6.4实际问题与二次函数(3)
实际问题与二次函数(3)
x
● (2,-2)
(-2,-2) ●
4米
-3
y o
(-2,-2) ●
解:建立如图所示坐标系, 2 设二次函数解析式为 y ax
x
● (2,-2)
由抛物线经过点(2,-2),可得 1 a 2 所以,这条抛物线的解析式为
-3
当水面下降1m时,水面的纵坐标为 当
1 2 y x 2
y 3 y 3 时,x 6
我校九年级学生姚小鸣同学怀着激动的 心情前往广州观看亚运会开幕式表演.现在 先让我们和姚小鸣一起逛逛美丽的广州吧!
如果我是导演,运动员出场时,我就 让他们坐着船,从圣火的拱形桥下面 穿过,效果肯定特棒!
如果要使运动员坐着 船从圣火的拱形桥下面 穿过入场,现已知拱形 底座顶部离水面 2 m,水 面宽 4 m,为了船能顺利 通过,需要把水面下降 1 m,问此时水面宽度增 加多少?
所以水面的宽度增加了 2 6 4 m
有座抛物线形拱桥(如图),正常水位时桥下 河面宽20m,河面距拱顶4m,为了保证过往 船只顺利航行,桥下水面的宽度不得小于 16m,求水面在正常水位基础上上涨多少米 时,就会影响过往船只航行。
若假设出手的角度和力度都不变,则如何才能使此球
命中?
(1)跳得高一点儿 y (2)向前平移一点儿
感悟果
知识果
方法果
作业:必做题:P27 第九题 选做题:P27 第十题
(-2,-2) ●
解:建立如图所示坐标系, 2 设二次函数解析式为 y ax
x
● (2,-2)
由抛物线经过点(2,-2),可得 1水面下降1m时,水面的纵坐标为 当
1 2 y x 2
y 3 y 3 时,x 6
九年级数学上册教学课件《实际问题与二次函数(第3课时)》
这时水面的宽度为x2-x1=2 6, 因此当水面下降1m时,水面宽度增加了(2 6-4)m.
2m l=4m
o
探究新知
22.3 实际问题与二次函数
【思考】“二次函数应用”的思路
回顾 “最大利润”和 “桥梁建筑”解决问题的过程,
(1)求水柱所在抛物线(第一象限部分)的函数表达式; (2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8 米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不 变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的 原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
解:(1)设抛物线的表达式为y=ax2 .
∵点B(6,﹣5.6)在抛物线的图象上,
∴﹣5.6=36a,a 7 .
45
∴抛物线的表达式为 y
7
x2 .
45
课堂检测
22.3 实际问题与二次函数
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底 边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间 距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平 距离至少为0.8m.请计算最多可安装几扇这样的窗户?
探究新知 怎样建立直角坐标系比较简单呢?
以拱顶为原点,抛物线的对称轴 为y轴,建立直角坐标系,如图.
22.3 实际问题与二次函数
从图看出,什么形式的二次函数,它 的图象是这条抛物线呢?
由于顶点坐标系是(0.0),因此 这个二次函数的形式为y ax2.
二次函数与实际问题
二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。
本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。
二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。
2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。
(4)零点:即方程ax²+bx+c=0的解。
当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。
3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。
(2)常数函数y=c是一个水平直线,其值始终为c。
(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。
三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。
2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。
可以使用求根公式或配方法等方式来求解。
3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。
例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。
由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。
由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。
人教版实际问题与二次函数(3)
wx10 x40 x25x0400 x22 5225
产品的销售价应定为25元,此时每日获得最大销售利 润为225元。
2. 某旅行社组团去外地旅游,30人起组团,每人单价 800元.旅行社对超过30人的团给予优惠,即旅行团每增 加一人,每人的单价就降低10元.你能帮助分析一下,当旅 行团的人数是多少时,旅行社可以获得最大营业额?
若日销售量 y 是销售价 x 的一次函数。 (1)求出日销售量 y(件)与销售价 x(元) 的函数关系式; (2)要使每日的销售利润最大,每件产品 的销售价应定为多少元?此时每日销售利润是 多少元?
(1)设此一次函数解析式为yk xb。
15k b 25 则 20k b 20
解得:k=-1,b=40。
解:设旅行团人数为x人,营业额为y元,则Βιβλιοθήκη y x800 10x 30
10x2 1100x
10x 552 30250.
3. 某宾馆有50个房间供游客居住,当每个 房间的定价为每天180元时,房间会全部住满。 当每个房间每天的定价每增加10元时,就会有 一个房间空闲。如果游客居住房间,宾馆需对 每个房间每天支出20元的各种费用.房价定为多 少时,宾馆利润最大?
解决关于函数实际问题的一般步骤
(1)先分析问题中的数量关系、变量和常量, 列出函数关系式. (2)研究自变量的取值范围. (3)研究所得的函数.
(配方变形,或利用公式求它的最大值或最小值)
(4)检验 x的取值是否在自变量的取值范 围内、结果的合理性等,并求相关的值. (5)解决提出的实际问题
1. 某产品每件成本10元,试销阶段每件产品的销售 价 x(元)与产品的日销售量 y(件)之间的关系如下:
《实际问题与二次函数(3)》课件
B
解法二:(1)以抛物线的顶点为原点,以抛物线 的对称轴为y轴建立直角坐标系。设二次函数的解 析式为y=ax2(a≠0) 抛物线经过点(2,-2),可得,a=-0.5y 抛物线的解析式为:y=-0.5x2
0 h
x
A(-2,-2) 1m B(2,-2) (X2,-3) D C (X1,-3)
(2)水面下降1米,即当y=-3 y 时 6 6 0 -0.5x2=-3 解得x1=x2= 6 h x CD=︱x1-x2︳=2 A(-2,-2) 1m B(2,-2) 6 (X1,-3) (X2,-3) D C 水面宽增加 CD-AB=(2 4)米
B (2,0)x D
即解析式为:y=-0.5x2+2 A
M
2m
4m
B
(2)水面下降1米,即当y=-1 时 6 6 -0.5x2+2=-1 解得x1=6 x2= 6 CD=︱x1-x2︳=2 水面宽增加 CD-AB=(2 4)米
(-2,0)A
y M(0,2)
-
C
1m o
B (2,0)x D
M
2m
A
4m
b 直线x 2a 对称轴是
, . ,它的 . 当
b 4ac b 2 , ,顶点坐标是 2 a 4 a
a>0时,抛物线开口 上 低
向 ,有最
小
4 ac b 2 4a
点,函数有最 大
值,是
高 当 a<0时,抛物 下
4 ac b 2 4a
;
直线x=3 3. 二次函数y=2(x-3)2+5的对称轴是 (3 ,5) 顶点坐标是 _________。 直线 x=-4 2 大 -1 4. -4 二次函数y=-3(x+4) -1的对称轴是 坐标是 是 。当x= 直线x=2 时,函数有最 值,是
实际问题与二次函数_第三课时-课件
图1
图2
【思路点拨】根据线段的长度写出相关点的坐标,再设出函数的解析 式,把点的坐标代入解析式求出解析式,可以算出EF的宽度。
探究三:利用二次函数解决实际问题的训练
