(1.40625)<0,又因为题中要求精确到0.1,所以近似根为1.4故选C.【点评】本题本题主要考查用二分法求区间根的问题,属于基础题型.在利用二分法求区间根的问题上,如果题中有根的精确度的限制,在解题时就一定要计算到满足要求才能结束.9.函数是R上的减函数,则实数a的取值范围为()A.B.C.D.【考点】分段函数的应用;函数单调性的性质.【专题】分类讨论;转化思想;分类法;导数的综合应用.【分析】若函数是R上的减函数,则,解得实数a的取值范围.【解答】解:∵函数是R上的减函数,∴,解得:a∈,故选:D【点评】本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键.10.当实数k变化时,对于方程(2|x|﹣1)2﹣(2|x|﹣1)﹣k=0的解的判断不正确的是()A.时,无解B.时,有2个解C.时,有4个解D.k>0时,有2个解【考点】根的存在性及根的个数判断.【专题】转化思想;换元法;函数的性质及应用.【分析】令令t=2|x|﹣1,则t∈[0,+∞),方程即k=t2﹣t∈[﹣,+∞),再利用二次函数的性质判断各个选项是否正确,从而得出结论.【解答】解:令t=2|x|﹣1,则t∈[0,+∞),方程即t2﹣t﹣k=0,即k=t2﹣t.由于t2﹣t=(t﹣)2﹣≥﹣,当t=时,取得最小值﹣,当k<﹣时,方程无解,故A正确;当k=﹣时,方程有两解,且为x=±log2,故B正确;当k>0时,方程t2﹣t﹣k=0的判别式△=1+4k>0,两根异号,则方程有两解,故D正确;当k=0时,方程即为t2﹣t=0,求得t=0,或t=1,此时x=0或±1,有三个解,故C不正确.故选C.【点评】本题主要考查方程根的存在性及个数的判断,体现了转化、分类讨论的数学思想,属于中档题.二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在答题卷的相应位置.11.函数的定义域为{x|x≤2且x≠1}.【考点】函数的定义域及其求法.【专题】方程思想;定义法;函数的性质及应用.【分析】根据函数成立的条件即可求函数的定义域.【解答】解:根据题意,要使得函数有意义,要满足,故可知答案为{x|x≤2且x≠1}.故答案为:{x|x≤2且x≠1}【点评】本题主要考查函数定义域的求解,解决的关键是根据分母不为零,偶次根式下为非负数,属于基础题.12.已知f(x)=ax3+bx﹣2,若f(2015)=7,则f(﹣2015)的值为﹣11.【考点】函数奇偶性的性质.【专题】转化思想;构造法;函数的性质及应用.【分析】根据条件构造函数g(x)=f(x)﹣1,判断函数的奇偶性,进行求解即可.【解答】解:∵f(x)=ax3+bx﹣2,∴f(x)+2=ax3+bx,是奇函数,设g(x)=f(x)+2,则g(﹣x)=﹣g(x),即f(﹣x)+2=﹣(f(x)+2)=﹣2﹣f(x),即f(﹣x)=﹣4﹣f(x),若f(2015)=7,则f(﹣2015)=﹣4﹣f(2015)=﹣4﹣7=﹣11,故答案为:﹣11.【点评】本题主要考查函数值的计算,根据条件构造函数,判断函数的奇偶性是解决本题的关键.13.已知全集U=R,集合A={x|x﹣a≤0},B={x|x2﹣3x+2≤0},且A∪∁U B=R,则实数a的取值范围是a≥2.【考点】交、并、补集的混合运算.【专题】计算题;集合思想;不等式的解法及应用;集合.【分析】由全集R及B,求出B的补集,根据A与B补集的并集为R,确定出a的范围即可.【解答】解:∵全集U=R,B={x|x2﹣3x+2≤0}={x|1≤x≤2},∴∁U B={x|x<1或x>2}.∵A={x|x﹣a≤0}={x|x≤a},A∪(∁U B)=R,∴a≥2,则a的取值范围为a≥2.故答案为:a≥2.【点评】本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键,是基础题.14.