2016-2017学年高中数学人教A版选修2-2学业测评:2.2.1
人教a版(数学选修2-2)测试题及参考答案
人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
2016-2017学年高中数学人教A版选修2-2学业测评:1.1.1+2 变化率问题 导数的概念
【答案】 c>a=d=e>b
4.(2016·南充高二检测)某一运动物体,在 x(s)时离开出发点的距离(单位:
2 m)是 f(x)=3x3+x2+2x.
(1)求在第 1 s 内的平均速度;
(2)求在 1 s 末的瞬时速度;
(3)经过多少时间该物体的运动速度达到 14 m/s?
f1-f0 11 【解】 (1)物体在第 1 s 内的平均变化率(即平均速度)为 1-0 = 3 m/s.
Δy (1+Δx,-2+Δy),则Δx=( )
A.4 C.4+2Δx
B.4x D.4+2(Δx)2
【解析】 因为 Δy=f(1+Δx)-f(1)=2(1+Δx)2-4-(2×12-4)
=4Δx+2(Δx)2,
2
1
Δy 4Δx+2Δx2 所以Δx= Δx =4+2Δx.
【答案】 C
4.设函数 f(x)在点 x0 附近有定义,且有 f(x0+Δx)-f(x0)=aΔx+b(Δx) 2(a,b 为常数),则( )
2Δx
,e=x→limx0
fx-fx0
x-x0 , 则 a,b,c,d,e 的大小关系为__________.
fx0+Δx-fx0
【解析】 a=Δlxi→m 0
Δx
=f′(x0),
2
1
fx0-Δx-fx0
b=Δlxi→m 0
Δx
fx0-Δx-fx0
=-Δlxi→m 0
Δy f1+Δx-f1
(2)Δx= Δx
2
11
1+Δx3+1+Δx2+21+Δx-
3
3
=
Δx
2 =6+3Δx+3(Δx)2.
2
1
Δy 当 Δx→0 时,Δx→6,
2016-2017学年高中数学阶段质量检测(二)推理与证明新人教A版选修2-2
阶段质量检测(二) 推理与证明班级:____________ 姓名:____________ 得分:____________(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n8-n -4=2 B.n +1n +1-4+n +1+5n +1-4=2C.nn -4+n +4n +4-4=2 D.n +1n +1-4+n +5n +5-4=22.下列三句话按“三段论”模式排列顺序正确的是( ) ①y =cos x (x ∈R )是三角函数; ②三角函数是周期函数; ③y =cos x (x ∈R )是周期函数. A .①②③ B .②①③ C .②③①D .③②①3.由“正三角形的内切圆切于三边的中点”可类比猜想:“正四面体的内切球切于四个面________.”( )A .各正三角形内一点B .各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点4.(山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根5.将平面向量的数量积运算与实数的乘法运算相类比,易得下列结论:( ) ①a·b =b·a ;②(a·b )·c =a·(b·c );③a·(b +c )=a·b +a·c ;④由a·b =a·c (a≠0)可得b =c .则正确的结论有( ) A .1个 B .2个 C .3个D .4个6.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n×1×3×…×(2n -1)(n ∈N *)时,从n =k 到n =k +1时,左边需增乘的代数式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +17.已知a ∈(0,+∞),不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +axn ≥n+1,则a 的值为( )A .2nB .n 2C .22(n -1)D .n n8.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +29.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .19910.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2 015等于( )A.12 B.-1 C .2D .3二、填空题(本大题共4小题,每小题5分,共20分)11.设函数f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得S=f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.12.已知 2+23=2 23, 3+38=3 38, 4+415=4 415,…,若 6+a b=6ab(a ,b 均为实数),请推测a =________,b =________. 13.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1n[f (x 1)+f (x 2)+…+f(x n )]≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________.14.观察下列数字: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 ……则第________行的各数之和等于2 0152.三、解答题(本大题共4小题,共50分.解答时应写出文字说明,证明过程或运算步骤) 15.(本小题满分12分)观察下列式子: ①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两个式子的结构规律,你能否提出一个猜想?并证明你的猜想.16.(本小题满分12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,假设1a ,1b ,1c成等差数列.(1)比较b a 与 cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角.17.(本小题满分12分)先解答(1),再通过结构类比解答(2).(1)求证:tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x .(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f x1-f x ,试问:f (x )是周期函数吗?证明你的结论.18.(本小题满分14分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想.答 案1.选A 观察分子中2+6=5+3=7+1=10+(-2)=8. 2.选B 按三段论的模式,排列顺序正确的是②①③.3.选C 正三角形的边对应正四面体的面,边的中点对应正四面体的面正三角形的中心.4.选A 因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,因此,要做的假设是方程x 3+ax +b =0没有实根.5.选B 平面向量的数量积的运算满足交换律和分配律,不满足结合律,故①③正确,②错误;由a·b =a·c (a≠0)得a·(b -c )=0,从而b -c =0或a⊥(b -c ),故④错误.6.选B 增乘的代数式为k +1+k k +1+k +1k +1=2(2k +1).7.选D 将四个答案分别用n =1,2,3检验即可,故选D.8.选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2.9.选C 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.10.选B ∵a 1=12,a n +1=1-1a n ,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *) ∴a 2 015=a 2+3×671=a 2=-1.11.解析:∵f (x )=12x+2, f (1-x )=121-x+2=2x2+2·2x =12·2x2+2x . ∴f (x )+f (1-x )=1+12·2x2+2x =22, 发现f (x )+f (1-x )正好是一个定值, ∴2S =22×12,∴S =3 2. 答案:3 212.解析:由前面三个等式,推测归纳被平方数的整数与分数的关系,发现规律.由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测 6+a b中,a =6,b =62-1=35,即a =6,b =35.答案:6 3513.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:33214.解析:观察知,图中的第n 行各数构成一个首项为n ,公差为1,共2n -1项的等差数列,其各项和为S n =(2n -1)n +2n -12n -22=(2n -1)n +(2n -1)·(n -1)=(2n -1)2,令(2n -1)2=2 0152,得2n -1=2 015,解得n =1 008. 答案:1 00815.解:猜想sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.证明如下:sin 2α+cos 2(30°+α)+sin αcos(30°+α) =1-cos 2α2+1+cos 60°+2α2+12[sin(30°+2α)+sin(-30°)]=1+cos 60°+2α-cos 2α2+12sin(2α+30°)-14=34+12[cos 60°·cos 2α-sin 60°sin 2α-cos 2α]+12sin(2α+30°) =34-12·⎝ ⎛⎭⎪⎫12cos 2α+32sin 2α+12sin(2α+30°) =34-12sin(2α+30°)+12sin(2α+30°)=34, 即sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34.16.解:(1) b a < cb.证明如下: 要证b a <c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列,∴2b =1a +1c≥21ac,∴b 2≤ac .又a ,b ,c 均不相等,∴b 2<ac . 故所得大小关系正确.(2)证明:法一 假设角B 是钝角,则cos B <0. 由余弦定理得cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac>0,这与cos B <0矛盾,故假设不成立. 所以角B 不可能是钝角.法二 假设角B 是钝角,则角B 的对边b 为最大边,即b >a ,b >c ,所以1a >1b >0,1c>1b>0,则1a +1c >1b +1b =2b ,这与1a +1c =2b矛盾,故假设不成立.所以角B 不可能是钝角.17.解:(1)根据两角和的正切公式得tan ⎝⎛⎭⎪⎫x +π4=tan x +tanπ41-tan x tanπ4=tan x +11-tan x =1+tan x1-tan x,即tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想f (x )是以4a 为周期的周期函数.因为f (x +2a )=f [(x +a )+a ]=1+f x +a1-f x +a =1+1+fx 1-f x 1-1+fx 1-f x=-1f x , 所以f (x +4a )=f [(x +2a )+2a ]=-1fx +2a=f (x ).所以f (x )是以4a 为周期的周期函数. 18.解:(1)S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1,因为a n >0,所以a 1=1.S 2=a 1+a 2=12⎝⎛⎭⎪⎫a 2+1a 2,得a 22+2a 2-1=0, 所以a 2=2-1.S 3=a 1+a 2+a 3=12⎝⎛⎭⎪⎫a 3+1a3, 得a 23+22a 3-1=0,所以a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *). 证明:①n =1时,a 1=1-0=1,命题成立.②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立,则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k ,即a k +1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k ,则n =k +1时,命题成立. 由①②知,n ∈N *,a n =n -n -1.。
2016-2017学年高中数学人教A版选修2-2学业测评:1.1.1+2 变化率问题 导数的概念
C.6D.-6
【解析】由平均速度和瞬时速度的关系可知,
v=s′(1)= (-3Δt-6)=-6.
【答案】D
3.已知函数f(x)=2x2-4的图象上一点(1,-2)及附近一点(1+Δx,-2+Δy),则 =()
A.4B.4x
C.4+2ΔxD.4+2(Δx)2
【解析】因为Δy=f(1+Δx)-f(1)=2(1+Δx)2-4-(2×12-4)=4Δx+2(Δx)2,
∴f′(x0)= [3x +3x0Δx+(Δx)2]=3x ,
由f′(x0)=3,得3x =3,∴x0=±1.
【答案】C
2.如果函数y=f(x)在x=1处的导数为1,那么 =()【导学号:60030004】
A. B.1
C.2D.
【解析】因为f′(1)=1,所以 =1,
所以 = = .【答Fra bibliotek】A3.已知f′(x0)>0,若a= ,b= ,c= ,
【答案】-
7.汽车行驶的路程s和时间t之间的函数图象如图1 1 2所示.在时间段[t0,t1],[t1,t2],[t2,t3]上的平均速度分别为 1, 2, 3,其三者的大小关系是________.
图1 1 2
【解析】∵ 1= =kMA,
2= =kAB,
3= =kBC,
由图象可知:kMA<kAB<kBC,∴ 3> 2> 1.
=2x2+2x+2+ (Δx)2+2x·Δx+Δx.
当Δx→0时, →2x2+2x+2,
令2x2+2x+2=14,
解得x=2,
即经过2 s该物体的运动速度达到14 m/s.
