喇叭天线地设计1206030201

合集下载

手把手教你制作喇叭天线

手把手教你制作喇叭天线

手把手教你制作喇叭天线
1 喇叭天线简介
 喇叭天线简介常见的喇叭天线主要由角锥喇叭(矩形喇叭)和圆锥喇叭,分别如图1.1、1.2 所示:
 图1.1 角锥喇叭实物图
 图1.2 圆锥喇叭实物图
 从阻抗匹配的角度来理解,天线其实就是一个阻抗转换器,从传输线到自由空间(377 欧姆),一个通用的微波传输线就是波导(waveguide)一个空的引导电磁波传输的矩形管(hollowpipe),如果波导横截面的口径大于半个波长,那幺电磁波就能在其中以较低的损耗传输,并且如果波导终端打开,那幺电磁波就可以向自由空间辐射。

 喇叭就是一个渐变的波导,它增大了辐射口径,可以获得较高的增益,而且制作简单,性能稳定,即便在较恶劣的环境中也能获得较好的方向图,下面我们就自己动手设计一个角锥喇叭天线,设计中将要用到两个软件:
HDL_ANT 和CST(或HFSS),分别用于设计和仿真。

喇叭天线的设计1206030201

喇叭天线的设计1206030201

微波技术与天线课程设计——角锥喇叭天线姓名:***学号:**********目录一.角锥喇叭天线基础知识 (3)1. 口径场 (3)2. 辐射场 (4)3.最佳角锥喇叭 (7)4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (7)二.角锥喇叭设计实例 (7)1. 工作频率 (8)2.选用作为激励喇叭的波导 (8)3.确定喇叭的最佳尺寸 (8)4.喇叭与波导的尺寸配合 (9)5.天线的增益 (10)6.方向图 (10)一.角锥喇叭天线基础知识角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定张角张开而形成的,如下图所示。

矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)内虚顶点到口径中点的距离为R E,H 面(xz 面)内虚顶点到口径中点的距离为R H。

1. 口径场角锥喇叭内的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭内的场的严格解析解是困难的。

通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x和y两个方向均为平方律变化。

按此假设,可写出角锥喇叭的口径场为:ηπβyX R y R x j H y E H eD xE E EH -==+-)2(022)cos( (1.1)如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。

若是楔形喇叭,则R H ≠R E 。

由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。

2. 辐射场由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。

由于计算过程较繁,这里直接给出结果。

])cos 1([cos 2])cos 1([sin 200H E r j H E r j I I re E j E I I r e E j E θϕλθϕλβϕβθ+=+=-- (2.1)其中:)]})()([)()({)]}()([)()({(213434)2/(1212)2/(2221u S u S j u C u C eu S u S j u C u C e R I H x H x R j R j H H +-+++-+=--βββββπ(2.3))]}()([)()({211212)2/(2w S w S j w C w C e R I E Y R j E E +-+=-βββπ(2.4)H x Hx D D /cos sin /cos sin 21πϕθββπϕθββ-=+= (2.5)HH x H H H x H HH x H H H x H R R D u R R D u R R D u R R D u πβββπβββπβββπβββ/)2/(/)2/(/)2/(/)2/(21211111-=+=-=+= (2.6))sin sin 2()sin sin 2(21ϕθπβϕθπβE EE E EE R D R w R D R w -=+= (2.7) 角锥喇叭的 E 面和 H 面场为:2/||====ϕϕπϕθE E E E H E (2.8)在角锥喇叭的 D E 、R E 、D H 、R H 与扇形喇叭的相同时,可以证明:■角锥喇叭在 E 面的方向图与 E 面扇形喇叭的 E 面方向图相同;■角锥喇叭在 H 面内的方向图与 H 面扇形喇叭在 H 面内的方向图相同。

标准增益喇叭天线

标准增益喇叭天线

标准增益喇叭天线在无线通信领域,天线是起到收发信号的重要器件。

而在天线中,增益喇叭天线是一种常见的天线类型,它具有较高的增益和较宽的覆盖范围,因此在很多应用场景中得到了广泛的应用。

本文将介绍标准增益喇叭天线的相关知识,包括其原理、结构和应用等方面的内容。

首先,我们来了解一下标准增益喇叭天线的原理。

增益喇叭天线是一种具有较高方向性的天线,其主要原理是通过天线结构的设计,使得信号在特定方向上的辐射能量更集中,从而提高信号的接收和发送效果。

这种天线通常采用喇叭状的结构,通过合理的设计和加工工艺,实现对特定频段信号的辐射和接收,从而达到增强信号的效果。

其次,我们来了解一下标准增益喇叭天线的结构。

一般来说,增益喇叭天线由喇叭、馈源和反射器等部分组成。

其中,喇叭部分起到信号的辐射和接收作用,其结构和尺寸对天线的性能有着重要影响;馈源部分则是提供信号的输入和输出,通常采用耦合装置与喇叭相连;反射器部分则可以起到增强天线方向性和辐射效果的作用。

这些部分的合理设计和组合,可以使得增益喇叭天线在特定频段具有较高的增益和较宽的覆盖范围。

再次,我们来了解一下标准增益喇叭天线的应用。

增益喇叭天线由于具有较高的增益和较宽的覆盖范围,因此在很多应用场景中得到了广泛的应用。

比如,在通信基站中,增益喇叭天线可以实现对特定方向上的信号覆盖,提高通信信号的传输质量;在雷达系统中,增益喇叭天线可以实现对目标的精确定位和跟踪;在卫星通信中,增益喇叭天线可以实现对地面用户的覆盖和通信连接。

