实验六 集成运算放大器的应用模拟运算

合集下载

集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。

另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。

有的元器件虽然已经坏了,但仅凭肉眼看不出来。

因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。

并记下元器件的实际数值。

否则,实验测得的数值与计算出的数值可能无法进行科学分析。

)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。

2.了解运算放大器在实际应用时应考虑的一些问题。

二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路。

1)反相比例运算电路电路如图8—1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。

U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

实验--集成运算放大器的基本应用 模拟运算电路

实验--集成运算放大器的基本应用 模拟运算电路

实验–集成运算放大器的基本应用模拟运算电路引言集成运算放大器(Integrated Operational Amplifier,简称OPAMP)是一种重要的电子元件,它在模拟电路设计和实验中被广泛应用。

本文将介绍集成运算放大器的基本应用,并通过实验来验证其在模拟运算电路中的功能和性能。

集成运算放大器的基本原理集成运算放大器是一种高增益、差分输入和单端输出的电子放大器。

它具有很高的输入阻抗、低的输出阻抗和大的开环增益。

通过反馈电路,集成运算放大器可以实现各种电路功能,如放大器、比较器、滤波器等。

实验目的本实验旨在通过实际操作,掌握集成运算放大器的基本应用,包括放大器、比较器和无源滤波器。

实验器材•集成运算放大器IC•双电源电源•电阻•电容•示波器•多用电表实验步骤步骤1:放大器的基本应用1.按照电路图连接集成运算放大器,并接入双电源电源。

2.接入电阻、电容等元件,按照电路图搭建一个基本放大器电路。

3.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。

4.调节输入信号的幅值和频率,观察输出信号的变化。

步骤2:比较器的应用1.断开反馈电路,使集成运算放大器工作在开环状态。

2.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。

3.调节输入信号的幅值,观察输出信号的变化。

步骤3:无源滤波器的应用1.按照电路图连接集成运算放大器,并接入双电源电源。

2.接入电阻、电容等元件,按照电路图搭建一个无源滤波器电路。

3.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。

4.调节输入信号的频率,观察输出信号的变化。

实验结果与分析在实际操作中,我们成功搭建了集成运算放大器的放大器、比较器和无源滤波器电路,并通过示波器观察到了相应的输入输出波形。

在放大器电路中,我们调节了输入信号的幅值和频率,观察到了输出信号的线性放大效果。

在比较器电路中,我们调节了输入信号的幅值,观察到了输出信号的高低电平变化。

实验六 集成运算放大器的应用模拟运算

实验六 集成运算放大器的应用模拟运算

实验六 集成运算放大器的应用(一)模拟运算电路预习部分一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。

它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。

⑧脚为空脚。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

1) 反相比例运算电路电路如图2-7-2所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为Uo =-(R F / R 1)Ui为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1‖R F 。

2) 反相加法电路图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路电路如图2-7-3所示,输出电压与输入电压之间的关系为F i Fi F O //R //R R R U R R U R R U 2132211=⎪⎪⎭⎫ ⎝⎛+-= 图2-7-1 μA741管脚图3) 同相比例运算电路图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。

图中R 2=R F ,用以减小漂移和起保护作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

(a) 同相比例运算电路 (b) 电压跟随器图2-7-4 同相比例运算电路4) 差动放大电路(减法器)对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路反相积分电路如图2-7-6所示。

实验二集成运算放大器的应用模拟运算 (1)

实验二集成运算放大器的应用模拟运算 (1)

实验七 集成运算放大器的应用(一)模拟运算电路预习部分一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。

它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。

⑧脚为空脚。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

1) 反相比例运算电路电路如图2-7-2所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为Uo =-(R F / R 1)Ui为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1‖R F 。

2) 反相加法电路图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路电路如图2-7-3所示,输出电压与输入电压之间的关系为F i Fi F O //R //R R R U R R U R R U 2132211=⎪⎪⎭⎫ ⎝⎛+-= 图2-7-1 μA741管脚图3) 同相比例运算电路图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。

图中R 2=R F ,用以减小漂移和起保护作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

(a) 同相比例运算电路 (b) 电压跟随器图2-7-4 同相比例运算电路4) 差动放大电路(减法器)对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路反相积分电路如图2-7-6所示。

模电实验八集成运放基本应用之一--模拟运算电路实验报告

模电实验八集成运放基本应用之一--模拟运算电路实验报告

实验八集成运放基本应用之一--模拟运算电路
一、 班级:姓名:学号: 实验目的
1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大电路在实际应用时应考虑的一些问题。