学业分层测评
(建议用时:45分钟)
[学业达标]
天津市高中数学人教A版选修2-2学业测评:2.2.1 综合法和分析法
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.在证明命题“对于任意角θ,cos 4θ-sin 4 θ=cos 2θ”的过程:“cos 4 θ-sin 4 θ=(cos 2 θ+sin 2 θ)(cos 2 θ-sin 2 θ)=cos 2 θ-sin 2 θ=cos 2θ”中应用了( )A .分析法B .综合法C .分析法和综合法综合使用D .间接证法【解析】 此证明符合综合法的证明思路.故选B. 【答案】 B2.要证a 2+b 2-1-a 2b 2≤0,只需证( ) A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 2+b22≤0C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0【解析】 要证a 2+b 2-1-a 2b 2≤0, 只需证a 2b 2-a 2-b 2+1≥0, 只需证(a 2-1)(b 2-1)≥0,故选D. 【答案】 D3.在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:d d b b d那么,d⊗(a⊕c)等于(A.a B.bC.c D.d【解析】由⊕运算可知,a⊕c=c,∴d⊗(a⊕c)=d⊗c.由⊗运算可知,d⊗c=a.故选A.【答案】 A4.欲证2-3<6-7成立,只需证()A.(2-3)2<(6-7)2B.(2-6)2<(3-7)2C.(2+7)2<(3+6)2D.(2-3-6)2<(-7)2【解析】∵2-3<0,6-7<0,故2-3<6-7⇔2+7<3+6⇔(2+7)2<(3+6)2. 【答案】 C5.对任意的锐角α,β,下列不等式中正确的是()A.sin(α+β)>sin α+sin βB.sin(α+β)>cos α+cos βC.cos(α+β)>sin α+sin βD.cos(α+β)<cos α+cos β【解析】因为0<α<π2,0<β<π2,所以0<α+β<π,若π2≤α+β<π,则cos(α+β)≤0,因为cos α>0,cos β>0.所以cos α+cos β>cos (α+β).若0<α+β<π2,则α+β>α且α+β>β,因为cos(α+β)<cos α,cos(α+β)<cos β,所以cos(α+β)<cos α+cos β,总之,对任意的锐角α,β有cos(α+β)<cos α+cos β.【答案】 D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”应用了________的证明方法.【解析】该证明方法是“由因导果”法.【答案】综合法7.如果a a>b b,则实数a,b应满足的条件是__________.【解析】要使a a>b b,只需使a>0,b>0,(a a)2>(b b)2,即a>b>0.【答案】a>b>08.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是__________. 【导学号:60030056】【解析】若对任意x>0,xx2+3x+1≤a恒成立,只需求y=xx2+3x+1的最大值,且令a 不小于这个最大值即可.因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12x ·1x +3=15,当且仅当x =1时,等号成立,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞.【答案】 ⎣⎢⎡⎭⎪⎫15,+∞三、解答题9.已知倾斜角为60°的直线L 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点,其中O 为坐标原点.(1)求弦AB 的长; (2)求三角形ABO 的面积.【解】 (1)由题意得,直线L 的方程为y =3(x -1), 代入y 2=4x ,得3x 2-10x +3=0. 设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=103.由抛物线的定义,得弦长|AB |=x 1+x 2+p =103+2=163. (2)点O 到直线AB 的距离d =|-3|3+1=32,所以三角形OAB 的面积为S =12|AB |·d =433.10.已知三角形的三边长为a ,b ,c ,其面积为S ,求证:a 2+b 2+c 2≥43S .【证明】 要证a 2+b 2+c 2≥43S ,只要证a 2+b 2+(a 2+b 2-2ab cos C )≥2 3 ab sin C ,即证a 2+b 2≥2ab sin(C +30°),因为2ab sin(C +30°)≤2ab ,只需证a 2+b 2≥2ab ,显然上式成立.所以a2+b2+c2≥43S.[能力提升]1.设a>0,b>0,若3是3a与3b的等比中项,则1a+1b的最小值为()A.8 B.4C.1 D.1 4【解析】3是3a与3b的等比中项⇒3a·3b=3⇒3a+b=3⇒a+b=1,因为a>0,b>0,所以ab≤a+b2=12⇒ab≤14,所以1a+1b=a+bab=1ab≥114=4.【答案】 B2.(2016·石家庄高二检测)已知关于x的方程x2+(k-3)x+k2=0的一根小于1,另一根大于1,则k的取值范围是()A.(-1,2)B.(-2,1)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)【解析】令f(x)=x2+(k-3)x+k2.因为其图象开口向上,由题意可知f(1)<0,即f(1)=1+(k-3)+k2=k2+k-2<0,解得-2<k<1.【答案】 B3.如果a a+b b>a b+b a,则实数a,b应满足的条件是__________.【解析】a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.【答案】 a ≥0,b ≥0且a ≠b4.(2016·天津高二检测)已知α,β≠k π+π2,(k ∈Z )且sin θ+cos θ=2sin α,sin θcos θ=sin 2β.求证:1-tan 2 α1+tan 2 α=1-tan 2β2(1+tan 2 β). 【导学号:60030057】【证明】 要证1-tan 2 α1+tan 2 α=1-tan 2 β2(1+tan 2 β)成立,即证1-sin 2 αcos 2 α1+sin 2 αcos 2 α=1-sin 2 βcos 2 β2⎝ ⎛⎭⎪⎫1+sin 2 βcos 2 β. 即证cos 2α-sin 2α=12(cos 2β-sin 2β), 即证1-2sin 2α=12(1-2sin 2β), 即证4sin 2α-2sin 2β=1, 因为sin θ+cos θ=2sin α, sin θcos θ=sin 2β,所以(sin θ+cos θ)2=1+2sin θcos θ=4sin 2α,所以1+2sin 2β=4sin 2 α,即4sin 2α-2sin 2β=1.故原结论正确.。
人教A版选修2-2高二数学理科试题答案与评分标准.docx
高二数学理科试卷参考答案及评分标准二、填空题(本大题共4小题,每小题5分,共20分.)13. 充分不必要条件 14. (2) 15.2√5 三、解答题(本大题共6小题,满分70分) 17.(本小题满分10分)解:设椭圆的方程为1212212=+b y a x ,双曲线的方程为1222222=-b y a x ,半焦距c =13 ,由已知得:a 1-a 2=4,7:3:21=a ca c , …………………………4分 解得:a 1=7,a 2=3所以:b 12=36,b 22=4, …………………………8分所以两条曲线的方程分别为:1364922=+y x ,14922=-y x …………………………10分 18. (本小题满分12分)解:s=1n=2i=1 …………………………3分 WHILE i <=63 s=s+n ∧i i=i+1WEND …………………………10分 PRINT “1+2+2∧2+2∧3+…+2∧63=”;sEND …………………………12分 19.(本小题满分12分) 解、(1)∵222PB PC BC =+∴PC ⊥BC, 因为PA ⊥平面ABC ,所以PA ⊥BC , …………………………2分()000,AC BC AP PC BC AP BC PC BC •=+•=•+•=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r所以,AC ⊥BC …………………………5分(2)因为PA ⊥平面ABC ,所以PA ⊥AC ,0PA AC •=u u u r u u u r,设PA =x ,又异面直线PB 与AC 所成的角为600,则cos 3PB AC PB AC π•=⨯u u u r u u u r u u u r u u u r 。
而()PB AC PA AB AC PA AC ABAC AB AC •=+•=•+•=•u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r……………………8分 所以AB AC •=u u u r u u u r cos 3PB AC π⨯u u u r u u u r ,AB AC •=u u u r u u u r 34394⨯⨯=。
高中数学人教a版高二选修2-2章末综合测评2 含解析
高中数学人教a版高二选修2-2章末综合测评2 含解析章末综合测评(二)推理与证明(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是()A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C 项中各个学生的成绩不能类比,不是合情推理.【答案】 C2.下列几种推理是演绎推理的是()A.在数列{a n}中,a1=1,a n=12⎝⎛⎭⎪⎫a n-1+1a n-1(n≥2),由此归纳出{a n}的通项公式B.某校高三共有12个班,其中(1)班有55人,(2)班有54人,(3)班有52人,由此得出高三所有班级的人数都超过50人C.由平面三角形的性质,推测出空间四面体的性质D.两条直线平行,同旁内角互补.如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=π【解析】A,B为归纳推理,C为类比推理.【答案】 D3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 【解析】 由归纳推理的特点知,选B. 【答案】 B4.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段论推理( ) A .完全正确 B .推理形式不正确C .不正确,两个“自然数”概念不一致D .不正确,两个“整数”概念不一致【解析】 大前提“凡是自然数都是整数”正确.小前提“4是自然数”也正确,推理形式符合演绎推理规则,所以结论正确.【答案】 A5.用数学归纳法证明“5n -2n 能被3整除”的第二步中,当n =k +1时,为了使用假设,应将5k +1-2k +1变形为( )A .(5k -2k )+4×5k -2kB .5(5k -2k )+3×2kC .(5-2)(5k -2k )D .2(5k -2k )-3×5k【解析】 5k +1-2k +1=5k ·5-2k ·2=5k ·5-2k ·5+2k ·5-2k ·2=5(5k -2k )+3·2k . 【答案】 B6.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n=2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要用归纳假设再证n =________时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2)【解析】根据数学归纳法的步骤可知,n=k(k≥2且k为偶数)的下一个偶数为n =k+2,故选B.【答案】 B7.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76C.123 D.199【解析】利用归纳法,a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.【答案】 C8.分析法又叫执果索因法,若使用分析法证明:“设a>b>c,且a+b+c=0,求证:b2-ac<3a”最终的索因应是()A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0【解析】因为a>b>c,且a+b+c=0,所以3c<a+b+c<3a,即a>0,c<0.要证明b2-ac<3a,只需证明b2-ac<3a2,只需证明(-a-c)2-ac<3a2,只需证明2a2-ac-c2>0,只需证明2a+c>0(a>0,c<0,则a-c>0),只需证明a+c+(-b-c)>0,即证明a-b>0,这显然成立,故选A.【答案】 A9.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有() A.b1·b2·…·b n=b1·b2·…·b19-nB.b1·b2·…·b n=b1·b2·…·b21-nC.b1+b2+…+b n=b1+b2+…+b19-nD.b1+b2+…+b n=b1+b2+…+b21-n【解析】令n=10时,验证即知选B.【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a2 016-5=()图1A.2 018×2 014 B.2 018×2 013C.1 010×2 012 D.1 011×2 013【解析】a n-5表示第n个梯形有n-1层点,最上面一层为4个,最下面一层为n+2个.∴a n-5=(n-1)(n+6)2,∴a2 016-5=2 015×2 0222=2 013×1 011.【答案】 D11.在直角坐标系xOy中,一个质点从A(a1,a2)出发沿图2中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此规律一直运动下去,则a2 015+a2 016+a2 017=()图2A.1 006 B.1 007C.1 008 D.1 009【解析】依题意a1=1,a2=1;a3=-1,a4=2;a5=2,a6=3;…,归纳可得a1+a3=1-1=0,a5+a7=2-2=0,…,进而可归纳得a2 015+a2 017=0,a2=1,a4=2,a6=3,…,进而可归纳得a2 016=12×2 016=1 008,a2 015+a2 016+a2 017=1 008.故选C.【答案】 C 12.记集合T={0,1,2,3,4,5,6,7,8,9},M=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 110+a 2102+a 3103+a 4104| a i ∈T ,i =1,2,3,4,将M 中的元素按从大到小排列,则第2 016个数是( )A.710+9102+8103+4104 B.510+5102+7103+2104 C.510+5102+7103+3104 D.710+9102+9103+1104 【解析】 因为a 110+a 2102+a 3103+a 4104=1104(a 1×103+a 2×102+a 3×101+a 4),括号内表示的10进制数,其最大值为9 999,从大到小排列,第2 016个数为9 999-2 016+1=7 984,所以a 1=7,a 2=9,a 3=8,a 4=4. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.【答案】 经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=114.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是________ .【解析】 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n+1,且第n组共有n个“整数对”,这样的前n组一共有n(n+1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).【答案】(5,7)15.当n=1时,有(a-b)(a+b)=a2-b2,当n=2时,有(a-b)(a2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N*时,你能得到的结论是__________.【解析】根据题意,由于当n=1时,有(a-b)(a+b)=a2-b2,当n=2时,有(a -b)(a2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N*时,左边第二个因式可知为a n+a n-1b+…+ab n-1+b n,那么对应的表达式为(a-b)·(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+1.【答案】(a-b)(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+116.如图3,如果一个凸多面体是n(n∈N*)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f(n)对异面直线,则f(4)=________,f(n)=__________.(答案用数字或n的解析式表示)图3【解析】所有顶点所确定的直线共有棱数+底边数+对角线数=n+n+n(n-3)2=n(n+1)2.从题图中能看出四棱锥中异面直线的对数为f(4)=4×2+4×12×2=12,所以f(n)=n(n-2)+n(n-3)2·(n-2)=n(n-1)(n-2)2.【答案】n(n+1)212n(n-1)(n-2)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)用综合法或分析法证明:(1)如果a,b>0,则lg a+b2≥lg a+lg b2;(2)6+10>23+2.【证明】(1)当a,b>0时,有a+b2≥ab,∴lg a+b2≥lg ab,∴lg a+b2≥12lg ab=lg a+lg b2.(2)要证6+10>23+2,只要证(6+10)2>(23+2)2,即260>248,这是显然成立的,所以,原不等式成立.18.(本小题满分12分)观察以下各等式:sin230°+cos260°+sin 30°cos 60°=3 4,sin220°+cos250°+sin 20°cos 50°=3 4,sin215°+cos245°+sin 15°cos 45°=3 4.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.【解】猜想:sin2α+cos2(α+30°)+sin αcos(α+30°)=3 4.证明如下:sin2α+cos2(α+30°)+sin αcos(α+30°)=sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝ ⎛⎭⎪⎫32cos α-12sin α =sin 2α+34cos 2α-32sin αcos α+14sin 2α+32sin α·cos α-12sin 2α =34sin 2α+34cos 2α =34. 19.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解】 (1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0, ∵p ,q ,r ∈N *,∴⎩⎨⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.20.(本小题满分12分)点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EF·cos∠DFE.扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】(1)因为PM⊥BB1,PN⊥BB1,又PM∩PN=P,所以BB1⊥平面PMN,所以BB1⊥MN.又CC1∥BB1,所以CC1⊥MN.(2)在斜三棱柱ABC-A1B1C1中,有S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1SACC1A1cos α.其中α为平面BCC1B1与平面ACC1A1所成的二面角.证明如下:因为CC1⊥平面PMN,所以上述的二面角的平面角为∠MNP.在△PMN中,因为PM2=PN2+MN2-2PN·MN cos∠MNP,所以PM2·CC21=PN2·CC21+MN2·CC21-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SBCC1B1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,所以S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1·cos α.21.(本小题满分12分)如图4,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:图4(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.【证明】(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A⊄平面DEF,DE⊂平面DEF,所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC . 又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .22.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1=(n -1)a n n -a n (n ≥2).(1)求a 3,a 4,猜想a n 的表达式,并加以证明;(2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N *,都有b 1+b 2+…+b n <n 3. 【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N *. 下面利用数学归纳法加以证明: ①显然当n =1,2,3,4时,结论成立,②假设当n =k (k ≥4,k ∈N *)时,结论也成立,即 a k =13k -2.那么当n =k +1时,由题设与归纳假设可知: a k +1=(k -1)a kk -a k=(k -1)×13k -2k -13k -2=k -13k 2-2k -1=k -1(3k +1)(k -1)=13k+1=13(k+1)-2.即当n=k+1时,结论也成立,综上,对任意n∈N*,a n=13n-2成立.(2)b n=a n·a n+1 a n+a n+1=13n-2·13n+1 13n-2+13n+1=13n+1+3n-2=13(3n+1-3n-2),所以b1+b2+…+b n=13[(4-1)+(7-4)+(10-7)+…+(3n+1-3n-2)]=13(3n+1-1),所以只需要证明13(3n+1-1)<n3⇔3n+1<3n+1⇔3n+1<3n+23n+1⇔0<23n(显然成立),所以对任意的n∈N*,都有b1+b2+…+b n<n 3.第11页共11页。
2016-2017学年高中数学人教A版选修2-2课件:2.2.1 综合法和分析法
综合法的应用
[例 1] 已知 a,b,c 是不全相等的正数,求证:a(b2+c2)
+b(c2+a2)+c(a2+b2)>6abc.
[证明] ∵a,b,c 是正数,∴b2+c2≥2bc,
∴a(b2+c2)≥2abc.
①
同理,b(c2+a2)≥2abc,
②
c(a2+b2)≥2abc.
③
∵a,b,c 不全相等,
2.2
直接证明与间接证明
2.2.1 综合法和分析法
第一页,编辑于星期五:十六点 明过程,回答问题.
求证:π是函数f(x)=sin2x+π4的一个周期. 证明:因为f(x+π)=sin2x+π+π4=sin2x+2π+π4= sin 2x+π4 =f(x),所以由周期函数的定义可知,π是函数f(x) =sin2x+π4的一个周期.
第十九页,编辑于星期五:十六点 四十一分。
[活学活用] 设a,b∈(0,+∞),且a≠b,求证:a3+b3>a2b+ab2. 证明:法一 (分析法) 要证a3+b3>a2b+ab2成立, 即需证(a+b)(a2-ab+b2)>ab(a+b)成立. 又因a+b>0, 故只需证a2-ab+b2>ab成立, 即需证a2-2ab+b2>0成立, 即需证(a-b)2>0成立. 而依题设a≠b,则(a-b)2>0显然成立. 由此命题得证.