可以说,增益喇叭天线在无线通信领域中有着非常重要的应用价值。

综上所述,标准增益喇叭天线是一种具有较高增益和较宽覆盖范围的天线类型,其原理是通过合理的结构设计实现对特定方向上信号的辐射和接收。

在实际应用中,增益喇叭天线具有广泛的应用价值,可以实现对特定方向上信号的精确定位和跟踪,提高通信信号的传输质量,实现对地面用户的覆盖和通信连接。

因此,对于增益喇叭天线的研究和应用具有重要的意义,也是无线通信领域中的一个热点方向。

喇叭天线喇叭天线

喇叭天线喇叭天线

一、课题背景电磁喇叭天线是最简单而常用的微波天线。

它的主要优点是结构简单,馈电简便,便于控制主面波束宽度和增益,频率特性好且损耗较小。

它由波导逐渐张开来形成,其作用是加强方向性,这与声学喇叭的原理相似。

若主模TE10的矩形波导的宽边尺寸扩展而窄边尺寸不变则称为H 面扇形喇叭;若窄边尺寸扩展而宽边尺寸不变,则称为E 面扇形喇叭;若矩形波导的两边尺寸都扩展,则称为角锥喇叭。

圆锥喇叭由载TE11模的圆形波导扩展而成。

可见喇叭天线起着将波导模转换为空间波的过渡作用,因而反射小,使其输入驻波比低且频带宽。

喇叭天线广泛用做各种反射面天线和透镜天线得到馈源,也用作微波中继站的独立天线和测试天线增益的标准天线。

(1)E 面扇形喇叭 (2)H 面扇形喇叭 (3)角锥喇叭 (4)圆锥喇叭图1 几种常见的喇叭天线喇叭天线就其结构来讲可以看成两大部分构成:一是波导部分,横截面有矩形,也有圆形;二是真正的喇叭天线部分。

波导部分相当于天线中的馈线,是提供喇叭天线信号和能量的部分。

喇叭天线可视为张开的波导。

喇叭的功能是在比波导更大的口径上产生均匀的相位波前,从而获得较高的定向性能。

矩形波导中的TE10模传输到波导和喇叭的口面时,口面上的波可以作为次级源再次辐射。

普通喇叭天线结构原理图如图2所示。

图2 喇叭天线结构辐射图T次 级源次级源二、喇叭天线尺寸计算2.1、公式推算本设计需要设计一个K 波段(18GHz-26.5GHz ),用WR-42矩形波导来馈电,最大增益大于15dB 的喇叭天线。

喇叭天线波导部分可百度查阅K 波段标准矩形波导尺寸得到,矩形波导的长度可选为 1.2*λ。

典型的角锥喇叭的尺寸如下图所示。

(1)几何结构(2)X-Y 面横截面(H 面)(3)Y-Z 面横截面(E 面)图3 角锥喇叭几何关系由[1]知H R 一定,有一最佳的喇叭口径宽度h a ,并发现其近似规律为H h R a λ3=(1)同理,E R 一定,有一最佳的喇叭口径宽度h b ,并发现其近似规律为H h R λ2b =(2)由图3(b)(c)根据相似三角形原理得:h H a aR R -=1(3) hE b bR R -=1(4) 224223432383ah a hhe G a e b G aa a πλπλ=+-(5) 直接求此4次方程的根相当复杂,但可以用数值计算的软件求解也可以用试凑法求解第一种近似解为G a h λ45.0=(6)喇叭天线的欧姆损失很小,因此其方向系数就是增益即a h h e b a G 24λπ=(7)设计步骤如下:1、用试凑法解出式(5)中的h a ,取51.0=a e 。

第十章喇叭天线

第十章喇叭天线


RH π D /2 ( −sinθ )2 H 2 β DH −DH /2

e
− jβ
RH x π −sinθ + 2 RH β DH
2
dx
1 π RH j β e = 2 β
RH π ( − sin θ ) 2 2 β DH
{C (t ) − C (t ) − j [ S (t ) − S (t )]}
x = x2 =
DH 时, 2
DH π − − sin θ = u2 2 RH β DH
(10.5b)

1 π RH jβ IH1 = e 2 β
1 π RH j β e = 2 β
x
RH π t ( +sinθ )2 2 − j π t 2 2 β DH 2
∫e
t1
dt
(10.6)
4 3 4 3
(10.7)
169
《天线原理与设计》讲稿
王建
式中,
t3 = −
β RH π
DH π − + sin θ = −u3 2 RH β DH
(10.8a)
t4 =
β RH π
DH π + − sin θ = u4 2 RH β DH
(10.8b)
t=
β x π [ − RH ( + sin θ )] = π RH β DH
β π RH
dx ,
dt =
dx =
π RH dt β
x = x1 = −
DH 时 , 2
t1 = −
t2 =
β RH π
β RH π
DH π + + sin θ = −u1 2RH β DH

实验二 喇叭天线的仿真设计

实验二 喇叭天线的仿真设计

实验二、喇叭天线的仿真设计一、设计目标设计一个喇叭天线,其中心工作频率为2.5GHz左右,回波损耗S11的10dB带宽大于300MHz,并给出天线的仿真模型和仿真结果(S11、输入阻抗、E和H面增益方向图和三维增益方向图)。

二、设计步骤1、添加和定义设计变量:将天线的相应变量定义好,如图:2、设计建模(1)创建喇叭天线模型在z=0的平面上创建一个中心位于坐标原点,长度和宽度分别用变量a和b表示的矩形面,并将其命名为Horn,颜色设为浅蓝色,透明度设为0.4。

顶点位置坐标为(-a/2,-b/2,0)。

在z=plength的平面上创建一个中心位于z轴,长度和宽度用a1和b1表示的矩形面,并将其命名为Aperture,颜色设为深蓝色,顶点位置坐标为(-a1/2,-b1/2,plength)。

通过Connect命令生成喇叭模型:按住Ctrl键,先后依次单击矩形面Horn和Aperture,同时选中这两个矩形面。

然后从主菜单栏中选中【Modeler】→【Surface】→【Connect】命令,即可生成喇叭模型,该模型的名称为Horn,其透明度为0.4,材质为vacuum。

