华杯总决赛集训讲义(1)
华罗庚总决赛资料
一、计算模块命题特点分析结论1、常考提取公因数与平方差公式在第十三届、十四届华杯赛决赛中都考察到了提取公因数进行速算的方法,这里需要注意的是:计算会往分数计算方面侧重,整数计算涉及的可能性很小;平方差公式的灵活运用需要熟练掌握。
2、注意估算与取整为难点以第十四届华杯赛决赛第9题和第15届华杯赛决赛第8题为例,估算是华杯赛计算中常考的题,对于加减符号交替变化的估算题,一般算式的前几项就决定了整个算式的大概范围。
另外需要说明的是,对于初中下方的知识点取整,也属于估算的内容,这点是杯赛的热门,可能是考察的新方向,同学们需注意。
二、计算模块考察难度及考生获奖需要达到的程度1、考察难度计算题型常常作为第一题,因此难度不会很大,一般为2★难度左右。
对于估算,难度达到了3★,对于估算常用的方法不太熟悉就常常会因此而失分。
2、考生需要达到的程度考生复习的时候,若提取公因数方法与平方差公式运用没太大问题,侧重点可以放在估算与取整上。
要获奖,简单计算题是绝对不能丢分的。
建议以寒假和春季所涉及的关于计算的知识点讲解再重新整理一遍,把华杯赛历年考试所涉及到的估算题挑出来系统的整理一遍,提炼出估算方法及解题心得。
华杯赛考试试题难度在几大权威杯赛中是比较高的,不过我们仔细研究每年的试题,都会发现常见的知识点模块,我们针对性的做复习巩固,相信会取得不错的成绩。
本套试题针对杯赛考试的知识点模块考点,进行分析解答。
以供参考。
本篇为计数问题模块考点分析。
计数模块:一、计数模块命题特点分析结论1、计数在近两年的出题频率降低2008年及以前的华杯赛试题中,计数在每张试卷中大概出现两题左右,所占分值比例较高,但从09、10两年试题来看,计数的题目明显减少,数论中的整数拆分题目数量开始增多。
但为了避免杯赛出现知识点"大年"和"小年"的状况,也避免今年回归到增加计数类型的题目,我们还是把计数中的华杯常考点需要进行梳理。
奥数讲义计数专题:归纳与递推
华杯赛计数专题: 归纳与递推基础知识:1.递推的基本思想: 从简单情况出发寻找规律, 逐步找到复杂问题的解法。
2.基本类型: 上楼梯问题、直线分平面问题、传球法、圆周连线问题。
3.递推分析的常用思路: 直接累加、增量分析、从复杂化归简单。
例题:例1.一个楼梯共有10级台阶, 规定每步可以迈一级台阶或二级台阶.走完这10级台阶, 一共可以有多少种不同的走法?【答案】89种【解答】设n级台阶有an种走法, 则an=an-1+an-21级有1种走法;2级有(1+1和2)2种走法;3级有(1+1+1、2+1和1+2)3种走法;4级有3+2=5种走法;5级有3+5=8种走法;6级有5+8=13种走法;7级有8+13=21种走法;8级有13+21=34种走法;9级有21+34=55种走法;10级有34+55=89种走法例2.小悦买了10块巧克力, 她每天最少吃一块, 最多吃3块, 直到吃完, 共有多少种吃法?【答案】274种【解答】通过枚举法和递推法: 设n块糖有an种走法, 则an=an-1+an-2+ an-31块糖有1种吃法;2块糖有2种吃法; 3块糖有4种吃法; 4块糖有1+2+4=7种吃法; 5块糖有2+4+7=13种吃法; 6块糖有4+7+13=24种吃法; 7块糖有7+13+24=44种吃法; 8块糖有13+24+44=81种吃法;9块糖有24+44+81=149种吃法;10块糖有44+81+149=274种吃法。
例3.用 1×2的小方格覆盖 2×7的长方形, 共有多少种不同的覆盖方法?【答案】21种【解答】2×1的方格有1种盖法;2×2的方格有2种盖法;2×3的方格有2+1=3种盖法;2×4的方格有3+2=5种盖法;2×5的方格有3+5=8种盖法;2×6的方格有5+8=13种盖法;2×7的方格有8+13=21种盖法。
华杯总决赛集训讲义
华杯赛小高总决赛集训队赛前集训讲义—应用题(一)——行程问题【知识点总结】:★行程问题中包括:相遇问题、追及问题、火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
★每一类问题都有自己得特点,解决方法也有所不同,但就是,行程问题无论怎么变化,都离不开“三个量,三个关系”:三个量就是: 路程(s)、速度(v)、时间(t)三个关系:1、简单行程:路程=速度×时间2、相遇问题:路程与=速度与×时间3、追击问题:路程差=速度差×时间把握住这三个量以及它们之间得三种关系,就会发现解决行程问题还就是有很多方法可循得。
【经典例题】:例1.A、B两地相距125千米,甲、乙两人骑自行车分别从A、B两地同时出发,相向而行。
丙骑摩托车以每小时63千米得速度,与甲同时从A第出发,在甲、乙两人之间来回穿梭。
若甲骑车速度为每小时9千米,且当丙第二次回到甲处时,甲、乙两人相距45千米,问:当甲、乙两人相距20千米时,甲与丙相距多少千米?例2.如图,ABCD四个球按顺时针方向均匀分布在周长为48米得圆周上,分别以1米/秒,2米/秒,3米/秒,4米/秒得速度做顺时针运动。
当有两个球碰到一起得时候,两个球交换速度,但运动方向不变,当三个球碰到一起得时候,中间球得速度不变,其她两个球相互交换速度。
请问:从四个球出发开始,经过多少秒四个球第一次同时碰到一起?(不考虑球得半径)例3.如图,A、B两地相距54千米,D就是AB得中点。
甲、乙、丙三人骑车分别同时从A、B、C三地出发,甲骑车去B地,乙骑车去A地,丙总就是经过D之后往甲、乙两人将要相遇得地方骑,结果三人在距离D点5400米得E点相遇。
如果乙得速度提高到原来得3倍,那么丙必须提前52分钟出发三人才能相遇,否则甲、乙相遇得时候,丙还差6600米才到D。
请问:甲得速度就是每小时多少千米?A例5.甲、乙、丙三人同时从山脚开始爬山,到达山顶后立即下山,不断往返运动。
华杯赛培训讲义行程问题
行 程 问 题行程问题为小学和初中数学学习的重要应用问题,在行程问题中,除特别指出外,都假定速度是常数,即匀速运动,匀速运动的基本公式十分简单: 路程=时间⨯速度但是由于路程的多样化,时间前后的差别,以及速度的变化,使得行程问题变得复杂而丰富多彩。
行程问题虽然是实际问题的初级近似,但地,由于它的各色各样的变化,使得中小学的数学知识中的许多知识点能有趣而生动地融汇其中,而成为学生能力培养的有力工具。
在各届华杯赛中,行程问题是各类问题出现频率最高的问题之一。
求解行程问题一般分如下步骤:1。
审题 2。
画示意图 3。
找关键要素 4。
列关系式 5。
分析 6。
给出答案。
下面将通过具体的问题来解释这六个步骤。
行程问题中的方程方法列方程求解行程问题是最通常的方法,也是最为有效的方法。
多数行程问题可以用列方程解方程的方法来求解。
列方程就是上述步骤中第四步中建立一个或几个含有未知数的条件等式,而第五步中的分析就是解方程。
例1.甲、乙二人从相距60千米的两地同时相向而行,6小时后相遇。
如果二人的速度每小时个增加1千米,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人速度个多少?解。
设甲的速度为每小时v 千米。
因为,两人6小时相遇,所以,二人的速度和为10千米。
乙的速度为每小时10-v 千米。
二人的速度个增加1千米,速度和为12千米,因此,需要小时)(51260=相遇。
第一次甲的行程为6v ,第二次甲的行程为5(v +1),相差1千米:.6,1)1(56==+-v v v 答。
二人的速度分别为每小时6千米和每小时4千米。
例2. 快、中、慢三辆车同时从同一地出发, 沿一公路追赶前面一个骑自行车的人,这三辆车分别用6分钟、10分钟、12分钟追上骑自行车的人。
现知快车每小时走24千米,中车每小时走20千米。
那么慢车每小时走多少千米?解。
设自行车速度为每小时v 千米,慢车每小时a 千米,三车出发时自行车在他们前面L 千米。
华杯赛金牌班讲义(黑白10本)
行程部分例1小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条路所用的时间一样多.已知下坡的速度是平路的1.6倍,那么上坡的速度是平路速度的多少倍?例2甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.模拟考试题1,11点从上海开车去南京,原计划中午11:30到达.但出发后车速提高了7钟就到了.第二天返回,同一时间从南京出发.按原速行驶了120千米后,再1,到达上海时恰好11:10.上海、南京两市的路程是多少千米?将车速提高6拓展小李和小张在一个圆形跑道上匀速跑步,两人同时同地出发,小李顺时针跑,每72秒跑一圈;小张逆时针跑,每80秒跑一圈。
在跑道上划定以起点为中心的四分之一圆弧区间,那么两人同时在划定的区间内所持续的时间是多少秒?几何部分模拟考试题如图,相邻两个格点间的距离是1,则图中阴影三角形的面积为___________.例3在下图中,线段AE、FG将长方形ABCD分成了四块;已知其中两块的面积分别是2cm²、11cm²,且E是BC的中点,O是AE的中点;那么长方形ABCD的面积是多少?例4已知四边形ABCD,CHFG 为正方形,8:1 乙甲:S S ,a 与b 是两个正方形的边长,求a:b=?乙甲b aG H O FE D C BA数论部分例5以105为分母的最简真分数共有多少个?它们的和为多少?模拟考试题一个圆上有12个点A1,A2,A3,…,A11,A12.两两相连,会有6条直线,要求任意两条线段不相交.问共有多少种不同的连法?例6现用红、黄、蓝、绿四种颜色为下面的正多边形染色,要求相邻区域不同色。
那么(1)图1有几种染色方法?图2有几种染色方法?(2)你能否用第(1)问的研究结果推测图3、图4的染色方法数?(3)正n边形按上述图形规律划分成n个区域,有几种染色方式?(提示:观察数列3、9、27、81、243··……)例7策略问题100个囚犯从前往后坐成一列,看守给每个囚犯戴上一顶黑色的或者白色的帽子,每人只能看到前面的人的帽子,看不到自己及后面的人的帽子.然后,看守会从后往前依次叫这些囚犯猜测自己头顶上的帽子的颜色.如果哪个囚犯猜对了,他就自由了.坐在前面的每一个囚犯都可以听到后面的囚犯的猜测.如果这100个囚犯事先可以商量好一种策略,那么最理想的策略可以保证__________人被释放.例8游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?华杯赛真题如图,两只蜘蛛同处在一个正方体的顶点A,而一只爬虫处在A的体对顶点G.假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动,任何时候它们都知道彼此的位置,蜘蛛能预判爬虫的爬行方向.试给出一个两只蜘蛛必定捉住爬虫的方案.。
华杯赛集训1