(a-b)2≥0.由于(a-b)2≥0显然成立,所以原不等式成立.
答案:a2+b2-2ab≥0 (a-b)2≥0 (a-b)2≥0
第三十一页,编辑于星期五:十六点 四十一分。
5.已知a>0,b>0,求证:
a+ b
b≥ a
a+ b.(要求用两种方
法证明)
证明:法一
(综合法)因为
2016-2017学年高中数学人教A版选修2-2学业测评:1.6 微积分基本定理
学业分层测评(建议用时:45分钟)[学业达标]一、选择题 1.⎠⎛241x d x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 2【解析】 ⎠⎛241x d x =ln x |42=ln 4-ln 2=ln 2.【答案】 D2.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a【解析】 ∵a =⎠⎛01x 13d x =x 4343⎪⎪⎪10=34, b =⎠⎛01x 2d x =x 33⎪⎪⎪10=13,c =⎠⎛01x 3d x =x 44⎪⎪⎪10=14,∴a >b >c . 【答案】 A3.(2016·东莞高二检测)已知积分⎠⎛01(kx +1)d x =k ,则实数k =( )A .2B .-2C .1D .-1【解析】 ⎠⎛01(kx +1)d x =⎝ ⎛⎭⎪⎫12kx 2+x ⎪⎪⎪10=12k +1=k ,∴k =2.【答案】 A4.已知f (x )=2-|x |,则⎠⎛-12f (x )d x =( )A .3B .4 C.72D.92【解析】 因为f (x )=2-|x |=⎩⎪⎨⎪⎧2+x ,x ≤0,2-x , x ≥0,所以⎠⎛-12f (x )d x =⎠⎛-10 (2+x )d x +⎠⎛02(2-x )d x =⎝ ⎛⎭⎪⎫2x +x 22+⎝ ⎛⎭⎪⎫2x -x 22=32+2=72.【答案】 C5.设f (x )=⎩⎨⎧x 2,0≤x <1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.23 B.34 C.45D.56【解析】 ⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫2x -12x 2⎪⎪⎪21 =13+12=56. 【答案】 D 二、填空题6.若⎠⎛0k (2x -3x 2)d x =0,则k 等于__________. 【导学号:60030039】【解析】 ⎠⎛0k (2x -3x 2)d x =(x 2-x 3)|k 0=k 2-k 3=0,∴k =0(舍)或k =1.【答案】 17.(2016·南宁模拟)设抛物线C :y =x 2与直线l :y =1围成的封闭图形为P ,则图形P 的面积S 等于____________ .【解析】 由⎩⎪⎨⎪⎧y =x 2,y =1,得x =±1.如图,由对称性可知,S =2⎝⎛⎭⎫1×1-⎠⎛01x 2d x =2⎝ ⎛⎭⎪⎫1×1-13x 3| 10=43.【答案】 438.已知f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,若f (f (1))=1,则a =__________.【解析】 因为f (1)=lg 1=0,且⎠⎛0a 3t 2d t =t 3|a 0=a 3-03=a 3, 所以f (0)=0+a 3=1,所以a =1. 【答案】 1 三、解答题9.计算下列定积分. (1)⎠⎛121x (x +1)d x ;(2) ⎠⎜⎜⎛-π2π2 (cos x +2x )d x .【解】 (1)∵⎠⎛121x (x +1)d x =⎠⎛12⎝ ⎛⎭⎪⎫1x -1x +1d x =[ln x -ln(x +1)]| 21=ln 43.(2) ⎠⎜⎜⎛-π2π2 (cos x +2x )d x =⎝ ⎛⎭⎪⎫sin x +2xln 2=2+1ln 2(2π2-2-π2).10.设f (x )=ax 2+bx +c (a ≠0),f (1)=4,f ′(1)=1,⎠⎛01f (x )d x =196,求f (x ).【解】 因为f (1)=4,所以a +b +c =4,① f ′(x )=2ax +b ,因为f ′(1)=1,所以2a +b =1,② ⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13ax 3+12bx 2+cx ⎪⎪⎪10 =13a +12b +c =196,③由①②③可得a =-1,b =3,c =2. 所以f (x )=-x 2+3x +2.[能力提升]1.(2016·石家庄高二检测)若⎠⎛1a ⎝ ⎛⎭⎪⎫2x -1x d x =3-ln 2,且a >1,则a 的值为( )A .6B .4C .3D .2【解析】 ⎠⎛1a ⎝ ⎛⎭⎪⎫2x -1x d x =(x 2-ln x )|a 1 =a 2-ln a -1,故有a 2-ln a -1=3-ln 2, 解得a =2. 【答案】 D2.如图1-6-2所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )图1-6-2A.14 B.15 C.16D.17【解析】 因为S 正方形=1,S 阴影=⎠⎛01(x -x )d x =⎝ ⎛⎭⎪⎫23x 32-12x 2⎪⎪⎪10=23-12=16,所以点P 恰好取自阴影部分的概率为161=16. 【答案】 C3.计算:⎠⎛-22(2|x |+1)d x =__________. 【导学号:60030040】【解析】 ⎠⎛-22(2|x |+1)d x =⎠⎛-20(-2x +1)d x +⎠⎛02(2x +1)d x =(-x 2+x )|0-2+(x 2+x )|20 =-(-4-2)+(4+2)=12. 【答案】 124.已知f (x )=⎠⎛-a x ⎠⎛x -a(12t +4a )d t ,F (a )=⎠⎛01[f (x )+3a 2]d x ,求函数F (a )的最小值.【解】 因为f (x )=⎠⎛x -a(12t +4a )d t =(6t 2+4at )|x -a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2, F (a )=⎠⎛01[f (x )+3a 2]d x =⎠⎛01(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x ) ⎪⎪⎪10=2+2a +a 2=a 2+2a +2=(a +1)2+1≥1. 所以当a =-1时,F (a )的最小值为1.。
(人教A版)高中数学【选修2-2】:本册综合测试试卷(含答案)
本册综合测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1+2i (1-i )2=( ) A .-1-12i B .-1+12i C .1+12iD .1-12i解析 1+2i (1-i )2=1+2i -2i =(1+2i )i -2i ·i =-1+12i .答案 B2.若f(x)=e x ,则lim Δx →0f (1-2Δx )-f (1)Δx=( ) A .e B .-e C .2eD .-2e解析 ∵f(x)=e x ,∴f ′(x)=e x ,f ′(1)=e . ∴lim Δx →0f (1-2Δx )-f (1)Δx =-2lim Δx →0f (1-2Δx )-f (1)-2Δx=-2f ′(1)=-2e .答案 D3.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32D .33解析 观察前几项知,5=2+3,11=5+2×3,20=11+3×3, x =20+4×3=32,47=32+5×3. 答案 C4.函数y =f(x)在区间[a ,b]上的最大值是M ,最小值是m ,若m =M ,则f ′(x)( )A .等于0B .大于0C .小于0D .以上都有可能答案 A5.已知函数f(x)=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,- 3 )∪(3,+∞)D .(-3, 3 )解析 f ′(x)=-3x 2+2ax -1,若f(x)在(-∞,+∞)上为单调函数只有f ′(x)≤0, ∴Δ=(2a)2-4(-3)(-1)≤0, 解得-3≤a ≤ 3. 答案 B6.用数学归纳法证明不等式1+12+13+…+12n -1<n(n ∈N *且n >1)时,第一步应验证不等式( )A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3答案 B7.对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,有f ′(x )>0,g ′(x )>0,则x <0时,有( )A .f ′(x )>0,g ′(x )>0B .f ′(x )<0,g ′(x )>0C .f ′(x )<0,g ′(x )<0D .f ′(x )>0,g ′(x )<0解析 由f (-x )=-f (x )及g (-x )=g (x )知,f (x )为奇函数,g (x )为偶函数,由函数奇偶性的性质得f ′(x )>0,g ′(x )<0.答案 D8.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=13(23-13)=73,S 2=⎠⎛121x d x =ln x ⎪⎪⎪ 21=ln 2,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e .∵e 2-e >4,ln 2<lne =1,2<73<3, ∴S 3>S 1>S 2. 答案 B9.曲线y =13x 3+12x 2在点T(1,56)处的切线与两坐标轴围成的三角形的面积为( )A .4918B .4936C .4972D .49144解析 y ′=x 2+x ,y ′|x =1=2,∴切线方程为y -56=2(x -1),与坐标轴的交点分别为(0,-76),(712,0),故切线与坐标轴围成的三角形的面积S =12×76×712=49144.答案 D10.在平面直角坐标系中,直线x -y =0与曲线y =x 2-2x 所围成的面积为( )A .1B .52C .92D .9解析 如图所示由⎩⎪⎨⎪⎧y =x 2-2x ,y =x ,得交点(0,0),(3,3). ∴阴影部分的面积为S =⎠⎛03(x -x 2+2x)d x =⎠⎛03(-x 2+3x)d x =(-13x 3+32x 2)⎪⎪⎪ 30=-9+272=92.答案 C11.用反证法证明命题:“若a ,b ∈N ,ab 能被5整除,则a ,b 中至少有一个能被5整除”,那么假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 有一个能被5整除D .a ,b 有一个不能被5整除 答案 B12.桌上放着红桃、黑桃和梅花三种牌,共20张,下列判断正确的是( )①桌上至少有一种花色的牌少于6张;②桌上至少有一种花色的牌多于6张;③桌上任意两种牌的总数将不超过19张.A .①②B .①③C .②③D .①②③答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.关于x 的不等式mx 2-nx +p >0(m ,n ,p ∈R )的解集为(-1,2),则复数m +p i 所对应的点位于复平面内的第________象限.解析 因为mx 2-nx +p >0(m ,n ,p ∈R )的解集为(-1,2),所以⎩⎪⎨⎪⎧m <0,(-1)+2=n m ,(-1)×2=p m ,解得m <0,p >0.故复数m +p i 所对应的点位于复平面内的第二象限. 答案 第二14.已知函数f (x )=3x 2+2x ,若⎠⎛1-1f(x)d x =2f(a)成立,则a =________.解析 ∵⎠⎛1-1(3x 2+2x)d x =(x 3+x 2)⎪⎪⎪ 1-1=2, ∴2(3a 2+2a)=2.即3a 2+2a -1=0, 解得a =-1,或a =13. 答案 -1或13 15.观察下列等式: (1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5, …照此规律,第n 个等式可为________________.解析 观察上列等式可得第4个等式为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7,…,第n 个等式为(n +1)(n +2)(n +3)…(n +n)=2n ×1×3×5×…×(2n -1).答案 (n +1)(n +2)(n +3)…(n +n)=2n ×1×3×…×(2n -1) 16.若函数f(x)=4xx 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析 f ′(x)=4(x 2+1)-4x·2x (x 2+1)2=4(1+x )(1-x )(x 2+1)2,令f ′(x)>0,得(1+x)(1-x)>0,解得-1<x<1.若在区间(m,2m +1)上是单调增函数,则有⎩⎪⎨⎪⎧m>-1,2m +1<1,解得-1<m<0.但m =0时,也适合,故-1<m ≤0.答案 (-1,0]三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)用反证法证明:在△ABC 中,若sin A>sin B ,则∠B 必为锐角.证明 假设B 不是锐角,则0°<∠A<∠A +∠C =180°-∠B ≤90°, ∴sin A<sin (180°-B),即sin A<sin B ,这与已知sin A>sin B 矛盾,故∠B 必为锐角.18.(12分)已知f(x)为二次函数,且f(-1)=2,f ′(0)=0,∫10f(x)d x=-2.(1)求f(x)的表达式;(2)求f(x)在[-1,1]上的最大值与最小值.解 (1)设f(x)=ax 2+bx +c(a ≠0),则f ′(x)=2ax +b.由f(-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2,b =0,即⎩⎪⎨⎪⎧c =2-a ,b =0.∴f(x)=ax 2+2-a.又∵⎠⎛01f(x)d x =⎠⎛01(ax 2+2-a)d x =⎣⎢⎡⎦⎥⎤13ax 3+(2-a )x ⎪⎪⎪10=13a +2-a =-2,∴a =6.从而c =-4.故f(x)=6x 2-4.(2)∵f(x)=6x 2-4,x ∈[-1,1],∴f(x)min =-4.f(x)max =f(-1)=f(1)=2.故f(x)在[-1,1]上的最大值为2,最小值为-4.19.(12分)已知函数f(x)=ax 3+bx 2+cx 在点x 0处取得极小值-7,其导函数y =f ′(x)的图象经过点(-1,0),(2,0),如图所示,试求x 0,a ,b ,c 的值.解 由y =f ′(x)的图象可知,在(-∞,-1)上f ′(x)<0,在(-1,2)上f ′(x)>0,在(2,+∞)上f ′(x)<0,故f(x)在(-∞,-1)上递减,在(-1,2)上递增,在(2,+∞)上递减.因此,f(x)在x =-1处取得极小值, 所以x 0=-1.∵f(x)=ax 3+bx 2+cx , ∴f ′(x)=3ax 2+2bx +c.故由f ′(-1)=0,f ′(2)=0,f(-1)=-7, 得⎩⎪⎨⎪⎧3a -2b +c =0,12a +4b +c =0,-a +b -c =-7,解得a =-2,b =3,c =12.20.(12分)设f(x)=a(x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解 (1)∵f (x )=a (x -5)2+6ln x =ax 2-10ax +25a +6ln x , ∴f ′(x )=2ax -10a +6x =2a (x -5)+6x . 令x =1,得f (1)=16a ,f ′(1)=-8a +6.故曲线在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1). 又点(0,6)在切线上,得6-16a =8a -6,∴a =12. (2)由(1)知,f (x )=12(x -5)2+6ln x ,(x >0), f ′(x )=x -5+6x =(x -2)(x -3)x . 令f ′(x )=0,得x 1=2,x 2=3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )的增区间为(0,2),(3,+∞); 当2<x <3时,f ′(x )<0, 故f (x )的减区间为(2,3).由此可知,当x =2时,f (x )取得极大值f (2)=92+6ln2. 当x =3时,f (x )取得极小值f (3)=2+6ln3.21.(12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).(1)写出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)用数学归纳法证明你的猜想,并求出a n 的表达式.解 (1)易求得S 1=1=22,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.(2)①当n =1时,S 1=2×11+1=1,猜想成立.②假设n =k (k ∈N *)时,S k =2kk +1,则当n =k +1时, S k +1=(k +1)2a k +1 =(k +1)2(S k +1-S k ),∴S k +1=(k +1)2k 2+2k ·2k k +1=2(k +1)(k +1)+1,这表明当n =k +1时,猜想也成立. 根据①,②可知,对n ∈N *, S n =2n n +1,从而a n =S n n 2=2n (n +1).22.(12分)已知函数f (x )=ln(1+x )-x +k 2x 2(k ≥0). (1)当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求f (x )的单调区间.解 (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x -1+2x .由于f (1)=ln2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln2=32(x -1), 即3x -2y +2ln2-3=0.(2)f ′(x )=x (kx +k -1)1+x ,x ∈(-1,+∞),当k =0时,f ′(x )=-x1+x,所以在区间(-1,0)上f ′(x )>0;在区间(0,+∞)上f ′(x )<0, 故f (x )的单调增区间为(-1,0),单调减区间为(0,+∞). 当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk >0.匠心文档,专属精品。