二、 实验仪器及器件
仪器及器件名称 型号 数量 +12V 直流稳压电源 DP832 1 函数信号发生器
DG4102 1 示波器 MSO2000A 1 数字万用表 DM3058 1 集成运算放大电路
μA741 1 电阻器 若干 电容器
若干
三、 实验原理
1、反相比例运算电路
电路如图8-1所示。

图8-1反相比例运算电路
i 1
F
O V R R V -
= 2、反相加法电路
电路如图8-2所示。

图8-2 反相加法电路
)
V R R
V
R R (
V i22
F i11F O +-=
R 3═R 1
i 1
F
O )V R R 1(V +
=)V V (R R V i1i21
F
O -=
于实验设备使用时间的关系,实验电路板的电阻的实际阻值和标注的阻值存在误差,电路中的其他元件老化等对电路也有一定的误差;
2.由于我们测量时集成运放等元器件一直处于工作状态,长时间的工作也会对数据的测量产生一定的影响;
3.在用万用表测量实验数据时,首先万用表本身存在误差,其次在测量有些数据时。

万用表显示的数值一直在跳动难以稳定,这也对数据的读出造成不能忽视的影响。

模电设计性实验报告——集成运算放大器的运用之模拟运算电路

模电设计性实验报告——集成运算放大器的运用之模拟运算电路

模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。

1) 反相比例运算电路电路如图6-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。

RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。

RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。

图中,用以减小漂移和起保护作用。

一般取10KΩ,太小起不到保护作用,太大则影响跟随性。

实验六集成运算放大器-电气工程学院

实验六集成运算放大器-电气工程学院

[实验原理与参考电路]
1.调零电路
调零电路如图 3-10 所示,○1 和○5 之间接
入一只 100KΩ的电位器 Rw。
2.反向比例运算电路
Vi
如图 3-10 所示,假设运算放大器为理想
的,则电路的电压放大倍数:


Av
=
Vo

Vi
= −RF R1
VDD
RF
(+12V)
100K R1
10K
○2 -
○7
R3 10K
○1 RP
V0
100K
VSS (-12V)
VDD
R
(+12V)
10K 10K
Vi1
C 0.1μ ○2 -
○7
μA741
○6
ห้องสมุดไป่ตู้
○4
○3 + ○5
10K
○1 RP
V0
100K
VSS (-12V)
图 3-14
图 3-15
反向积分运算电路如图 3-14 所示。在理想化条件下,输出电压为:
∫ Vo
=− 1 R1C
μA741
○6
○4

○3
○5
R2 10K
○1 RP
V0
100K
VSS (-12V)
图 3-10
3.同相比例运算电路 图 3-11(a)所示是同相比例运算电路,其电压放大倍数为:


Av
=
Vo

Vi
=1+ RF R1
17


在图 3-11(a)中,当 R1→∞,R1=RF 时, Vo = Vi ,即得如图 3-11(b)所示的电压

模拟电子技术实验报告

模拟电子技术实验报告

桂林电子科技大学模拟电子技术实验报告实验一单级放大电路5、查找三极管9013 资料,在下图中标出9013 的三个引脚(E、B、C),并写出3~5 项你认为重要的参数?四.实验步骤及注意事项1. 测量导线、信号线、电源线好坏。

注意事项:使用台式万用表蜂鸣器档测量导线,不测量将可能导致实验失败!2.检查实验所用的A1 电路板上三极管所在位置的背面是否焊接有三极管。

注意事项:若有则第3、4 步可跳过不做,在表2 中β记为100。

3. 测量三极管9013 的直流放大系数β记录在表2 中。

注意事项:使用UT8803N 台式数字万用表HFE 档位,将三极管插到NPN 一边。

4.将已经测过值的三极管插入A1 电路板对应的三极管插孔中。

注意事项:三极管必须按照正确顺序插入A1 电路板中,不插入或插错将导致实验测量数据全错!5. 连接电路,接通12V 直流电源,但不接入信号源!注意事项:(1)单级放大电路的输入端暂时不能接入信号源。