已知函数f(x)=x2+ax+b的零点是﹣3和1,则函数g(x)=log2(ax+b)的零点是2.【考点】函数的零点.【专题】计算题;函数的性质及应用.【分析】由题意得方程x2+ax+b=0的根是﹣3和1;从而利用韦达定理求a,b;再解方程即可.【解答】解:∵函数f(x)=x2+ax+b的零点是﹣3和1,∴方程x2+ax+b=0的根是﹣3和1;∴﹣3+1=﹣a,﹣3•1=b;解得a=2,b=﹣3;故令函数g(x)=log2(2x﹣3)=0解得,x=2;故答案为:2.【点评】本题考查了函数的零点与方程的根的关系应用及韦达定理的应用.15.若函数(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是(1,].【考点】函数的值域.【专题】函数思想;综合法;函数的性质及应用.【分析】x≤2时,容易得出f(x)≥4,而f(x)的值域为[4,+∞),从而需满足2+log a x≥4,(x>2)恒成立,从而可判断a>1,从而可得出log a2≥2,这样便可得出实数a的取值范围.【解答】解:x≤2时,﹣x+6≥4;∴f(x)的值域为[4,+∞);∴x>2时,2+log a x≥4恒成立;∴log a x≥2,a>1;∴log a2≥2;∴2≥a2;解得;∴实数a的取值范围为.故答案为:.【点评】考查函数值域的概念,分段函数值域的求法,以及一次函数、对数函数的单调性,函数恒成立问题的处理方法.16.方程x2+﹣1=0的解可视为函数y=x+的图象与函数y=的图象交点的横坐标.若x4+ax﹣9=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是(﹣∞,﹣24)∪(24,+∞).【考点】根的存在性及根的个数判断;函数的图象.【专题】压轴题;数形结合.【分析】根据题意,x4+ax﹣9=0的各个实根可看做是函数y=x3+a的图象与函数y=的图象的交点的横坐标,由于交点要在直线y=x的同侧,可先计算函数y=的图象与y=x的交点为A (3,3),B(﹣3,﹣3),再将函数y=x3纵向平移|a|,数形结合发现只需函数y=x3+a的图象与y=x的交点分布在A的外侧或B的外侧,故计算函数y=x3+a的图象过点A或B时a 的值即可的a的范围【解答】解:如图x4+ax﹣9=0的各个实根x1,x2,…,x k(k≤4)可看做是函数y=x3+a的图象与函数y=的图象的交点C,D的横坐标∵函数y=的图象与y=x的交点为A(3,3),B(﹣3,﹣3),函数y=x3+a的图象可看做是将函数y=x3纵向平移|a|的结果,其图象为关于(0,a)对称的增函数当函数y=x3+a的图象过点A(3,3)时,a=﹣24当函数y=x3+a的图象过点B(﹣3,﹣3)时,a=24∴要使函数y=x3+a的图象与函数y=的图象的交点C、D均在直线y=x的同侧只需使函数y=x3+a的图象与y=x的交点横坐标大于3或小于﹣3∴数形结合可得a<﹣24或a>24故答案为(﹣∞,﹣24)∪(24,+∞)【点评】本题考查了数形结合解决根的存在性及根的个数问题的方法,认真分析“动”函数与“定”函数的关系是解决本题的关键三、解答题:本大题共6小题,每小题分数见旁注,共76分.解答应写出文字说明,证明过程或演算步骤.请在答题卷相应题目的答题区域内作答.17.(1)求值:lg5•lg400+(lg2)2;(2)已知x=log23,求的值.【考点】对数的运算性质.【专题】计算题;转化思想;数学模型法;函数的性质及应用.【分析】(1)直接利用对数的运算性质化简求值;(2)把x=log23代入,然后利用对数的运算性质结合有理指数幂的运算性质化简得答案.【解答】解:(1)lg5•lg400+(lg2)2=lg5(lg4+lg100)+=2lg5•lg2+2lg5+2lg22=2lg2(lg5+lg2)+2lg5=2lg2+2lg5=2(lg5+lg2)=2;(2)∵x=log23,∴===.