2016新课标创新人教A版数学选修2-2 章末小结与测评
1.导数的几何意义:函数y=f(x)在点x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.2.导数的几何意义的应用:利用导数的几何意义可以求出曲线上任意一点处的切线方程y-y0=f′(x0)(x-x0),明确“过点P(x0,y0)的曲线y=f(x)的切线方程”与“在点P(x0,y0)处的曲线y=f(x)的切线方程”的异同点.3.围绕着切点有三个等量关系:切点(x0,y0),则k=f′(x0),y0=f(x0),(x0,y0)满足切线方程,在求解参数问题中经常用到.[典例1]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)∵f ′(x )=(x 3+x -16)′=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)法一:设切点为(x 0,y 0), 则直线l 的斜率为f ′(x 0)=3x 20+1, ∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16. 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16. 整理得,x 30=-8,∴x 0=-2. ∴y 0=(-2)3+(-2)-16=-26. k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 法二:设直线l 的方程为y =kx ,切点为(x 0,y 0), 则k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1. 解得,x 0=-2,∴y 0=(-2)3+(-2)-16=-26. k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4. 设切点坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, ∴x 0=±1.∴⎩⎪⎨⎪⎧ x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18. 即切点为(1,-14)或(-1,-18).切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14. [对点训练]1.设函数f (x )=4x 2-ln x +2,求曲线y =f (x )在点(1,f (1))处的切线方程. 解:f ′(x )=8x -1x.所以在点(1,f (1))处切线的斜率k =f ′(1)=7, 又f (1)=4+2=6,所以切点的坐标为(1,6).所以切线的方程为y -6=7(x -1),即7x -y -1=0.借助导数研究函数的单调性,尤其是研究含有ln x ,e x ,-x 3等线性函数(或复合函数)的单调性,是近几年高考的一个重点.其特点是导数f ′(x )的符号一般由二次函数来确定;经常同一元二次方程、一元二次不等式结合,融分类讨论、数形结合于一体.[典例2] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性. 解:(1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞). 此时f ′(x )=2(x +1)2.可得f ′(1)=12,又f (1)=0, 所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a ,由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a>0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,函数f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a , ⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,上单调递增.[典例3] 若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.解:函数f (x )的导数f ′(x )=x 2-ax +a -1. 令f ′(x )=0,解得x =1或x =a -1.当a -1≤1,即a ≤2时,函数f (x )在(1,+∞)上为增函数,不合题意.当a -1>1,即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)上为减函数,在(a -1,+∞)上为增函数.依题意当x ∈(1,4)时,f ′(x )<0, 当x ∈(6,+∞)时,f ′(x )>0. 故4≤a -1≤6,即5≤a ≤7. 因此a 的取值范围是[5,7]. [对点训练]2.已知函数f (x )=x e kx (k ≠0),求f (x )的单调区间. 解:f ′(x )=(1+kx )e kx ,若k >0,则由f ′(x )>0得1+kx >0,x >-1k ;由f ′(x )<0得x <-1k.∴k >0时,f (x )的单调递增区间为⎝⎛⎭⎫-1k ,+∞,递减区间为⎝⎛⎭⎫-∞,-1k . 若k <0,则由f ′(x )>0得1+kx >0,x <-1k ;由f ′(x )<0得x >-1k .∴k <0时,f (x )的单调递增区间为⎝⎛⎭⎫-∞,-1k ,递减区间为⎝⎛⎭⎫-1k ,+∞. 3.若a ≥-1,求函数f (x )=ax -(a +1)ln(x +1)的单调区间. 解:由已知得函数f (x )的定义域为(-1,+∞),且f ′(x )=ax -1x +1(a ≥-1), (1)当-1≤a ≤0时,f ′(x )<0,函数f (x )在(-1,+∞)上单调递减; (2)当a >0时,由f ′(x )=0,解得x =1a .f ′(x ),f (x )随x 的变化情况如下表:x ⎝⎛⎭⎫-1,1a1a ⎝⎛⎭⎫1a ,+∞ f ′(x ) -0 + f (x )极小值从上表可知,当x ∈⎝⎛⎭⎫-1,1a 时,f ′(x )<0,函数f (x )在⎝⎛⎭⎫-1,1a 上单调递减. 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )>0,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增. 综上所述,当-1≤a ≤0时,函数f (x )在(-1,+∞)上单调递减.当a >0时,函数f (x )在⎝⎛⎭⎫-1,1a 上单调递减,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增.1.极值和最值是两个迥然不同的概念,前者是函数的“局部”性质,而后者是函数的“整体”性质.另函数有极值未必有最值,反之亦然.2.判断函数“极值”是否存在时,务必把握以下原则: (1)确定函数f (x )的定义域. (2)解方程f ′(x )=0的根.(3)检验f ′(x )=0的根的两侧f ′(x )的符号: 若左正右负,则f (x )在此根处取得极大值. 若左负右正,则f (x )在此根处取得极小值.即导数的零点未必是极值点,这一点是解题时的主要失分点,学习时务必引起注意. 3.求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤: (1)求f (x )在(a ,b )内的极值.(2)将(1)求得的极值与f (a ),f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.[典例4] 已知函数f (x )=x 3-ax 2+3x ,且x =3是f (x )的极值点. (1)求实数a 的值;(2)求f (x )在x ∈[1,5]上的最小值和最大值. 解:(1)f ′(x )=3x 2-2ax +3. f ′(3)=0,即27-6a +3=0, ∴a =5.(2)f (x )=x 3-5x 2+3x .令f ′(x )=3x 2-10x +3=0,解得x =3或x =13(舍去).当x 变化时,f ′(x )、f (x )的变化情况如下表:x 1 (1,3) 3 (3,5) 5 f ′(x ) -0 + f (x )-1-915因此,当当x =5时,f (x )在区间[1,5]上有最大值是f (5)=15. [典例5] 已知函数f (x )=x 2+ax -ln x ,a ∈R .(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若函数f (x )在[1,2]上是减函数,求实数a 的取值范围;(3)令g (x )=f (x )-x 2,是否存在实数a ,当x ∈(0,e](e 是自然对数的底数)时,函数g (x )的最小值是3,若存在,求出a 的值;若不存在,说明理由.解:(1)当a =0时,曲线f (x )=x 2-ln x ,所以f ′(x )=2x -1x ⇒f ′(1)=1,f (1)=1.所以曲线y =f (x )在点(1,f (1))处的切线方程为x-y =0.(2)因为函数在[1,2]上是减函数,所以f ′(x )=2x +a -1x =2x 2+ax -1x≤0在[1,2]上恒成立,令h (x )=2x 2+ax -1,有⎩⎪⎨⎪⎧h (1)≤0,h (2)≤0, 得⎩⎪⎨⎪⎧a ≤-1,a ≤-72,得a ≤-72. 即实数a 的取值范围为⎝⎛⎦⎤-∞,-72. (3)假设存在实数a ,使g (x )=ax -ln x (x ∈(0,e])有最小值3,g ′(x )=a -1x =ax -1x .①当a ≤0时,g ′(x )<0,所以g (x )在(0,e]上单调递减,g (x )min =g (e)=a e -1=3,a =4e (舍去).②当1a ≥e 时,g ′(x )≤0在(0,e]上恒成立,所以g (x )在(0,e]上单调递减. g (x )min =g (e)=a e -1=3,a =4e(舍去).③当0<1a <e 时,令g ′(x )<0⇒0<x <1a ,所以g (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎦⎤1a ,e 上单调递增.所以g (x )min =g ⎝⎛⎭⎫1a =1+ln a =3,a =e 2,满足条件. 综上,存在实数a =e 2,使得当x ∈(0,e]时,g (x )有最小值3. [对点训练]4.设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解:对f (x )求导得f ′(x )=e x 1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x =32,或x =12.当x 变化时,f ′(x ),f (x )的变化情况如下表: x ⎝⎛⎭⎫-∞,1212 ⎝⎛⎭⎫12,32 32 ⎝⎛⎭⎫32,+∞ f ′(x ) + 0 - 0 + f (x )极大值极小值所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax+1≥0在R 上恒成立.因此Δ=4a 2-4a =4a (a -1)≤0,又由a >0,得0<a ≤1.即a 的取值范围为(0,1].5.已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内x =-1时取极小值,x =23时取极大值.(1)求曲线y =f (x )在x =-2处的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值. 解:(1)f ′(x )=-3x 2+2ax +b ,又x =-1,x =23分别对应函数的极小值,极大值,所以-1,23为方程-3x 2+2ax +b =0的两个根.即23a =-1+23,-b 3=(-1)×23. 于是a =-12,b =2,则f (x )=-x 3-12x 2+2x .x =-2时,f (-2)=2,即切点为(-2,2).又切线斜率为k =f ′(-2)=-8, 所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.x -2 (-2,-1)-1 ⎝⎛⎭⎫-1,2323 ⎝⎛⎭⎫23,1 1 f ′(x ) - 0 + 0 - f (x )2-32222712则f (x )在[-2,1]上的最大值为2,最小值为-32.从近几年高考题看,利用导数证明不等式这一知识点常考到,一般出现在高考题解答题中.利用导数解决不等式问题(如:证明不等式,比较大小等),其实质就是利用求导数的方法研究函数的单调性,而证明不等式(或比较大小)常与函数最值问题有关.因此,解决该类问题通常是构造一个函数,然后考查这个函数的单调性,结合给定的区间和函数在该区间端点的函数值使问题得以求解.其实质是这样的:要证不等式f (x )>g (x ),则构造函数φ(x )=f (x )-g (x ),只需证φ(x )>0即可,由此转化成求φ(x )最小值问题,借助于导数解决.[典例6] 已知函数f (x )=x 2e x -1-13x 3-x 2.(1)讨论函数f (x )的单调性;(2)设g (x )=23x 3-x 2,求证:对任意实数x ,都有f (x )≥g (x ).解:(1)f ′(x )=x (x +2)(e x -1-1),由f ′(x )=0得x 1=-2,x 2=0,x 3=1. 当-2<x <0或x >1时,f ′(x )>0; 当x <-2或0<x <1时,f ′(x )<0,所以函数f (x )在(-2,0)和(1,+∞)上是增函数,在(-∞,-2)和(0,1)上是减函数.(2)证明:f (x )-g (x )=x 2e x -1-x 3=x 2(e x -1-x ).设h (x )=e x -1-x ,h ′(x )=e x -1-1, 由h ′(x )=0得x =1,则当x <1时,h ′(x )<0,即函数h (x )在(-∞,1)上单调递减; 当x >1时,h ′(x )>0,即函数h (x )在(1,+∞)上单调递增. 因此,当x =1时,h (x )取最小值h (1)=0.即对任意实数x 都有h (x )≥0,又x 2≥0,所以f (x )-g (x )≥0, 故对任意实数x ,恒有f (x )≥g (x ). [对点训练]6.证明不等式ln x >2(x -1)x +1,其中x >1.证明:设f (x )=ln x -2(x -1)x +1(x >1),则f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2.∵x >1,∴f ′(x )>0,即f (x )在(1,+∞)内为单调递增函数. 又∵f (1)=0,∴当x >1时,f (x )>f (1)=0, 即ln x -2(x -1)x +1>0,∴ln x >2(x -1)x +1.解决恒成立问题的方法:(1)若关于x 的不等式f (x )≤m 在区间D 上恒成立,则转化为f (x )max ≤m . (2)若关于x 的不等式f (x )≥m 在区间D 上恒成立,则转化为f (x )min ≥m . (3)导数是解决函数f (x )的最大值或最小值问题的有力工具. [典例7] 已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求a 的取值范围; (2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.解:(1)由题意得g ′(x )=f ′(x )+a =ln x +a +1.∵函数g (x )在区间[e 2,+∞)上为增函数, ∴当x ∈[e 2,+∞)时,g ′(x )≥0,即ln x +a +1≥0在[e 2,+∞)上恒成立. ∴a ≥-1-ln x .又当x ∈[e 2,+∞)时,ln x ∈[2,+∞). ∴-1-ln x ∈(-∞,-3],∴a ≥-3,即a 的取值范围为[-3,+∞). (2)由题知,2f (x )≥-x 2+mx -3, 即mx ≤2x ·ln x +x 2+3. 又x >0,∴m ≤2x ·ln x +x 2+3x .令h (x )=2x ·ln x +x 2+3x,h ′(x )=(2x ln x +x 2+3)′·x -(2x ln x +x 2+3)·x ′x 2=(2ln x +2+2x )x -(2x ln x +x 2+3)x 2=2x +x 2-3x 2,令h ′(x )=0.解得x =1,或x =-3(舍).当x ∈(0,1)时,h ′(x )<0,函数h (x )在(0,1)上单调递减,当x ∈(1,+∞)时,h ′(x )>0,函数h (x )在(1,+∞)上单调递增.∴h (x )min =h (1)=4, 即m 的最大值为4. [对点训练]7.