(2)检查电路无误后,才能接通电源。

(3)所用的12V 要用万用表测量校准。

6. 设置静态工作点。

注意事项:(1)用台式万用表DCV(直流电压)档位监测UEQ电压变化(电路中三极管发射极与“地” 之间的电压,万用表黑表笔接“地”)。

(2)调节电位器RP 的大小,使得UEQ调到约为1.9V,不用非常精确。

7.测量静态工作点注意事项:UBQ、UEQ、UCQ分别表示电路中三极管基极、发射极、集电极与“地”之间的电压,而“ Q”表示的是“静态”而不是“地”,UBEQ= UBQ- UEQ,UCEQ= UCQ- UEQ。

8.测量RP的阻值。

注意事项:测量RP的阻值时,应把RP与电路断开,测完RP后再接回!9.电路输入端接入信号源,输出端将5.1KΩ 负载接上,用示波器双通道同时测量输入输出波形,观察ui、uoL的相位关系,并在一个坐标系上画出波形图。

注意事项:(1)信号源和示波器必须共地,即黑夹子要接地。

模拟电子技术实验报告

模拟电子技术实验报告

桂林电子科技大学模拟电子技术实验报告实验一单级放大电路5、查找三极管9013 资料,在下图中标出9013 的三个引脚(E、B、C),并写出3~5 项你认为重要的参数?四.实验步骤及注意事项1. 测量导线、信号线、电源线好坏。

注意事项:使用台式万用表蜂鸣器档测量导线,不测量将可能导致实验失败!2.检查实验所用的A1 电路板上三极管所在位置的背面是否焊接有三极管。

注意事项:若有则第3、4 步可跳过不做,在表2 中β记为100。

3. 测量三极管9013 的直流放大系数β记录在表2 中。

注意事项:使用UT8803N 台式数字万用表HFE 档位,将三极管插到NPN 一边。

4.将已经测过值的三极管插入A1 电路板对应的三极管插孔中。

注意事项:三极管必须按照正确顺序插入A1 电路板中,不插入或插错将导致实验测量数据全错!5. 连接电路,接通12V 直流电源,但不接入信号源!注意事项:(1)单级放大电路的输入端暂时不能接入信号源。

(2)检查电路无误后,才能接通电源。

(3)所用的12V 要用万用表测量校准。

6. 设置静态工作点。

注意事项:(1)用台式万用表DCV(直流电压)档位监测UEQ电压变化(电路中三极管发射极与“地” 之间的电压,万用表黑表笔接“地”)。

(2)调节电位器RP 的大小,使得UEQ调到约为1.9V,不用非常精确。

7.测量静态工作点注意事项:UBQ、UEQ、UCQ分别表示电路中三极管基极、发射极、集电极与“地”之间的电压,而“ Q”表示的是“静态”而不是“地”,UBEQ= UBQ- UEQ,UCEQ= UCQ- UEQ。

8.测量RP的阻值。

注意事项:测量RP的阻值时,应把RP与电路断开,测完RP后再接回!9.电路输入端接入信号源,输出端将5.1KΩ 负载接上,用示波器双通道同时测量输入输出波形,观察ui、uoL的相位关系,并在一个坐标系上画出波形图。

注意事项:(1)信号源和示波器必须共地,即黑夹子要接地。

模电(实验 模拟运算电路)10-11(2)

模电(实验  模拟运算电路)10-11(2)

实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
3、同相比例运算电路(图4) 、同相比例运算电路( ) RF 100k R1 Ui 10k +12V Uo Ui -12V + R 10k RW 100k -12V RF 10k +12V Uo
+ R 9.1k RW 100k
实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
集成运算放大器的基本应用—模 实验 集成运算放大器的基本应用 模 拟运算电路
一、实验目的 1、掌握集成运放管脚的识别方法。 、掌握集成运放管脚的识别方法。 2、研究由集成运算放大器组成的比例、加法、 、研究由集成运算放大器组成的比例、加法、 减法等基本运算电路的功能。 减法等基本运算电路的功能。 二、实验原理 本实验采用的集成运算放大器型号为µA741(或 本实验采用的集成运算放大器型号为 ( F007),引脚排列如图 所示。 ),引脚排列如图 所示。 ),引脚排列如图1所示 它是八脚双列直插式组件。 它是八脚双列直插式组件。
Байду номын сангаас 实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
8
7
6
5
µA741 + 1 2 3
图1 7脚为正电源端; 脚为正电源端; 脚为正电源端 4脚为负电源端; 脚为负电源端; 脚为负电源端 1脚和 脚为失调调零端,1脚和 脚之间可接入一 脚和5脚为失调调零端 脚和5脚之间可接入一 脚和 脚为失调调零端, 脚和 只几十k 的电位器并将滑动触头接到负电源端; 只几十 的电位器并将滑动触头接到负电源端; 8脚为空脚。 脚为空脚。 脚为空脚