(新生成的模型的名称、材质、透明度等属性与第一个被选中物体的属性相同)(2)创建WR430波导模型:创建一个长方体模型用以表示波导。

选择主菜单【Draw】→【BOX】命令,或者单击工具栏的方形按钮,进入创建长方体的状态,然后移动鼠标光标在三维模型窗口中创建一个任意大小的长方体,新建的长方体会添加到操作历史树的Solids节点下,其默认的名称为BOX1。

,该模型与喇叭的底部相接,其长、宽、高(ZSize)分别用a、b和-wlength 表示,并命名为WR430,颜色设为深绿色,设置透明度为0.4。

顶点位置(-a/2,-b/2,0)。

(3)创建同轴馈线:同轴线馈电点放置于波导宽边中心线上,其与底侧短路板的距离为1/4个波长,同轴线的外导体与波导的外侧壁相接触。

喇叭天线的设计

喇叭天线的设计
对于角锥喇叭天线,最后确定其尺寸时,还 需要考虑喇叭与波导在颈部的尺寸配合问题.如 图7.5-6所示,为使两者在颈部正好配合,必须使
LH = LE .由几何关系可得 RH D1 a = R L H H D2 = RE b RE LE
代入 LE = LH ,并消去 LH 得
(7.Байду номын сангаас-29)
(7.5-26)
λ ′ DH = DH D2 D′ = λ D E D1 E
(7.5-27)
′ ′ 求出 DH 和 DE (这里的方向性系数 DH 或 DE 是已给定的,且对于 E 面扇形喇叭, D1 = a ;
H 面扇形喇叭, D2 = b ) 后 查 图7.5-5A或7.5-5B即可确定 D2 和 RE 或 D1 和 RH ,此时 ,然
′ ′ DH 或 DE 应选在最佳尺寸线上.
另外,还可利用公式
4π D = λ2 D1 D2γ D12 RHopt = 3λ D2 REopt = 2 2λ
(7.5-28)
来计算.当喇叭尺寸在最佳尺寸线上时,对于扇形喇叭, γ = 0.64 ;角锥喇叭, γ = 0.51 .
3,喇叭与波导的尺寸配合
D=
设 γ = 0.51
4π D1D2γ λ2
D1 D2 =
因为 2θ 0.5 H = 2θ 0.5 E ,所以
Dλ2 = 46.7λ2 4πγ
1.18
λ λ = 0.89 D1 D2
D2 = 0.754 D1 D1 = 25.1cm , D2 = 19cm
③根据喇叭最佳尺寸确定喇叭长度与口面尺寸的关系 取 H 面,则
喇叭天线的设计
喇叭天线的设计主要包括喇叭几何尺寸的计算,方向图的计算和激励波导的计算等. 在设计喇叭天线时,一般所提的要求是一定的方向性系数或方向图的波瓣宽度. 其设计步骤如下:

喇叭天线设计方法

喇叭天线设计方法

喇叭天线设计方法喇叭天线是指一种特殊形状的无线电天线,其截面呈喇叭形状,由于其独特的结构设计,使其具有增益高、频率响应宽、辐射范围广等优点,广泛应用于通信、雷达、导航等领域。