已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )有极值,求b 的取值范围;(2)若f (x )在x =1处取得极值,当x ∈[-1,2]时,则f (x )<c 2恒成立,求c 的取值范围; (3)若f (x )在x =1处取得极值,求证:对[-1,2]内的任意两个值x 1,x 2,都有|f (x 1)-f (x 2)|≤72.解:(1)f ′(x )=3x 2-x +b ,令f ′(x )=0, 由Δ>0得1-12b >0,解得b <112.即b 的取值范围为⎝⎛⎭⎫-∞,112. (2)∵f (x )在x =1处取得极值,∴f ′(1)=0,∴3-1+b =0,得b =-2. 令f ′(x )=0,得x =-23或x =1,f ⎝⎛⎭⎫-23=2227+c ,f (1)=-32+c . 又f (-1)=12+c ,f (2)=2+c .∴f (x )max =f (2)=2+c ,由f (x )<c 2在x ∈[-1,2]上恒成立,得2+c <c 2,即c 2-c -2>0.解得c >2或c <-1. 故所求c 的取值范围为(-∞,-1)∪(2,+∞). (3)证明:由(2)知f (x )max =2+c ,f (x )min =-32+c ,故对[-1,2]内的任意两个值x 1,x 2,都有|f (x 1)-f (x 2)|≤|f (x )min -f (x )max |=⎪⎪⎪⎪⎝⎛⎭⎫-32+c -(2+c )=72.讨论方程根的个数,研究函数图象与x 轴或某直线的交点个数、不等式恒成立问题的实质就是函数的单调性与函数极(最)值的应用.问题破解的方法是根据题目的要求,借助导数将函数的单调性与极(最)值列出,然后再借助单调性和极(最)值情况,画出函数图象的草图,数形结合求解.[典例8] 设函数f (x )=x 3-6x +5,x ∈R . (1)求f (x )的极值点;(2)若关于x 的方程f (x )=a 有3个不同实根,求实数a 的取值范围; (3)已知当x ∈(1,+∞)时,f (x )≥k (x -1)恒成立,求实数k 的取值范围. 解:(1)f ′(x )=3(x 2-2),令f ′(x )=0,得x 1=-2,x 2= 2.当x ∈(-∞,-2)∪(2,+∞)时,f ′(x )>0,当x ∈()-2,2时,f ′(x )<0, 因此x 1=-2,x 2=2分别为f (x )的极大值点、极小值点.(2)由(1)的分析可知y =f (x )图象的大致形状及走向如图所示.要使直线y =a 与y =f (x )的图象有3个不同交点需5-42=f (2)<a <f (-2)=5+4 2.则方程f (x )=a 有3个不同实根时,所求实数a 的取值范围为(5-42,5+42).(3)法一:f (x )≥k (x -1),即(x -1)(x 2+x -5)≥k (x -1),因为x >1,所以k ≤x 2+x -5在(1,+∞)上恒成立,令g (x )=x 2+x -5,由二次函数的性质得g (x )在(1,+∞)上是增函数, 所以g (x )>g (1)=-3,所以所求k 的取值范围是为(-∞,-3]. 法二:直线y =k (x -1)过定点(1,0)且f (1)=0, 曲线f (x )在点(1,0)处切线斜率f ′(1)=-3,由(2)中草图知要使x ∈(1,+∞)时,f (x )≥k (x -1)恒成立需k ≤-3.故实数k 的取值范围为(-∞,-3].[对点训练]8.设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明若f (x )有零点,则f (x )在区间(1,e)上仅有一个零点. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=x -k x =x 2-kx.因为k >0,所以令f ′(x )=0得x =k ,列表如下:x (0,k ) k (k ,+∞)f ′(x ) -0 +f (x )极小值减区间为(0,k ),增区间为(k ,+∞). 当x =k 时,取得极小值f (k )=k -k ln k2. (2)当k ≤1,即0<k ≤1时,f (x )在(1,e)上单调递增, f (1)=12,f (e)=e 2-k 2=e -k 2>0,所以f (x )在区间(1,e)上没有零点.当1<k <e ,即1<k <e 时,f (x )在(1,k )上递减,在(k ,e)上递增,f (1)=12>0,f ()e =e -k 2>0,f ()k =k -k ln k 2=k (1-ln k )2>0,此时函数没有零点.当k ≥e ,即k ≥e 时,f (x )在()1,e 上单调递减,f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e)上仅有一个零点.综上,若f (x )有零点,则f (x )在区间(1,e)上仅有一个零点.解决优化问题的步骤:(1)首先要分析问题中各个数量之间的关系,建立适当的函数模型,并确定函数的定义域. (2)其次要通过研究相应函数的性质,如单调性、极值与最值,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.(3)最后验证数学问题的解是否满足实际意义.[典例9] 如图,四边形ABCD 是一块边长为4 km 的正方形地域,地域内有一条河流MD ,其经过的路线是以AB 中点M 为顶点且开口向右的抛物线的一部分(河流宽度忽略不计).某公司准备投资建一个大型矩形游乐园PQCN ,试求游乐园的最大面积.解:如图,以M 点为原点,AB 所在直线为y 轴建立直角坐标系,则D (4,2).设抛物线方程为y 2=2px . ∵点D 在抛物线上, ∴22=8p .解得p =12.∴曲线MD 的方程为y 2=x (0≤x ≤4,0≤y ≤2). 设P (y 2,y )(0≤y ≤2)是曲线MD 上任一点, 则|PQ |=2+y ,|PN |=4-y 2. ∴矩形游乐园面积为S =|PQ |·|PN |=(2+y )(4-y 2)=8-y 3-2y 2+4y . 求导得,S ′=-3y 2-4y +4,令S ′=0, 得3y 2+4y -4=0,解得y =23或y =-2(舍).当y ∈⎝⎛⎭⎫0,23时,S ′>0,函数为增函数; 当y ∈⎝⎛⎭⎫23,2时,S ′<0,函数为减函数. ∴当y =23时,S 有最大值.这时|PQ |=2+y =2+23=83,|PN |=4-y 2=4-⎝⎛⎭⎫232=329.∴游乐园的最大面积为S max =83×329=25627(km 2).[对点训练]9.某地建一座桥,两端的桥墩已建好,这两端桥墩相距m 米.余下工程只需建两端桥墩之间的桥面和桥墩,经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?解:(1)设需新建n 个桥墩,则(n +1)x =m ,即n =mx -1,所以y =f (x )=256n +(n +1)(2+x )x=256⎝⎛⎭⎫m x -1+m x (2+x )x =256mx+m x +2m -256(0<x ≤m ). (2)由(1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512). 令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数. 所以f (x )在x =64处取得最小值, 此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.由定积分求曲边梯形面积的方法步骤:(1)画出函数的图象,明确平面图形的形状. (2)通过解方程组,求出曲线交点的坐标.(3)确定积分区间与被积函数,转化为定积分计算.(4)对于复杂的平面图形,常常通过“割补法”求各部分的面积之和. [典例10] 求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y 2=x ,y =x 3得交点的横坐标为x =0及x =1. 因此,所求图形的面积为S =⎠⎛01x d x -⎠⎛01x 3d x =23x 32|10-14x 4|10=512.[对点训练]10.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如图).解方程组⎩⎪⎨⎪⎧y =x 2+1,y =-x +7得⎩⎪⎨⎪⎧x =2,y =5,即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x =⎝⎛⎭⎫13x 3+x |20+⎝⎛⎭⎫7x -12x 2|72=143+252=1036.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f(x)=ln xx 2,则f ′(e )=( )A .1e 3B .1e 2C .-1e 2D .-1e3解析:选D ∵f ′(x)=x 2x -2x ln x x 4=1-2ln xx 3, ∴f ′(e )=1-2ln e e 3=-1e3. 2.若函数f(x)=13x 3-f ′(1)·x 2-x ,则f ′(1)的值为( )A .0B .2C .1D .-1解析:选A ∵f(x)=13x 3-f ′(1)·x 2-x ,∴f ′(x)=x 2-2f ′(1)·x -1,∴f ′(1)=1-2f ′(1)-1,∴f ′(1)=0. 3.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1C .y =-2x -3D .y =-2x -2 解析:选A ∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2, ∴k =y ′|x =-1=2(-1+2)2=2,∴切线方程为:y +1=2(x +1),即y =2x +1.4.已知对任意实数x ,有f(-x)=-f(x),g(-x)=g(x).且x>0时,f ′(x)>0,g ′(x)>0,则x<0时( )A .f ′(x)>0,g ′(x)>0B .f ′(x)>0,g ′(x)<0C .f ′(x)<0,g ′(x)>0D .f ′(x)<0,g ′(x)<0解析:选B f(x)为奇函数且x>0时单调递增,所以x<0时单调递增,f ′(x)>0; g(x)为偶函数且x>0时单调递增,所以x<0时单调递减,g ′(x)<0.A .13B .23C .23 D .-236.若f(x)=-12x 2+b ln (x +2)在(-1,+∞)上是减函数,则实数b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 解析:选C f ′(x)=-x +b x +2. ∵f(x)在(-1,+∞)上是减函数,∴f ′(x)=-x +bx +2≤0在(-1,+∞)上恒成立,∴b ≤x(x +2)在(-1,+∞)上恒成立. 又∵x(x +2)=(x +1)2-1>-1,∴b ≤-1.7.已知函数f(x)=x(ln x -ax)有两个极值点,则实数a 的取值范围是( ) A .(-∞,0) B .⎝⎛⎭⎫0,12 C .(0,1) D .(0,+∞)解析:选B 由题知,x>0,f ′(x)=ln x +1-2ax ,由于函数f(x)有两个极值点,则f ′(x)=0有两个不等的正根,即函数y =ln x +1与y =2ax 的图象有两个不同的交点(x>0),则a>0.设函数y =ln x +1上任一点(x 0,1+ln x 0)处的切线为l ,则k l =y ′|x =x 0=1x 0,当l 过坐标原点时,1x 0=1+ln x 0x 0⇒x 0=1,令2a =1⇒a =12,结合图象知0<a<12.8.方程2x 3-6x 2+7=0在(0,2)内根的个数为( ) A .0 B .1 C .2 D .3解析:选B 设f(x)=2x 3-6x 2+7, 则f ′(x)=6x 2-12x =6x(x -2). ∵x ∈(0,2),∴f ′(x)<0.∴f(x)在(0,2)上递减,又f(0)=7,f(2)=-1, ∴f(x)在(0,2)上有且只有一个零点,即方程2x 3-6x 2+7=0在(0,2)内只有一个根.9.曲线y =x 2-1与x 轴围成图形的面积等于( ) A .13 B .23 C .1 D .43解析:选D 函数y =x 2-1与x 轴的交点为(-1,0),(1,0),且函数图象关于y 轴对称,故所求面积为S =2⎠⎛01(1-x 2)d x =2⎝⎛⎭⎫x -13x 3︱10=2×23=43. 10.若函数f(x)在R 上可导,且f (x )>f ′(x ),则当a >b 时,下列不等式成立的是( )A .e a f (a )>e b f (b )B .e b f (a )>e a f (b )C .e b f (b )>e a f (a )D .e a f (b )>e b f (a ) 解析:选D ∵⎝⎛⎭⎫f (x )e x ′=e xf ′(x )-e xf (x )(e x )2=e x [f ′(x )-f (x )](e x )2<0,∴y =f (x )e x 单调递减,又a >b ,∴f (a )e a <f (b )e b, ∴e a f (b )>e b f (a ).11.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 当x >0时,令F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,∴当x >0时,F (x )=f (x )x为减函数. ∵f (x )为奇函数,且由f (-1)=0,得f (1)=0,故F (1)=0. 在区间(0,1)上,F (x )>0;在(1,+∞)上,F (x )<0. 即当0<x <1时,f (x )>0;当x >1时,f (x )<0.又f (x )为奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上可知,f (x )>0的解集为(-∞,-1)∪(0,1).12.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>k k -1, 解析:选C 构造函数F (x )=f (x )-kx , 则F ′(x )=f ′(x )-k >0,∴函数F (x )在R 上为单调递增函数.∵1k -1>0,∴F ⎝⎛⎭⎫1k -1>F (0). ∵F (0)=f (0)=-1,∴f ⎝⎛⎭⎫1k -1-kk -1>-1, 即f ⎝⎛⎭⎫1k -1>k k -1-1=1k -1,∴f ⎝⎛⎭⎫1k -1>1k -1,故C 错误.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.解析:由曲线在点(1,a )处的切线平行于x 轴得切线的斜率为0,由y ′=2ax -1x 及导数的几何意义得y ′|x =1=2a -1=0,解得a =12.答案:1214.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t (v 单位:m/s ,t 单位:s),则列车刹车后至停车时的位移为________.解析:停车时v (t )=0,则27-0.9t =0,∴t =30 s ,s =∫300v (t )d t =∫300(27-0.9t )d t=(27t -0.45t 2)|300=405(m).答案:405 m15.已知a <0,函数f (x )=ax 3+12aln x ,且f ′(1)的最小值是-12,则实数a 的值为________. 解析:f ′(x )=3ax 2+12ax ,则f ′(1)=3a +12a .∵a <0,∴f ′(1)=-⎣⎡⎦⎤(-3a )+21-a≤-2(-3a )×12-a=-12. 当且仅当-3a =12-a,即a =-2时,取“=”.答案:-216.函数y =x 3+ax 2+bx +a 2在x =1处有极值10,则a =________. 解析:∵y ′=3x 2+2ax +b ,∴⎩⎪⎨⎪⎧ 1+a +b +a 2=10,3+2a +b =0⇒⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,y ′=3x 2-6x +3=3(x -1)2≥0,函数无极值,故a =4,b =-11. 答案:4三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)设定义在(0,+∞)上的函数f (x )=ax +1ax +b (a >0).(1)求f (x )的最小值;(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =32x ,求a ,b 的值.解:(1)法一:由题设和均值不等式可知, f (x )=ax +1ax+b ≥2+b ,当且仅当ax =1时等号成立, 即当x =1a时,f (x )取最小值为2+b .法二:f (x )的导数f ′(x )=a -1ax 2=a 2x 2-1ax 2,当x >1a 时,f ′(x )>0,f (x )在⎝⎛⎭⎫1a ,+∞上单调递增; 当0<x <1a 时,f ′(x )<0,f (x )在⎝⎛⎭⎫0,1a 上单调递减. 所以当x =1a时,f (x )取最小值为2+b .(2)由题设知,f ′(x )=a -1ax 2,f ′(1)=a -1a =32,解得a =2或a =-12(不合题意,舍去).将a =2代入f (1)=a +1a +b =32,解得b =-1.所以a =2,b =-1.18.(本小题12分)已知a ∈R ,函数f (x )=(-x 2+ax )e x . (1)当a =2时,求函数f (x )的单调区间;(2)若函数f (x )在(-1,1)上单调递增,求实数a 的取值范围.解:(1)当a =2时,f (x )=(-x 2+2x )e x ,f ′(x )=(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,注意到e x >0,所以-x 2+2>0,解得-2<x < 2.所以,函数f (x )的单调递增区间为(-2,2).同理可得,函数f (x )的单调递减区间为(-∞,-2)和(2,+∞).