【点评】本题考查有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.18.已知集合.(Ⅰ)若a=1,求A∩B;(Ⅱ)若A∩B=∅,求实数a的取值范围.【考点】交集及其运算.【专题】计算题;集合思想;分类法;集合.【分析】(Ⅰ)把a=1代入A中不等式,求出解集确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可;(Ⅱ)由A与B的交集为空集,分A为空集及不为空集两种情况求出a的范围即可.【解答】解:(Ⅰ)当a=1时,A={x|0<x<5},由<2x﹣1<4,得﹣2<x﹣1<2,解得:﹣1<x<3,∴B={x|﹣1<x<3},则A∩B={x|0<x<3};(Ⅱ)若A=∅,则a﹣1≥3a+2,解得:a≤﹣;若A≠∅,则a>﹣,由A∩B=∅,得到a﹣1≥3或3a+2≤﹣1,解得:﹣<a≤﹣1或a≥4,综上,实数a的取值范围是{x|x≤﹣1或x≥4}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.19.设函数.(Ⅰ)设t=log3x,用t表示f(x),并指出t的取值范围;(Ⅱ)求f(x)的最值,并指出取得最值时对应的x的值.【考点】函数的最值及其几何意义;函数解析式的求解及常用方法.【专题】计算题;函数思想;换元法;函数的性质及应用.【分析】(Ⅰ)设t=log3x,由x的范围,可得t的范围,运用对数的运算性质,可得f(x)关于t的解析式;(Ⅱ)由二次函数在闭区间上的最值的求法,讨论区间上的单调性,即可得到所求最值及对应x的值.【解答】解:(Ⅰ)设t=log3x,由,即有﹣2≤log3x≤3,即﹣2≤t≤3.此时,f(x)=﹣log3(9x)•(log3x﹣1)=﹣(log3x+2)(log3x﹣1)=﹣t2﹣t+2,即f(x)=﹣t2﹣t+2,其中﹣2≤t≤3;(Ⅱ)由(Ⅰ)可得,,又﹣2≤t≤3,函数y=﹣t2﹣t+2在单调递增,在单调递减,所以当,即,即时,f(x)取得最大值;所以当t=3,即log3x=3,即x=27时,f(x)取得最小值﹣10.【点评】本题考查函数的最值的求法,考查换元法的运用,以及对数函数的单调性,同时考查二次函数的最值的求法,及化简运算能力,属于中档题.20.小张周末自己驾车旅游,早上8点从家出发,驾车3h后到达景区停车场,期间由于交通等原因,小张的车所走的路程s(单位:km)与离家的时间t(单位:h)的函数关系式为s(t)=﹣4t(t﹣13).由于景区内不能驾车,小张把车停在景区停车场.在景区玩到17点,小张开车从停车场以60km/h的速度沿原路返回.(Ⅰ)求这天小张的车所走的路程s(单位:km)与离家时间t(单位:h)的函数解析式;(Ⅱ)在距离小张家48km处有一加油站,求这天小张的车途经该加油站的时间.【考点】根据实际问题选择函数类型.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(1)由题意可得:当0≤t≤3时,s(t)=﹣4t(t﹣13)(km);在景区共玩6个小时,此时离家的距离可认为不变,于是当3<t≤9时,s(t)=s(3)km;小张开车以60km/h 的速度沿原路匀速返回时,共用2小时,因此当9<t≤11时,s(t)=120+60(t﹣9)=60t﹣420;(2)利用分段函数,解得t,可得第一次、第二次经过加油站时的时间.【解答】解:(Ⅰ)依题意得,当0≤t≤3时,s(t)=﹣4t(t﹣13),∴s(3)=﹣4×3×(3﹣13)=120.即小张家距离景点120 km,小张的车在景点逗留时间为17﹣8﹣3=6(h).∴当3<t≤9时,s(t)=120,小张从景点回家所花时间为=2(h),∴当9<t≤11时,s(t)=120+60(t﹣9)=60t﹣420.