本文将介绍喇叭天线的设计方法,包括结构设计、参数计算及优化等方面。

首先,喇叭天线的结构设计是影响其性能的关键因素。

其基本结构包括发射口、传输线、扩口和折射球等部分。

发射口是通信信号从传输线传出的地方,通常由金属板制成,尺寸大小与工作波长有关。

传输线用于将信号从发射口传输到喇叭天线的扩口处,可以是传统的同轴电缆或者微带线等。

扩口是将电磁波逐渐展开,扩大辐射范围的关键部分,其形状和尺寸直接影响到喇叭天线的增益和方向性。

折射球是位于喇叭天线扩口前面的球状物体,其作用是平滑电磁波的传播路径,减少波的折射和反射。

接下来,进行喇叭天线的参数计算。

首先要确定喇叭天线的工作频率范围,然后根据工作频率计算喇叭口的最小尺寸。

通常,喇叭口的尺寸应该满足大于半波长的要求,以确保信号的有效辐射。

然后,根据最小口径,可以计算扩口的尺寸。

扩口的尺寸可以根据辐射范围的要求进行设计。

为了提高天线的增益和方向性,可以根据折射球的尺寸和材料来优化。

在喇叭天线设计中,还需要考虑电磁波在喇叭结构中的传播路径和衰减情况。

传输线的设计应考虑电磁波的传输损耗和干扰问题。

在扩口和折射球的设计中,要注意电磁波的反射和折射问题,尽量减少信号的损失和干扰。

除了结构设计和参数计算,还可以采用一些优化方法来改善喇叭天线的性能。

例如,可以通过改变喇叭天线的形状和尺寸来优化其增益和方向性。

可以利用计算机模拟和测试方法,对不同的设计方案进行模拟和比较,从而选择最优的设计方案。

此外,还可以通过改变喇叭口的曲率和折射球的材料来调整电磁波的传播路径,以提高天线的效能。

总之,喇叭天线的设计方法涉及结构设计、参数计算和优化等方面。

通过合理设计喇叭天线的结构和尺寸,以及优化电磁波的传播路径和衰减情况,可以提高喇叭天线的性能和效能。

喇叭天线设计方法

喇叭天线设计方法

喇叭天线设计方法
喇叭天线是一种常见的天线类型,广泛应用于无线通信、雷达、卫星通信等领域。

其设计方法可以分为以下几个步骤:
1. 确定工作频率和增益要求。

根据具体的应用场景,确定喇叭天线的工作频率和所需增益。

这些参数将决定喇叭的几何形状和大小。

2. 构造喇叭天线的几何形状。

根据工作频率和增益要求,设计喇叭的几何形状。

这个过程需要考虑喇叭的长度、宽度、角度等参数。

一般来说,喇叭的长度应该是波长的几个倍数,以保证天线的辐射效率。

3. 设计喇叭的适配网络。

为了提高天线的匹配性能,需要在天线口附近设计一个适配网络,以使天线的输入阻抗与传输线的阻抗匹配。

适配网络可以采用各种不同的形式,包括微带线、同轴线、二分之一波长变压器等。

4. 优化喇叭的阻抗带宽。

喇叭天线的阻抗带宽是指其输入阻抗在指定频率范围内的变化范围。

为了提高天线的阻抗带宽,可以采用各种技术,如加宽喇叭口、采用特殊形状的喇叭等。

5. 进行天线的仿真和测试。

设计完成后,需要进行仿真和测试,以验证天线的性能是否符合要求。

这个过程涉及到天线的辐射特性、阻抗匹配性能、频率响应等方面的测试。

总之,喇叭天线的设计方法需要考虑多个因素,包括工作频率、增益要求、几何形状、适配网络、阻抗带宽等。

只有在综合考
虑这些因素的基础上进行设计和优化,才能得到满足要求的天线。

一款高增益双脊喇叭天线

一款高增益双脊喇叭天线

一款高增益双脊喇叭天线目录一、内容概述 (2)1.1 背景与意义 (2)1.2 技发展现状 (3)1.3 文献综述 (5)二、双脊喇叭天线基础理论 (6)2.1 双脊喇叭天线的定义 (8)2.2 工作原理与特性分析 (9)2.3 设计考虑因素 (10)三、高增益双脊喇叭天线设计 (11)3.1 喇叭结构设计 (12)3.1.1 单元设计 (13)3.1.2 连接方式 (14)3.2 阻抗匹配与调谐 (15)3.2.1 传输线理论 (16)3.2.2 匹配网络设计 (17)3.3 增益提升技术 (19)3.3.1 驻波与模式耦合 (20)3.3.2 反射面设计 (21)四、仿真与实验验证 (22)4.1 仿真模型建立 (23)4.2 仿真结果分析 (24)4.3 实验方法与步骤 (25)4.4 实验结果与讨论 (26)五、应用场景与效果评估 (27)5.1 应用场景介绍 (29)5.2 实际应用案例 (30)5.3 性能评估标准与方法 (31)5.4 效果评估与分析 (32)六、结论与展望 (34)6.1 研究成果总结 (35)6.2 存在问题与不足 (36)6.3 后续研究方向与应用前景展望 (37)一、内容概述本文详细介绍了一款高效能的双脊喇叭天线,深入探讨了其设计理念、工作原理、显著特点以及在无线通信领域的应用价值。