模拟电子技术试验-电工电子国家级试验教学示范-中国矿业大学

模拟电子技术试验-电工电子国家级试验教学示范-中国矿业大学
i2 i1
输出电阻
Ro
Vo 1 RL VoL
返回
(3)动态范围 为使负载得到最大幅度的不失真输出电 压,静态工作点应设在交流负载线的中点。 静态工作点满足下列条件:
EC VCE I C RC VE ' VCE I C RL
VCE Vcm VCES
+12v
Rw1
150kΩ
3.3kΩ
vo1
Rw2 47kΩ
1kΩ vo2 10uF 3DG6
1
16kΩ
按频率功 能键进入 的频率设 置菜单
设置波形后, 要进一步设置 频率,按频率 功能键进入下 一级设置菜单
返回
⑤设置频率方法
使 用”“和 ””可以 实现对被选 中数据位的 增和减。输 出信号可以 根据设置实 时改变输出 频率
使用“”和“”可以实现显示屏 上”“”“在频率显示数值的各 个数据位上的移动,以选中各个数据 位。
模拟电子技术实验
返回
中国矿业大学电工电子教学实验中心
模拟电子技术实验
实验一 常用电子仪器的使用 实验二 单级放大器 实验三 放大电路的设计与仿真(Ⅰ) 实验四 放大电路的设计与仿真(Ⅱ) 实验五 运算放大器的线性应用 实验六 运算放大器的非线性应用 综合设计性实验
返回


《模拟电子技术实验》课程是电类专业的技术基础课之一, 具有较强的实践性,在通信、自动化及其它相关专业的课程中 占有重要的地位。通过对本课程的学习,要求学生在掌握基本 实验技能的基础上,突出实践能力和创新能力的培养。 根据课 程的性质、任务和要求,模拟电子技术实验采用多层次教学方 式。通过本课程学习应达到下列基本要求: 1.正确使用常用的电子设备,掌握示波器、信号发生器、数字万 用表、稳压电源、毫伏表等仪器设备的使用方法。 2.掌握基本的实验测试技术以及电子电路的主要技术指标。能设 计常用的电子系统,并进行组装调试。具有查阅电子器件手册 的能力。 3.具有一定分析问题和解决问题的能力,具有查找和排除电子电 路中常见故障的能力。 4.能独立写出严谨、有理论分析、实事求是、文理通顺、字迹端 正的实验报告。 返回

验证实验--运算放大电路同相、反相与加减法电路实验

验证实验--运算放大电路同相、反相与加减法电路实验

验证实验四 运算放大电路同相、反相及加减法电路实验一、实验目的(1)掌握由集成运算放大器组成的比例、加法、减法和积分等模拟运算电路功能。

(2)熟悉运算放大器在模拟运算中的应用。

二、主要设备及器件函数信号发生器、双踪示波器、交流毫伏表、数字万用表、直流稳压电源、实验电路板。

三、实验原理1、反相比例运算电路反相比例运算电路如图1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为:i 1foUR R U -=为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ´=R1||Rf 。

实验中采用10 k Ω和100 k Ω两个电阻并联。

图1 反相比例运算电路2、同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1fo )1(UR R U +=当R1→∞时,Uo=Ui ,即为电压跟随器。

图2 同相比例运算电路3、反相加法电路反相加法电路电路如图3所示,输出电压与输入电压之间的关系为)+(=B 2f A 1f o U R RU R R U - R ´ = R1 || R2 || Rf图3 反相加法电路4、同相加法电路同相加法电路电路如图4所示,输出电压与输入电压之间的关系为:)+++(+=B 211A 2123f 3o U R R R U R R R R R R U图4 同相加法电路5、减法运算电路(差动放大器)减法运算电路如图5所示,输出电压与输入电压之间的关系为:f f o A B 1121 ()()R R R U U U R R R R '=+'+-+当R1 = R2,R ´ = Rf 时,图5电路为差动放大器,输出电压为:)(=A B1fo U U R R U -图5 减法运算电路四、实验内容注意正、负电源的接法,并切忌将输出端短路,否则将会损坏集成块。