例5.如图1,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同。 正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小 孔顶点N距水面4.5米(NC=4.5米)。当水位上涨刚好淹没小孔时,借助图2 中的直角坐标系,求此时大孔的水面宽度EF。
探究三:利用二次函数解决实际问题的训练
练习:有一抛物线形拱桥,其最大高度为16米,跨度为40米, 把它的示意图放在如图所示的坐标系中,则抛物线的函数关系 式为__y_____21_5__x_2 __85__x__ 。
解:因为抛物线过点(0,0)和(40,0),
∴ y=ax(x- 40)①
又∵ 函数过点(20,16)代入①得20a(20-40)=16,
探究一:利用二次函数解决抛物线形拱桥问题
重点知识★
活动2 自学互研,生成能力。
完成下列填空:
1.以拱桥的顶点为原点,以经过该点的铅垂线为y轴建立平面直 角坐标系时,可设这条抛物线的关系式为_____y____a_x_2。
2.一座拱桥为抛物线形,其函数解析式为___y____a_x_2_,
当水位线在AB位置时,水面宽4 m,这时水面离桥顶的高度为
设点B(10,n),点D(5,n+3),
n=10²•a=100a,n+3=5²a=25a,
即
n 100a n 3 25a
y 1 x2 25
n 4
解得
a
1 25
(2)∵ 货轮经过拱桥时的横坐标为x=3, ∴ 当x=3时,y 1 9 25 9 ( 4) 3.6 25
6.4 二次函数的应用(3)
§6.4 二次函数的应用(3)[ 教案]备课时间: 主备人:教学目标:了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.教学重点:是应用二次函数解决实际问题中的最值.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值.实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型.教学难点:本节难点在于能正确理解题意,找准数量关系.建立直角坐标系。
教学方法:在教师的引导下自主教学。
教学过程:一、情境创设1、在平原上,一门迫击炮发射的一发炮弹飞行的高度y (m )与飞行时间x (s )的关系满足y=-51x 2+10x . (1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少?(2)经过多长时间,炮弹落在地上爆炸?二、例题教学1、解决书27页问题二:学生自主学习,相互探究解决问题的方案。
2、如图所示,桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m.由柱子顶端A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m.(1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?例3、某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 问题2一个涵洞成抛物线形,它的截面如图现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?三、练习(1)河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为 y= - x 2 ,当水位线在AB 位置时,水面宽 AB = 30米,这时水面离桥顶的高度h 是( )A 、5米B 、6米;C 、8米;D 、9米2)一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m 后,水面的宽度是多少?(结果精确到0.1m).(3)某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.四、小结本节课你有那些收获?五、作业:30页6、7题。
实际问题与二次函数课件
03 二次函数的应用
最大最小值问题
要点一
总结词
通过求二次函数的顶点,解决生活中的最大最小值问题。
要点二
详细描述
在二次函数中,顶点坐标可以通过公式$-frac{b}{2a}$和 $fleft(-frac{b}{2a}right)$求得。在解决实际问题时,我们 可以通过找到二次函数的顶点,来找到某个量的最大值或 最小值。例如,在建筑设计中,为了使建筑物的窗户或阳 台获得最好的视野,需要找到最佳的窗户或阳台的高度和 宽度。
02 实际问题与二次函数
生活中的二次函数问题
抛物线运动
在投掷、射箭等运动中,物体的运动 轨迹可以近似地用二次函数描述。这 是因为物体在空中的运动受到重力的 影响,形成抛物线形状。
桥梁振动
大型桥梁在风力或地震作用下会产生 振动,其振动幅度和频率与二次函数 相关,通过研究这些函数的特性,可 以预测桥梁的安全性。
04 实际问题的解决策略
建模策略
总结词
将实际问题转化为数学模型的关键步 骤
详细描述
通过理解问题的本质,将实际问题的 语言描述转化为数学表达式,构建出 反映问题内在规律的数学模型。
图像分析策略
总结词
利用二次函数的图像解决实际问题的有 效方法
VS
详细描述
通过绘制二次函数的图像,直观地展示函 数的性质和变化规律,从而解决与二次函 数相关的实际问题,如最值问题、交点问 题等。
面积问题
总结词
利用二次函数解决生活中的面积问题。
详细描述
在解决与面积相关的问题时,我们可以将面积表示为二次函数的形式。例如,在农业中,为了最大化 农作物的产量,需要找到最佳的种植密度。通过将种植密度表示为二次函数,可以找到最佳的种植密 度,从而最大化农作物的产量。
实际问题与二次函数-2024年中考数学考点(全国通用)(解析版)
【中考高分指南】数学(选择+填空) 【备战2024年中考·数学考点总复习】(全国通用)实际问题与二次函数1.二次函数的定义形如 y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的函数,叫做x 的二次函数. 2.二次函数y=ax 2+bx+c (a ≠0)的图象和性质函数二次函数y=ax 2+bx +c (a ,b ,c 为常数,a ≠0)图象a >0a <0性质①当a >0时,抛物线开口向上,并向上无限延伸. ②对称轴是a b x 2−=,顶点坐标是①当a <0时,抛物线开口向下,并向下无限延伸.②对称轴是abx 2−=,顶点坐标是(1)二者的形状相同,位置不同,y=a (x -h )2+k 是由y=ax 2通过平移得来的,平移后的顶点坐标为(h,k). (2)y=ax 2的图象y=a (x -h )2的图象y=a (x -h )2+k 的图象. 4.二次函数的解析式的确定要确定二次函数的解析式,就是要确定解析式中的待定系数(常数):(1)当已知抛物线上任意三点时,通常将函数的解析式设为一般式:y=ax 2+bx+c (a ≠0);(2)当已知抛物线的顶点坐标和抛物线上另一点时,通常将函数的解析式设为顶点式:y=a (x -h )2+k (a ≠0). 5.二次函数与一元二次方程的关系二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点.当图象与x 轴有交点时,令y=0,解方程ax 2+bx+c=0就可求出与x 轴交点的横坐标.6设抛物线y=ax 2+bx+c (a>0)与x 轴交于(x 1,0),(x 2,0)两点,其中x 1<x 2,则不等式ax 2+bx+c>0的解集为x>x 2或x<x 1,不等式ax 2+bx+c<0的解集为x 1<x<x 2.右左上下【考点1】图形问题(实际问题与二次函数)【例1】(2023·天津)如图,要围一个矩形菜园ABCD,其中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m.有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD面积为192m;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )A. 0B. 1C. 2D. 3【答案】C【解析】解:设AD边长为xm,则AB边长为长为40−x2m,当AB=6时,40−x2=6,解得:x=28,∵AD的长不能超过26m,∴x≤26,故①不正确;∵菜园ABCD面积为192m2,∴x·40−x2=192,整理得:x2−40x+384=0,解得:x=24或x=16,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,故②正确;设矩形菜园的面积为ym2,根据题意得:y=x·40−x2=−12(x2−40x)=−12(x−20)2+200,∵−12<0,20<26,∴当x=20时,y有最大值,最大值为200.故③正确.