这款天线凭借其创新的双脊结构设计,实现了卓越的增益性能,为天线技术的发展树立了一个新的里程碑。

在现代无线通信系统中,天线的性能对于整个系统的接收和发送质量具有决定性的影响。

高增益天线能够在相同的发射功率下,辐射更强的信号,从而扩大通信覆盖范围,提高通信质量。

双脊喇叭天线的设计还巧妙地解决了传统天线在宽频带、小型化等方面的难题,满足了现代通信系统对高性能天线的迫切需求。

文中通过对双脊喇叭天线的结构、工作原理以及性能特点进行深入的分析,向读者展示了一款真正的高增益双脊喇叭天线设计方案。

标准增益喇叭天线

标准增益喇叭天线

标准增益喇叭天线喇叭天线是一种常见的天线类型,其设计结构独特,能够有效地增加天线的增益,提高信号接收和发送的性能。

标准增益喇叭天线是一种常用的天线类型,具有较好的方向性和增益特性,适用于各种通信系统和雷达系统中。

本文将对标准增益喇叭天线的设计原理、特点和应用进行介绍。

首先,标准增益喇叭天线的设计原理是基于喇叭天线的结构特点和电磁波的传播原理。

喇叭天线的结构呈喇叭形状,具有逐渐扩大的横截面,能够有效地聚焦电磁波,提高天线的增益。

同时,喇叭天线还具有较好的方向性,能够限制信号的传播方向,减小干扰和提高接收灵敏度。

通过合理设计喇叭天线的结构参数和工作频率,可以实现标准增益喇叭天线的设计。

其次,标准增益喇叭天线具有较好的特点和性能。

首先,标准增益喇叭天线具有较高的增益,能够提高信号的接收灵敏度和发送功率,增强通信系统的覆盖范围和传输距离。

其次,标准增益喇叭天线具有较好的方向性,能够限制信号的传播方向,减小干扰和提高抗干扰能力。

此外,标准增益喇叭天线还具有较宽的工作频带和稳定的工作性能,适用于各种复杂的通信环境和应用场景。

最后,标准增益喇叭天线在各种通信系统和雷达系统中具有广泛的应用。

在通信系统中,标准增益喇叭天线可以用于基站天线、移动通信天线、卫星通信天线等,能够提高通信系统的覆盖范围和通信质量。

在雷达系统中,标准增益喇叭天线可以用于目标探测、跟踪和导引,能够提高雷达系统的探测距离和目标分辨率。

此外,标准增益喇叭天线还可以用于无线电测向、天线阵列和无线通信系统中,具有广泛的应用前景。

综上所述,标准增益喇叭天线是一种常用的天线类型,具有较好的方向性和增益特性,适用于各种通信系统和雷达系统中。

通过合理设计喇叭天线的结构和工作频率,可以实现标准增益喇叭天线的设计,提高通信系统和雷达系统的性能和应用效果。

希望本文对标准增益喇叭天线的理解和应用有所帮助,谢谢阅读!以上就是关于标准增益喇叭天线的一些介绍,希望对您有所帮助。

标准增益喇叭天线

标准增益喇叭天线

标准增益喇叭天线
喇叭天线是一种常见的无线通信天线,它具有较高的增益和较
好的方向性,适用于各种无线通信系统中。

本文将介绍标准增益喇
叭天线的基本原理、设计要点和应用场景。

喇叭天线的基本原理是利用抛物面反射器将来自馈源的电磁波
聚焦到主波束方向上,从而实现较高的增益和较好的方向性。

在设
计喇叭天线时,需要考虑馈源的位置、抛物面的曲率和口径、反射
器的大小和形状等因素,以达到所需的性能指标。

标准增益喇叭天线的设计要点包括,首先是确定工作频段,根
据通信系统的要求选择合适的工作频段;其次是确定增益和波束宽度,根据通信距离和覆盖范围确定所需的增益和波束宽度;最后是
确定馈源的类型和位置,根据工作频段和增益要求选择合适的馈源
类型,并确定其位置和辐射特性。

标准增益喇叭天线适用于各种无线通信系统中,包括微波通信、卫星通信、雷达系统等。

在微波通信系统中,标准增益喇叭天线可
以实现远距离的通信覆盖,提高通信质量和可靠性;在卫星通信系
统中,标准增益喇叭天线可以实现地面站与卫星之间的高效通信;
在雷达系统中,标准增益喇叭天线可以实现目标的精确定位和跟踪。

总之,标准增益喇叭天线具有较高的增益和较好的方向性,适
用于各种无线通信系统中。

在设计和应用时,需要充分考虑工作频段、增益和波束宽度、馈源类型和位置等因素,以达到所需的性能
指标。

希望本文能够对喇叭天线的设计和应用提供一定的参考和帮助。

高效宽带喇叭天线的设计

高效宽带喇叭天线的设计

高效宽带喇叭天线的设计
丁晓磊
【期刊名称】《遥测遥控》
【年(卷),期】2012(033)002
【摘要】为满足电磁兼容测试对小体积、宽频带和高增益天线的需求,结合宽频带天线的工作原理,设计一种结构紧凑的局部加脊宽带喇叭天线.与相同尺寸的普通加脊喇叭天线相比,其增益提高约1dB~3dB.
【总页数】4页(P12-14,18)
【作者】丁晓磊
【作者单位】北京遥测技术研究所北京 100076
【正文语种】中文
【中图分类】TN822+.8
【相关文献】
1.超宽带TEM喇叭天线的小型化设计 [J], 朱春发;陈星
2.新型超宽带半TEM喇叭天线设计 [J], 王志云;陈星
3.一种宽带宽波束圆极化喇叭天线设计方法 [J], 何清明;于伟;李智
4.一种宽带宽波束圆极化喇叭天线设计方法 [J], 何清明;于伟;李智
5.1~5 GHz超宽带双脊喇叭天线的设计 [J], 王菲
因版权原因,仅展示原文概要,查看原文内容请购买。

喇叭天线设计要点

喇叭天线设计要点

喇叭天线设计要点1.天线类型:喇叭天线主要有两种类型,即全向喇叭天线和定向喇叭天线。

全向喇叭天线可以在水平方向上360度无死角地发射和接收无线信号,适用于需要大范围信号覆盖的应用场景。

而定向喇叭天线只能在特定的方向上发射和接收信号,具有较高的增益和较远的传输距离,适用于需要远距离传输信号的应用场景。

2.频段范围:喇叭天线的频段范围决定了它可以处理的信号频率范围。

根据实际应用需求选择合适的频段范围,例如需要接收FM广播信号的喇叭天线的频段范围应为87.5-108MHz。

3.增益:喇叭天线的增益是指它相对于理想全向喇叭天线所具有的信号增强能力。

增益的大小与天线的方向性和设计参数有关,一般以dBi为单位表示。

较高的天线增益意味着它可以在更远的距离上接收和发送信号,但也可能增加信号的指向性和狭窄的覆盖范围。

4.方向性:喇叭天线的方向性是指它对信号源的敏感度和响应特性。

全向喇叭天线在所有方向上都具有相同的敏感度,而定向喇叭天线对特定方向上的信号更为敏感。

方向性的设计可以增加天线的传输距离和减少干扰,但可能会牺牲信号的覆盖范围和灵活性。

5.天线尺寸:天线尺寸是指喇叭天线的物理尺寸,包括长度、宽度和高度。

天线尺寸对天线的频率响应和增益特性有很大的影响。

较长的天线一般适用于较低频率的信号,而较短的天线适用于较高频率的信号。

6.材料选择:喇叭天线的材料选择对其性能和寿命有重要影响。

常见的天线材料包括金属、塑料和复合材料。

金属天线具有较好的导电性和耐久性,但也容易受到干扰和阻挡。

塑料天线相对较便宜且易于加工,但可能会影响天线的电气性能。

复合材料天线具有较好的耐候性和机械强度,但制造成本较高。

除了上述设计要点,还需考虑天线的安装方式、防水防尘性能、阻抗匹配等因素。

同时,需要根据具体的应用场景和需求来进行天线设计,进行性能测试和优化,确保天线能够满足设计要求。

喇叭天线设计要点计划

喇叭天线设计要点计划

合用标准文案1课题背景喇叭天线是一种应用广泛的微波天线,其优点是结构简单,频带宽,功率容量大,调整与使用方便。

合理地选择喇叭天线尺寸,能够获得很好的辐射特色、相当尖锐的主瓣、较小副瓣和较高的增益。

因此,喇叭天线应用特别广泛,它是一种常有的天线增益测试用标准天线。

喇叭天线就其结构来讲能够看作由两大部分构成:一是波导管部分,横截面有矩形,也有圆形;二是真切的喇叭天线部分。

波导部分相当于线天线中的馈线,是供给喇叭天线信号和能量的部分。

对工作于厘米波或毫米波段内的面天线,如采用线状馈线,将因馈线自己的辐射耗费太大不能够把能量传达到面天线上,因此,必定采用自己障蔽收效很好的波导管作馈线。

一般喇叭天线结构原理图如 1.1 所示。

图一般喇叭天线结构原理图HFSS 全称为 High Frequency Structure Simulator,是美国 Ansoft 公司(注:Ansoft 公司于 2008 年被 Ansys 公司收买)开发的全波三维电磁仿真软件,也是世界上第一个商业化的三维结构电磁仿真软件。