“华杯赛”集训题(1)一、填空题(每小题10分,共60分)1.已知a 、b 、c 都不等于零,且c c b b a a m ||||||++=,||abc abcn =,则n m +的值等于 . 2.已知a 与b 互为相反数,且54||=-b a ,那么12+++-ab a bab a = .3.在一个乘法幻方中,每一行数之积、每一列数之积、对 角线上的数之积都相等.如果在右图的空格中填上正数,构成一 个乘法幻方,那么x 的值是 .4.有一只手表每小时比准确时间慢3分钟,若在清晨4∶30与准确时间对准,则当天上午手表指示的时间是10∶50,准确时 (第3题) 间应该是 .5.如图,三角形ABC 的面积为1,BD ∶DC=2∶1,E 为AC 的中点,AD 与BE 相交于P ,那么四边形PDCE 的面积为 .6.观察下面的算式:0000-=⨯,211211-=⨯,…. (第5题)根据算式反映出的规律,再写出满足这个规律的两个算式: , . 二、解下列各题(每小题10分,共60分)7.某商店有A 种练习本出售,每本零售为0.30元,一打(12本)售价为3.00元,买10打以上的,每打还可以按2.70元付款.(1)初二(1)班共57人,每人需要1本A 种练习本,则该班集体去买时,最少需要付多少元? (2)初三年级共227人,每人需要1本A 种练习本,则该年级集体去买时,最少需付多少元?8.如果a 、b 为定值,关于x 的方程6232bkx a kx -+=+,无论k 为何值,它的根总是1,求a 、b 的值.PED C B A9.甲种混合液由柠檬汁、油和醋以l ∶2∶3的比例配成,乙种混合液由同样三种液体以1∶3∶6的比例配成,将两种混合液倒在一起后,能否调制成比例为(1)2∶3∶6;(2)2∶5∶9;(3)5∶13∶22的混合液吗? 若能,请指出调制的方法;若不能,请说明理由.10.某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟.若每小时行18千米,则比火车开车时间迟到15分钟.现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度.11.把一根1m 长的金属线材,截成长为23cm 和13cm 的两种规格,用怎样的方案截取 材料利用率最高?求出最高利用率.(利用率=%100 原材料长度实际利用材料长度,截口损耗不计).12.将编号为1,2,3,4,5的5个小球放入编号为1,2,3,4,5的5个盒子中,每个盒子中只放入一个. (1)一共有多少种不同的放法?(2)若编号为1的球恰好放在1号盒子中,共有多少种不同的放法?(3)若至少有一个球放入了同号的盒子中(即对号放入)共有多少种不同的放法?参考答案一、填空题1.0,±4.2.254. 3.7.2.4.11∶10.设标准时间经过了x 小时,则60)65105.4(3⨯-+=x x ,解得=x 6小时 40分.5.307. 6.322322-=⨯;433433-=⨯.若用x 、y 表示这两个数,算式反映的规律可以表示为y x xy -=.从而,有x x y +=1.取2=x ,则32=y ;取3=x ,则43=y . 二、解下列各题7.(1)可买5打或4打加9本,前者需付款3.00×5=15.00,后者只需付款3.00×4+0.3×9=14.7元.故该班集体去买时,最少需付14.7元.(2)227=12×18+11,可买19打或18打加11本,前者需付款2.70×19=51.3;后者需付款2.70×18+0.3×11=51.9元,比前者还要多付0.6元.故该年级集体去买,最少需付51.3元.8.因为方程6232bk x a kx -+=+的根是1,所以61232bka k -+=+. 整理,得 a k b 213)4(-=+.上式对任意的k 值均成立,即关于k 的方程有无数个解.故04=+b 且0213=-a ,解得213=a ,4-=b . 9.设调制成的混合液中,甲、乙两种液体的比例为a ∶b ,则调制成的混合液中柠檬汁、油和醋的比为)10161(b a +∶)10362(b a +∶)10663(b a +. (1)若)10161(b a +∶)10362(b a +∶)10663(b a +=2∶3∶6,则⎪⎪⎩⎪⎪⎨⎧+=++=+),10663(3)10362(6),10362(2)10161(3b a b a b a b a 解得⎩⎨⎧==.0,0b a 不合题意,故不能调制比例为2∶3∶6的混合液. (2)若)10161(b a +∶)10362(b a +∶)10663(b a +=2∶5∶9,则 ⎪⎪⎩⎪⎪⎨⎧+=++=+),10663(5)10362(9),10362(2)10161(5b a b a b a b a 即b a 10161=,∴a ∶b =3∶5. 故能调制成比例为2∶5∶9的混合液,这时甲、乙两种液体的比为3∶5.(3)若)10161(b a +∶)10362(b a +∶)10663(b a +=5∶13∶22,则 ⎪⎪⎩⎪⎪⎨⎧+=++=+),10663(13)10362(22),10362(5)10161(13b a b a b a b a 解得 0==b a ,不合题意,故不能调制比例为5∶ 13∶22的混合液.10.设此人从家里出发到火车开车的时间为x 小时,由题意得:)6015(18)6015(30+=-x x ,解得1=x . 此人打算在火车开车前10分钟到达火车站,骑摩托车的速度为:2760101)60151(306010)6015(30=--=--⨯x x (千米/时). 答:此人此时骑摩托车的速度为千米/时.11.设1m 的金属线材截取长为23cm 的线材x 根,截取长为13cm 的线材y 根,则材料 的利用率%1001001323⨯+=yx p .由题意,知y x 1323+≤100,0≤x ≤4,0≤y ≤7,x 、y 都是整数,且y x 1323+尽可能接近100. 当4=x 时,0=y ,%92=p ; 当3=x 时,2=y ,%95=p ; 当2=x 时,4=y ,%98=p ; 当1=x 时,5=y ,%88=p ; 当0=x 时,7=y ,%91=p .可见将1m 长的金属线材,截成23cm 的2根,13cm 的4根时,材料利用率最高,最高利用率为98%. 12.(1)将第一个球先放入, 有5种不同的放法;再放入第二个球,这时有4种放法;依次类推,放入第三、第四、第五个球时,分别有3、2、1种放法,抽以总共有5×4×3×2×1=120种不同的放法.(2)将1号球放在1号盒子中,其余的4个球随意放,它们依次有4、3、2、1种不同的放法,这样共有4×3×2×1=24种不同的放法.(3)分4种情况考虑:①有且只有一个球对号放入:先从5个球中选定一个球,有5种选法,将它放入同号的盒子中(如将1号球放入1号盒子),其余4个球均不对号放入,有9种不同的放法,这样共有5×9=45种不同的放法.②有且只有2个球对号放入:先从5个球中选定2个球有10种选法,将它们放入同号的盒子中(如将1号球和2号球分别放入1号盒子和2号盒子),其余的3个球均不对号放入,有2种不同的放法,这样共有10×2=20种不同的放法.③有且只有3个球对号放入:先从5个球中选定3个球有10种选法,将它们放入同号的盒子中(如将1号球、2号球、3号球分别放入1号盒子、2号盒子、3号盒子),其余的2个球均不对号放入,有1种不同的放法,这样共有10×1=10种不同的放法.④5个球均对号放入,这时共有1种不同的放法.综上可知:至少有一个球放入了同号盒子中一共有45+20+10+1=76种不同的放法.。
成都华杯赛课程讲义(B)
成都华杯赛课程讲义(B )主要内容:计数、几何、数论【例1】(2009年第十四届“华罗庚金杯赛”初赛)按照中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5,那么,可供每支球队选择的号码共( )个.【分析】 根据题意,可供选择的号码可以分为一位数和两位数两大类,其中一位数可以为0~9,有10种选择;两位数的十位可以为1~5,个位可以为0~5,根据乘法原理,两位数号码有5630⨯=种选择.所以可供选择的号码共有103040+=种.【巩固】一种电子表在6时24分30秒时的显示为6:2430,那么从5时到7时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【分析】 设DE A:BC 是满足题意的时刻,有A 为6,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26A 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27A 种选法,所以共有26A ×27A =1260种选法;A 为5,B 、D 应从0,1,2,3,4,这5个数字中选择两个不同的数字,所以有25A 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27A 种选法,所以共有25A ×27A =840种选法,因此一共有12608402100+=个【例2】(2008年第十三届“华罗庚金杯赛”初赛)已知图中是一个轴对称图形.若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称的新图形共有( )个.(A)9 (B)8 (C)7 (D)6【分析】 原图是一个轴对称图形,且对称轴只有1条,那么去掉图中的某些黑色图形后,剩下的轴对称图形的对称轴与原图的相同.阴影5部分中去掉1个,有1种情况;阴影5部分去掉2个,有2种情况;阴影5部分去掉3个,有2种情况;阴影5部分中去掉4个,有1种情况;阴影5部分中去掉5个,有1种情况;所以共7种情况,答案为C .EDA BC 计数另解:如右图,将阴影5部分标上字母,则A 和B 关于对称轴对称,C 部分单独关于对称轴对称,D 和E 关于对称轴对称,所以,如果要去掉某些黑色部分图形,则A 和B 必须同时去掉或保留,C 既可去掉也可保留,D 和E 必须同时去掉或保留,对这3组每组都有去掉或保留2种选择,共有2228⨯⨯=种选择,但是其中有种情况5部分都没有去掉的情况,这样情况应予排除,所以符合条件的情况共有817-=种.【例3】在图中15⨯的格子中填入1,2,3,4,5,6,7,8中的5个数,要求填入的数各不相同,并且填在黑格里的数比它旁边的两个数都大.共有 种不同的填法.【分析】 首先看填入1、2、3、4、5这五个数的情况.由于黑格里的数至少比两个数大,所以至少为3;而白格里的数不能是最大的,所以5必须在黑格里.那么这五个数填在黑格里的数是5和4时,不同的填法有2!3!12⨯=(种);填在黑格里的数是5和3时,4只能在5的一侧,不同的填法有224⨯=(种).所以,共有不同填法12416+=(种).而要将填入的五个数选出来,一共有58C 56=种,然后按照分析1~5这5个数的方法对应着数的相对大小来分析选出来的五个数,也各有16种填法,所以一共有:5616896⨯=种填法.【巩固】在图23-5的空格内各填入一个一位数,使同一行内左边的数比右边的数大,同一列内下面的数比上面的数大,并且方格内的6个数字互不相同,例如图23-6就是一种填法。
华杯赛初赛备考学生讲义(小学中年级组)
华杯赛初赛备考学生讲义(小学中年级组)第一节几何精讲考点概述几何考点一、基本面积公式;(长方形、正方形、三角形、平行四边形、梯形、圆、扇形)二、割补法计算面积;三、等积变换;四、周长的计算;(基本公式、平移法、标向法)五、角度的计算;(多边形内角和、外角和、角度的综合计算)六、勾股定理与弦图;七、立体几何认知.(展开图、三视图)真题精讲例题1. 如右图,一张长方形的纸片,长20 厘米,宽16 厘米.如果从这张纸上剪下一个长10 厘米,宽5 厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米(2010 年15 届)(A)72 (B)82 (C)92 (D)102例题2. 九个同样的直角三角形卡片,拼成了如右图所示的平面图形.这种三角形卡片中的两个锐角较大的一个是度.(2013 年18 届)练习1. 北京时间16 时,小龙从镜子里看到挂在身后墙上的4 个钟表(如下图),其中最接近16 时的是().(2012 年17 届)(A)(B)(C)(D)练习2. 把一块长90 厘米,宽42 厘米的长方形纸板恰无剩余地剪成边长都是整数厘米、面积都相等的小正方形纸片,最少能剪出块,这种剪法剪成的所有正方形纸片的周长之和是厘米.(2012 年17 届)练习3. 如右图,一个正方形被分成了4 个相同的长方形,每个长方形的周长都是20 厘米.则这个正方形的面积是()平方厘米.(2013 年18 届)练习4. 如下图,将长度为9 的线段AB 九等分,那么图中所有线段的长度的总和是.(2013 年18 届)例题3. 现有一个正方形和一个长方形,长方形的周长比正方形的周长多4 厘米,宽比正方形的边长少2 厘米,那么长比正方形的边长多()厘米.(2014 年19 届)(A)2(B)8(C)12(D)4例题4. 右图中的正方形的边长为10,则阴影部分的面积为()(A)56 (B)44 (C)32 (D)78(2014 年19 届)练习5. 如图1 所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N,减掉△MBN 得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是.(2006 年11 届)D C D CN NA MB A MA DG F 练习6. 正方形ABCD 与正方形CEFG 水平放置组成如图所示的组合图形,已知该组合图形的周长是56 厘米,DG 长2 厘米,那么,图中阴影三角形的面积是平方厘米. B C E1 A B C2 D练习7. 如图,在一个正方体的表面上写着 1 至 6 这 6 个自然数,并且 13对着 4,2 对着 5,3 对着 6.