(2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0在(-1,1)上恒成立.又f ′(x )=[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0,注意到e x >0,因此-x 2+(a -2)x +a ≥0在(-1,1)上恒成立,也就是a ≥x 2+2x x +1=x +1-1x +1在(-1,1)上恒成立.设y =x +1-1x +1,则y ′=1+1(x +1)2>0,即y =x +1-1x +1在(-1,1)上单调递增,则y <1+1-11+1=32,故a ≥32.即实数a 的取值范围为⎣⎡⎭⎫32,+∞. 19.(本小题12分)若函数f (x )=ax 2+2x -43ln x 在x =1处取得极值.(1)求a 的值;(2)求函数f (x )的单调区间及极值. 解:(1)f ′(x )=2ax +2-43x ,由f ′(1)=2a +23=0,得a =-13.(2)f (x )=-13x 2+2x -43ln x (x >0).f ′(x )=-23x +2-43x =-2(x -1)(x -2)3x .由f ′(x )=0,得x =1或x =2.①当f ′(x )>0时,1<x <2;②当f ′(x )<0时,0<x <1或x >2.当x 变化时,f ′(x ),f (x )的变化情况如下:x (0,1) 1 (1,2) 2 (2,+∞)f ′(x ) -0 +0 -f (x )5383-43ln 2函数的极小值为f (1)=53,极大值为f (2)=83-43ln 2.20.(本小题12分)已知函数f (x )=ln xx .(1)判断函数f (x )的单调性;(2)若y =xf (x )+1x 的图象总在直线y =a 的上方,求实数a 的取值范围.解:(1)f ′(x )=1-ln xx 2.当0<x <e 时,f ′(x )>0,f (x )为增函数; 当x >e 时,f ′(x )<0,f (x )为减函数.(2)依题意得,不等式a <ln x +1x 对于x >0恒成立.令g (x )=ln x +1x ,则g ′(x )=1x -1x 2=1x ⎝⎛⎭⎫1-1x . 当x ∈(1,+∞)时,g ′(x )=1x ⎝⎛⎭⎫1-1x >0,则g (x )是(1,+∞)上的增函数; 当x ∈(0,1)时,g ′(x )<0,则g (x )是(0,1)上的减函数.所以g (x )的最小值是g (1)=1,从而a 的取值范围是(-∞,1).21.(本小题12分)已知函数f (x )=ln x -ax.(1)若f (x )存在最小值且最小值为2,求a 的值;(2)设g (x )=ln x -a ,若g (x )<x 2在(0,e]上恒成立,求a 的取值范围. 解:(1)f ′(x )=1x +a x 2=x +ax2(x >0),当a ≥0时,f ′(x )>0,f (x )在(0,+∞)上是增函数,f (x )不存在最小值;当a <0时,由f ′(x )=0得x =-a , 且0<x <-a 时,f ′(x )<0, x >-a 时,f ′(x )>0.所以x =-a 时,f (x )取得最小值,f (-a )=ln(-a )+1=2,解得a =-e. (2)g (x )<x 2即ln x -a <x 2,即a >ln x -x 2,故g (x )<x 2在(0,e]上恒成立,也就是a >ln x -x 2在(0,e]上恒成立. 设h (x )=ln x -x 2,则h ′(x )=1x -2x =1-2x 2x,由h ′(x )=0及0<x ≤e 得x =22. 当0<x <22时,h ′(x )>0,当22<x ≤e 时,h ′(x )<0,即h (x )在⎝⎛⎭⎫0,22上为增函数,在⎝⎛⎦⎤22,e 上为减函数,所以当x =22时,h (x )取得最大值为h ⎝⎛⎭⎫22=ln 22-12. 所以g (x )<x 2在(0,e]上恒成立时,a 的取值范围为⎝⎛⎭⎫ln22-12,+∞.22.(本小题12分)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求证:当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x33; (3)设实数k 使得f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立,求k 的最大值. 解:(1)因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明:令g (x )=f (x )-2⎝⎛⎭⎫x +x33, 则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1), 即当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33. (3)由(2)知,当k ≤2时,f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝⎛⎭⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k +21-x 2.所以当0<x < 4k -2k 时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0, 4k -2k 上单调递减.版权所有:中国好课堂 故当0<x < 4k -2k时,h (x )<h (0)=0, 即f (x )<k ⎝⎛⎭⎫x +x 33. 所以当k >2时,f (x )>k ⎝⎛⎭⎫x +x 33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.。
2017-2018学年高二数学人教A版选修2-2学业分层测评:
学业分层测评(十五)(建议用时:45分钟)[学业达标]一、选择题1.在证明命题“对于任意角θ,cos 4θ-sin 4 θ=cos 2θ”的过程:“cos 4 θ-sin 4 θ=(cos 2 θ+sin 2 θ)(cos 2 θ-sin 2 θ)=cos 2 θ-sin 2 θ=cos 2θ”中应用了( )A .分析法B .综合法C .分析法和综合法综合使用D .间接证法【解析】 此证明符合综合法的证明思路.故选B.【答案】 B2.要证a 2+b 2-1-a 2b 2≤0,只需证( )【导学号:62952078】A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 2+b 22≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0【解析】 要证a 2+b 2-1-a 2b 2≤0,只需证a 2b 2-a 2-b 2+1≥0,只需证(a 2-1)(b 2-1)≥0,故选D.【答案】 D3.在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:那么,d ⊗(a ⊕c )等于( )A .aB .bC.c D.d【解析】由⊕运算可知,a⊕c=c,∴d⊗(a⊕c)=d⊗c.由⊗运算可知,d⊗c=a.故选A.【答案】 A4.欲证2-3<6-7成立,只需证()A.(2-3)2<(6-7)2B.(2-6)2<(3-7)2C.(2+7)2<(3+6)2D.(2-3-6)2<(-7)2【解析】∵2-3<0,6-7<0,故2-3<6-7⇔2+7<3+6⇔(2+7)2<(3+6)2.【答案】 C5.对任意的锐角α,β,下列不等式中正确的是()A.sin(α+β)>sin α+sin βB.sin(α+β)>cos α+cos βC.cos(α+β)>sin α+sin βD.cos(α+β)<cos α+cos β【解析】因为0<α<π2,0<β<π2,所以0<α+β<π,若π2≤α+β<π,则cos(α+β)≤0,因为cos α>0,cos β>0.所以cos α+cos β>cos (α+β).若0<α+β<π2,则α+β>α且α+β>β,因为cos(α+β)<cos α,cos(α+β)<cos β,所以cos(α+β)<cos α+cos β,总之,对任意的锐角α,β有cos(α+β)<cos α+cos β.【答案】 D二、填空题6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.【解析】 该证明方法是“由因导果”法.【答案】 综合法7.如果a a >b b ,则实数a ,b 应满足的条件是__________.【解析】 要使a a >b b ,只需使a >0,b >0,(a a )2>(b b )2,即a >b >0.【答案】 a >b >08.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是__________. 【导学号:62952079】【解析】 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求y =x x 2+3x +1的最大值,且令a 不小于这个最大值即可.因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12x ·1x +3=15,当且仅当x =1时,等号成立,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞. 【答案】 ⎣⎢⎡⎭⎪⎫15,+∞ 三、解答题9.已知倾斜角为60°的直线L 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点,其中O 为坐标原点.(1)求弦AB 的长;(2)求三角形ABO 的面积.【解】 (1)由题意得,直线L 的方程为y =3(x -1),代入y 2=4x ,得3x 2-10x +3=0.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103.由抛物线的定义,得弦长|AB |=x 1+x 2+p =103+2=163.(2)点O 到直线AB 的距离d =|-3|3+1=32,所以三角形OAB 的面积为S =12|AB |·d =433.10.已知三角形的三边长为a ,b ,c ,其面积为S ,求证:a 2+b 2+c 2≥43S .【证明】 要证a 2+b 2+c 2≥43S ,只要证a 2+b 2+(a 2+b 2-2ab cos C )≥2 3 ab sin C ,即证a 2+b 2≥2ab sin(C +30°),因为2ab sin(C +30°)≤2ab ,只需证a 2+b 2≥2ab ,显然上式成立.所以a 2+b 2+c 2≥43S .[能力提升]1.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( ) A .8 B .4 C .1D.14 【解析】 3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14,所以1a +1b =a +b ab =1ab ≥114=4.【答案】 B2.已知关于x 的方程x 2+(k -3)x +k 2=0的一根小于1,另一根大于1,则k 的取值范围是( )A .(-1,2)B .(-2,1)C .(-∞,-1)∪(2,+∞)D .(-∞,-2)∪(1,+∞)【解析】 令f (x )=x 2+(k -3)x +k 2.因为其图象开口向上,由题意可知f (1)<0,即f (1)=1+(k -3)+k 2=k 2+k -2<0,解得-2<k <1.【答案】 B3.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是__________.【解析】 a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可.【答案】 a ≥0,b ≥0且a ≠b4.已知α,β≠k π+π2,(k ∈Z )且sin θ+cos θ=2sin α,sin θcos θ=sin 2β.求证:1-tan 2 α1+tan 2 α=1-tan 2 β2(1+tan 2 β). 【导学号:62952080】【证明】 要证1-tan 2 α1+tan 2 α=1-tan 2 β2(1+tan 2 β)成立, 即证1-sin 2 αcos 2 α1+sin 2 αcos 2 α=1-sin 2 βcos 2 β2⎝ ⎛⎭⎪⎫1+sin 2 βcos 2 β.即证cos 2α-sin 2α=12(cos 2β-sin 2β),即证1-2sin 2α=12(1-2sin 2β),即证4sin 2α-2sin 2β=1,因为sin θ+cos θ=2sin α,sin θcos θ=sin 2β,所以(sin θ+cos θ)2=1+2sin θcos θ=4sin 2α,所以1+2sin 2β=4sin 2 α,即4sin 2α-2sin 2β=1.故原结论正确.。
人教A版选修2-2—第二学期质量检测高二数学(理)试卷答案.docx
2009—2010学年度第二学期期中质量检测 高二数学试题(理)参考答案及评分意见一、选择题(每题5分)1~4 D A B C 4~8 C A C C 二、填空题(每题5分)9. 2 10. π11. -1 12. 3π13. 214. 在直角三棱锥中,斜面的“中面”的面积等于斜面面积的14三、解答题15.证明:取BD 的中点E,连接AE,CE. 在ABD ∆中,因为,,AB AD BE DE ==所以,AE BD ⊥---------------------------4分 在BCD ∆中,同理可得:CE BD ⊥ Q AE CE E =I -----------------8分 ∴BD ⊥面AECAC ⊂Q 面AECBD AC ∴⊥--------------------------12分16、解:由,,A B C 成等差数列, 在ABD ∆中,由余弦定理得, 有 ,2B A C =+. ① AD =,,A B C Q 为ABC ∆的内角, =A B C π∴++= ② =分由①②,得3B π=--------------5分 答:BC --------12分Q D 是BC 的中点122BD BC ∴== ------------6分17.解:(Ⅰ)11,215n n n a a a a +==+Q 12133532111215a a a ∴===+⨯+ 3317a = 4323a =-------------------------3分;(Ⅱ)由⑴知分子是3,分母是以首项为5公差为6的等差数列∴猜想数列{}n a 通项公式:361n a n =----------------------5分 用数学归纳法证明如下:① 当1n =时,由题意可知135a =,命题成立.------6分 ② 假设当n k =(1,)k k N ≥∈时命题成立, 即361k a k =-,----7分那么,当1n k =+时,133361321656(1)12161k k k a k a a k k k +-====+++-⨯-- 也就说,当1n k =+时命题也成立----------------------------------------------13分 综上所述,数列{}n a 的通项公式为361n a n =----------------------------14分 18、解(Ⅰ)因为3()44()f x ax x a R =-+∈,所以'2()34f x ax =-----------------------------------2分 因为函数()f x 在2x =时有极值 , 所以'(2)0f =,即3440a ⨯-=得 13a =------------------------------------------------3 分 所以31()443f x x x =-+所以'2()4(2)(2)f x x x x =-=+-令,'()0f x = 得, 2,x =或2x =-----------4分 当x 变化时'()f x ,()f x 变化如下表:A B DC E所()f x 的以区间为(,2)-∞-,(2,)+∞;()f x 的单调减区间为(2,2)-。
2016-2017学年高中数学 模块综合评价 新人教A版选修2-1