综上所述,这天小张的车所走的路程s(t)=(Ⅱ)当0≤t≤3时,令﹣4t(t﹣13)=48,得t2﹣13t+12=0,解得t=1或t=12(舍去),当9<t≤11时,令60t﹣420=2×120﹣48=192,解得t=.答:小张这天途经该加油站的时间分别为9点和18时.【点评】本题考查了分段函数的求法和应用、路程与速度时间的关系等基础知识与基本方法,属于难题.21.已知函数(p,q为常数)是定义在(﹣1,1)上的奇函数,且.(Ⅰ)求函数f(x)的解析式;(Ⅱ)判断并用定义证明f(x)在(﹣1,1)上的单调性;(Ⅲ)解关于x的不等式f(2x﹣1)+f(x)<0.【考点】函数单调性的性质;函数解析式的求解及常用方法;函数单调性的判断与证明.【专题】综合题;转化思想;综合法;函数的性质及应用.【分析】(Ⅰ)依题意,,解得p=1,q=0,可得函数的解析式.(Ⅱ)利用函数的单调性的定义证明函数f(x)在(﹣1,1)上单调递增.(Ⅲ)原不等式可化为f(2x﹣1)<f(﹣x),根据函数f(x)在定义域(﹣1,1)上单调递增,可得,由此求得x的范围.【解答】解:(Ⅰ)依题意,,解得p=1,q=0,所以.(Ⅱ)函数f(x)在(﹣1,1)上单调递增,证明如下:任取﹣1<x1<x2<1,则x1﹣x2<0,﹣1<x1x2<1,从而f(x1)﹣f(x2)=﹣==<0,所以f(x1)<f(x2),所以函数f(x)在(﹣1,1)上单调递增.(Ⅲ)原不等式可化为:f(2x﹣1)<﹣f(x),即f(2x﹣1)<f(﹣x),由(Ⅱ)可得,函数f(x)在(﹣1,1)上单调递增,所以,解得,即原不等式解集为.【点评】本题主要考查函数的单调性的判断和证明,利用函数的单调性解不等式,属于中档题.22.已知函数f(x)=x2+2x|x﹣a|,其中a∈R.(Ⅰ)当a=﹣1时,在所给坐标系中作出f(x)的图象;(Ⅱ)对任意x∈[1,2],函数f(x)的图象恒在函数g(x)=﹣x+14图象的下方,求实数a 的取值范围;(Ⅲ)若关于x的方程f(x)+1=0在区间(﹣1,0)内有两个相异根,求实数a的取值范围.【考点】函数的图象;函数与方程的综合运用.【专题】综合题;分类讨论;转化思想;分类法;函数的性质及应用.【分析】(Ⅰ)依题意当a=﹣1时,,据此可作出图象.(Ⅱ)由题意,对任意x∈[1,2],只需(f(x)+x)max<14.分类讨论求得(f(x)+x)max ,可得实数a的取值范围.(Ⅲ)记F(x)=f(x)+1,考虑F(x)在区间(﹣1,0)内有两个不同的零点即可.分类讨论,求得a的范围.【解答】解:(Ⅰ)依题意当a=﹣1时,,据此可作出图象如下:(Ⅱ)由题意,对任意x∈[1,2],f(x)<g(x),即f(x)+x<14恒成立,只需(f(x)+x)max<14.另一方面,f(x)=,即f(x)=.当a≥0时,f(x)在(﹣∞,a)和(a,+∞)上均递增,∵f(a)=a2,则f(x)在R上递增,当a<0时,f(x)在(﹣∞,a)和上递增,在上递减,故f(x)在x∈[1,2]上恒单调递增,从而y=f(x)+x在x∈[1,2]上也恒单调递增,则(f(x)+x)max=f(2)+2=4+4|2﹣a|+2<14,即|2﹣a|<2,解得0<a<4,故实数a的取值范围是(0,4).(Ⅲ)记F(x)=f(x)+1,考虑F(x)在区间(﹣1,0)内有两个不同的零点即可.此时,,即,则由(Ⅱ)可知,当a≥0时,F(x)=f(x)+1在R上递增,方程f(x)+1=0在区间(﹣1,0)内至多有一个根,不符合要求,舍去;故a<0.当x≤a时,令F(x)=0,可得(不符合x≤a,舍去)或,但,不在区间(﹣1,0)内.当x>a时,F(x)=3x2﹣2ax+1在区间(﹣1,0)内必有两个不同的零点,从而(﹣1,0)⊆(a,+∞),所以,解得.【点评】本题主要考查函数的图象,函数与方程的综合应用,体现了转化、分类讨论的数学思想,属于中档题.。

相关文档
最新文档