信号输入时先按实验所给的值调好信号源再加入运放输入端。

集成运算放大器教案

集成运算放大器教案

集成运算放大器教案第一章:集成运算放大器的概述1.1 教学目标1. 了解集成运算放大器的基本概念;2. 掌握集成运算放大器的主要参数;3. 理解集成运算放大器的作用和应用。

1.2 教学内容1. 集成运算放大器的定义;2. 集成运算放大器的主要参数;3. 集成运算放大器的作用和应用。

1.3 教学方法1. 讲授法:讲解集成运算放大器的概念、参数和作用;2. 案例分析法:分析集成运算放大器在实际电路中的应用。

1.4 教学步骤1. 引入:讲解集成运算放大器的定义;2. 讲解:介绍集成运算放大器的主要参数;3. 应用:分析集成运算放大器的作用和应用;4. 总结:强调集成运算放大器在电路设计中的重要性。

第二章:集成运算放大器的电路符号与性质2.1 教学目标1. 掌握集成运算放大器的电路符号;2. 理解集成运算放大器的主要性质;3. 学会分析集成运算放大器的基本电路。

2.2 教学内容1. 集成运算放大器的电路符号;2. 集成运算放大器的主要性质;3. 集成运算放大器的基本电路分析。

2.3 教学方法1. 讲授法:讲解集成运算放大器的电路符号和性质;2. 示例分析法:分析集成运算放大器的基本电路。

2.4 教学步骤1. 引入:讲解集成运算放大器的电路符号;2. 讲解:介绍集成运算放大器的主要性质;3. 分析:分析集成运算放大器的基本电路;4. 总结:强调集成运算放大器性质在电路分析中的应用。

第三章:集成运算放大器的应用之一——放大器电路3.1 教学目标1. 掌握放大器电路的基本原理;2. 学会设计放大器电路;3. 了解放大器电路的应用。

3.2 教学内容1. 放大器电路的基本原理;2. 放大器电路的设计方法;3. 放大器电路的应用。

1. 讲授法:讲解放大器电路的基本原理;2. 设计实践法:指导学生设计放大器电路;3. 案例分析法:分析放大器电路的应用。

3.4 教学步骤1. 引入:讲解放大器电路的基本原理;2. 设计:指导学生设计放大器电路;3. 应用:分析放大器电路在实际电路中的应用;4. 总结:强调放大器电路在电路设计中的重要性。

实验八集成运算放大器的基本应用(i)

实验八集成运算放大器的基本应用(i)

40 模拟电子技术实验实验八集成运算放大器的基本应用(I)─模拟运算电路一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2.了解运算放大器在实际应用时应考虑的一些问题。

二、实验设备与器件三、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

1.理想运放的特性在大多数情况下,运放可被视为理想器件,就是将运放的各项技术指标理想化,理想运放需要满足下列条件:开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽f BW=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。

即U+≈U-,称为“虚短”。

(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

2.基本运算电路(1)反相比例运算电路实验八 集成运算放大器的基本应用(Ⅰ) 41电路如图8-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为i 1F O U R R U -=为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。

图8-1 反相比例运算电路 图8-2 反相加法运算电路(2)反相加法电路电路如图8-2所示,输出电压与输入电压之间的关系为)(i22F i11F O U R RU R R U +-= R 3=R 1 / / R 2 / / R F (3)同相比例运算电路(a) 同相比例运算电路 (b) 电压跟随器图8-3 同相比例运算电路图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1F O )(1U R R U += R 2=R 1 / / R F42 模拟电子技术实验当R 1→∞时,U O =U i ,即得到如图8-3(b)所示的电压跟随器。

电工学电子技术实验讲义.doc

电工学电子技术实验讲义.doc

实验一、集成运算放大器的基本应用一、实验目的1. 研究用集成运算放大器组成的比例求和电路的特点及性能。

2. 了解运算放大器在实际应用时应考虑的一些问题。

二、预习要求1. 复习集成运放线性应用部分内容,并根据实验电路参数计算各电路输出电压的理论值。

2. 在反相加法器中,如和均采用直流信号,并选定= -1 V ,当考虑到运算放大器的最大1i u 2i u 2i u 输出幅度(±12 V )时,则的大小不应超过多少伏?1i u 3. 为了不损坏集成块,实验中应注意什么问题?三、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分和对数等模拟运算电路。