∴综上所述,结论②③正确,即正确的结论有2个,故选:C.设AD边长为xm,则AB边长为长为40−x2m,根据AB=6列出方程,解方程求出x的值,根据x取值范围判断①;根据矩形的面积=192.解方程求出x的值可以判断②;设矩形菜园的面积为ym2,根据矩形的面积公式列出函数解析式,再根据函数的性质求函数的最值可以判断③.此题主要考查了一元二次方程和二次函数的应用,读懂题意,找到等量关系准确地列出函数解析式和方程是解题的关键.【例2】(2024·湖北模拟)用12米长的围栏围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,小红提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )A. 方案1B. 方案2C. 方案3D. 都一样【答案】C【解析】解:设围成的图形的面积为ym2,方案一:设与墙相邻的边长为x米,则另一边为(12−2x)米,由题意得:y=x(12−2x)=−2(x−3)2+18,当x=3时,y有最大值为18;方案二:∴等腰三角形的腰为6米,当顶角为直角时,面积最大,为:12×6×6=18;方案三:设圆的半径为r米,则:πr=12,解得:r=12π,∴y=12π(12π)2=72π≈23,∵23>18,故选:C.先分别算出各种方案中图形的面积,再比较大小求解.本题考查了二次函数的应用,计算图形的面积是解题的关键.1.(2024·浙江模拟)如图,C是线段AB上一动点,分别以AC、BC为边向上作正方形ACDE、BCFG,连结EG 交DC于K.已知AB=10,设AC=x(5<x<10),记△EDK的面积为S1,记△EAC的面积为S2.则S1S2与x的函数关系为( )A. 正比例函数关系B. 一次函数关系C. 反比例函数关系D. 二次函数关系【答案】B【解析】解:∵四边形ABCD,BCFG为正方形,∴AC=AE=ED=CD=x,BC=CF=FG=10−x,S1=S△EDK=12DE⋅DK,S2=S△EAC=12AC⋅AK,∵∠EDC=∠DFG=90°,∴ED//FG,∴△EDK∽△GFK,∴KF KD =FGED=10−xx,∴KD=x10−x⋅KF,∵DK+KF+CF=CD,∴KF+x10−x⋅KF+10−x=x,∴KF=(2x−10)(10−x)10,∴DK=x(2x−10)10,∴S1=12x⋅x(2x−10)10=12x2⋅2x−1010,S2=12x2,∴S1 S2=2x−110=15x−1,∴S1S2与x的函数关系为一次函数,故选:B.根据四边形ABCD,BCFG为正方形,得出AC=AE=ED=CD=x,BC=CF=FG=10−x,再根据△EDK∽△GFK求出KF和DF,再根据直角三角形的面积公式求出S1和S2,再作比值即可.本题考查二次函数的应用,关键是写出S1,S2的与x的关系式.2.(2024·江西模拟)用一张宽为x的矩形纸片剪成四个全等的直角三角形,如图1,然后把这四个全等的直角三角形纸片拼成一个赵爽弦图;如图2,若弦图的大正方形的边长为6,中间的小正方形面积为S,请探究S与x之间是什么函数关系( )A. 一次函数B. 二次函数C. 反比例函数D. 其它函数【答案】B【解析】解:设图2外面正方形为正方形ABCD,里面正方形为正方形EFGH,如图:∵四边形ABCD是边长为6的正方形,∴∠A=∠D=90°,AD=6,∵四边形EFGH为正方形,∴∠FEH=90°,EF=EH,∠AEF=∠DHE=90°−∠DEH,在△AEF与△DHE中,{∠A=∠D∠AEF=∠DHE EF=EH,∴△AEF≌△DHE(AAS),∴AE=DH=x,AF=DE=(6−x),∴S=EF2=AE2+AF2=x2+(6−x)2=2x2−12x+36,∴S与x之间是二次函数关系,故选:B.先根据正方形性质可得∠A=∠D,EF=EH,再由同角的余角相等得到∠AEF=∠DHE,就可以根据AAS证明△AEF≌△DHE,得出AE=DH=x,AF=DE=(6−x),再根据勾股定理,求出EF2,即可得到S与x之间的函数关系式,即可解答.本题考查正方形的性质、二次函数在实际生活中的应用,是中考高频考点,解题关键是证明△AEF≌△DHE.【考点2】图形运动问题(实际问题与二次函数)【例1】(2024·江苏模拟)如图,正方形ABCD 的边长为5,动点P 的运动路线为A →B →C ,动点Q 的运动路线为B →D.点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发,当一个点到达终点且停止运动时,另一个点也随之停止.设点P 运动的路程为x ,△BPQ 的面积为y ,则y 随x 变化的函数图象大致是( )A. B.C. D.【答案】B【解析】解:(1)点P 在AB 上运动时,0<x ≤5,如右图,∵正方形ABCD 的边长为5,点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发, 作QE ⊥AB 交AB 于点E ,则有AP =BQ =x ,∠EBQ =∠EQB =45∘, ∴BP =5−x ,QE =√22x , ∴△BPQ 的面积为:y =12BP ⋅QE 12×(5−x)×√22x =−√24x 2+5√24x(0<x ⩽5),∴此时图象为抛物线开口方向向下;(2)点P 在BC 上运动时,5<x ≤5√2,如右图,∵正方形ABCD 的边长为5,点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发, 作QE ⊥BC 交BC 于点E ,则有AB +BP =BQ =x ,∠QBE =∠BQE =45∘, ∴BP =x −5,QE =√22x ,∴△BPQ 的面积为:y =12BP ⋅QE =12×(x −5)×√22x =√24x 2−5√24x(5<x ≤5√2), ∴此时图象是抛物线一部分,开口方向向上,且y 随x 的增大而增大; 综上,只有选项B 的图象符合, 故选B.分两种情况:P 点在AB 上运动和P 点在BC 上运动时;分别求出解析式即可. 本题主要考查动点问题的函数图象,正确的求出函数解析式是解题的关键.【例2】(2024·广东模拟)如图,菱形ABCD中,∠B=60∘,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x秒.则下列图象能大致反映y与x之间函数关系的是( )A. B.C. D.【答案】A【答案】本题考查了动点问题的函数图象,菱形的性质,等边三角形的判定和性质,锐角三角函数,二次函数的性质等知识,利用分类讨论思想解决问题是本题的关键.由菱形的性质可证△ABC和△ADC都是等边三角形,可得AC=AB=2,∠BAC=60∘=∠ACD,分两种情况讨论,由锐角三角函数和三角形的面积公式可求y与χ之间函数关系,由二次函数的性质可求解.【解答】解:当0≤x≤2时,如图1,过点Q作QH⊥AB于点H,由题意得BP=AQ=x,∵菱形ABCD中,∠B=60∘,AB=2∴AB=BC=CD=AD=2,∠B=∠D=60∘,∴△ABC和△ADC都是等边三角形,∴AC=AB=2,∠BAC=∠ACD=60∘∵sin∠BAC=HQAQ,∴HQ=AQ⋅sin60∘=√ 32x,∴△APQ的面积y=12(2−x)×√ 3x2=−√ 34(x−1)2+√ 34,当2<x≤4时,如图2,过点Q作QN⊥AC于点N,由题意得AP=CQ=x−2,∵sin∠ACD=NQCQ =√ 32,∴NQ=√ 32(x−2)∴△APQ的面积y=12(x−2)×√ 32(x−2)=√ 34(x−2)2,该图象开口向上,对称轴为直线x=2∴2<x≤4时,y随为的增大而增大,∴当x=4时,y有最大值为√ 3⋅故选A.1.(2024·安徽模拟)如图,在RtΔABC中,∠C=90∘,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的ΔCPO的面积y(cm2)与运动时间x(s)之间的函数图像大致是 ( )A. B.C. D.【答案】C【解析】本题考查的是二次函数的应用、二次函数的图象及根据实际问题列二次函数关系式的知识,依据三角形的面积公式列出函数关系式是解题的关键.先根据三角形的面积公式列出y与x的函数关系式,由y与x的函数关系式可知,函数图象是一条抛物线的一部分,且抛物线的开口向上,从而求得问题的答案.【解答】解:∵运动时间xs,则CP=xcm,CO=2xcm;∴S△CPO=12CP×CO=12x·2x=x2.∴△CPO的面积y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0<x≤3).∴根据二次函数的图象特点,C正确.故选C.2.(2024·广东模拟)如图,在△ABC中,∠B=90∘,AB=6cm,BC=8cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )A. 18cm2B. 12cm2C. 9cm2D. 3cm2【答案】C【解析】本题考查了有关于直角三角形的动点型问题,二次函数的最值问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是把面积的最值问题,转化为函数求最值问题,求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.