该软件采用有限元法,计算结果精准可靠,是业界公认的三维电磁场设计和解析的工业标准。

HFSS 采用标准的 Windows 图形用户界面,简洁直观;拥有精准自适应的场解器和空前电性能解析能力的功能富强后办理器;能计算任意形状三维无源结构的 S 参数和全波电磁场;自动化的设计流程,易学易用;牢固成熟的自适应网格剖分技术,结果正确。

使用 HFSS,用户只需要创办或导入设计模型,指定模型资料属性,正确分配模型的界线条件和激励,正确定义求解设置,软件便能够计算并输出用户需要的设计结果。

HFSS 软件拥有富强的天线设计功能,能够供给全面的天线设计解决方案,是此刻天线设计最为流行的软件。

使用 HFSS 能够仿真解析和优化设计各种天线,能够精准计算天线的各种性能,包括二维、三维远场和近场辐射方向图、天线的方向性系数、 S 参数、增益、轴比、输入阻抗、电压驻波比、半功率波瓣宽度以及电流分布特色等。

喇叭天线的设计范文

喇叭天线的设计范文

喇叭天线的设计范文喇叭天线是一种用于无线通信系统的天线,主要用于传输声音信号。

其设计需考虑频率范围、辐射方向性、增益、天线尺寸、材料选择等因素。

下面将详细介绍喇叭天线的设计。

首先,在设计喇叭天线之前,需要明确所需频率范围。

不同频率范围的无线通信系统使用不同的天线来进行信号传输。

喇叭天线主要应用于低频或中频通信系统,例如来电铃声、广播等。

其次,考虑天线辐射方向性。

喇叭天线的主要目标是将声音信号以无线电波形式传输出去,需要具备较好的方向性,即在一定范围内辐射出强的信号,而在其他方向上辐射较弱的信号。

可以通过合理设计天线结构和喇叭形状来实现辐射方向性的控制。

第三,考虑喇叭天线的增益。

增益是指天线辐射能力的强弱程度,通常以分贝(dB)为单位。

增益决定了喇叭天线的信号传输距离和接收灵敏度。

喇叭天线的增益主要取决于天线结构和天线尺寸。

较大的天线尺寸和较复杂的天线结构通常能够提供较高的增益。

第四,考虑喇叭天线的天线尺寸。

天线尺寸决定了喇叭天线的方便程度和易用性。

尺寸过大或过小都会影响天线的性能。

因此,在设计喇叭天线时需要仔细考虑其尺寸,以保证既能够满足通信系统的需求,又方便使用和安装。

第五,选择合适的材料。

天线的材料选择对其性能和使用寿命有重要影响。

一般来说,天线材料应具备一定的导电性能和抗氧化能力,同时应能够耐受外界环境的各种因素,如高温、高湿度等。

常见的天线材料有铜、铁、铝等金属材料。

最后,进行具体的天线参数计算和仿真。

在设计喇叭天线时,需要利用天线设计软件进行参数计算和仿真。

例如,可以利用仿真软件进行天线的方向性和增益仿真,优化天线结构和尺寸。

综上所述,喇叭天线的设计主要考虑频率范围、辐射方向性、增益、天线尺寸和材料选择等因素。

在进行喇叭天线设计时,需要明确通信系统的需求,并进行合理的参数计算和仿真,以最大程度地满足通信需求。

喇叭天线的设计是一个综合考虑多个因素的复杂过程,需要进行充分的研究和实践。

喇叭天线设计范文

喇叭天线设计范文

喇叭天线设计范文喇叭天线是一种常见的天线类型,它通过产生和放大电磁波来传输和接收信号。

喇叭天线结构独特,可以提供增益和方向性,使其在许多应用中都表现出色。

在接下来的1200字以上中我们将深入探讨喇叭天线的设计原理和应用。

喇叭天线的设计原理基于天线的形状和尺寸。

它通常由一个底部进口和一个底部出口组成。

进口和出口的大小和形状决定了天线的频率和频带宽度。

进口是天线的输入段,用于接收或发射电磁波。

出口是天线的输出段,用于辐射或接收电磁波。

在进口和出口之间的区域称为导向段,用于引导电磁波。

喇叭天线的设计可以分为两个主要方面:频率响应和辐射特性。

频率响应是指天线在特定频率范围内的工作效果。

喇叭天线的频率响应主要取决于喇叭的形状和尺寸。

为了实现宽带频率响应,天线的进口和出口需要适当的增大。

进口的大小要确保信号的完整性,而出口的大小要确保信号的放大和辐射。

喇叭天线通常用于高频段的应用,例如雷达、通信和卫星通信。

辐射特性是指天线在空间中辐射或接收电磁波的能力。

喇叭天线通常具有良好的方向性,这意味着它可以将信号集中到特定的方向上。

方向性是通过喇叭的形状和导向段的长度来实现的。

较长的导向段可以提高天线的方向性,但也会减少天线的频带宽度。

因此,在设计喇叭天线时需要权衡方向性和频带宽度的需求。

喇叭天线在许多应用中都有广泛的应用。

它们常用于雷达系统中,用于探测和跟踪目标。

喇叭天线在雷达系统中提供了高增益和方向性,能够有效地检测远处的目标。

除了雷达系统,喇叭天线还广泛应用于通信和卫星通信系统中。

它们提供了较好的方向性和覆盖范围,可以实现远距离的数据传输和通信。

设计喇叭天线需要考虑多种因素,例如频率范围、增益、方向性、频带宽度、输入阻抗等。

可以使用各种电磁场模拟软件进行天线设计和分析。

这些软件可以模拟天线的电磁场分布,并提供关于天线性能的详细信息。

此外,实际的天线测试和优化也是设计过程中的重要步骤,可以通过改变天线的形状、尺寸和材料来优化天线的性能。

喇叭天线工作原理

喇叭天线工作原理

喇叭天线工作原理
嘿!今天咱们来聊聊喇叭天线工作原理呀!
哎呀呀,说起喇叭天线,这可是个神奇的玩意儿呢!那它到底是咋工作的呢?
首先呢,喇叭天线是一种常见的天线类型哇!它的形状就像一个喇叭,所以才叫这个名字呢。

喇叭天线工作的时候,主要是通过电磁波的传播和辐射来实现信号的发送和接收的呀!当电流在天线中流动的时候,哇,就会产生电磁场!这个电磁场可不得了,它会以电磁波的形式向外传播呢。