现在将正方体的一些棱剪开,使它的表面12展开图如下右图所示.如果只知道 1 和 2 所在的面,那么 6 写在字母的位置上.练习8. 如图一个小正方形和 4 个周长为 32 cm 的相同的长方形拼成一个大正方形,那么大正方形的面积是cm 2 .第二节应用题精讲考点概述应用题考点一、常考应用题类型1. 画线段图帮助解题2. 列方程解应用题二、行程问题:1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇与追及问题等)2. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件)3. 方程与比例解行程问题真题精讲例1.小虎在19×19 的围棋盘的格点上摆棋子,先摆成了一个长方形的实心点阵.然后再加上45 枚棋子,就正好摆成一边不变的较大的长方形的实心点阵.那么小虎最多用了()枚棋子.(2012 年17 届)例2.幼儿园的老师给班里的小朋友送来55 个苹果,114 块饼干, 83 块巧克力.每样都平均分发完毕后,还剩3 个苹果,10 块饼干,5 块巧克力.这个班最多有位小朋友.(2013 年18 届)练习1.两个正整数的和小于100,其中一个是另一个的两倍,则这两个正整数的和的最大值().(2014 年19 届)(A)83 (B)99 (C)96 (D)98练习2.三堆小球共有2012 颗,如果从每堆取走相同数目的小球以后,第二堆还剩下17 颗小球,并且第一堆剩下的小球数是第三堆剩下的2 倍,那么第三堆原有颗小球.(2012 年17 届)例3.张老师每周的周一、周六和周日都跑步锻炼20 分钟,而其余日期每日都跳绳20 分钟.某月他总共跑步5 小时,那么这个月的第10 天是().(2013 年18 届)(A)周日(B)周六(C)周二(D)周一例4.新生开学后去远郊步行拉练,到达A 地时比原计划时间10 点10 分晚了6 分钟,到达C 地时比原计划时间13 点10 分早了6 分钟,A、C 之间恰有一点B 是按照原计划时间到达的,那么到达B 点的时间是().(2014 年19 届)(A)11 点35 分(B)12 点5 分(C)11 点40 分(D)12 点20 分练习5.体育馆正在进行乒乓球单打、双打比赛,双打比赛的运动员比单打的运动员多4 名,比赛的乒乓球台共有13 张,那么双打比赛的运动员有名.(2012 年17 届)练习6.麦当劳的某种汉堡每个10 元,这种汉堡最近推出了“买二送一”的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡.已知东东和朋友需要买9 个汉堡,那么他们至少需要花元钱.练习7.小张早晨8 点整从甲地出发去乙地,速度是每小时60 千米.早晨9 点整小王从乙地出发去甲地.小张到达乙地后立即沿原路返回,恰好在12 点整与小王同时到达甲地.那么两人相遇时距离甲地千米.课后练习1. 魔法学校运来很多魔法球,总重量多达5 吨,一颗魔法球重4 千克,现在有10 名学员使用魔法给这些魔法球涂色,每人每6 分钟可以给5 颗魔法球涂色,那么他们涂完所有魔法球最少要用分钟.2. 四个海盗杰克、吉米、汤姆和桑吉共分280 个金币.杰克说:“我分到的金币比吉米少11 个,比汤姆多15 个,比桑吉少20 个.”那么,桑吉分到了个金币.3. 某校三年级和四年级各有两个班.三年级一班比三年级二班多4 人,四年级一班比四年级二班少5 人,三年级比四年级少17 人,那么三年级一班比四年级二班少人.4. 2010 名学生从前往后排成一列,按下面的规则报数:如果某个同学报的数是一位数,后面的同学就要报出这个数与8 的和;如果某个同学报的数是两位数,后面的同学就要报出这个数的个位数与7 的和.现在让第一个同学报1,那么最后一个同学报的数是.5. 骆驼有两种:背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼.单峰骆驼比较高大,四肢较长,在沙漠中能走能跑;双峰骆驼四肢粗短,更适合在沙砾和雪地上行走.有一群骆驼有23 个驼峰,60 只脚,那么双峰驼有匹.6. 红星小学组织学生参加队列演练,一开始只有40 个男生参加,后来调整队伍,每次调整减少3 个男生,增加2 个女生,那么调整次后男生女生人数就相等了.7. 甲,乙,丙三人锯同样粗细的木棍,分别领取8 米、10 米、6 米长的木棍,要求都按2 米的规格锯开.劳动结束后,甲、乙、丙分别锯了24、25、27 段,那么锯木棍次数最多的比次数最少的多锯次.8. 一堆糖果有50 块,小明和小亮玩游戏.小明每赢一次拿5 块糖,然后吃掉4 块,将剩下的1 块放到自己的口袋里;小亮每赢一次也拿5 块糖,然后吃掉3 块,将剩下的2 块放到自己的口袋里.游戏结束时,糖刚好被拿完,这时小亮口袋里的糖数恰好是小明口袋里的糖数的3 倍,那么两人一共吃掉了块糖.课后作业:1. 在下面的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.(2013 年18 届)(A)(B)(C)(D)2. 下面的表情图片中,没有对称轴的个数为().(A)3(B)4(C)5(D)6(2009 年14 届)3. 题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C 处填的数各是、、.(2004 年9 届)提示:注意相对两个面展开后的位置.C 2B 1A 44. 一块长方形的木板,长为90 厘米,宽为40 厘米,将它锯成2 块,然后拼成一个正方形,你能做到吗?请画出分割线.(2004 年9 届)提示:阶梯形.5. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有()条直线互相平行.(A)0 (B)2(C)3 (D)4(2014 年19 届)6. 如图,有两个小正方形和一个大正方形,大正方形的边长是小正方形边长的2倍,阴影部分三角形面积为240,请问三个正方形的面积和是.67. 如图所示,相邻的每两条边都互相垂直,长度如图所示,则这个图形的周长为厘米.83 258. 图中的方格纸中有五个编号为1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是().(A)1,2 (B)2,3 (C)3,4 (D)4,5(2012 年17 届)第三节数字谜、计数、组合精讲考点概述数字谜考点:1. 填竖式问题的一些方法:(1)加数相加时每进1 位,和的数字和将比加数的数字和减少9.(2)与各个数位上的数字有关的问题,往往需要多次尝试才能得到结果.2. 填横式问题:横式中的填空格和字母破译问题;熟练应用尾数分折、首位估算、分情况试算等方法;对于较复杂的题目,从约束条件较多、可能性较少的算式入手;某些横式问题,可以转化为竖式问题再求解.3. 幻方与数阵图、数独问题:掌握幻方的概念,了解三、四阶幻方的构造;解决具有与幻方类似性质的数阵图问题;进一步掌握重数的运用,填充较复杂的数阵图;利用重数计算处理数阵图中的最值问题.计数考点:1. 枚举法(分类、有序)2. 加乘原理(加法,分类;乘法,分步)组合考点:1. 各种与数字计算有关的最值问题.在枚举试算的过程中,注意寻找出大小变化的规律,并尝试分析其内在原因;学会用比较、调整的方法寻找最值情况.2. 逻辑推理:(1)一句话不是真话,就是假话.这在逻辑学中被称为排中律.(2)在应用假设法分析问题时,要考虑全面.既要考虑到所假设的条件成立的情况,还要考虑到条件不成立的情况.(3)对于条件复杂的逻辑推理问题,通常状况下都可以通过列表法分析.真题精讲例1.右图的计数器三个档上各有10 个算珠,将每档算珠分成上下两部分,按数位得到两个三位数,要求上面的三位数的数字不同,且是下面三位数的倍数,那么满足题意的上面的三位数是.(2012 年17 届)练习1.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立时,贺+新+春=().(2012 年17 届)(A)24 (B)22 (C)20 (D)18放鞭炮+ 迎龙年贺新春练习2.如图所示的两位数加法算式中,已知A +B +C +D = 22 ,则X +Y =().(2012 年17 届)(A)2 (B)4 (C)7 (D)13例2.甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有()种不同的围坐方法.(2014 年19 届)(A)10 (B)8 (C)12 (D)16例3.在一个平面上,用若干个单位长度的木棍可以摆出由多个正方形相邻的图形,右图是一示例.现在用20 根单位长的小木棍摆出一个图形,要求除第一行的方格外,下面几行方格构成一个长方形,那么这样的图形中最多有个单位边长的正方形.(2014 年19 届)练习3.用8 个3 和1 个0 组成的九位数有若干个,其中除以4 余1 的有()个.(2014 年19 届)(A)5 (B)6 (C)7 (D)8例4.牧羊人用15 段每段长2 米的篱笆,一面靠墙围成一个正方形或长方形羊圈,则羊圈的最大面积是()平方米.(2012 年17 届)(A)100 (B)108 (C)112 (D)122练习4.小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对.他们之中只有一个人说对了,这个人是().(2013 年18 届)(A)小东(B)小西(C)小南(D)小北练习5.平面上有四个点,任意三个点都不在一条直线上.以这四个点为端点连接六条线段,在所组成的图形中,最少可以形成()个三角形.(2012 年17 届)(A)3 (B)4 (C)6 (D)8练习6.在10□10□10□10□10 的四个□中填入“+”、“-”、“×”、“÷”运算符号各一个,所成的算式的最大值是().(2012 年17 届)(A)104 (B)109 (C)114 (D)119练习7.五个小朋友A、B、C、D 和E 参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的选手编号牌,5 个编号之和等于35.已知站在E、D、A、C 右边的选手的编号的和分别为13、31、21 和7.那么A、C、E 三名选手编号之和是.(2014 年19 届)练习8.用右图的四张含有4 个方格的纸板拼成了右图所示的图形.若在右下图的16 个方格分别填入1、3、5、7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A、B、C、D 四个方格中数的平均数是.(2014 年19 届)课后练习1. 四位数中,数码0 出现次.2. 从1,2,3,4,5,6,7 中选择若干个不同的数(所选数不计顺序),使得其中偶数之和等于奇数之和,则符合条件的选法共有种.3. 将10,15,20,30,40 和60 填入右图的圆圈中,使A、B、C 三个小三角形顶点上的3 个数的积都相等.相等的积最大为.4. 用3、5、6、18、23 这五个数组成一个四则运算式,得到的非零自然数最小是.5. 小明在正方形的边上标出若干个点,每条边上恰有3 个,那么所标出的点最少有()个.(A)12 (B)10 (C)8 (D)66. 如图,5 5的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4 3各两个,那么,表格中所有数的和是. 1 2442137. 甲、乙、丙、丁获得了学校创意大赛的前4 名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙:“我的名次和丙相邻”;丙:“我既不是第二,也不是第三”;丁:“我的名次和乙相邻”.现在知道,甲、乙、丙、丁分别获得第A、B、C、D 名,并且他们都是不说慌的好学生,那么四位数ABCD =.8. A、B、C 三人在猜一个1~99 中的自然数.A:“它是偶数,比6 小.”B:“它比7 小,是个两位数.”C:“A 的前半句是对的,A 的后半句是错的.”如果这3 人当中有1 人两句都为真话,有1 人两句都为假话,有1 人两句话一真一假.那么,这个数是.。
001华杯赛辅导一计算与数论(学生版)
右式中不同的汉字代表 l 一 9 中不同的数字,当算式成立时,“中国”这两 个汉字所代表的两位数最大是多少?