先根据已知点P和Q的速度表示BP和BQ的长,设△PBQ的面积为S,利用直角三角形的面积公式列出S关于t的函数关系式,并求最值即可.【解答】解:在Rt△ABC中,∵AB=6cm,BC=8cm,由题意得:AP=t,BP=6−t,BQ=2t,设△PBQ的面积为S,则S=12×BP×BQ=12×2t×(6−t),∴S=−t2+6t=−(t2−6t+9−9)=−(t−3)2+9,∵P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ的最大面积为9cm2;故选C.【考点3】拱桥问题(实际问题与二次函数)【例1】(2024·陕西模拟)某市新建一座景观桥.如图,桥的拱肋ADB可视为抛物线的一部分,桥面AB可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB为40米,桥拱的最大高度CD为16米(不考虑灯杆和拱肋的粗细),则与CD的距离为5米的景观灯杆MN的高度为( )A. 13米B. 14米C. 15米D. 16米【答案】C【解析】略【例2】(2024·山西模拟)如图1是太原晋阳湖公园一座抛物线型拱桥,按如图所示建立坐标系,得到函数y=−125x2,在正常水位时水面宽AB=30米,当水位上升5米时,则水面宽CD=( )A. 20米B. 15米C. 10米D. 8米【答案】A【解析】解:∵AB=30米,∴当x=15时,y=−125×152=−9,当水位上升5米时,y=−4,把y=−4代入y=−125x2得,−4=−125x2,解得x=±10,此时水面宽CD=20米,故选:A.根据正常水位时水面宽AB=30米,求出当x=15时y=−9,再根据水位上升5米时y=−4,代入解析式求出x即可.本题考查二次函数的应用,关键是根据图形找出相关数据进行求值.1.(2024·河北模拟)如图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面3m,水面宽6m.如图(2)建立平面直角坐标系,则抛物线的解析式是( )A. y=−13x2 B. y=13x2 C. y=−3x2 D. y=3x2【答案】A【解析】解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(−3,−3)点,故−3=9a,a=−13,故y=−13x2,故选:A.设出抛物线方程y=ax2(a≠0)代入坐标求得a.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式.2.(2024·陕西模拟)廊桥是我国古老的文化遗产,如图是某座下方为抛物线形的廊桥示意图.已知抛物线的函数表达式为y=−140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是( )A. 8√ 5米B. 10米C. 6√ 5米D. 8√ 3米【答案】A【解析】本题考查了二次函数的应用.由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E的横坐标即为EF的长.【解答】解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=−140x2+10得:x=±4√ 5,即E点坐标为(−4√ 5,8),F点坐标为(4√ 5,8),∴EF=8√ 5(米).3.(2024·山西模拟)小明在周末外出的路上经过了如图所示的隧道,他想知道隧道顶端到地面的距离,于是他查阅了相关资料,知道了隧道的截面是由抛物线和矩形构成的.如图,以矩形的顶点A为坐标原点,地面AB所在直线为x轴,竖直方向为y轴,建立平面直角坐标系,抛物线的表达式为y=−14x2+bx+c,如果AB= 8m,AD=2m,则隧道顶端点N到地面AB的距离为( )A. 8mB. 7mC. 6mD. 5m【答案】C【解析】解:由题意可得:点D坐标为(0,2),点C的坐标为(0,8),将点D和C代入抛物线表达式可得{2=c2=−14×82+8b+c,解得{b=2c=2,∴y=−14x2+2x+2,令x=4,可得y=−1×42+2×4+2=6.4故选:C.根据条件易有点D坐标为(0,2),点C的坐标为(8,2),点N的横坐标为4,将点D和C代入抛物线表达式可解的b 和c的值,然后令x=4计算点N的纵坐标即为距离.本题主要考查二次函数的实际应用,能够根据条件得到对应点的坐标,解出抛物线表达式是解题的关键,然后在将实际问题转化为二次函数点的坐标问题.【考点4】销售问题(实际问题与二次函数)【例1】(2024·广东模拟)将进货单价为30元的某种商品按零售价100元1件卖出时,每天能卖出20件.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大的利润,则应降价( ) A. 5元 B. 15元 C. 25元 D. 35元【答案】C【解析】解:设应降价x元,则(20+x)(100−x−30)=−x2+50x+1400=−(x−25)2+2025,∵−1<0,∴当x=25元时,二次函数有最大值.∴为了获得最大利润,则应降价25元.故选:C.设应降价x元,所求利润的关系式为(20+x)(100−x−30)=−x2+50x+1400,根据二次函数的最值问题求得最大利润时x的值即可.此题考查二次函数在销售利润方面的应用,利润,公式:利润=销售价−成本价;还考查求二次函数的极值方法,求极值一般有三种方法:第一种根据图象顶点坐标直接得出;第二种是配成顶点式;第三种是利用顶点坐标公式进行计算.解题关键是熟练掌握以上方法.【例2】(2024·河北模拟)农特产品展销推荐会在杨凌举行.某农户销售一种商品,每千克成本价为40元.已知每千克售价不低于成本价,不超过80元.经调查,当每千克售价为50元时,每天的销量为100千克,且每千克售价每上涨1元,每天的销量就减少2千克.为使每天的销售利润最大,每千克的售价应定为( )A. 20B. 60C. 70D. 80【答案】C【解析】解:设每千克的售价应定为x千克,每天的销售利润为y元,根据题意得,y=(x−40)[100−2(x−50)]=−2x2+280x−8000=−2(x−70)2+1800,答:当为使每天的销售利润最大,每千克的售价应定为70元,故选:C.设每千克的售价应定为x千克,每天的销售利润为y元,根据题意得,y=−2(x−70)2+1800,根据二次函数的性质即可得到结论.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.1.(2024·河北模拟)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.( )A. 50B. 90C. 80D. 70【答案】D【解析】解:设利润为w元,每顶头盔的售价为x元,由题意可得:w=(x−50)[200+(80−x)×20]=−20(x−70)2+8000,∴当x=70时,w取得最大值,故选:D.根据题意,可以写出利润和售价之间的函数关系式,然后根据二次函数的性质,即可得到当售价为多少时,可以获得最大利润.本题考查二次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式,利用二次函数的性质求最值.2.(2024·天津模拟)某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( )A. 50元B. 80元C. 90元D. 100元【答案】C【解析】略18.(2024·广东模拟)一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,每顶头盔的售价为80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现,每顶头盔的售价每降低1元,每月可多售出20顶.已知每顶头盔的进价为50元,则该商店每月获得最大利润时,每顶头盔的售价为( ) A. 60元 B. 65元 C. 70元 D. 75元【答案】C【解析】设每顶头盔降价x元,利润为w元.由题意可得,w=(80−x−50)(200+20x)=−20(x−10)2+ 8000,∴当x=10时,w取得最大值,此时80−x=70,即该商店每月获得最大利润时,每顶头备的售价为70元,故选C.【考点5】喷水问题(实际问题与二次函数)【例1】(2024·北京模拟)某市公园欲修建一个圆型喷泉池,在水池中垂直于地面安装一个柱子OP,安置在柱子顶端P处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,在过OP的任一平面上,建立平面直角坐标系(如图所示),水平距离x(m)与水流喷出的高度y(m)之间的关系式为y=−29x2+43x+2,则水流喷出的最大高度是( )A. 5.5mB. 5mC. 4.5mD. 4m 【答案】D【解析】本题考查二次函数的应用,关键是把抛物线解析式化为顶点式.