而且呀,喇叭天线的口径大小对它的性能影响可大了!口径越大,它辐射和接收的电磁波能量就越多,信号也就越强呢!
还有啊,喇叭天线的方向性也很重要哇!它可以把电磁波集中在特定的方向上发射出去,这样就能更有效地传输信号啦!比如说,在通信领域,它就能准确地把信号发送到目标方向,减少干扰和能量浪费呀!
哎呀呀,想想看,如果没有喇叭天线,我们的通信会变得多么糟糕呢!在广播电视、卫星通信、雷达等领域,喇叭天线都发挥着巨大的作用哇!
所以说呀,了解喇叭天线的工作原理,对于我们掌握现代通信技术,那可真是太重要啦!它就像是通信世界里的一个神奇的小助手,默默地为我们传递着各种重要的信息呢!
怎么样,这下您对喇叭天线工作原理是不是有了更清楚的认识啦?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波技术与天线课程设计——角锥喇叭天线:吴爽学号:1206030201目录一.角锥喇叭天线基础知识 (3)1. 口径场 (3)2. 辐射场 (4)3.最佳角锥喇叭 (7)4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (7)二.角锥喇叭设计实例 (7)1. 工作频率 (8)2.选用作为激励喇叭的波导 (8)3.确定喇叭的最佳尺寸 (8)4.喇叭与波导的尺寸配合 (9)5.天线的增益 (10)6.方向图 (10)一.角锥喇叭天线基础知识角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定角开而形成的,如下图所示。

矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)虚顶点到口径中点的距离为R E,H 面(xz 面)虚顶点到口径中点的距离为R H。

1. 口径场角锥喇叭的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭的场的严格解析解是困难的。

通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x和y两个方向均为平方律变化。

按此假设,可写出角锥喇叭的口径场为:ηπβyX R y R x j H y E H eD xE E EH -==+-)2(022)cos( (1.1)如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。

若是楔形喇叭,则R H ≠R E 。

由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。

2. 辐射场由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。

由于计算过程较繁,这里直接给出结果。

])cos 1([cos 2])cos 1([sin 200H E r j H E r j I I re E j E I I r e E j E θϕλθϕλβϕβθ+=+=-- (2.1)其中:)]})()([)()({)]}()([)()({(213434)2/(1212)2/(2221u S u S j u C u C eu S u S j u C u C e R I H x H x R j R j H H +-+++-+=--βββββπ (2.3))]}()([)()({211212)2/(2w S w S j w C w C e R I E Y R j E E +-+=-βββπ(2.4)H x Hx D D /cos sin /cos sin 21πϕθββπϕθββ-=+= (2.5)HH x H H H x H HH x H H H x H R R D u R R D u R R D u R R D u πβββπβββπβββπβββ/)2/(/)2/(/)2/(/)2/(21211111-=+=-=+= (2.6))sin sin 2()sin sin 2(21ϕθπβϕθπβE EE E EE R D R w R D R w -=+= (2.7) 角锥喇叭的 E 面和 H 面场为:2/||====ϕϕπϕθE E E E H E (2.8)在角锥喇叭的 D E 、R E 、D H 、R H 与扇形喇叭的相同时,可以证明:■角锥喇叭在 E 面的方向图与 E 面扇形喇叭的 E 面方向图相同;■角锥喇叭在 H 面的方向图与 H 面扇形喇叭在 H 面的方向图相同。

确定(取 γ/β =1 )。

绘出的幅度三维图及 E 面和 H 面方向图如下图所示:3.最佳角锥喇叭是指角锥喇叭的尺寸在 H 面和 E 面分别取最佳,即λλ2322E EopH Hop D R D R ==243822)2(22πϕπλπβϕ====Em H H H H HmR D R D (3.1)这样,就可使角锥喇叭的增益为最大.4. 最佳角锥喇叭远场 E 面和 H 面的主瓣宽度Z 由于在相同的 R E 和 D E 条件下, 角锥喇叭的E 面方向图与 E 面扇形喇叭的E 面方向图相同,在相同的 RH 和 DH 条件下,角锥喇叭的 H 面方向图与 H 面扇形喇叭的方向图相同,则最佳角锥喇叭 E 面和 H 面方向图的主瓣宽度分别由式(4.1)和(4.2)表示,即:2θ0.5H =1.396λ/D 1 rad=80λ/D 1(°) (4.1) 2θ0.5E =0.94λ/D 1 rad=54λ/D 1(°) (4.2) 角锥喇叭作天线时,可按此要求设计。

