大学物理911单元课后习题答案详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三篇 波动过程 光学

求解波动过程和光学问题的基本思路和方法

教材将这三部分内容安排在一起,是充分考虑到它们之间的关联性,因而在学习这部分内容和求解有关习题时也要学会前后内容和方法上的关联.我们知道振动是波动的基础,机械波就是机械振动在弹性介质中振动状态的传播过程.波动要有波源,所谓波源就是一个振动源.因而要讨论波动情况,首先要熟悉振动的研究.例如:要写波动方程,就要会求波源的振动方程.必须弄清振动物理量和波动物理量的联系和区别.又例如:研究波的干涉(包括光的干涉),就要知道两个同频率、同振动方向简谐运动的合成.这其中相位及相位差是一个十分重要的物理概念,掌握了相位差的计算对掌握振动合成、机械波和光波的干涉等一些题的求解作用很大.因此学好前面的内容对后面帮助很大.下面是这部分内容的几个常用解题方法的简介.

一、比较法

在振动、波动这二章的习题中,有相当一部分题目是求简谐运动方程和波动方程.通常有两种类型:(1) 由题给一些条件求简谐运动或波动方程;(2) 由题给振动曲线图和波形图求简谐运动方程和波动方程.而比较法是求解这类问题常用的一种方法.这里的所谓比较法就是针对要求的问题,有目的地先写出简谐运动方程或波动方程的一般形式,即

()()()⎪⎩

⎪⎨⎧⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=+=波动方程简谐运动方程 π2cos cos cos 000λx T t A u x t ωA y t ωA y 然后采用比较法与已知条件比较确定式中各相应的物理量.实际求解的题中往往只有少数量是未知的,只要设法由已知条件配合其他方法求出这些未知量,整个问题就解决了.这种解题思路的好处是目的明确,知道自己要做什么和如何去完成.这里要求读者真正掌握简谐运动方程和波动方程一般表示式,并理解其中每个量的物理意义.请读者结合参阅9-7,10-9 等题的求解过程,来学会这种解题的方法.

二、旋转矢量法

描述振动可以用解析法、图示法和旋转矢量表示法等.旋转矢量表示法就是将简谐运动与一旋转矢量OA 对应,使矢量作逆时针匀速转动,其长度等于简谐运动的振幅A ,角速度等于简谐运动的角频率ω.在t =0 时,它与参考坐标轴的夹角为简谐运动的初相位φ.这时,旋转矢量末端在参考坐标轴上的投影点的运动规律即可代表质点作简谐运动的规律.旋转矢量表示法是研究简谐运动及其合成的直观而有力的方法.尤其在求振动的初相位和相位时非常方便.在求振动方程,波动方程时常需求原点的振动初相位,因此掌握好这种方法很关键.读者

可以结合参阅9-12、9-14、9-15、10-3、10-14 等题的解去体会这种方法的好处.

三、相位分析法

相位是研究振动、波动问题的有效工具.无论是建立振动方程、比较两个振动的差异、研究振动的合成,或是表述波动特征、导出波动方程和研究波的干涉及学习波动光学等都离不开相位和相位差的概念和计算.常用相位分析法求解下述四类问题.

1.在振动合成问题中,两个同频率、同方向简谐运动合成时,它们的相位差12Δ

-=是一个常量,合振动的振幅大小A A A A A cos Δ2212221++=

,其值由Δ决定.其中特殊情

况是

()()()⎩

⎨⎧-=++==2121 π12 π2ΔA A A k A A A k 振幅最小振幅极大

请读者参阅题9-28、题10-20等的求解过程,可体会到相位差Δ的重要性.

2.在波动中,波线上各点相位有密切联系.因为波动是波源的振动状态由近及远向外传播的过程,也称为振动相位的传播.对于平面简谐波,波线上任两点的相位差λx /Δπ2Δ

⋅=是一定的.波线上所有点都重复同一种运动状态,只是相位不同而已.因此只要知道波线上任一

点的运动方程,就可通过求相位差而得出其他点的运动方程.

3.在波的干涉中,干涉问题实际上是振动合成问题.波场中任一点,参与的合成运动是来自两个同频率、同方向简谐运动的波源,合成结果仍是简谐运动,合振动振幅A 的值取决于分振动的相位差.但要注意这种情况的相位差为 ()12121122π2π2π2Δx x λ

x λt ωx λt ω---=⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-+= 这里相位差由两个分振动的波源初相位差和两列波到达场点的波程差决定.波场中不同点,由于波程差()12x x -值不同而使ϕ∆不同,合振幅就有强弱之分,这就是波的干涉现象.讨论波的干涉,求干涉极大和极小的位置分布,采用相位分析法很方便.

4.在光的干涉中,两束光在相遇区出现明、暗条纹,实际上就是两束振幅相同的相干光波因干涉使合成振动振幅出现极大和相消的问题.因此只要求出两束光在相遇点的相位差即可.所以对杨氏双缝、牛顿环、劈尖、薄膜和迈克尔逊干涉仪等干涉,其核心问题就是找出两束相干光的相位差ϕ∆.有了ϕ∆则结果为

()()()⎩⎨⎧+=暗条纹明条纹

π12 π2Δk k 考虑到两束相干光的初相位差为零,则可有δλ

π2Δ

=.δ是光程差,λ是光在真空中的波长.那么上式也可表达为

()()()⎩

⎨⎧+=暗条纹明条纹 π12 π2Δk k

因此当你掌握了相位差(或光程差)的计算,光的干涉问题就基本解决了,对于不同问题只是等式左边形式的不同而已.例如薄膜干涉,22/λδ+=ne 或ne 2=δ(要仔细考虑半波损失情况,决定是否加2/λ项).如果你理解了这一点,能帮助你提高解题能力.而对于光的衍射,其本质仍是光波的干涉,不论是多缝的光栅衍射,还是单缝衍射,在讨论其明暗衍射条纹时,仍然是从相位差分析出发.

对光栅衍射,当光栅常数为b b '+时,对应不同的衍射角ϕ,任意相邻两缝到屏上某点的光程差为()λk b b δ='+=sin

时出现明条纹(即两束相干光在该点相遇时相位差为π2).而对单缝衍射,要注意的是明暗条纹公式为

()()()⎩⎨⎧+==明条纹暗条纹

2/12 sin λk λk φa δ

但这也可由相位差分析得到.如图,对应屏上P 点,将单缝波阵面AB 分成1AA 、21A A 、B A 2等段,使A 、1A 、2A 、B 这些相邻点的光到达P 点的相位差为π(对应的光程差为2/λ,即图中22211/λ===C B B B BB ).由于在相邻的1AA 和21A A 段波阵面上均能找到相位差为π的一一对应点,从而使它们在P 点干涉相消.这样当AB 被分成偶数段这样的波阵面时(对应()2/12sin λk a BC +==),屏上P 点出现暗条纹,而当AB 被分成奇数段这样的波阵面时(对应()2/12sin λk φa BC +==),将有一段不会被抵消,而使屏上出现明条纹.

相关文档
最新文档