把抛物线解析式化为顶点式,由函数的性质求最值.【解答】解:y=−29x2+43x+2=−29(x−3)2+4,∵−29<0,∴当x=3时,y有最大值,最大值为4,故选:D.【例2】(2024·山东模拟)如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB的长度)是1米.当喷射出的水流距喷水头的水平距离为8米时,达到最大高度1.8米,水流喷射的最大水平距离OC是( )A. 20米B. 18米C. 10米D. 8米【答案】A【解析】由题意可知抛物线的顶点坐标为(8,1.8),设水流所在抛物线的表达式为y=a(x−8)2+1.8(a≠0),将点(0,1)代入,得1=a(0−8)2+1.8,解得a=−180,∴y=−180(x−8)2+1.8.当y=0时,0=−180(x−8)2+1.8,解得x=−4(舍去)或x=20.∴水流喷射的最大水平距离OC是20米,故选A.1.(2024·广东模拟)如图,点O为一个喷水池的中心,以点O为原点建立平面直角坐标系,喷水管的高度为2.25m,喷出的水柱可以看作是抛物线.当距离中心1m时,水柱的最高点为3m,则水柱落地的位置与喷水池中心的距离为( )A. 3mB. 4mC. 5mD. 6m【答案】A【解析】本题主要考查了二次函数的实际应用,正确理解题意求出抛物线解析式是解题的关键.根据题意设抛物线解析式为y=a(x−1)2+3,把(0,2.25)代入求出函数解析式,再令y=0,即可得出答案.【解答】解:由题意得,该抛物线的顶点坐标为(1,3),与y轴的交点坐标为(0,2.25),设抛物线解析式为y=a(x−1)2+3,把(0,2.25)代入到y=a(x−1)2+3中得:a+3=2.25,∴a=−0.75,∴抛物线解析式为y=−0.75(x−1)2+3,当y=0时,则−0.75(x−1)2+3=0,解得x=−1(舍去)或x=3,∴水柱落地的位置与喷水池中心的距离为3m,故选A.2.(2024·河北模拟)我校办公楼前的花园是一道美丽的风景,现计划在花园里再加上一喷水装置,水从地面喷出,如图,以水平地面为x轴,出水点为原点建立平面直角坐标系,水在空中划出的曲线是抛物线y=−x2+5x(单位:米)的一部分,则水喷出的最大高度是( )A. 4.5米B. 5米C. 6.25米D. 7米【答案】C【解析】解:∵水在空中划出的曲线是抛物线y=−x2+5x,∴喷水的最大高度就是水在空中划出的抛物线y=−x2+6x的顶点坐标的纵坐标,∴y=−x2+5x=−(x−2.5)2+6.25,∴顶点坐标为:(2.5,6.25),∴喷水的最大高度为6.25米,故选:C.根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=−x2+5x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.本题考查了二次函数的应用,从实际问题中整理出函数模型,利用函数的知识解决实际问题是解题的关键.3.(2024·吉林模拟)如图,要修建一个圆形喷水池,在池中心O点竖直安装一根水管,在水管的顶端A处安一个喷水头,使喷出的抛物线形水柱在与池中心O点的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心O点3m.则水管OA的高是A. 2mB. 2.25mC. 2.5mD. 2.8m【答案】B【解析】本题主要考查二次函数的应用,根据题意列出二次函数是解本题关键,属于基础题.可设水柱高度y 和水柱落地处离池中心距离x的关系为y=ax2+bx+c,根据待定系数法求出该二次函数解析式,然后令x=0,求出此时的y值即可.【解答】解:根据题意知喷出的抛物线形水柱的图像是二次函数,故可设水柱高度y和水柱落地处离池中心距离x的关系为y=ax2+bx+c,根据题意知函数y经过点(1,3),(3,0),且−b2a=1,代入y=ax2+bx+c得{a+b+c=39a+3b+c=0−b2a=1,解得{a=−34b=32c=94,∴y=−34x2+32x+94,当x=0时,函数值便是水管OA的高,∴水管OA的高为94m=2.25m,【考点6】其他问题(实际问题与二次函数)【例1】(2023·北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A. ①②B. ①③C. ②③D. ①②③【答案】A【解析】略【例2】(2023·上海)单板滑雪大跳台是北京冬奥会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x+m)2+k(a<0).某运动员进行了两次训练.第一次训练时,该运动员的水平距离x y的几组数据如图.根据上述数据,该运动员竖直高度的最大值为( ) 第一次训练数据A. 23.20cmB. 22.75cmC. 21.40cmD. 23cm【答案】A【解析】解:根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴k=23.20,即该运动员竖直高度的最大值为23.20m,故选:A.根据表格中数据求出顶点坐标即可.本题考查二次函数的应用,关键是根据表格中数据求出顶点坐标.1.(2024·湖北模拟)如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+ bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A. 10mB. 20mC. 15mD. 22.5m【答案】C【解析】此题考查了二次函数的应用,将点(0,54.0)、(40,46.2)、(20,57.9)分别代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则{c=54.01600a+40b+c=46.2400a+20b+c=57.9,解得:{a=−0.0195b=0.585c=54.0,∴抛物线的解析式为y=−0.0195x2+0.585x+54,开口向下,对称轴为直线x=−b2a =−0.5852×(−0.0195)=15,∴当该运动员起跳后飞行到最高点时,水平距离为15m.2.(2024·山西模拟)在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y(单位:米)与飞行的水平距离x(单位:米)之间具有函数关系y=−116x2+58x+32,则小康这次实心球训练的成绩为( )A. 14米B. 12米C. 11米D. 10米【答案】B【解析】本题考查了二次函数的应用.根据实心球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【解答】解:当y=0时,则−116x2+58x+32=0,解得x=−2(舍去)或x=12,则小康这次实心球训练的成绩为12米.3.(2024·黑龙江模拟)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x−k)2+ℎ.已知球与O点的水平距离为6m 时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )A. 球不会过网B. 球会过球网但不会出界C. 球会过球网并会出界D. 无法确定【答案】C【解析】利用球与O点的水平距离为6m时,达到最高2.6m,可得k=6,ℎ=2.6,球从O点正上方2m的A处发出,将点(0,2)代入解析式求出函数解析式;利用当x=9时,y=−160(x−6)2+2.6=2.45,所以球能过球网;当y=0时,−160(x−6)2+2.6=0,解得:x1=6+2√ 39>18,x2=6−2√ 39(舍去),故会出界.此题主要考查了二次函数的应用,根据题意求出函数解析式是解题关键.【解答】解:∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x−6)2+2.6,∵抛物线y=a(x−6)2+2.6过点(0,2),∴2=a(0−6)2+2.6,解得:a=−1,60(x−6)2+2.6,故y与x的关系式为:y=−160(x−6)2+2.6=2.45>2.43,当x=9时,y=−160所以球能过球网;(x−6)2+2.6=0,当y=0时,−160解得:x1=6+2√ 39>18,x2=6−2√ 39(舍去)故会出界.故选C.。
实际问题与二次函数—知识讲解(基础)