【金版学案】2016-2017学年高中数学 模块综合评价 新人教A 版选修2-1(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p :若x 2+y 2=0(x ,y ∈R),则x ,y 全为0;命题q :若a >b ,则1a <1b.给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .4解析:命题p 为真,命题q 为假,故p ∨q 真,綈q 真. 答案:B2.“α=π6+2k π(k ∈Z)”是“cos 2α=12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A3.若直线l 的方向向量为b ,平面α的法向量为n ,则可能使l ∥α的是( ) A .b =(1,0,0),n =(-2,0,0) B .b =(1,3,5),n =(1,0,1) C .b =(0,2,1),n =(-1,0,-1) D .b =(1,-1,3),n =(0,3,1)解析:若l ∥α,则b ·n =0.将各选项代入,知D 正确. 答案:D4.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32 C .1 D.3 答案:B5.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607 D.657答案:D6.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( )A .90°B .60°C .30°D .0°解析:因为|a |=|b |=2,所以(a +b )·(a -b )=a 2-b 2=0. 故向量a +b 与a -b 的夹角是90°. 答案:A7.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4x B . y 2=±8x C .y 2=4x D .y 2=8x答案:B8.三棱锥A BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC =60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3解析:AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=|AB →||AD →|cos 90°-2×2×cos 60°=-2.答案:A9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5 D. 6 答案:C10.如图,在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63 B.255 C.155 D.105答案:D11.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M ,N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)解析:如图所示,设直线MP 与直线NP 分别与动圆C 切于点E ,F ,则|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB |=4-2=2<|MN |,又由题意知点P 不能在x 轴上,所以点P 的轨迹是以M ,N 为焦点,实轴长为2的双曲线的右支并除去与x 轴的交点.设对应的双曲线方程为x 2a 2-y 2b 2=1,则a =1,c =3,b 2=8.故P 点的轨迹方程为x 2-y 28=1(x >1).答案:A12.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤38,34C.⎣⎢⎡⎦⎥⎤12,1 D.⎣⎢⎡⎦⎥⎤34,1 答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知命题p :∀x ∈R(x ≠0),x +1x≥2,则綈p :_____________.解析:首先将量词符号改变,再将x +1x ≥2改为x +1x<2.答案:∃x ∈R(x ≠0),x +1x<214.给出下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧綈q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0, 则l 1⊥l 2的充要条件是ab=-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________(把你认为正确的结论的序号都填上).解析:对于①,命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确;对于②,当b =a =0时,有l 1⊥l 2,故②不正确;易知③正确.所以正确结论的序号为①③.答案:①③15.在四面体O ABC 中,点M 在OA 上,且OM =2MA ,N 为BC 的中点,若OG →=13OA →+x 4OB →+x 4OC →,则使G 与M ,N 共线的x 的值为________.答案:116.与双曲线x 2-y 24=1有共同的渐近线,且过点 (2,2)的双曲线的标准方程是________.解析:依题意设双曲线的方程x 2-y 24=λ(λ≠0),将点(2,2)代入求得λ=3,所以所求双曲线的标准方程为x 23-y 212=1.答案:x 23-y 212=1三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设p :函数f (x )=log a |x |在(0,+∞)上单调递增;q :关于x 的方程x 2+2x +log a 32=0的解集只有一个子集,若“p ∨q ”为真,“(綈p )∨(綈q )”也为真,求实数a 的取值范围.解:当p 为真时,应有a >1;当q 为真时,关于x 的方程x 2+2x +log a 32=0无解,所以Δ=4-4log a 32<0,解得1<a <32.由于“p ∨q ”为真,所以p 和q 中至少有一个为真.又“(綈p )∨(綈q )”也为真,所以綈p 和綈q 中至少有一个为真,即p 和q 中至少有一个为假,故p 和q 中一真一假.p 假q 真时,a 无解;p 真q 假时,a ≥32,综上所述,实数a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞. 18.(本小题满分12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.解:设P (x ,y ),则MN →=(4,0),MP →=(x +2,y ),NP →=(x -2,y ). 所以|MN →|=4,|MP →|=(x +2)2+y 2,MN →·NP →=4(x -2), 代入|MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0,即(x +2)2+y 2=2-x ,化简整理,得y 2=-8x , 故动点P (x ,y )的轨迹方程为y 2=-8x .19.(本小题满分12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A 、B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.解:(1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1,消去y , 得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠± 3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a2,x 1x 2=-23-a 2.因为以AB 为直径的圆过原点,所以OA ⊥OB , 所以x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0. 所以(a 2+1)·-23-a 2+a ·2a 3-a 2+1=0,所以a =±1,满足(1)所求的取值范围. 故a =±1.20.(本小题满分12分)如图,正三棱柱ABC A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.(1)求证:AB 1⊥平面A 1BD ; (2)求二面角A A 1D B 的余弦值.(1)证明:如图,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1. 取B 1C 1中点O 1,以O 为原点,OB →,OO 1→,OA →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0),C (-1,0,0),所以AB 1→=(1,2,-3),BD →=(-2,1,0),BA 1→=(-1,2,3). 因为AB 1→·BD →=-2+2+0=0,AB 1→·BA 1→=-1+4-3=0,所以AB 1→⊥BD →,AB 1→⊥BA 1→,即AB 1⊥BD ,AB 1⊥BA 1. 又BD 与BA 1交于点B ,所以AB 1⊥平面A 1BD . (2)解:连接AD ,设平面A 1AD 的法向量为n =(x ,y ,z ).AD →=(-1,1,-3),AA 1→=(0,2,0).因为n ⊥AD →,n ⊥AA 1→,所以⎩⎨⎧n ·AD →=0,n ·AA 1→=0,即⎩⎨⎧-x +y -3z =0,2y =0,解得⎩⎨⎧y =0,x =-3z .令z =1,得n =(-3,0,1)为平面A 1AD 的一个法向量. 由(1)知AB 1⊥平面A 1BD ,所以AB 1→为平面A 1BD 的法向量.cos 〈n ·AB 1→〉=n ·AB 1→|n ||AB 1→|=-3-32×22=-64, 故二面角A A 1D B 的余弦值为64. 21.(本小题满分12分)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.(1)求圆C 的圆心轨迹L 的方程; (2)已知点M ⎝ ⎛⎭⎪⎫355,455,F (5,0),且P 为L 上动点,求||MP |-|FP ||的最大值及此时点P 的坐标.解:(1)设圆C 的圆心坐标为(x ,y ),半径为r . 圆(x +5)2+y 2=4的圆心为F 1(-5,0),半径为2, 圆(x -5)2+y 2=4的圆心为F (5,0),半径为2.由题意得⎩⎪⎨⎪⎧|CF 1|=r +2,|CF |=r -2或⎩⎪⎨⎪⎧|CF 1|=r -2,|CF |=r +2,所以||CF 1|-|CF ||=4. 因为|F 1F |=25>4,所以圆C 的圆心轨迹是以F 1(-5,0),F (5,0)为焦点的双曲线,其方程为x 24-y 2=1.(2)由图知,||MP |-|FP ||≤|MF |,所以当M ,P ,F 三点共线,且点P 在MF 延长线上时,|MP |-|FP |取得最大值|MF |, 且|MF |=⎝ ⎛⎭⎪⎫355-52+⎝ ⎛⎭⎪⎫455-02=2. 直线MF 的方程为y =-2x +25,与双曲线方程联立得⎩⎪⎨⎪⎧y =-2x +25,x 24-y 2=1,整理得15x 2-325x +84=0. 解得x 1=14515(舍去),x 2=655.此时y =-255.所以当||MP |-|FP ||取得最大值2时, 点P 的坐标为⎝⎛⎭⎪⎫655,-255.22.(本小题满分12分)如图①,在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图②.图① 图②(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成的角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. (1)证明:因为AC ⊥BC ,DE ∥BC ,所以DE ⊥AC . 所以DE ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC . 所以DE ⊥A 1C .又因为A 1C ⊥CD ,所以A 1C ⊥平面BCDE .(2)解:如图,以C 为坐标原点,建立空间直角坐标系,则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0,n ·BE →=0.又A 1B →=(3,0,-23),BE →=(-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3,所以n =(2,1,3). 设CM 与平面A 1BE 所成的角为θ. 因为CM →=(0,1,3), 所以sin θ=|cos 〈n ,CM →〉|=⎪⎪⎪⎪⎪⎪n ·CM →|n ||CM →|= 48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)解:线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.理由如下: 假设这样的点P 存在,设其坐标为(p ,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ′,y ′,z ′),则m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0), 所以⎩⎨⎧2y ′-23z ′=0,px ′-2y ′=0.令x ′=2,则y ′=p ,z ′=p3,所以m =⎝ ⎛⎭⎪⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0,即4+p +p =0. 解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.。
人教A版选修2-2高二数学测试(2-2,导数及其应用)答案.docx
东至三中2007-2008学年度高二数学单元试题(1)(选修2-2)导数及其应用测试题答案一、选择题:1-5:AABBD 6-10:DDCDC 11-12:CB二、填空题13.递增区间为:(-∞,13),(1,+∞)递减区间为(13-,1)(注:递增区间不能写成:(-∞,13)∪(1,+∞))14. 6 15.),2()1,(+∞⋃--∞ 16. 16 三、解答题17. 解;(1)∵曲线()y f x =上的点(1,(1))P f 处的切线方程为31y x =+,∴(1)3,(1)4f f '==。
而2()32f x x ax b '=++且函数()y f x =在2x =-时取极值,有(2)1240(1)323(1)14f a b f a b f a b c '-=-+=⎧⎪'=++=⎨⎪=+++=⎩,得2,4,5a b c ==-= (2)由题意知2()3f x x bx b '=-+,又函数()y f x =在区间[-2,1]上单调递增,所以()0f x '>在(-2,1)上恒成立。
即:163[(1)]1b x x >++--在(-2,1)上恒成立。
而1163[(1)]62(1)011x x x x++-≤-⨯⋅-=--,因此0b ≥18. 解:由函数的定义域可知, 210x -> 即11x -<<又222211()ln [ln(1)ln(1)]12x f x x x x +==+---,2222122()()21111x x x x f x x x x x -'=-=++-+- 令()0f x '>,得1x <-或01x <<综上所述,()f x 的单调递增区间为(0,1) 19.32500120075y x x =-+-(x N ∈)当x =产量为25件时,总利润最大。
2016-2017学年高中数学选修2-2章末综合测评1 含解析
章末综合测评(一)导数及其应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·天津高二检测)若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则错误!错误!的值为()A.f′(x0)B.2f′(x0)C.-2f′(x0) D.0【解析】错误!错误!=2错误!错误!=2f′(x0),故选B。
【答案】B2.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=()A.1 B。
错误!C.-错误!D.-1【解析】y′=2ax,于是切线斜率k=y′|x=1=2a,由题意知2a=2,∴a=1。
【答案】A3.下列各式正确的是()A.(sin a)′=cos a(a为常数)B.(cos x)′=sin xC.(sin x)′=cos xD.(x-5)′=-错误!x-6【解析】由导数公式知选项A中(sin a)′=0;选项B中(cos x)′=-sin x;选项D中(x-5)′=-5x-6。
【答案】C4.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2) B.(0,3)C.(1,4)D.(2,+∞)【解析】f′(x)=(x-2)e x,由f′(x)〉0,得x〉2,所以函数f(x)的单调递增区间是(2,+∞).【答案】D5.(2016·东北三校联考)若函数f(x)=错误!x3-f′(1)·x2-x,则f′(1)的值为( )A.0 B.2C.1 D.-1【解析】f′(x)=x2-2f′(1)·x-1,则f′(1)=12-2f′(1)·1-1,解得f′(1)=0。
6.如图1所示,图中曲线方程为y=x2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )图1A。
错误!B.错误!(x2-1)d xC.错误!|x2-1|d xD。
人教A版高二数学选修2-2综合检测试题.docx