本站网址: www.aoshuwang.net 热线:010-62139920 68180791 水木 中小学权威培优! 第 1 页 共 4 页
4、华杯赛网址是 www.huabeisai.cn,将其中的字母组成如下算式:
www+hua+ bei+sai+cn=2008.
如果每个字母分别代表 0 ̄9 这十个数字是的一个,相同的字母代表相同的数
字,不同的字母代表不同的数字,并且 w=8,h=6,a=9,c=7,则三位数bei
的最小值是 。
(A)6 (B)5 (C)8 (D)10 例 2:【第 12 届华杯赛决赛第 4 题】 48 名少先队员选中队长,候选人是甲、乙、丙三人,开票中途累计.甲得 13 票,乙得 10 票,丙得 7 票.得票多的人当选,则以后甲至少要再得 ( )票才能当选. (A)7 (B)8 (C)9 (D)10
表示法?
3、 约数与倍数:
例 1:【第 15 届华杯赛初赛第 5 题】 恰有 20 个因数的最小自然数是( )。 (A)120 (B)240 (C)360 (D)432 例 2:【第 12 届华杯赛初赛第 7 题】 如图,某公园有两段路 AB=175 米,BC=125 米,在这两段路上安装路灯,要 求 A,B,C 三点各设一个路灯,相邻两个路灯间的距离都相等。则在这两段 路上至少要安装路灯________个.
本站网址:www.aoshuwang.net 答疑热线:(吕老师)15101196520 15510323928 水木 中小学权威培优! 第 3 页 共 4 页
奥数讲义数论专题:3质数与合数
华杯赛数论专题:3质数与合数基础知识:1•质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.1不是质数也不是合数,2是唯一的偶质数,3是最小的奇质数.除了2其余的质数都是奇数:除了2和5,其余的质数个位数字只能是1,3, 7, 9.2. 判断一个数是否为质数的方法根据泄义如果能够找到一个小于尸的质数q (均为整数),使得q能够整除尸,那么F就不是质数,所以我们只要拿所有小于尸的质数去除尸就可以了;但这样的计算量很大,对于不太大的尸,可以先找一个大于且接近尸的平方数疋$ ,再列出所有不大于K的质数,用这些质数去除尸,如果没有能除尽的,那么尸就为质数.3. 唯一分解定理每个大于1的自然数均可以分解为有限个素数的乘积,并且具有唯一(不计次序变化)的素数分解形式.例题例1.自然数川是一个两位数,它是一个质数,而且A•的个位数字与十位数字都是质数,这样的自然数有几个?【答案】23, 37, 53, 73.【解答】首先,个位数字不能是0, 2, 4, 6, 8, 5,十位数字只能是3, 7,所以满足要求的两位数有四个:23, 37 , 53 , 73.例2.把质数373拆开(不改变各数字间的顺序),所有的可能只有3, 7, 37, 73这四个数,它们都是质数.请找岀所有具有这种性质的两位和两位以上的质数.【答案】23, 37, 53, 73, 373【解答】用排除法,在所找的数中,各个数位上都不能出现0, 1, 4, 6, 8和9,否则拆成一位数时将出现这六个数,都不是质数.期外除首位外,各位数字都不能出现2和 5.因此,可采用的数字只有3, 7, 2, 5,其中2, 5只能出现在首位,并且同一个数字不能连续岀现.经检验,满足题意的数只有五个:23, 37, 53, 73和373.例3.老师想了一个三位质数,各位数字都不相同.如果个位数字等于前两个数字的和,那么这个数是几?【答案】167、257、347、527或617中间的任意一个【解答】因为是质数,所以个位数不可能为偶数0, 2 , 4 , 6 , 8.也不可能是奇数5.如果末位数字是3或9,那么数字和将是3或9的两倍,因而能被它们整除,就不是质数了.所以个位数只能是7.这个三位数可以是167、257、347、527或617中间的任意一个.例4.连续的九个自然数中至多有几个质数?为什么?【答案】4个【解答】如果连续的9个自然数在1到20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7).如果这连续的9个数中最小的不小于3,那么其中的偶数显然为合数,而其中的奇数的个数最多有5个.这5个奇数中必泄有一个个位数是5,因而该数为合数.这样,至多另外4个奇数都是质数.综上,连续9个数中最多有4个质数.例5.三个质数的乘积恰好等于它们和的11倍,求这三个质数.【答案】2, 11, 13或3, 7, 11【解答】设三个不同质数是扒b、e因为= + b + ,所以&、b、c中,必左有一个质数是11,不妨设a=ll,贝IJ bxc = U+b+c故可得<I>b</I>=2, c二13,或<I>b</I>=3, c二7,所以三个质数是2, 11, 13或3, 7, 11.例6.质数月、B、C、。
华杯讲义
2015 年华杯初赛冲刺班·高年级组·习题册解析
人.
若已知全班共有女生 31 人,那么有直尺的女生有 【考点】计算
【分析】设三角板男 a 人,三角板女 b 人,直尺男 c 人,直尺女 d 人;则有:
a b c d 50 c d 28 d 14 31 28 50 23 人 a 14 b d 31
5
学而思培优北京分校∙小学理科教研组
2015 年华 华杯初赛冲刺 刺班·高年级 级组·习题册 册解析
【考点】几何 【分析】将 将阴影部分进 进行如图所示 示的分割,分 分割后恰好可 可以拼接到一 一个等边三角形中(如图) ,这个三 角形是大正六边形 形的六分之一 一,因此阴影 影部分的面积 积为 720
24 1.8 平方厘米 4
15. 如右图所示,梯形 ABCD 的面积为 117 平方厘米, AD∥BC , EF = 13 厘米, MN = 4 厘米,又已
知 EF⊥MN 于 O,那么阴影部分的总面积为_________平方厘米.
A M
E O
D N
B
【出处】第十六届华杯赛高年级组初赛第 9 题 【答案】65 【分析】四边形 ENFM 的面积为:
9.
(13 届华杯初赛) 如图所示,甲车从 A,乙车从 B 同时相向而行,两车第一次相遇后,甲车继续行驶 4 小时到达 B, 而乙车只行驶了 1 小时就到达 A,甲乙两车的速度比为 .
【答案】1:2 【分析】设甲、乙的速度分别为; v甲 和 v乙 ,则 BC 4v甲 , AC v乙 , 根据相遇时时间相等列式:
2015 年华杯初赛冲刺班·高年级组·习题册解析
高年级组习题册
1. 分数计算
第十六届全国“华罗庚金杯”少年数学邀请赛总决赛
第十六届全国“华罗庚金杯”少年数学邀请赛总决赛数学文化节方案一、指导思想第十六届全国“华罗庚金杯”少年数学邀请赛总决赛数学文化节旨在传承华罗庚精神,引导青少年热爱数学,立志成才。
让青少年在活动中感受数学与生活的自然融合,感受数学的奇巧和缜密。
在活动中提升思维、在挑战中享受快乐。
让数学不仅成为智者的游戏,更成就游戏者的智慧。
二、活动主题快乐与数学同行,智慧随思维生长三、活动目的以丰富多彩、趣味纷呈的数学活动为载体,让学生充分感受数学文化,品味数学魅力。
激发学生“爱数学,数学有无尽的乐趣;学数学,数学有无穷的奥妙;用数学,数学有无限的未来”的热情。
四、活动时间2011年7月24日上午9:00---11:30五、活动地点惠州市华罗庚中学六、活动内容及时间安排(一)华罗庚足迹1、参观华罗庚纪念馆负责人:龙静瑶2、华罗庚事迹循环播放负责人:易舒婷(二)数学文化展示1、分“数学之史、数学之美、数学之思、数学之用、数学之语”五个主题布置展板。
地点:华罗庚广场解说:数学社学生负责人:戴辉2、数学文化节优秀宣传语展、数学文化节优秀会标展、数学海报展。
负责人:张启龙实施:由数学社征集数学文化节宣传语和数学文化节会标,集训部、高一和高二开展数学海报比赛3、活动主题展板、活动内容展板、悬挂宣传条幅(每一个游戏场地一条标语)和彩旗。
负责人:刘卫忠4、数学PPT图片和学校简介(电脑播放)(高一阶梯教室)负责人: 熊伟(三)数学智慧活动数学智慧活动九项(专家讲座除外)若晴天则全部放在华罗庚广场举行,各摊位图附后:数学智慧活动九项(专家讲座除外)若雨天则活动地点如下:七、华杯赛数学文化节活动指南(见附件一)八、组织机构和保障措施(一)成立华杯赛数学文化节领导小组市教育局分管领导:骆平书记组长:戴立波副组长:吴永丹、宋词、黄进添、姜前勇、涂光峰成员:戴辉、杨永强、范恩辉、李京华、陈翰生、谢林海、张毅、丁志勇、刘卫忠、周淼淼、甄红、韩荣兰、张启龙、解凤英、陈冠宁、黄伟周、陈倬飞、黎润秋、刘宝林、陈宇祥、曾中华、向才兵、罗衾、何小华、袁劲竹、游兆龙、汪毅刚、吉世龙、钟跟、石丹慧、左静、谭卉、张丽君宣传接待:杨永强、陈翰生、周淼淼、凌丽聪保卫:杨永强、黄伟周及护校队成员音响:谢林海、张毅、熊伟、曾雨挺奖品:张启龙、吉世龙、熊伟、林惠琦(二)第十六届华杯赛数学文化节所需材料清单(见附件二)、所需奖品清单(见附件三)。
华杯赛初赛备考讲义含解析(小学高年级组)
, , , , 华杯赛初赛备考讲义含解析(小学高年级组)第一节 计算、几何精讲考点概述计算考点 一、整数、小数、分数的基本计算; 二、整数、小数、分数的常见巧算方法;(凑整、抵消、约分、提取公因数、裂项) 三、分数比较大小;(通分子、通分母、通分差、取倒数) 四、分数与循环小数.(纯循环小数化分数、混循环小数化分数)几何考点 一、基本面积公式;(长方形、正方形、三角形、平行四边形、梯形、圆、扇形) 二、割补法计算面积;三、等积变换; 四、各类几何模型;(等高模型、蝴蝶模型、共角模型、一半模型、沙漏模型、金字塔模型、燕尾模型等) 五、勾股定理与弦图; 六、立体几何.(基本公式、展开图、三视图)真题精讲例题1. 将 5.425 ⨯ 0.63 的积写成小数形式是.(2007 年 12 届)【答案】 3.4180 .【解答】 5.425=5425 = 5420 ,所以 5.425 ⨯ 0.63= 5420 ⨯ 63 = 34146 =34176 ,999 999 999 100 9990 9990而 4176 =1 ⨯ 4176 =1 ⨯ 4 180 =1⨯ 4.180 = 0.4180 ,所以 5.425 ⨯ 0.63 = 3.4180 . 9990 10 999 10 999 10例题2. 从 1 1 1 1 1中去掉两个数,使得剩下的三个数之和与 6最接近,去掉的两个数是 ().2 3 4 5 67(A ) 1 , 1 (B ) 1 , 1 (C ) 1 , 1 (D ) 1 , 1(2010 年 15 届)25263534【答案】D . 【解答】通分1 = 210 , 1 = 140 , 1 = 105 , 1 = 84 , 1 = 70 , 6 = 360 .2 4203 4204 4205 4206 4207 420显然,210+84+70=364 最接近 360.