实际问题与二次函数—知识讲解(基础)【学习目标】1.能运用二次函数分析和解决简单的实际问题,培养分析问题、解决问题的能力和应用数学的意识.2.经历探索实际问题与二次函数的关系的过程,深刻理解二次函数是刻画现实世界的一个有效的数学模型.【要点梳理】要点一、列二次函数解应用题列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤:(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系).(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确.(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.(4)按题目要求,结合二次函数的性质解答相应的问题。
(5)检验所得解是否符合实际:即是否为所提问题的答案.(6)写出答案.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.要点二、建立二次函数模型求解实际问题一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.要点诠释:(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.(2)对于本节的学习,应由低到高处理好如下三个方面的问题:①首先必须了解二次函数的基本性质;②学会从实际问题中建立二次函数的模型;③借助二次函数的性质来解决实际问题.【典型例题】类型一、利用二次函数求实际问题中的最大(小)值1.(2019•东海县二模)“宿松家乐福超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销售量y(件)与售价x(元/件)之间的函数关系如图(20≤x≤60):(1)求每天销售量y(件)与售价x(元/件)之间的函数表达式;(2)若该商品每天的利润为w(元),试确定w(元)与售价x(元/件)的函数表达式,并求售价x为多少时,每天的利润w最大?最大利润是多少?【思路点拨】(1)分别利用当20≤x≤40时,设y=ax+b ,当40<x≤60时,设y=mx+n ,利用待定系数法求一次函数解析式即可;(2)利用(1)中所求进而得出w (元)与售价x (元/件)的函数表达式,进而求出函数最值. 【答案与解析】 解:(1)分两种情况:当20≤x≤40时,设y=ax+b , 根据题意,得,解得,故y=x+20;当40<x≤60时,设y=mx+n , 根据题意,得,解得,故 y=﹣2x+140;故每天销售量y (件)与售价x (元/件)之间的函数表达式是:20(2040)2140(4060)x x y x x +⎧=⎨-+⎩≤≤<≤ (2)22(20)(20)400(2040)(2140)(20)21802800(4060)x x x x w x x x x x ⎧+-=-⎪=⎨-+-=-+-⎪⎩≤≤<≤, 当20≤x≤40时,w=x 2﹣400,由于1>0抛物线开口向上,且x >0时w 随x 的增大而增大,又20≤x≤40,因此当x=40时,w 最大值=402﹣400=1200;当40<x≤60时,w=﹣2x 2+180x ﹣2800=﹣2(x ﹣45)2+1250, 由于﹣2<0,抛物线开口向下,又40<x≤60, 所以当x=45时,w 最大值=1250.综上所述,当x=45时,w 最大值=1250.【点评】1.读懂题意,弄清各个数量之间的关系是解决本题的关键;2.在实际问题中遇到最大(小)值问题时,往往先建立函数关系式,然后通过配方化为顶点式求解. 举一反三:【高清课程名称:实际问题与二次函数高清ID 号:356777 关联的位置名称(播放点名称):练习讲解】 【变式】(2019•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大. 【答案】22.【解析】解:设定价为x 元,根据题意得:y=(x ﹣15)[8+2(25﹣x )] =﹣2x 2+88x ﹣870∴y=﹣2x 2+88x ﹣870,=﹣2(x ﹣22)2+98 ∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y 最大值=98. 故答案为:22. 类型二、利用二次函数解决抛物线形建筑问题2.如图所示,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米.现以O点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求这条抛物线的解析式;(3)若要搭建一个矩形支撑架ADCB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?【答案与解析】(1)M(12,0),P(6,6).(2)设抛物线解析式为:2(6)6y a x =-+. ∵ 抛物线2(6)6y a x =-+经过点(0,0), ∴ 20(06)6a =-+,即16a =-. ∴ 抛物线解析式为:21(6)66y x =--+,即2126y x x =-+. (3)设A(m ,0),则B(12-m ,0),C 2112,26m m m ⎛⎫--+ ⎪⎝⎭,D 21,26m m m ⎛⎫-+ ⎪⎝⎭. ∴ 支撑架总长22112(122)266AD DC CB m m m m m ⎛⎫⎛⎫++=-++-+-+ ⎪ ⎪⎝⎭⎝⎭212123m m =-++21(3)153m =--+.∵ 此二次函数的图象开口向下.∴ 当m =3时,。
实际问题与二次函数_课件
练习
如图,用一段长为 60 m 的篱笆围成一个一边靠墙的矩形菜园 ,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大 ,最大面积是多少?
练习
如图,用一段长为 60 m 的篱笆围成一个一边靠墙的矩形菜园 ,墙长18 m,这个矩形的长、宽各为多少时,菜园的面积最大 ,最大面积是多少?
225.
0<15<30 满足要求
即l是15m时,场地的面积S最大(. S=225㎡)
归纳
篱笆问题的求解步骤
①写出关系式:写出面积和边长之间的函数关系式
取顶点时,一定要 考虑自变量的范围 是否符合要求
练习
(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围. (2)当 x 为何值时,满足条件的绿化带的面积最大 ?答案:
抛球问题
小球的运动时间是多少时,小球最高? 小球运动中的最大高度是多少?
小球运动的时间是3 s 时,小球最高. 小球运动中的最大高度是 45 m.
归纳
顶点是最低(高)点,
当
时
最小(大)值
练习 7
篱笆问题
用总长为 60 m 的篱笆围成矩形场地,矩形面积 S 随矩形一边 长 l 的变化而变化.当 l 是多少米时,场地的面积 S 最大?
练习
(1) 求 y 关于 x 的函数表达式,并直接写出自变量 x 的取值范围;
答案:(1) (2)能.
(0<x<15);
定价问题 某商品现在的售价为每件 60 元,每星期可卖出300件.市场调 查反映:如调整价格,每涨价 1 元,每星期要少卖出 10 件; 每降价 1 元,每星期可多卖出 20 件. 已知商品的进价为每件 40 元, 如何定价才能使利润最大?
实际问题与二次函数课件
1 建模和解决
通过实际问题的建模和解决过程,理解如何 将问题转化为二次函数模型。
2 例子:抛物线运动问题
通过具体的抛物线运动问题,展示如何运用 二次函数对实际情况进行建模和解决。
3 应用
探索二次函数在经济学中的应用,揭示二次 函数的实际应用领域和其重要性。
4 例子:二次函数在经济学中的应用
通过实际例子,展示二次函数在经济学中的 应用场景,如市场需求曲线等。
实际问题与二次函数ppt 课件
本课程将探讨实际问题如何使用二次函数进行建模和解决,通过丰富的实例, 深入了解二次函数的定义、性质以及实际应用。
引入
1 研究实际问题
实际问题是数学和科学的重要应用之一,可以通过二次函数进行建模和解决。
2 重要的数学工具
二次函数是解决实际问题的重要数学工具,在多个领域中得到广泛应用。
实践演习
1 编写二次函数程序
通过编写二次函数程序,模拟实际问题,加深对二次函数应用的理解。
2 利用数学工具求解
利用数学工具或编程语言,运用二次函数相关知识,求解实际问题,加深应用能力。
总结
1 实际问题与二次函数关系
通过本课程的学习,加深对实际问题与二次函数之间关系的理解和把握。
2 二次函数的基本性质和应用
二次函数
1 定义和一般式
了解二次函数的定义和一般式,掌握其基本 形式和常见表示方法。
2 性质
• 对称性:探讨二次函数的对称轴和对 称性质。
• 开口方向:了解二次函数的开口方向 和相关概念。
• 零点和交点:掌握二次函数零点、交 点和相关解析方法。
2实际问题与二次函数(3)PPT课件(人教版)
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是 自变量?哪些量随之产生了变化?
探究
某商品现在的售价为每件60元,每星期 可卖出300件,市场调查反应:每涨价1 元,每星期少卖出10件;每降价1元,每 星期可多卖出20件,已知商品的进价为 每件40元,如何定价才能使利润最大?