1.理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化。

满足下列条件的运算放大器称为理想运放:开环电压增益 ;∞=Vd A 输入阻抗 ;∞=i R 输出阻抗 ;0=o R 带宽;∞=BW f 失调与漂移均为零等。

失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压与输入电压之间满足关系式o U)(-+-=U U A U Vd o 由于,而为有限值,因此,。

即,称为“虚短”。

∞=Vd A o U V U U 0≈--+-+≈U U (2)由于,故流进运放两个输入端的电流可视为零,即,称为“虚断”。

这∞=i R 0==-+i i 说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

在应用集成运算放大器时,需要知道它的几个引脚的用途。

图4-0所示的是µA470集成运算放大器的外形、引脚和符号图,它有双列直插式[ 图4-0(a )]和圆壳式两种封装。

这种运算放大器需要与外电路相接的是通过7个引脚引出的。

集成运算放大器应用实验报告

集成运算放大器应用实验报告

集成运算放大器实验报告集成运算放大器是一种高性能多级直接耦合具有两个输入端、一个输出端的电压放大电路。

具有高增益、高输入阻抗低输出阻抗的特点。

通常,线性应用电路需要引入负反馈网络,构成各种不同功能的实际应用电路。

(a)μA741高增益运算放大器(b)LM324四运算放大器图2.4.2 典型的集成运放外引脚排列1. 比例、加减、微分、积分运算电路设计与实验1.1原理图(a) 反相比例运算电路 (b) 同相比例运算电路图1.1 典型的比例运算电路(a) 反相求和运算电路 (b) 同相求和运算电路图1.2 典型的求和运算电路(a) 单运放减法运算电路 (b) 双运放减法运算电路图1.3 典型的减法运算电路图1.4 积分电路图1.5 微分电路图 1.6 实际微分电路(PID)2.方波、三角波发生器2.1原理图图2.1 方波、三角波发生器2.2理论分析(参照实验教材分析工作原理和周期、频率、幅度近似计算出以上结果) 2.2.1频率分析2.2.2幅度分析2.2.3幅度调整图2.2 方波幅度通过R4、R5比例调整2.2.4减法器图2.3 减法器(交流正弦信号来自示波器)图2.4 积分器(方波信号可以来自示波器)图2.5 微分器(方波信号可以来自示波器)2.4.1 比例、加减运算电路设计与实验由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。

一、实验目的1.掌握常用集成运放组成的比例放大电路的基本设计方法; 2.掌握各种求和电路的设计方法;3.熟悉比例放大电路、求和电路的调试及测量方法。

二、实验仪器及备用元器件 (1)实验仪器(2)实验备用器件三、电路原理集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。

图2.4.3(a )示出了典型的反相比例运算电路。

依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为 1f o i i R A R υυυυ==-2.4.1式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。

实验六集成运算放大器的应用-模拟运算电路解读

实验六集成运算放大器的应用-模拟运算电路解读

U0实测值
ห้องสมุดไป่ตู้
五.思考题 (1) 运放两个输入端为什么要平衡? (2) 在集成运放的运算电路中,为什么其输出、输入之间 关系仅由外接元件决定,而与运放本身的参数无关。
2--反向输入端; 3—同相输入端; 6—输出端; 4—电源电压负端; 7--电源电压正端; 1\5--调零端; 8--未用 图15 LM741的管脚排列及序号 (a)外引脚排列顺序;(b) 序号。
集成运放依外接元件连接的不同,可以构成比例放 大、加法、减法、微分、积分等多种数学运算电路,本 实验采用反相比例运算、反相加法运算和减法运算,电 路如图16中(a)、(b)、(c)所示。 由于集成运放一般都存在失调电压和失调电流,因 而会影响运算精度。如上述反相比例运算电路中,输入 电压Ui=0时,输出电压U0不为0,而是一个很小的非零 数。此时调整1、5脚连接的调零电位器RP,可使输出电 压变为零。这个过程就是运放的调零。调零之后再进行 各种运算电路的测量,测量结果才会准确。
图16 基本运算电路 (a)反相比例运算电路; (b) 反相加法运算电路; (c) 减法运算电路
四.实验内容及步骤 1) 反相比例运算电路测试 按图16(a)连接电路,确定无误后,接入±15V直流稳 压电源。首先对运放电路进行调零,即令Ui=0,再调整 调零电位器RP,使输出电压U0=0。 (1) 按表20指定的电压值输入不同的直流信号Ui,分别测 量对应的输出电压U0,并计算出电压放大倍数。 将输入信号改为f=1KHz、Ui=200 m V的正弦交流信号, 用示波器观察输入、输出信号波形。分析其是否满足上 述反相比例关系。 (3) 把R1、R2换成51 kΩ,其余条件不变,重复上述 (1)、(2)步的内容。 (4) 把R1、R2、R3、R4均接成100 kΩ,其余条件不变, 重复上述(1)、(2)步的内容。