练习1. 2012.25 ⨯ 2013.75-2010.25 ⨯ 2015.75=.(2013 年 18 届)2 , 2 , 2 , 2 , 2 , 2 ,…,而 1 = 2,所以从23 5 7 9 11 13 1000 20002001 【答案】7.【解答】记 x =2010.25,y = 2013.75,则原式= (x + 2) y - x ( y + 2) = 2( y - x ) = 7 .练习2. 两数之和与两数之商都为 6,那么这两数之积减这两数之差(大减小)等于()(2011 年 16 届)(A ) 26 4 (B ) 5 1 (C ) 6 (D ) 67 7 7 49 【答案】D .【解答】设两数分别为 x 与 6x ,那么 7x =6,x = 6 ,所以这两个数分别为 6 与 36 ,两数之积为216 ,7两数之差为 30,216 - 30 = 6 .7749749 7 49练习3. 若 a =2005 ⨯ 2006 , b = 2006 ⨯ 2007 , c = 2007 ⨯ 2008,则有().2007 ⨯ 2008 2008 ⨯ 2009 2009 ⨯ 2010(A ) a > b > c (B ) a > c > b (C ) a < c < b (D ) a < b < c (2008 年 13 届) 【答案】D .【解答】比较 a 与 b ,两边同时可以约掉2006,而2005<2007,所以 a < b , 20082007 2009比较 b 与 c ,两边同时可以约掉 2007 ,而 2006 < 2008,所以 b < c ,故选D . 2009 2008 2010练习4. 在 1 , 3 , 5 , 7 , 9 , 11,…中,从开始,1 与每个数之差都小于 1 .3 5 7 9 11 131000(2004 年 9 届)【答案】 1999 .2001【解答】这一排分数与 1 的差分别为开始,就开始小于 11000,所以答案为 1999 .2001例题3. 如图所示,AB 是半圆的直径,O 是圆心,AC = CD = DB ,M 是 CD 的中点,H 是弦 CD 的中点.若N 是OB 上一点,半圆的面积等于12 平方厘米,则图中阴影部分的面积是平方厘米.(2009 年14 届)MC DHA O N B【答案】2.【解答】如下图,可以利用等积变换变成一个扇形:MC DHA O B因为AC = CD = DB ,M 是CD 的中点,所以CM 是半圆弧的1,所以阴影扇形面积为半圆面积的1,6 6为2.例题4. 大正方形格板是由81 个1 平方厘米的小正方形铺成,B、C 是两个格点.若请你在其它的格点中标出一点A,使得△ABC 的面积恰好等于3 平方厘米,则这样的A 点共有个.(2010 年15 届)CB(A)6 (B)5 (C)8 (D)10【答案】C.【解答】方法一:从最上面的水平线开始将水平线分别记为第1、第2、…、第10 条水平线,每条水平线均由左至右判断哪个格点符合题目要求.以此穷举法可以得到:第1 条水平线上没有格点符合要求,第2 条水平线上仅有A7 符合要求.如右图所示,类似可以得到格点A2,A1,A6符合要求,对称地,可以得到A ,A ,A ,A 符合要求.故答案是C.5 4 3 8方法二:先通过尝试找到A ,然后找到经过A ,而且平行于BC 的线,画出来,那么这条线经过的格1 1点都是符合要求的(等积变换),这样可以得到A ,A ,A ,A ,然后利用对称性,可以得到A ,A ,A 3 ,A8.故答案是C.2 1 6 7 5 4练习5. 正方形ABCD 的面积为9 平方厘米,正方形EFGH 的面积为64 平方厘米.如图所示,边BC 落在EH 上.已知三角形ACG 的面积为6.75 平方厘米,则三角形ABE 的面积为平方厘米.(2012 年17 届)【答案】2.25.【解答】如图:连接EG,由于AC 和EG 都是对角线,因此相互平行,所以三角形ACG 的面积等于三角形ACE 的面积,所以S△ABE =S△ACE-S△ABC=6.75 -4.5=2.25 .练习6. 右图ABCD 是平行四边形,M 是DC 的中点,E 和F 分别位于AB 和AD 上,且EF 平行于BD.若三角形MDF 的面积等于5 平方厘米,则三角形CEB 的面积等于()平方厘米.(2013 年18 届)(A)5 (B)10 (C)15 (D)20【答案】B【解答】如右图,连接FC,BF,DE.因为M 是DC 的中点,三角形MDF 的面积等于5 平方厘米,所以由三角形面积公式可知:三角形CDF的面积等于10 平方厘米.两个三角形,同底等高,面积则相等.由此可知:由DC / / AB ,得△CEB 的面积=△BDE 的面积;由EF / /B D ,得△BDE 的面积=△BDF 的面积;由AD / /B C ,得△BDF 的面积=△C DF 的面积,所以三角形CEB 的面积等于10 平方厘米.练习7. 如右图所示,梯形ABCD 的面积为117 平方厘米.AD∥BC,EF = 13 厘米,MN = 4 厘米,又已知EF⊥MN 于O,那么阴影部分的总面积为平方厘米.(2011 年16 届)【答案】65.【解答】四边形 EMFN 的面积= 1⨯ EF ⨯ MN =26 .(对角线相互垂直的四边形面积为对角线相乘再除2以 2),又根据蝴蝶模型, S △ABM =S △EFM , S △DCN =S △EFN ,所以空白部分总面积为四边形 EMFN 的面积 的 2 倍,为 52,所以阴影部分总面积=117-52=65.练习8. 右图由 4 个正六边形组成,每个面积是 6,以这 4 个正六边形的顶点为顶点,可以连接面积为 4 的等边三角形有 个.(2011 年 16 届) 【答案】8.【解答】如图,将原图按三角形格线分割,于是我们要找的其实是由 4 个小正三 角形组成的正三角形,注意顶点必须六边形顶点,箭头朝上的有四个(如图), 根据对称性,箭头朝下的也有 4 个,共 8 个.例题5. 如图,大小两个半圆,它们的直径在同一直线上,弦 AB 与小圆相切,且与直径平行,弦 AB 长12 厘米.图中阴影部分的面积是 平方厘米.(圆周率取 3.14)(2004 年 9 届)AB【答案】56.52.【解答】设大圆半径为 R ,小圆半径为 r ,那么阴影部分面积为 1 π R 2 - 1 π r 2 = 1π ( R 2 - r 2 ),所以关 2 2 2 键是求出半径的平方差.如图,过大圆圆心作 AB 的垂线,连接圆心与 B 点,由勾股定理可得,62 + r 2 = R 2 ,所以 R 2 - r 2 = 36 .A6 BrR那么阴影部分面积= 1⨯ 3.14 ⨯ 36=56.52 .2例题6. 一个长方体的长、宽、高恰好是 3 个连续的自然数,并且它的体积的数值等于它的所有棱长之和的数值的 2 倍,那么这个长方体的表面积是 .(2007 年 12 届)(A )74(B )148(C )150(D )154【答案】B.【解答】设这三个连续的自然数分别为x-1,x,x+1,那么可以列出方程:(x-1)x(x+1)=2(x-1+x +x +1)⨯ 4 ,化简后为:x(x2 -1)= 24x ,由于x 肯定不是0,所以两边同时约掉x 后,可得方程:x2 -1= 24 ,所以x = 5 ,这三个连续的自然数分别为4、5、6,那么表面积为:(4⨯5 +5⨯ 6 +4⨯6)⨯ 2=148 .练习9. 如图所示,是一个直圆柱形状的玻璃杯,一个长为12 厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2 厘米,最多能露出4 厘米.则这个玻璃杯的容积为立方厘米.(取π= 3.14 )(提示:直角三角形中“勾6、股8、弦10”)(2006 年11 届)CA B【答案】226.08.【解答】沿AC 放置时,另一端沿吸管露出最少,为2 厘米,说明AC=12-2=10 厘米,沿BC 放置时,另一端沿吸管露出最多,为4 厘米,说明BC=12-4=8 厘米,根据勾股定理,AB2 = 102 - 82 = 36 ,所=9π⨯8=72π=226.08 .以AB=6,底面半径为3,所以V杯练习10. 右图中,AB 是圆O 的直径,长6 厘米,正方形BCDE 的一个顶点E 在圆周上,∠ABE = 45︒.那么圆O 中非阴影部分的面积与正方形BCDE 中非阴影部分面积的差等于平方厘米(取π= 3.14 ).(2013 年18 届)【答案】10.26【解答】因为∠ABE = 45︒,∠EAB 所对的圆弧和∠ABE 所对的圆弧弧度相等,且圆弧的直径相同,故∠EAB = 45︒,三角形ABE 是直角三角形.由勾股定理:2BE2 =AB2 = 62 = 36 (平方厘米),正方形BCDE 的面积=BE2 =18 (平方厘米).圆O 的面积-正方形BCDE 的面积=(圆非阴影部分的面积+圆和正方形相交部分的面积)-(正方形BCDE 中非阴影部分面积+圆和正方形相交部分的面积)=圆非阴影部分面积-正方形非阴影部分面积=32 ⨯π-18 = 28.26 -18 =10.26 (平方厘米).练习11. 图中的方格纸中有五个编号为1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是().(A)1,2 (B)2,3 (C)3,4 (D)4,5(2012 年17 届)【答案】D【解答】注意到展开图中不能出现“田”字结构,因此排除掉ABC,选D.练习12. 如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N,减掉△MBN 得五边形AMNCD.则将折叠的五边形AMNCD 纸片展开铺平后的图形是.(2006 年11 届)D C D CNNA MB A M【答案】D.【解答】注意对折方向,可以判断B 点是原正方形中心,因此是中心被掏空的形状,再注意减掉的形状是三角形,也就是展开后,横竖四等分以后,每一部分缺的都是三角形,结合这两点,答案为D.课后作业:1. 计算:⎡⎛0.8 +1 ⎫⨯ 24 + 6.6⎤÷9- 7.6 =().(2012 年17 届)⎢ 5 ⎪ ⎥14⎣⎝ ⎭ ⎦(A)30 (B)40 (C)50 (D)60【答案】B.【解答】原式= [1⨯ 24 +6.6]⨯14 - 7.6 = 30.6 ⨯14 - 7.6=47.6 - 7.6=40 .9 92. 算式1 -27+ 2 ⨯ 0.3的值为.(2010 年15 届)0.25 + 3 ⨯1 1.3 - 0.44【答案】1 8.211 -2 5 3【解答】7 +2 ⨯ 0.3= 7 + 5 =5+2=18.0.25 + 3 ⨯1 1.3 - 0.441+39 7 3 214 4 103. 