∴x=2.5时,y极大值=6125
怎样确 定x的取 值范围
你能回答了吧!
由(1)(2)的讨论及现在的销售情况,你知道应该如何定价
能使利润最大了吗?
合作探究 达成目标
归纳探究,总结方法
1.由于抛物线 y = ax2 + bx + c 的顶点是最低(高)
点,当
x b 2a
时,二次函数 y = ax2 + bx + c 有最小(大) 值
合作探究 达成目标
探究点一 构建二次函数模型,解决几何最值类应用题
从地面竖直向上抛出一小球,小球的高度 h(单位: m)与小球的运动时间 t(单位:s)之间的关系式是
h= 30t - 5t2 (0≤t≤6).小球的运动时间是多少时,小
球最高?小球运动中的最大高度是多少?
t
b 2a
30 2 (
5)
3,
探究点一 构建二次函数模型,解决几何最值类应用题
一般地,因为抛物线y=ax2+bx+c的顶点是最低(高)
点,所以当
时,二次函数y=ax2+bx+c有
最小(大)值
.
1.如图虚线部分为围墙材料,其长度为20米,要使所围的矩形面积 最大,长和宽分别为: ( A )
A.10米,10米
6.4二次函数的运用(3)喷泉问题
Oy x 2米1米 2.5米 0.5米 §6.4 二次函数的运用(3)【喷泉问题】学习目标:1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。
2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。
学习重点:应用二次函数最值解决实际问题中的最大利润。
学习难点:能够正确地应用二次函数最值解决实际问题中的最大利润.特别是把握好自变量的取值范围对最值的影响。
学习过程:一、预备练习:1. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米. 2. 一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++. 则他将铅球推出的距离是 m 二、新课导学:1、如图所示,桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m.由柱子顶端A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m.(1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?2、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件)。
在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面32/3米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。
实际问题与二次函数—教学设计及点评(获奖版)
22.3 实际问题与二次函数(第3课时)一、内容与内容解析1. 内容构建二次函数模型,利用二次函数的图象与性质解决抛物线形问题.2. 内容解析二次函数是描述现实世界变量关系的重要数学模型,运用二次函数可以解决许多实际问题,例如生活中的抛物线形问题.本节课是在学生学习二次函数的图象和性质的基础上,借助二次函数图象和性质研究抛物线形的实际问题.通过探究抛物线形拱桥问题,引导学生分析问题和解决问题,在解决问题的过程中将数学模型思想逐步细化,体会运用函数观点解决实际问题的作用,体会建立函数模型的过程和方法.基于以上分析,确定本节课的重点是:从实际问题中抽象出抛物线并通过建立平面直角坐标系解决实际问题.二、目标和目标解析1. 目标(1)能够从抛物线形问题中建立二次函数模型.(2)能够利用二次函数模型解决抛物线形问题,体会二次函数在解决实际问题中的作用.2. 目标解析达成目标(1)的标志是:学生会借助平面直角坐标系得到二次函数模型,并体会适当建系可以优化解题.达成目标(2)的标志是:学生通过经历探索抛物线形问题,进一步体验如何从实际问题中抽象出二次函数模型,结合二次函数已有知识综合运用来解决解决实际问题.三、教学问题诊断分析学生已经学习了二次函数的定义、图象和性质,学习了列方程、不等式和函数解决实际问题,这为本节课的学习奠定了基础,但运用二次函数的知识解决实际问题要求学生能选取适当的平面直角坐标系的二次函数模型分析问题和解决问题,对于学生来说,完成这一过程难度较大.基于以上分析,本节课的难点:将实际问题转化成二次函数问题.四、教学过程设计1. 创设情境引出问题情境:展示蕴含抛物线的建筑南宁大桥、南宁永和大桥、凌铁大桥、柳州官塘大桥等,引出课题.设计意图:结合生活背景,让学生体会抛物线与实际生活的联系,激发学生的学习兴趣.2. 复习旧知,做好铺垫设计意图:学生体会解析式与图象的对应关系,感受抛物线与坐标系相对位置不一样,它们所对应的解析式也不一样,体会抛物线(形)与函数解析式(数)的对应关系,为解决探究3中的问题做好铺垫.3. 从形入手,探究问题探究3:如图是抛物线形拱桥,当拱顶离水面2 m,水面宽 4 m. 水面下降 1 m,水面宽度增加多少?问题1:同学们通过审题,你发现了哪些重要信息?教师结合希沃白板,将重要信息涉及的图形,从原图中分离出来.问题2:求水面宽度增加多少,需要进行计算,这些计算与抛物线形密切相关,我们应该如何处理?设计意图:引导学生通过建立直角坐标系,构建数学模型(二次函数模型),并体会直角坐标系是数形结合的重要数学工具.活动:小组合作:运用所学知识,解决这道实际问题.(要求每组有2种不同的建立直角坐标系方法)师生活动:小组汇报,教师点评(结合课本进行点评,注意书写过程中建系是否有文字说明,建系文字说明是否严谨,待定系数法书写是否规范,结论书写是否规范)设计意图:展示学生学生的解题思路,并对学生书写中的易错点进行点评分析.4. 适当建系,优化解题问题3:以上5种不同的建系方法,你觉得哪种简单?为什么?师生活动:学生回答,老师总结.①5种建系方法不同,但结果是相同的,建立不同坐标系,所得到的解析式复杂程度也不一样,由此可见,建立适当的坐标系,可以使抛物线的解析式简单,从而减少运算量;②建立直角坐标系的基本原则:关注图形的对称性,以对称轴为坐标轴;关注特殊点,以特殊点为坐标原点.设计意图:引导学生总结归纳,对解决问题的基本策略进行反思,让学生积累和总结经验,培养学生概括和归纳的能力,养成良好的数学思维习惯.5. 总结提升,提炼方法问题4:你能总结解决抛物线形问题的一般方法和解决步骤吗?抛物线形问题二次函数模型线段长实际问题的解设计意图:使学生对解决此类问题有一个系统化的步骤,强化数学与实际生活的紧密联系,加深“数形结合思想”和“数学建模思想”在解决问题中的重要作用.6. 巩固训练,拓展思维某公园草坪的防护栏是由100段形状相同的抛物线形组成,为了牢固起见,每段护栏中需要间距4dm 加设一根不锈钢的支柱,防护栏的最高点距底部5dm(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A、50mB、100mC、160mD、200m设计意图:巩固本节课所学内容,再次体会通过建立二次函数模型解决实际问题的重要性,加深对二次函数的认识,体会数学与实践的联系.7. 小结(1)这节课学习了用什么知识解决哪类问题?(2)解决问题的一般步骤是什么?应注意哪些问题?转译数学方法回译实际问题数学问题数学模型数学模型的解实际问题的解设计意图:通过小结,归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯.8. 作业布置某桥梁建筑公司需在两山之间的峡谷上架设一座公路桥,桥下是一条宽100m的河流,河面距所要架设的公路桥的高度是50m,根据各方面的条件分析,专家认为抛物线是最好的选择,按照专家的建议,设计一座横跨峡谷的公路桥.设计意图:考察学生对本节课所学内容的理解和掌握程度,体会二次函数模型的应用价值.建立直角坐标系线段与坐标相互转化待定系数法抽象人教版《实际问题与二次函数(第3课时)》课例点评南宁市天桃实验学校吴立志本节课教学有六个环节:创设情境,引出问题环节结合生活背景,让学生体会抛物线与实际生活的联系;复习旧知,做好铺垫环节学生体会解析式与图象的对应关系;从形入手,探究问题环节引导学生通过建立直角坐标系,构建数学模型(二次函数模型);适当建系,优化解题环节引导学生总结归纳,让学生积累和总结经验;总结提升,提炼方法环节使学生对解决此类问题有一个系统化的步骤;巩固训练,拓展思维环节巩固本节课所学内容,加深对二次函数的认识,体会数学与实践的联系;教学过程设计合理,课堂结构完整,教学思路清晰,过程循序渐进,为“抛物线形”的产生提供自然合理的背景,激发学生深入思考,获得解决问题的方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
y A
1.6
B
顶点 E(0, 0.2)
2.2
所以,绳子最低点到地面 的距离为 0.2米.