高中数学学习材料马鸣风萧萧*整理制作安阳市2011年高二数学选修2-2综合检测试题第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每题5分,共60分)1.一个物体的位移s (米)和与时间t (秒)的关系为242s t t =-+,则该物体在4秒末的瞬时速度是A .12米/秒B .8米/秒C .6米/秒D .8米/秒 2.由曲线2y x =,3y x =围成的封闭图形面积为为 A .112 B . 14 C . 13D .712 3.给出下列四个命题:(1)若z C ∈,则20z ≥;(2)2i 1-虚部是2i ;(3)若,i i a b a b >+>+则;(4)若12,z z ,且12z z >,则12,z z 为实数;其中正确命题....的个数为 A.1个 B.2个 C.3个 D.4个4.在复平面内复数(1i)(2i)b ++(i 是虚数单位,b 是实数)表示的点在第四象限,则b 的取值范围是 A.b <12-B.b >12-C.12-< b < 2 D.b < 2 5.下面几种推理中是演绎推理....的为A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列111,,,122334⋅⋅⋅⨯⨯⨯的通项公式为1(1)n a n n =+()n N +∈; C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= .6.已知()()32213af x x a x=+-+,若()18f '-=,则()1f -= A .4 B .5 C .2- D .3- 7.若函数()ln f x x ax =-在点()1,P b 处的切线与320x y +-=垂直,则2a b +等于 A .2 B .0 C . 1- D .2- 8.()22sin cos d x x x ππ-+⎰的值为A .0B .4πC .2D .4 9.设()f x 是一个多项式函数,在[],a b 上下列说法正确的是A .()f x 的极值点一定是最值点B .()f x 的最值点一定是极值点C .()f x 在[],a b 上可能没有极值点D .()f x 在[],a b 上可能没有最值点10.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则函数()f x 在(),a b 内有极小值点A .1个B .2个C .3个D .4个11.已知111,n n a a a +=>且()()211210n n n n a a a a ++--++=,计算23,a a ,猜想n a 等于A .nB .2nC .3n D .3n n +-12.已知可导函数()f x ()x ÎR 满足()()f x f x ¢>,则当0a >时,()f a 和e (0)a f 大小关系为A. ()<e (0)a f a fB. ()>e (0)a f a fC. ()=e (0)a f a fD. ()e (0)a f a f ≤二、填空题(本大题共4小题,每小题5分,满分20分)13.若复数(2)3i z a =-+ (a R Î)是纯虚数,则i1ia a ++= . 14.111()1()23f n n n+=+++鬃??N 经计算的27)32(,3)16(,25)8(,2)4(,23)2(>>>>=f f f f f ,推测当2n ≥时,有__________________________.15.若数列{}n a 的通项公式21()(1)n a n n +=?+N ,记)1()1)(1()(21n a a a n f -⋅⋅⋅--=,试通过计算)3(),2(),1(f f f 的值,推测出.________________)(=n f16.半径为r 的圆的面积2()s r r π=,周长()2C r r π=,若将r 看作(0,+∞)上的变量,则2()'2r r ππ=①,①式用语言可以叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,)+?上的变量,请写出类比①的等式:____________________.上式用语言可以叙述为_________________________.三、解答题:(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)抛物线21y x =-,直线2,0x y ==所围成的图形的面积18.(本小题满分12分) 已知,a b c >> 求证:114.a b b c a c+≥---19.(本小题满分12分)已知数列}{n a 的前n 项和n S 满足:2222n n n na a S a -+=,且0,.n a n +>∈N(1)求123,,;a a a(2)猜想}{n a 的通项公式,并用数学归纳法证明20.(本小题满分12分)甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付的情况下,乙方的年利润x (元)与年产量t (吨)满足函数关系 2000x t =.若乙方每生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格).(1)将乙方的年利润w (元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额20.002y t =(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s 是多少?21.(本小题满分12分)设函数()()e 0kx f x x k =≠(1)求曲线()y f x =在点()()0,0f 处的切线方程.(2)若函数()f x 在区间()1,1-内单调递增,求k 的取值范围.22.(本小题满分12分)已知函数2()ln f x a x x =+(a 为实常数).(1)若2a =-,求证:函数()f x 在(1,)+?上是增函数; (2)求函数()f x 在[1,e]上的最小值及相应的x 值;参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CAAACADCCABB12.提示:令()e ()x g x f x -=,则()e [()()]0x g x f x f x -ⅱ=->. 所以()g x 在(,)-??上为增函数,()(0)g a g >.0()(0)a e f a e f ->,即()>e (0)a f a f ,故选B .二、填空题13.43i 5- 14.2(2)2nn f +> 15.2()22n f n n +=+ 222111()(1)(1)[1]23(1)f n n =--⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1)2233111324322 (223341122)n n n n n n n n =-+-+⋅⋅⋅-+++++=⨯⨯⨯⨯⨯⨯⨯=+++16.324()'43R R ππ=;球的体积函数的导数等于球的表面积函数三、解答题17.解 由210x -=,得抛物线与轴的交点坐标是(1,0)-和(1,0),所求图形分成两块,分别用定积分表示面积1211|1|d S x x -=-⎰,2221(1)d S x x =-⎰.故面积12221211|1|d (1)d S S S x x x x -=+=-+-⎰⎰=122211(1)d (1)d x x x x --+-⎰⎰=331211()()33x x x x --+-=11818112(1)33333-+-+---=. 18.证明: ∵a c a c ab bc a b b ca b b c a b b c---+--+-+=+---- 2224b c a b b c a ba b b c a b b c----=+++?----≥,(a b c >>) ∴4a c a c a b b c --+--≥ 得114a b b c a c +---≥. 19.(1)1111112a a S a ==+-,所以,113a =-?,又 ∵0n a >,所以131a =-.221221=12a S a a a +=+-, 所以 253a =-, 3312331=12a S a a a a ++=+- 所以375a =-. (2)猜想2121n a n n =+--.证明: 1o 当1n =时,由(1)知131a =-成立.2o 假设()n k k +=?N 时,2121k a k k =+--成立1+11111=(1)(1)22k k k k k k ka a a S S a a +++-=+--+- 111212k k a k a ++=+-+.所以21122120k k a k a ++++-=12(1)12(1)1k a k k +=++-+- 所以当1n k =+时猜想也成立.综上可知,猜想对一切n +ÎN 都成立.20解:(1)因为赔付价值为s 元/吨,所以乙方的实际年利润为:)0(2000≥-=t st t w .因为,1000)1000(200022ss t s st t w +--=-=所以当w st ,)1000(2时=取得最大值. 所以乙方取得最大年利润的年产量2)1000(st =吨. (2)设甲方净收入为v 元,则2002.0t st v -=. 将2)1000(st =代入上式,得到甲方净收入v 与赔付价格之间的函数关系式: 234100021000v s s ´=-. 432100021000s s v ⨯-=又22232551000810001000(8000)s v s s s创-¢=-+=. 令0='v ,得20s =.当20s <时,0v ¢>;当20s >时,0v ¢<.所以20s =时, v 取得最大值.因此甲方向乙方要求赔付价格20s =(元/吨)时,获最大净收入. 21.解:(1)()=e e kx kx f x kx ¢+,(0)1f ¢=,(0)0f = ∴()y f x =在(0,0)处的切线方程为y x =.(2)法一 ()=e e (1)e 0kx kx kx f x kx kx ¢+=+= ,得 1x k=-(0k ¹) 若0k >,则当1(,)x k??时,()0f x ¢<,()f x 单调递减, 当1(,)x k?+?时,()0f x ¢>,()f x 单调递增. 若0k <,则当1(,)x k??,()0f x ¢>,()f x 单调递增. 当1(,)x k?+?时,()0f x ¢<,()f x 单调递减. 若()f x 在区间(1,1)-内单调递增, 当0k >时,11k --≤,即1k ≤. 当0k <时,11k-≥,即1k -≥.故()f x 在区间(1,1)-内单调递增时k 的取值范围是[1,0)(0,1]-U法二 ∵()f x 在区间(1,1)-内单调递增,∴()0f x ¢≥在区间(1,1)-上恒成立. e e 0kx kx kx +≥,∵e 0kx >,∴10kx +≥. 即10kx +≥在区间(1,1)-上恒成立. 令()1g x kx =+,∴(1)0(1)0g g ì-ïïíïïî≥≥ 解得11k -≤≤. 当0k =时,()1f x =.故k 的取值范围是[1,0)(0,1]-U .22.解:(1)当2-=a 时,x x x f ln 2)(2-=,(1,)x ??,22(1)()0x f x x-¢=>.故函数()f x 在(1,)+?上是增函数. (2)22()0x af x x+¢=>.当[1,e]x Î,222[2,2e ]x a aa +?+.若2a -≥,()f x ¢在[1,e]上非负(仅当2a =-,1x =时,()0f x ¢=),故函数()f x 在[1,e]上是增函数. 此时,min [()](1)1f x f ==. 若22e 2a -<<-, 当2ax =-时,()0f x ¢=. 当12ax -≤≤时,()0f x ¢<,此时,()f x 是减函数. 当e 2ax -≤≤时,()0f x ¢<,此时,()f x 是增函数.故min [()]()ln()2222a a a a f x f =-=--. 若22e a -≤,()f x ¢在[1,e]上非正(仅当时22e a =-,e x =时,()0f x ¢=) 故函数()f x 在[1,e]上是减函数, 此时2min [()](e)e f x f a ==+.综上可知,当2a -≥时,()f x 的最小值为1,相应的x 的值为1;当22e 2a -<<-时,()f x 的最小值为ln()222a a a--.相应的x 值为2a ;当22e a ?时,)(x f 的最小值为2+e a ,相应的x 值为e .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.在证明命题“对于任意角θ,cos 4θ-sin 4 θ=cos 2θ”的过程:“cos 4 θ-sin 4 θ=(cos 2 θ+sin 2 θ)(cos 2 θ-sin 2 θ)=cos 2 θ-sin 2 θ=cos 2θ”中应用了( )
A .分析法
B .综合法
C .分析法和综合法综合使用
D .间接证法
【解析】 此证明符合综合法的证明思路.故选B. 【答案】 B
2.要证a 2+b 2-1-a 2b 2≤0,只需证( ) A .2ab -1-a 2b 2≤0 B .a 2
+b 2
-1-a 2+b 2
2≤0
C.(a +b )2
2-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0
【解析】 要证a 2+b 2-1-a 2b 2≤0, 只需证a 2b 2-a 2-b 2+1≥0, 只需证(a 2-1)(b 2-1)≥0,故选D. 【答案】 D
3.在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:
那么,d⊗(a⊕c)等于(
A.a B.b
C.c D.d
【解析】由⊕运算可知,a⊕c=c,
∴d⊗(a⊕c)=d⊗c.
由⊗运算可知,d⊗c=a.故选A.
【答案】 A
4.欲证2-3<6-7成立,只需证()
A.(2-3)2<(6-7)2
B.(2-6)2<(3-7)2
C.(2+7)2<(3+6)2
D.(2-3-6)2<(-7)2
【解析】∵2-3<0,6-7<0,
故2-3<6-7⇔2+7<3+6⇔(2+7)2<(3+6)2. 【答案】 C
5.对任意的锐角α,β,下列不等式中正确的是()
A.sin(α+β)>sin α+sin β
B.sin(α+β)>cos α+cos β
C.cos(α+β)>sin α+sin β
D.cos(α+β)<cos α+cos β
【解析】因为0<α<π
2,0<β<π
2,所以0<α+β<π,
若π
2≤α+β<π,则cos(α+β)≤0,
因为cos α>0,cos β>0.
所以cos α+cos β>cos (α+β). 若0<α+β<π
2,则α+β>α且α+β>β, 因为cos(α+β)<cos α,cos(α+β)<cos β, 所以cos(α+β)<cos α+cos β,
总之,对任意的锐角α,β有cos(α+β)<cos α+cos β. 【答案】 D 二、填空题
6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.
【解析】 该证明方法是“由因导果”法. 【答案】 综合法
7.如果a a >b b ,则实数a ,b 应满足的条件是__________. 【解析】 要使a a >b b , 只需使a >0,b >0,(a a )2>(b b )2, 即a >b >0. 【答案】 a >b >0
8.若对任意x >0,x
x 2+3x +1≤a 恒成立,则a 的取值范围是__________. 【导
学号:60030056】
【解析】 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求y =x
x 2+3x +1的最
大值,且令a 不小于这个最大值即可.因为x >0,所以y =
x
x 2+3x +1
=
1x +1x
+3≤12
x ·1x +3
=15,当且仅当x =1时,等号成立,所以a 的取值范围是⎣⎢⎡⎭
⎪⎫15,+∞.
【答案】 ⎣⎢⎡⎭⎪⎫
15,+∞
三、解答题
9.已知倾斜角为60°的直线L 经过抛物线y 2=4x 的焦点F ,且与抛物线相
交于A ,B 两点,其中O 为坐标原点.
(1)求弦AB 的长; (2)求三角形ABO 的面积.
【解】 (1)由题意得,直线L 的方程为y =3(x -1), 代入y 2=4x ,得3x 2-10x +3=0. 设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10
3.
由抛物线的定义,得弦长|AB |=x 1+x 2+p =103+2=16
3. (2)点O 到直线AB 的距离d =|-3|3+1
=32,所以三角形OAB 的面积为S =1
2|AB |·d =43
3.
10.已知三角形的三边长为a ,b ,c ,其面积为S ,求证:a 2+b 2+c 2≥43S .
【证明】 要证a 2+b 2+c 2≥43S ,
只要证a 2+b 2+(a 2+b 2-2ab cos C )≥2 3 ab sin C ,即证a 2+b 2≥2ab sin(C +30°),因为2ab sin(C +30°)≤2ab ,
只需证a 2+b 2≥2ab ,
显然上式成立.所以a 2+b 2+c 2≥43S .
[能力提升]
1.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1
b 的最小值为( ) A .8 B .4 C .1 D.14
【解析】
3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为
a >0,
b >0,所以ab ≤a +b 2=12⇒ab ≤14,所以1a +1b =a +b ab =1ab ≥1
14
=4.
【答案】 B
2.(2016·石家庄高二检测)已知关于x 的方程x 2+(k -3)x +k 2=0的一根小于
1,另一根大于1,则k 的取值范围是( )
A .(-1,2)
B .(-2,1)
C .(-∞,-1)∪(2,+∞)
D .(-∞,-2)∪(1,+∞) 【解析】 令f (x )=x 2+(k -3)x +k 2. 因为其图象开口向上,由题意可知f (1)<0, 即f (1)=1+(k -3)+k 2=k 2+k -2<0, 解得-2<k <1. 【答案】 B
3.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是__________. 【解析】 a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,
故只需a ≠b 且a ,b 都不小于零即可. 【答案】 a ≥0,b ≥0且a ≠b
4.(2016·天津高二检测)已知α,β≠k π+π
2,(k ∈Z )且sin θ+cos θ=2sin α,sin θcos θ=sin 2
β.求证:1-tan 2 α1+tan 2 α=1-tan 2 β2(1+tan 2 β)
. 【导学号:60030057】
【证明】 要证1-tan 2 α1+tan 2 α=1-tan 2 β
2(1+tan 2 β)成立,
即证
1-sin 2 αcos 2 α1+sin 2 αcos 2 α=1-sin 2 βcos 2 β2⎝ ⎛⎭⎪
⎫1+sin 2 βcos 2 β. 即证cos 2α-sin 2α=1
2(cos 2β-sin 2β), 即证1-2sin 2
α=1
2(1-2sin 2β),
即证4sin 2α-2sin 2β=1, 因为sin θ+cos θ=2sin α, sin θcos θ=sin 2β,
所以(sin θ+cos θ)2=1+2sin θcos θ=4sin2α,所以1+2sin2β=4sin2α,即4sin2α-2sin2β=1.
故原结论正确.。