下面有四个算式:①0.6 + 0.133=0.733 ;②0.625= 5 ;8③ 5+3=5 + 3=8=1;14 2 14 + 2 16 2④3 3 ⨯ 4 1 =14 2 .7 5 5其中正确的算式是()(2009 年14 届)(A)①和②(B)②和④(C)②和③(D)①和④【答案】B.【解答】①式错,因为0.6 并不循环,②式对,③式错,不符合分数加法规则,④式对,因此选B.4. 题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C 处填的数各是、、.(2004 年9 届)提示:注意相对两个面展开后的位置.C 2B 1A 4【答案】6、5、3.【解答】注意到,展开图中的形状,黑色两个面在合上后是相对的,所以在原图中,A 和1 相对,B 和2 相对,C 和4 相对,所以A=6,B=5,C=3.5. 如图,ABCD 是个直角梯形(∠DAB=∠ABC=90o).以AD 为一边向外作长方形ADEF,其面积为6.36 平方厘米,连接BE 交AD 于P,再连接PC.则图中阴影部分的面积是平方厘米.(2006年11 届)提示:等积变换.(A)6.36 (B) 3.18 (C)2.12 (D)1.59 【答案】B.【解答】连接BD、AE,利用等积变换,S△PDC =S△PDB,所以S阴=S△EDB,再次利用等积变换,可以得到S△EDB =S△EDA,而三角形EDA 面积是长方形ADEF 的一半,为3.18,所以以S阴=S△EDB=S△EDA=3.18 .6. 一块长方形的木板,长为90 厘米,宽为40 厘米,将它锯成2 块,然后拼成一个正方形,你能做到吗?请画出分割线.(2004 年9 届)提示:阶梯形.【答案】如图,沿粗线剪开即可..【解答】图形面积为90×40=3600 平方厘米,因此拼成的正方形边长为60 厘米,我们把这个图形画出来与原图形进行比较:3020两条边的差分别为30 和20,因此把90 厘米那边30 厘米一截,40 厘米那边20 厘米一截,分成6 块之后,稍作尝试即可.7. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有()条直线互相平行.(A)0 (B)2(C)3 (D)4(2014 年19 届)【答案】C.【解答】当4 条直线都互相平行时,平面被分成5 个部分,不满足要求,因此最多只能3 条直线互相平行.构造:有3 条直线互相平行,另外一条直线与它们都互相垂直,此时平面被分成8 个部分.8. 如右图所示,AF = 7 cm,DH = 4 cm,BG = 5 cm,AE =1c m.若正方形ABCD内的四边形EFGH 的面积为78 cm2,则正方形的边长为()cm.(A)10 (B)11 (C)12 (D)13(2014 年19 届)提示:类比弦图.【答案】C.【解答】用竖直线和水平线将正方形ABCD 分割为如右图所示的5 个长方形,中间长方形的面积是4⨯ 3=12 ,所以,正方形的面积= (78-12)⨯ 2 +12=144 ,正方形的边长是12.9. 如图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的( ).提示:分割图形.(A)1 (B)2 (C)2 (D)52 3 5 12(2010 年15 届)【答案】A.【解答】由图可知,左上角和右上角的阴影部分的面积分别恰等于一个平行四边形内正六边形的面积,因此阴影部分的面积占平行四边形面积的1 . 2第二节数论、应用题精讲考点概述数论考点五、数的整除性相关知识六、质数合数七、约数与倍数八、余数问题应用题考点一、常考应用题类型(和差倍应用题,比例应用题,经济问题,浓度问题等)1. 画线段图帮助解题2. 列方程解应用题二、行程问题:1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇与追及问题等)2. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件)3. 方程与比例解行程问题真题精讲例1.在一个圆周上有70 个点,任选其中一个点标上1,按顺时针方向隔一个点的点上标2,隔两个点的点上标3,再隔三个点的点上标4,继续这个操作,直到1,2,3,…,2014 都被标记在点上.每个点可能不只标有一个数,那么标记了2014 的点上标记的最小整数是.(2014 年19 届)【答案】5【解析】将70 个点中某个点为起始点,然后按顺时针方向依次将这70 个点记为第1 个,第2 个,第3 个,…,第70 个,用a 表示第a 个点上标记的数字是i.i i依题意a1= 1 ,a2 = 3 ,a3 = 6 ,a4 = 10 ,…,且按规律得:a 2014 =1+ 2 + 3 + + 2014 =2014 ⨯ 2015=202910522029105 = 28987 ⨯ 70 +15 ,而a5 = 15 ,因此第15 个点上标记的最小整数为5.例2.若a = 1515 15 ⨯ 333 3 ,则整数a 的所有数位上的数字和等于.(2008 年13 届)1004个15 2008个3(A)18063 (B)18072 (C)18079 (D)18054【答案】B【解析】a = 505 05 ⨯ 999 9 ,利用结论A⨯ 999 9 的数字和为9n ,可知a 的数字和为18072,选B.1004个5 2008个9 n个9练习1.恰有20 个因数的最小自然数是().(2010 年15 届)(A)120 (B)240 (C)360 (D)432【答案】B.【解析】因为20=2×10=4×5=2×2×5,因此,具有20 个因数的自然数的质因数分解形式只有19 ,⨯9 ,3 ⨯4 ,⨯⨯ 4 这4 种,对应类型的最小自然数分别为219 ,3⨯ 29 ,33 ⨯ 24 ,3⨯5⨯ 24 ,其中最小的是240,选B.练习2.在19、197、2009 这三个数中,质数的个数是().(2009 年14 届)(A)0 (B)1 (C)2 (D)3【答案】C【解析】质数判定,检验所有平方小于2009 的质数即可.练习3.若连续的四个自然数都为合数,那么这四个数之和的最小值为().(2011 年16 届)(A)100 (B)101 (C)102 (D)103【答案】C【解析】最小连续4 个合数为24,25,26,27,它们之和为102.例3.一个奇怪的动物庄园里住着猫和狗,狗比猫多180 只.有20%的狗错认为自己是猫;有20%的猫错认为自己是狗.在所有的猫和狗中,有32%认为自己是猫,那么狗有()只.(2012 年17 届)(A)240 (B)248 (C)420 (D)842【答案】A【解析】设猫有x 只,狗有y 只,则认为自己是猫的动物共有80%x + 20% y 只,从而80%x + 20%y = 32%(x +y) ,可以得到4x =y ,再结合狗比猫多少180 只,可得x = 60 ,y = 240 ,从而狗有240 只,选A.例4.一只青蛙8 点从深为12 米的井底向上爬,它每向上爬3 米,因为井壁打滑,就会下滑1 米,下滑1 米的时间是向上爬3 米所用时间的三分之一.8 点17 分时,青蛙第二次爬至离井口3 米之处,那么青蛙从井底爬到井口时所花的时间为()分钟.(2013 年18 届)(A)22 (B)20 (C)17 (D)16【答案】A【解析】记青蛙每向上爬行1 米,所用时间为t 分钟,则下滑1 米的时间是向上爬3 米所用时间的三分之一,也为t 分钟.当青蛙刚爬至离井口3 米时,离井底9 米,所用时间是17 分钟.将2 米分为1 段,则一段所需时间为4t,第一次离井口3 米的时候是,向上爬了3 段之后再向上爬了3 米,第二次离井口3 米的时候是,向上爬了4 段之后再向上爬了1 米,此时总共花了17t 的时间,此时为8 点17,过了17 分钟,所以t=1,即每分钟1 米.向上爬出井口的时候,总共是向上爬了5 段,然后向上爬了2 米,总共花了22 分钟.练习5.两条纸带,较长的一条为23cm,较短的一条为15cm.把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是( )cm.(2010 年15 届)(A)6 (B)7 (C)8 (D)9【答案】B.【解析】设剪下的长度为x cm,那么有:23 -x ≥ 2(15 -x) ,解得x ≥ 7 ,因此剪下的长度至少为7cm,选B.练习6.某次考试有50 道试题,答对一道题得3 分,答错一道题扣1 分,不答题不得分.小龙得分120 分,那么小龙最多答对了()道试题.(2014 年19 届)(A)40 (B)42 (C)48 (D)50【答案】B【解析】得分120 分,说明至少需要答对40 道题,其余10 道题不答,满足题意.若答对41 道题,答错3 道题,其余题不答,此时得分也是120 分.若答对42 道题,答错6 道题,其余题不答,此时得分也是120 分.若答对43 道题,得分依然为120 分,需要再答错9 道题,此时至少需要有52 道题,52>50,因此不满足题意.解法二:设作对x 题,做错y 题,未答z 题,则有:3x - y =120, x +y +z = 50,合并两个等式,得到:4x =170 - z, x = 42 +2- z ,x 是非负整数,尽可能大,故z = 2, x = 42 ,即小4龙最多答对42 道试题.练习7.两个水池内有金鱼若干条,数目相同.亮亮和红红进行捞鱼比赛,第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时,亮亮比第一次多捞33 条,与红红捞到的金鱼数目比是5:3.那么每个水池内有金鱼()条.(2010 年15 届)(A)112 (B)168 (C)224 (D)336【答案】B【解析】这是一道工程问题的变形,每个水池内有金鱼33 ÷ ( 5-3) =168 (条).5 + 3 4 + 3解法2:可以认为是比例应用题,设亮亮第一次捞到3n 条,则红红第一次捞到4n 条,依题意,有3n + 33=5,解得n=24,因此水池内共有金鱼7n=168 条.4n - 33 3练习8.用若干台计算机同时录入一部书稿,计划若干小时完成.如果增加3 台计算机,则只需原定时间的75%;如果减少3 台计算机,则比原定时间多用5小时.那么原定完成录入这部书稿的时间是()6小时.(2011 年16 届)(A)5 3【答案】A (B)103(C)56(D)116【解析】增加3 台计算机,则只需原定时间的75%,所以原先有9 台计算机;如果减少3 台计算机,则所需时间为原定时间的9=3,比原定时间多用了5小时,所以原定要5÷⎛3-1⎫=5小时.9 -32 6 6 2 ⎪ 32⎝ ⎭例6. 