二.角锥喇叭设计实例1.工作频率学号:12060302011000+50+1500=2500MHZ波长λ=c/f=0.1176m2.选用作为激励喇叭的波导波导的尺寸a,b应保证波导只传输TE10波。

因此选取a=0.72λ=λ3.确定喇叭的最佳尺寸垂直极化,电场方向垂直于地面已给定波束宽度水平面:2θ0.5H=1.396λ/D1 rad=80λ/D1(°)求得 D1=0.9408m (2θ0.5H=10)垂直面:2θ0.5E=0.94λ/D1 rad=54λ/D1(°)求得 D2=0.42336m (2θ0.5E=15)确定尺寸D1,D2喇叭尺寸确定后,由喇叭最佳尺寸公式:R H=D12/3λR E=D22/2λ求出喇叭的长度:R H=2.5mR E=0.762m4.喇叭与波导的尺寸配合对于角锥喇叭天线,最后确定其尺寸时,还要考虑喇叭有波导在颈部的尺寸配合问题,如下图所示:根据几何关系得出:H H HL R R a D -=1 EE EL R R b D -=2 代入L E =L H 得到关系式:12/1/1D a D b R R E H --= 验证:29.3=EHR R 而=--12/1/1D a D b 0.995116将R E 修改为cm R H51.2995116.0=5.天线的增益9.182451.0212==D D G λπ=45.5 Db6.方向图理论计算公式:角锥喇叭E 面方向图和H 面方向图分别为对应的E 面扇形喇叭的E 面方向图和H 面扇形喇叭的H 面方向图。

E 面方向图:⎭⎬⎫⎩⎨⎧+--=-),()cos 1()2(8'2'12)2/sin (1222t t F er e E kR a j FE kR j jkr θππθθ 其中:⎪⎭⎫⎝⎛--=θπsin 2222'1R D R k t ⎪⎭⎫⎝⎛-+=θπsin 2222'2R D R k tH 面方向图:[]{}),(),()cos 1(8''2''1'2'11221t t F e t t F e r e kR b jE FH jf jf jkr ++=-θπ其中:⎪⎭⎫ ⎝⎛--=1'11'121R k kD kR t x π ⎪⎭⎫ ⎝⎛-+=1'11'221R k kD kR t x π ⎪⎭⎫ ⎝⎛--=1''11''121R k kD kR t x π ⎪⎭⎫ ⎝⎛-+=1''11''221R k kD kR t x π1'sin D k k x πθ+=1''sin D k k x πθ-=)]()([)]()([),(121221t S t S j t C t C t t F ---=dtt x C x⎰=02)2cos()(π<余弦Fresnel 积分> dt t x S x ⎰=02)2sin()(π<正弦Fresnel 积分>Matlab源程序:E面方向图clcclear%a=input('请输入角锥输入端宽度(H面)单位mm a=') a=8.5;a=a*10.^(-3);%b=input('请输入角锥输入端宽度(E面)单位mm b=') b=4;b=b*10.^(-3);%D1=input('请输入角锥口径宽度(H面)单位mm A=')D1=94;D1=D1*10.^(-3);%D2=input('请输入角锥口径宽度(E面)单位mm B=')D2=42.3;D2=D2*10.^(-3);%h=input('请输入喇叭口长度单位mm H=')h=227;h=h*10.^(-3);%f=input('请输入工作频率单位0.1MHZ f=')f=25500;f=f*10.^6;lamd=3*10.^8/f;R2=h/(1-b/D2);theta=-60:0.2:60;k=2*pi/lamd;theta1=theta.*pi/180;t1_1=sqrt(k/(pi*R2)).*(-(D2/2)-R2.*sin(theta1));t2_1=sqrt(k/(pi*R2)).*((D2/2)-R2.*sin(theta1));EE=exp(j.*(k.*R2.*(sin(theta1))./2)).*F(t1_1,t2_1);FE=-j.*(a*sqrt(pi*k*R2)/8).*(-(1+cos(theta1))*(2/pi)*(2/pi).*EE); FE1=abs(FE);FE1=FE1./max(FE1);FEdB=20*log10(FE1);figure(1)plot(theta,FEdB);grid ontitle('角锥喇叭E面方向图')xlabel('Angle(\theta)/\ circ')ylabel('Gain(\theta)')H面方向图R1=h/(1-a/D1);theta=-60:0.2:60;k=2*pi/lamd;theta1=theta.*pi/180;kx_1=k.*sin(theta1)+pi/D1;kx_11=k.*sin(theta1)-pi/D1;f1=kx_1.*kx_1*R1/(2*k);f2=kx_11.*kx_11*R1/(2*k);t1_1=sqrt(1/(pi*k*R1)).*(-(k*D1/2)-kx_1*R1);t2_1=sqrt(1/(pi*k*R1)).*((k*D1/2)-kx_1*R1);t1_11=sqrt(1/(pi*k*R1)).*(-(k*D1/2)-kx_11*R1);t2_11=sqrt(1/(pi*k*R1)).*((k*D1/2)-kx_11*R1);FF=exp(j.*f1).*F(t1_1,t2_1)+exp(j.*f2).*F(t1_11,t2_11); FH=j.*(b/8).*sqrt((k*R1/pi)).*((1+cos(theta1)).*FF); FH1=abs(FH);FH1=FH1./max(FH1);FHdB=20*log10(FH1);figure(1)plot(theta,FHdB);grid ontitle('角锥喇叭H面方向图')xlabel('Angle(\theta)/\ circ')ylabel('Gain(\theta)')所用子函数F:%%F(t1,t2)=[C(t2)-C(t1)]-j[S(t2)-S(t1)]function y=F(t1,t2)C2=mfun('FresnelC',t2);C1=mfun('FresnelC',t1);S2=mfun('FresnelS',t2);S1=mfun('FresnelS',t1);y=(C2-C1)-j.*(S2-S1);end。

相关文档
最新文档