模电实验八集成运放基本应用之一--模拟运算电路实验报告

模电实验八集成运放基本应用之一--模拟运算电路实验报告

实验八集成运放基本应用之一--模拟运算电路班级:姓名:学号: 2015.12.30一、 实验目的1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大电路在实际应用时应考虑的一些问题。

二、 实验仪器及器件三、 实验原理1、反相比例运算电路电路如图8-1所示。

图8-1反相比例运算电路i 1FO V R R V -= 2、反相加法电路电路如图8-2所示。

图8-2 反相加法电路)V R RV R R (V i22F i11F O +-= R 3═R 1// R 2// R F 3、同相比例运算电路电路如图8-3(a)所示。

图8-3(a)同相比例运算电路图8-3(b) 电压跟随器i 1FO )V R R 1(V +=R 2═R 1// R F 当R 1→∞时,V O ═V i 即得到如图8-3(b)所示的电压跟随器。

4、差分放大电路(减法电路)电路如图8-4所示。

)V V (R R V i1i21FO -=图8-4 减法运算电路5、积分运算电路电路如图8-5所示。

图8-5 积分运算电路如果v i(t)是幅值为E的阶跃电压,并设v c(0)═0,则四、实验内容及实验步骤实验前要看清运放组件各管脚的位置;切忌正负电源极性接反和输出端短路,否则将会损坏集成块。

1、反相比例运算电路1)按图8-1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。

2)输入f= 100Hz,V i = 0.5V的正弦交流信号,测量相应的V o并用示波器观察v o和v i的相位关系,记入表8-1。

表8-1f= 100Hz,V = 0.5Vi o2、同相比例运算电路1)按图8-3(a)连接实验电路。

实验步骤同内容1,将结果记入表8-2。

2)按图8-3(a)中的R1断开,得图8-3(b)电路重复内容1)。

表8-2f= 100Hz,V= 0.5Vi o3、反相加法运算电路1)按图8-2连接实验电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 集成运算放大器的应用(一)
模拟运算电路
预习部分
一、实验目的
1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。

二、实验原理
集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。

它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。

⑧脚为空脚。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

1) 反相比例运算电路
电路如图2-7-2所示。

对于理想运放, 该电路
的输出电压与输入电压之间的关系为
Uo =-(R F / R 1)Ui
为了减小输入级偏置电流引起的运算误差,在
同相输入端应接入平衡电阻
R 2=R 1‖R F 。

2) 反相加法电路
图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路
电路如图2-7-3所示,输出电压与输入电压之间的关系为
F i F
i F O //R //R R R U R R U R R U 2132211
=⎪⎪⎭
⎫ ⎝⎛+-= 图2-7-1 μA741管脚图
3) 同相比例运算电路
图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F
当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。

图中R 2=R F ,用以减小漂移和起保护作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

(a) 同相比例运算电路 (b) 电压跟随器
图2-7-4 同相比例运算电路
4) 差动放大电路(减法器)
对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式
图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路
反相积分电路如图2-7-6所示。

在理想化条件下,输出电压uo 等于
()()01
C t
i O U dt U RC t U +-=⎰ 式中 Uc(o)是t =0时刻电容C 两端的电压值,即初始值。

如果u i (t)是幅值为E 的阶跃电压,并设Uc(o)=0,则
()RC
E
Edt RC t U t
O -=-=⎰01 即输出电压 Uo(t)随时间增长而线性下降。

显然R C 的数值越大,达到给定的Uo 值所需的时间就越长。

积分输出电压所能达到的最大值受集成运放最大输出范围的限值。

()121
i i F
O U U R R U -=
在进行积分运算之前,首先应对运放调零。

为了便于调节,将图中K 1闭合,即通过电阻R 2的负反馈作用帮助实现调零。

但在完成调零后,应将K 1打开,以免因R 2的接入造成积分误差。

K 2的设置一方面为积分电容放电提供通路,可实现积分电容初始电压Uc(o)=0,另一方面,可控制积分起始点,即在加入信号ui 后, 只要K 2一打开, 电容就将被恒流充电,电路也就开始进行积分运算。