0.7
F E O D x
C
0.4
小结反思
解二次函数应用题的一般步骤: 1 . 审题,弄清已知和未知。 2 . 将实际问题转化为数学问题。建立适 当的平面直角坐标系(初中阶段不要求)
3 .根据题意找出点的坐标,求出抛物线 解析式。分析图象(并注意变量的取值范 围), 解决实际问题。 4 .返回实际背景检验。
x
1 2 y x 4 4 (0≤x≤8) 9
y ax 4 4
2
(0≤x≤8)
20 抛物线经过点 0, 9 20 2 a0 4 4 9
探究延伸:
若假设出手的角度和力度都不变, 则如何才能使此球命中?
(1)跳得高一点 (2)向前平移一点
1 B(1,2.25 ) B
.A A(0,1.25)
1.25 2.25 C
. .
O
x
探究2:
如图的抛物线形拱桥,当水面在 l时,拱桥顶离水面 2 m,水面宽 4 m,水面下降 1 m, 水面宽度增加多少?
探究2:
0
(-2,-2)
●
y
解:设这条抛物线表示的二次函数为
由抛物线经过点(2,-2),可得
0.7
E D
C
0.4
例题:
如图,一单杠高2.2米,两立柱
y
之间的距离为1.6米,将一根绳子的
A
1.6
B
两端栓于立柱与铁杠结合处,绳子
自然下垂呈抛物线状。一身高0.7米
F
2.2
的小孩站在离立柱0.4米处,其头部
刚好触上绳子,求绳子最低点到地 面的距离。
0.7
E O D x
C
0.4
解 :如图,以CD所在的直线为X轴,CD的中垂线为Y轴建立
∴水面的宽度增加了 2 6 4 m
y
(2,2)
解:设这条抛物线表示的二次函数为
y a( x 2)2 2
由抛物线经过点(0,0),可得
(4, 0)
●
(0,0)
●
a
1 2
0
1 y ( x 2) 2 2 2 当水面下降1m时,水面的纵坐标为 抛物线形拱桥,当水面在 l 时, y 1 拱顶离水面2m,水面宽度4m,水 面下降1m,水面宽度增加多少? 当 y 1 时, x 6 2
找出实际问题的答案
有座抛物线形拱桥(如图),正常水位时桥下 河面宽20m,河面距拱顶4m,为了保证过 往船只顺利航行,桥下水面的宽度不得小 于18m,求水面在正常水位基础上上涨多 少米时,就会影响过往船只航行。
例3:你知道吗?平时我们在跳大绳时,绳甩到最高 处的形状可近似地视为抛物线,如图所示,正在甩绳 的甲、乙两名学生拿绳的手间距为4米,距地面均为1 米,学生丙、丁分别站在距甲拿绳的手水平距离1米、 2.5米处,绳甩到最高处时,刚好通过他们的头顶, 已知学生丙的身高是1.5米,请你算一算学生丁的身 高。 C
如图,隧道的截面由抛物线和长方形构成,长方形的长 1 y x2 4 是8m,宽是2m,抛物线可以用 表示. 4 (1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?
(2)如果该隧道内设双行道,那么这辆货运卡车是否可
以通过? (1)卡车可以通过.
3
提示:当x=±1时,y =3.75, 3.75+2>4.
丙
A
(0,1)
B
(1,1.5)
C
丁
2.5m 4m
D
(4,1)
1m
甲 o 1m
乙
x
探究3:投篮问题
y
20 9
(4,4)
1 a 9
8
3
4
0
20 如图,建立平面 直角坐标系, 当x 8时, y 9 点(4,4)是图中这段抛物 ∵篮圈中心距离地面3米 线的顶点,因此可设这段抛 ∴此球不能投中 物线对应的函数为:
6
(4,4) (5,4)
4
20 0, 9
2
(7,3) (8,3)
●
0
1
2
3
4
5 5
6
7
8
9
10
X
-2
例题:
如图,一单杠高2.2米,两立柱
y
之间的距离为1.6米,将一根绳子的
A
1.6
B
两端栓于立柱与铁杠结合处,绳子
自然下垂呈抛物线状。一身高0.7米
F
2.2
的小孩站在离立柱0.4米处,其头部
1
(2)卡车可以通过.
O
1 3
-3
-1 -1 -3
提示:当x=±2时,y =3, 3+2>4.
x 所以,这条抛物线的二次函数为:
∴水面的宽度增加了 2 6 4 m
所以,水面下降1m,水面的 宽度为2 6 m.
y
y
0
x
0
X
注意:
在解决实际问题时,我们应建立简单方便的平面直角坐标 系.
用抛物线的知识解决生活中的一些实 际问题的一般步骤: 建立直角坐标系
二次函数 问题求解
注意变量的取值范围
B
甲
A 1m
丙
丁
D
乙
o 1m 2.5m
4m
解:由题意,设抛物线解析式为 y =ax2+bx+1, 把 B(1,1.5),D(4,1)代入得: 1 a 6 , y 1 x 2 2 x 1 1.5 a b 1, 解得 6 3 1 16a 4b 1. 2 b . 3 把x=2.5代入得y=1.625 ∴C点的坐标为(2.5, 1.625) ∴丁的身高是1.625米 y
y axa2Fra bibliotekx(2,-2)
●
1 2
所以,这条抛物线的二次函数为: 1 2 y x 2 当水面下降1m时,水面的纵坐标为
y 3 抛物线形拱桥,当水面在 l 时, 拱顶离水面2m,水面宽度4m,水 当 y 3 时,x 6 面下降1m,水面宽度增加多少? 所以,水面下降1m,水面的宽 度为 2 6m.
在出手角度和力度都不变的情况下,小明的出手 高度为多少时能将篮球投入篮圈?
6
y
(4,4)
4
20 0, 9 2
(8,3) 20 8, 9
0
1
2
3
4
5 5
6
7
8
9
10
x
-2
在出手角度、力度及高度都不变的情况下, 则小明朝着篮球架再向前平移多少米后跳起 投篮也能将篮球投入篮圈? y
具有二次函数的图象抛物线的特征
探究1:
如图是某公园一圆形喷水池,水流在各方向沿形状相 同的抛物线落下,如果喷头所在处A距地面1.25米,水流路 线最高处B距地面2.25米,且距水池中心的水平距离为1米. 试建立适当的坐标系,表示该抛物线的解析式 为 y= -(x-1)2 +2.25,如果不考虑其他因素,那么水池的 半径至少要 2.5 米,才能使喷出的水流不致落到池外。 y
刚好触上绳子,求绳子最低点到地 面的距离。
0.7
E x D
CO
0.4
例题:
如图,一单杠高2.2米,两立柱 之间的距离为1.6米,将一根绳子的
A O y
1.6
B x
两端栓于立柱与铁杠结合处,绳子
自然下垂呈抛物线状。一身高0.7米
F
2.2
的小孩站在离立柱0.4米处,其头部
刚好触上绳子,求绳子最低点到地 面的距离。