图中是一个玩具火车轨道,A 点有个变轨开关,可以连接 B 或者 C .小圈轨道的周长是 1.5 米,大圈轨道的周长是 3 米.开始时, A 连接 C ,火车从 A 点出发,按照顺时针方向在轨道上移动,同时 变轨开关每隔 1 分钟变换一次轨道连接.若火车的速度是每分钟 10 米,则火车第 10 次回到 A 点时用了 分钟.(2010 年 15 届)【答案】2.1【解析】根据条件,在小圈火车行驶一圈用时1.5 ÷10 = 0.15 分钟,在大圈火车行驶一圈用时3 ÷10 = 0.3 分钟.设回到 A 点时用时为 t 分钟,这样我们有下表:回到 A 的次数 1 2 3 4 5 6 7 8 910到 A 点用时 0.3 0.6 0.9 1.2 1.35 1.5 1.65 1.8 1.95 2.1经过的轨道ACACACABABABABABABAC下面我们给出一个一般的解答:设玩具火车绕小圈轨道 m 圈,绕大圈轨道 n 圈,则玩具火车运动路程是 S = 1.5m + 3n ,时间是1.5m + 3n .如果 ⎡1.5m + 3n ⎤ 是偶数,则变轨开关 AC 连通,如果 ⎡1.5m + 3n ⎤是奇数,则变轨开关 AC 10 ⎢ 10⎥ ⎢ 10⎥⎣⎦⎣⎦连通.我们寻找最小的 m + n ,使1.5m + 3n是偶数.无妨设 101.5m + 3n = 10K ,或 3m + 6n = 20K ,这里 K 是偶数,并且有 3 为约数,是玩具火车运动的时间,因此最小的 K 是 6.即求 m 和 n 使m + 2n = 40 .12 当 n =3,S AA C = 2S ABC = 12 ,故开始玩具火车绕大圈轨道 4 圈之后进入小圈,时间是 10= 1.2(分钟);当 n =4, m =5 时,⎡ 7.5 + 12 ⎤ = 1 , ⎡ 9 + 12 ⎤= 2 ,故玩具火车绕小圈轨道 6 之后再次进入大圈轨道, ⎢ 10 ⎥ ⎢ 10 ⎥3⎣⎦ ⎣ ⎦此时1.5m + 3n=1.5 ⨯ 6 + 3 ⨯ 4= 2.1 (分钟)(可以称为一个拟循环)1010将玩具火车再次进入大圈运行,运行圈数记为 n . n =3 时, 1.5 ⨯ 6 + 3 ⨯ 7= 3 (分钟),玩具火车应2210当再次进入小圈运行,运行圈数记为 m ,既然1.5 ⨯ 7> 1 > 1.5 ⨯ 6,故玩具火车绕小圈运行 7 圈后,应 210 10再次进入大圈运行,此时 1.5m + 3n = 1.5 ⨯13 + 3 ⨯ 7= 4.05 (分钟).10 10 将玩具火车再次进入大圈运行, 运行圈数记为 n .既然1.5 ⨯13 + 3 ⨯11 > 5 > 1.5 ⨯13 + 3 ⨯10 ,10 10故玩具火车绕大圈运行 4 圈后,应再次进入小圈运行,此时1.5m + 3n = 1.5 ⨯13 + 3 ⨯11 = 5.25 (分钟), 10 10则玩具火车绕大圈运行 5 圈后,1.5m + 3n = 1.5 ⨯18 + 3 ⨯11= 6 (分钟). 10 10结论玩具火车第 29 次回到 A 时, 变轨开关 AC 连通,即回到原始状态.练习9. 4 个整数中任意选出 3 个,求出它们的平均值,然后再求这个平均值和余下 1 个数的和,这样可以得到 4 个数:4、6、 5 1 和 4 2,则原来给定的 4 个整数的和为.(2009 年 14 届)3 3 【答案】10【解析】设 4 个整数分别为 a 、b 、c 、d ,则有a +b +c +d = 4 、 a + b + d + c = 6 、a + c + d + b = 5 1、 3 3 3 3b +c +d + a = 4 2,四式相加可得 2(a + b + c + d ) = 20 ,从而 a + b + c + d = 10 .3 3练习10. A 、B 、C 、D 、E 五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A →C ,B →E ,C →A ,D →B ,E →D .开始时 A 、B 拿着福娃,C 、D 、E 拿着福牛,传递完5 轮时,拿着福娃的小朋友是().(2009 年14 届)(A)C 与D (B)A 与D (C)C 与E (D)A 与B【答案】A【解析】A 和C 之间的传递以2 为周期,B、E、D 之间的传递以3 为周期,所以5 轮之后,A 和C 之间的福娃最后在C 手中,B、E、D 之间的福娃最后在D 手中,所以最后拿着福娃的是C 与D.练习11. 某学校组织一次远足活动,计划10 点10 分从甲地出发,13 点10 分到达乙地,但出发晚了5 分钟,却早到达了 4 分钟.甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是().(2014 年19 届)(A)11 点40 分(B)11 点50 分(C)12 点(D)12 点10 分【答案】B【解析】从10 点10 分到13 点10 分共有3 个小时,比计划时间少用9 分钟,即每小时少用3 分钟,少用5 分钟的时候即是到达B 点的时间.此时需要5÷(3÷60)=100 分钟,即1 小时40 分钟,所以到达B 点的时间是11 点50 分.练习12. 甲、乙两车分别从A,B 两地同时出发,且在A,B 两地往返来回匀速行驶.若两车第一次相遇后,甲车继续行驶4 小时到达B,而乙车只行驶了1 小时就到达A,则两车第15 次(在A,B 两地相遇次数不计)相遇时,它们行驶了小时.(2012 年17 届)【答案】B【解析】设甲、乙的速度分别为V甲、V乙,则甲、乙相遇时,他们行驶的路程比为V甲:V乙;另一方面,第一次相遇后,甲车继续行驶4 小时到达B,乙车继续行驶了1 小时到达A,所以这两段的路程比也为V乙: 4V甲,从而V甲:V乙=V乙: 4V甲,进而有V甲:V乙= 1: 2 ,进而可以得到甲从A 到B 需要6 小时,乙需要3 小时,一个周期为12 小时且周期内相遇两次,7 个周期后,甲、乙相遇14 次,且分别回到A 和B,2 小时后,甲、乙第15 次相遇,总共用时7 ⨯12 + 2 = 86 小时.课后练习1. 任意写一个两位数,再将它依次重复3 遍成一个8 位数.将此8 位数除以该两位数所得到的商再除以9,问:得到的余数是.(2004 年9 届)【答案】4【解析】abababab ÷ab =1010101,1010101 除以9 的余数为4.2. 2008006 共有个质因数.(2006 年11 届)(A)4 (B)5 (C)6 (D)7【答案】C【解析】2008006 = 2 ⨯ 7 ⨯11⨯13⨯17 ⨯ 59 .3. 小明所在班级的人数不足40 人,但比30 人多,那么这个班男、女生人数的比不可能是().(2014 年19 届)(A)2:3 (B)3:4 (C)4:5 (D)3:7【答案】D【解析】如果男、女生人数的比是2:3,那么全班人数一定是5 的倍数,男生14 人,女生21 人,满足题意.如果男、女生人数的比是3:4,那么全班人数一定是7 的倍数,男生15 人,女生20 人,满足题意.如果男、女生人数的比是4:5,那么全班人数一定是9 的倍数,男生16 人,女生20 人,满足题意.如果男、女生人数的比是3:7,那么全班人数一定是10 的倍数,但本班人数不足40 人,但比30 人多,所以男、女生人数的比不可能是3:7.4. 开学前6 天,小明还没做寒假数学作业,而小强已完成了60 道题,开学时,两人都完成了数学作业.在这6 天中,小明做的题的数目是小强的3 倍,他平均每天做()道题.(2009 年14 届)y 7 ⎩(A )6 (B )9 (C )12 (D )15【答案】D【解析】这 6 天小明比小强多做了 60 道,平均每天多做 10 道,小明每天做题量是小强的 3 倍,所以 小强每天做 5 道,小明每天做 15 道.5. 一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为 9:7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为 7:5,那么盒子里原有的黑子数比白子数 多( )个.(2013 年 18 届)(A )5 (B )6(C )7(D )8【答案】C【解析】设原有黑子数为 x ,白子数为 y ,得方程⎧ x - 1 = 9⎧7 x - 9y = 7⎪ ⎪ ⎪ ⎨x 7 即 ⎨⎪ = ⎪⎩ y - 1 5⎪5x - 7y = - 7由此解得x = 28 , y = 21 .故 x - y = 7 .解法二:前后两次均取出一枚棋子,剩下棋子的总数不变,而 9 + 7 = 16 ,7 + 5 = 12 ,16 与 12 的最小 公倍数为 48 ,因此设取出一枚棋子后,剩下棋子的总数为 48 份.第一次余下的黑子数为 48 ÷ (9 + 7) ⨯ 9 = 27 份;第二次余下的黑子数为 48 ÷ (7 + 5) ⨯ 7 = 28 份;两次相差 1 份.而前后两次余 下的黑子数相差 1,因此 1 份对应 1 枚棋子.原有黑子 28 个,原有的白子数为 28 ÷ 7 ⨯ 5 + 1 = 21个, 黑子比白子多 28 - 21 = 7 个6. 水池 A 和 B 同为长 3 米,宽 2 米,深 1.2 米的长方体.1 号阀门用来向 A 池注水,18 分钟可将无水的A 池注满;2 号阀门用来从 A 池向B 池放水,24 分钟可将 A 池中满池水放入 B 池.若同时打开 1 号和 2 号阀门,那么当 A 池水深 0.4 米时,B 池有( )立方米的水.(2013 年 18 届) 【答案】D【解析】由已知, 1 号阀门每分钟注入 1 18池水,而 2 号阀门放出 1 24池水.到A 池深 0.4 米时,正好在 A 池中留存了 1池水,31 ÷ ⎡ 1 -1 ⎤ = 24 (分钟).⎣ ⎦3 ⎢18 24 ⎥故此时恰好放了24 分钟,正好把B 池放满,进而B 水池中有水3⨯ 2 ⨯1.2 = 7.2 (立方米).7. “低碳生活”从现在做起,从我做起.据测算,1 公顷落叶阔叶林每年可吸收二氧化碳14 吨.如果每台空调制冷温度在国家提倡的26℃基础上调到27℃,相应每年减排二氧化碳21 千克.某市仅此项减排就相当于25000 公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3 台空调计,该市家庭约有万户.(保留整数)(2010 年15 届)【答案】556【解析】25000⨯14⨯1000÷(21⨯3)≈5555555.6.8. 甲乙同时出发,他们的速度如下图所示,30 分钟后,乙比甲一共多行走了米.