在实验时使用集成运放应考虑的一些问题
1) 输入信号选用交、直流量均可, 但在选取信号的频率和幅度时,应考虑运放的频响特性和输出幅度的限制。

2) 调零。

为提高运算精度,在运算前, 应首先对直流输出电位进行调零,即保证输入为零时,输出也为零。

当运放有外接调零端子时,可按组件要求接入调零电位器R W (如μA741、见图2-7-2),调零时,将输入端接地(Ui =0),调零端接入电位器R W ,用直流电压表测量输出电压U 0,细心调节R W ,使U 0为零(即失调电压为零)。

如运放没有调零端子,若要调零,可按图2-7-7所示电路进行调零。

图2-7-7 调零电路
一个运放如不能调零,大致有如下原因:① 组件正常,接线有错误。

② 组件正常,但负反馈不够强(R F /R 1 太大),为此可将R F 短路,观察是否能调零。

③ 组件正常,但由于它所允许的共模输入电压太低, 可能出现自锁现象,因而不能调零。

为此可将电源断开后,再重新接通,如能恢复正常,则属于这种情况。

④组件正常,但电路有自激现象,应进行消振。

⑤组件内部损坏,应更换好的集成块。

3) 消振。

一个集成运放自激时,表现为即使输入信号为零, 亦会有输出,使各种运算功能无法实现,严重时还会损坏器件。

在实验中,可用示波器监视输出波形。

为消除运放的自激,常采用如下措施
①若运放有相位补偿端子,可利用外接R C 补偿电路,产品手册中有补偿电路及元件参数提供。

②电路布线、元、器件布局应尽量减少分布电容。

③在正、负电源进线与地之间接上几十μF 的电解电容和0.01~0.1μF 的陶瓷电容相并联以减小电源引线的影响。

三、预习要求
1. 复习集成运放线性应用部分内容,并根据实验电路参数计算各电路输出电压的理论值。

2.设计一模拟运算电路,满足关系式2132i i o U U U +-=,其中U i1、U i2为直流输入电压。

画出电路,标出元件参数。

四、思考题
1. 在反相加法器中,如U i1和U i2均采用直流信号,并选定 U i2=-1V ,当考虑到运
算放大器的最大输出幅度(±12V)时,|U i1|的大小不应超过多少伏?
2.在积分电路中,如R1=100KΩ,C=4.7μF,求时间常数?假设Ui=0.5V,问要使输出电压Uo达到5V,需多长时间(设uc(o)=0)?
3.为了不损坏集成块,实验中应注意什么问题?
实验部分
一、实验设备与器件
二、实验内容
实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

1.反相比例运算电路
1)调零,按图2-7-2连接实验电路,接通±12V电源,输入端对地短路,调节Rw,使Uo=0V。

2)输入f=100Hz,Ui=0.5V的正弦交流信号,测量相应的Uo,并用示波器观察uo 和ui的相位关系,记入表2-7-1。

2.同相比例运算电路
1)按图2-7-4(a)连接实验电路。

实验步骤同上,将结果记入表2-7-1。

2)电压跟随器实验,将图2-7-4(a)中的R1断开,得图2-7-4(b)电路重复内容1)。

3.加法运算电路
1) 按图2-7-3连接实验电路。

调零和消振。

2) 输入信号采用直流信号,用直流电压表测量输入电压U i1、U i2及输出电压Uo,记入表2-7-2。

(实验时要注意选择合适的直流信号幅度以确保集成运放工作在线性区)
4.设计一模拟运算电路,满足关系式2132i i o U U U +-=,U i1、U i2为直流输入电压。

自拟表格,选择一组测试数据,测量输出电压。

5. 积分运算电路
实验电路如图2-7-6所示。

1) 打开K2,闭合K1,对运放输出进行调零。

2) 调零完成后,再打开K1,闭合K2,使uc(o)=0。

3) 预先调好直流输入电压Ui =0.5V ,接入实验电路,再打开K2,然后用直流电压表测量输出电压Uo ,每隔5秒读一次Uo ,记入表2-7-3,直到Uo 不继续明显增大为止。

三、实验报告
⒈ 整理实验数据,画出波形图(注意波形间的相位关系)。

⒉ 将理论计算结果和实测数据相比较,分析产生误差的原因。

⒊ 分析讨论实验中出现的现象和问题。

相关文档
最新文档