(2014 年19 届)10080604020米/分5分10 15 20 25 30甲10080604020米/分分5 10 15 20 25 30乙【答案】300【解析】由图所示,前10 分钟,甲和乙速度相同;第10 分钟至第20 分钟,乙速度是100 米/分,甲的速度是80 米/分,故乙多走了200 米;第20 分钟至第25 分钟,甲乙速度相同;第25 分钟至30 分钟,乙的速度是80 米/分,甲的速度是60 米/分,故乙多走了100 米;乙共计多走了300 米.9. 甲、乙两车分别从A,B 两地同时出发,相向而行,3 小时相遇后,甲掉头返回A 地,乙继续前行.甲到达A 地后掉头往B 行驶,半小时后和乙相遇.那么乙从A 到B 共需小时.(2011 年16 届)【答案】7.2【解析】甲、乙相遇后,同时向B 行驶,甲先是花了3 小时到达A 地,然后甲掉头行驶了半小时和乙相遇,从而甲乙相遇后,乙行驶了3.5 小时,且这段路甲只需要2.5 小时,所以甲、乙的速度比为7:5,从而甲花了3 小时的这段路,乙需要3⨯ 7 ÷ 5 = 4.2 小时,所以乙从A 到B 共需3 + 4.2 = 7.2 小时.第三节数字谜、计数、组合精讲考点概述数字谜考点:竖式问题常用方法:(1)加数相加时每进1 位,和的数字和将比加数的数字和之和减少9.(2)与各个数位上的数字有关的问题,往往需要多次尝试才能得到结果.(3)与整除相关的问题,注意运用以前学过的整除知识.计数问题考点:1. 枚举法(有序、分类)2. 加乘原理(分类,加法;分步,乘法)3. 排列组合(排列,有序;组合,无序;常用方法,插空、捆绑、插板、排除等)4. 综合运用(结合几何、数论等知识)组合问题考点:1. 最值问题:(1)满足题目条件的情况不多时,可以用枚举法把可能的情况一一列举出来,再找出最大值或最小值.(2)两个数的和一定,当它们越接近时乘积越大.(3)极端思考与局部调整也是解决最值问题的常用方法.2. 逻辑推理、统筹对策、抽屉原理等.真题精讲。
“华杯赛”赛前训练高清网络视频课程
“华杯赛”赛前训练高清网络视频课程/gaokao工大高考网为方便广大师生在线学习“华杯赛”相关知识,经“华杯赛”组委会办公室研究决定,在“华杯赛”官网开设“网络课堂”栏目,并陆续推出优质网络视频课程,欢迎大家参与学习。
本课程同时支持手机上看课学习、答疑提问。
客户端下载《“华杯赛”赛前训练》高清网络视频课程每套约10课时,分别针对小学中年级组、小学高年级组,以经典历年真题和优质模拟题为基础,深入讲解华杯赛重要知识点,巩固基础知识,提升综合解题能力。
2016年辅导期课程已开放招生,详询4006500666。
老师+“粉笔”+“黑板”的高清视频授课模式,音视频、讲义同步传输,学生仿佛置身真实课堂中。
不限时间、次数重复点播课件,直至2016年4月30日之后关课,打破常规面授课堂只能听一次的局限。
课程支持手机上看课学习、答疑提问、在线答题,苹果、安卓、微软三大主流系统全面支持!不限提问次数,所有问题24小时之内予以答复,节假日无休,及时扫清学习障碍!学生可以随时上网提问,支持上传图片/附件、摄像头拍照、手机拍照等便捷操作。
1、本课程自开通之日起,可以反复学习,不限次数,直至2016年4月30日之后课程自动关闭。
2、课时数仅为参考数值,实际课时请以网络课程为准。
3、本课程分别适用于小学中年级组、小学高年级组参加“华杯赛”笔试初赛、决赛的选手。
扈老师“华杯赛”优秀教练员扈老师:风度翩翩儒雅亲和多年数学教学经验,所指导学生多人次在华杯赛、迎春杯等竞赛中取得优异成绩,他教授的学生中多人进入人大附中、101中学、北大附中、清华附中等重点中学...更多>> “华杯赛”金牌教练员李老师:昔日数学尖子,今日教坛骨干!华罗庚金杯少年数学邀请赛金牌教练员、中国数学奥林匹克竞赛国家集训队教练。
李老师所带学生在华罗庚金杯少年数学邀请赛、国际奥林匹克数学竞赛、全国数学联赛等大赛中屡获金牌...更多>> 边学边巩固教材、练习册都有了* 仅专题讲座有配套练习随时提问专业老师解惑* 月月练课程不提供此项服务不限时间、次数重复听课l。
2010年华杯赛初赛集训班讲义4
2010年华杯赛初赛集训班讲义4华杯赛介绍“华罗庚⾦杯”少年数学邀请赛(简称“华杯赛”)始于1986年,是为纪念我国著名数学家华罗庚⽽创⽴,时任中共中央总书记胡耀邦亲⾃为“华罗庚⾦杯”题写杯名。
⾄今“华杯赛”已成功举办了⼗四届,全国有近100个城市,3000多万少年⼉童参加了⽐赛,“华杯赛”已经成为教育、⿎舞⼀代⼜⼀代的青少年勇攀科学⾼峰和奋发向上的动⼒。
其获奖证书具有⾮常⾼的含⾦量,被受各重点中学的⾼度青睐。
华杯赛⽇程1、初赛:2010年3⽉13⽇(星期六)上午10:00—11:00。
2、决赛:2010年4⽉10⽇(星期六)上午10:00—11:30。
3、总决赛:2010年11⽉在江苏省⾦坛市(具体时间确定后通知)评奖规则决赛:参加决赛⼈数的6%、12%、18%获得⼀、⼆、三等奖,颁发证书。
总决赛:获奖⽐例为参加总决赛⼈数的70%,其中⾦牌30枚,银牌60枚,铜牌数=参加总决赛⼈数×70%-⾦牌30枚-银牌60枚。
考试形式初赛:6道选择题(单选)+4道填空题,每题10分,共计100分,考试时间:1个⼩时决赛:8道填空+4道解答题(简要过程)+2道解答题(详细过程),考试时间1.5⼩时总决赛:分笔试和⼝试,争夺全国总冠军。
其中⼝试将由CCTV现场直播。
考试难度初赛:由于只有10道选择和填空题,题量⽐较⼩,难度⼩于迎春杯初试。
决赛:最后两道压轴题需写出详细解题过程,总体难度和迎春杯复试持平。
总决赛:笔试难度相当⼤,⼝试需要超强的逻辑、应变、综合处理能⼒。
关于北京队2010年北京市将派出5⽀代表队参加在华罗庚的故乡江苏省⾦坛市举⾏的第⼗五届华杯赛全国总决赛,每⽀代表队有2名⼩学选⼿,也就是说,除掉个⼈名义参加全国总决赛(已在寒假期间华杯赛冬令营中选拔完毕),另外北京市还将选拔10名⼩学选⼿组队。
据此推算,全市排名50名左右的考⽣均有实⼒冲击全国总决赛。
说明:华杯赛⼩学组不再分年级命题和评奖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华杯总决赛集训讲义
(1)
-CAL-FENGHAI.-(YICAI)-Company One1
华杯赛小高总决赛集训队赛前集训讲义—应用题(一)
——行程问题
【知识点总结】:
★行程问题中包括:相遇问题、追及问题、火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
★每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:
三个量是:路程(s)、速度(v)、时间(t)
三个关系:
1. 简单行程:路程=速度×时间
2. 相遇问题:路程和=速度和×时间
3. 追击问题:路程差=速度差×时间
把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
【经典例题】:
例1.A、B两地相距125千米,甲、乙两人骑自行车分别从A、B两地同时出发,相向而行。
丙骑摩托车以每小时63千米的速度,与甲同时从A第出发,在甲、乙两人之间来回穿梭。
若甲骑车速度为每小时9千米,且当丙第二次回到甲处时,甲、乙两人相距45千米,问:当甲、乙两人相距20千米时,甲与丙相距多少千米
例2.如图,ABCD四个球按顺时针方向均匀分布在周长为48米的圆周上,分别以1米/秒,2米/秒,3米/秒,4米/秒的速度做顺时针运动。
当有两个球碰到一起的时候,两个球交换速度,但运动方向不变,当三个球碰到一起的时候,中间球的速度不变,其他两个球相互交换速度。
请问:从四个球出发开始,经过多少秒四个球第一次同时碰到一起(不考虑球的半径)
例3.如图,A、B两地相距54千米,D是AB的中点。
甲、乙、丙三人骑车分别同时从A、B、C三地出发,甲骑车去B地,乙骑车去A地,丙总是经过D之后往甲、乙两人将要相遇的地方骑,结果三人在距离D点5400米的E点相遇。
如果乙的速度提高到原来的3倍,那么丙必须提前52分钟出发三人才能相遇,否则甲、乙相遇的时候,丙还差6600米才到D。
请问:甲的速度是每小时多少千米
A
例4.现有两支球队同时从某地到9千米外的体育馆进行比赛,但是只有一辆汽车接送,且每次只能乘坐一支球队。
已知队员的步行速度是6千米/小时,汽车满载的速度为27千米/小时,空载的速度为36千米/小时,请问:比赛最早会在两队出发后多少分钟开始(两支球队均到场即可)
例5.甲、乙、丙三人同时从山脚开始爬山,到达山顶后立即下山,不断往返运动。
已知山坡长360米,甲、乙、丙的速度之比为6:5:4,并且甲、乙、丙的下山速度都是各自上山速度的倍。
经过一段时间,甲到达山顶时,看见乙正在下山,此时乙距离山脚不到180米(乙不在山脚)。
求此时丙离山顶的距离。
【课堂练习】:
1.一条大河有A、B两个港口,水由A流向B,水流速度是4km/h。
甲乙两船同时由A向B行驶,各自不停地在两港口之间航行,甲船的静水速度是
28km/h,乙船的静水速度是20km/h。
已知两船第二次迎面相遇地地点与甲船第二次追上乙船(不算甲、乙在A处同时出发的那一次)的地点相距40km,求A、B两个港口之间的距离
2.太平洋号和北冰洋号两艘潜艇在海下沿直线同向潜航,北冰洋号在前,太平洋号在后,在潜航的某个时刻,太平洋号发出声波,间隔2秒后,再次发出声波.当声波传到北冰洋号时,北冰洋号会反射声波.已知太平洋号的航行速度是每小时54千米,第一次和第二次探测到北冰洋号反射的回波的间隔时间是秒,声波传播的速度是每秒1185米,问北冰洋号潜航的速度是每小时多少千米(精确到每小时1千米)
AB,甲,乙同时从山脚出3.A是山脚,B是山顶,C是山坡上的一点.AC=1
3
发,到达山顶,再返回山脚如此往返运动。
甲、乙速度比为6:5,并且甲、乙下山的速度都是各自上山速度的倍。
出发一段时间后,甲第一次在山顶看见乙在AC段向上爬;又经过一段时间后,甲第二次在山顶看见乙在AC段向上爬。
问:甲第二次在山顶看见乙在AC段向上爬时(包括此时),甲到过山顶几次
4.如图所示,从A到B,步行走粗线道ADB需要32分钟,乘车细线道A→C→D→E→B需分钟.已知D→E→B段的距离是D→B段距离的4倍,A→C→D段的距离是A→D段的距离的5倍,车速是步行速度的6倍,问先从A至D步行,再从D→E→B乘车所需要的总时间是多少分钟
B
5.甲、乙两人以均匀的速度分别从A、B两地同时出发,相向而行。
他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇。
求第2014次相遇地点与第2015次相遇地点之间的距离。
【课后作业】:
1.甲、乙、丙、丁四辆车同时在一条路上行驶,甲车12点追上丙车,14点与丁车相遇,16点与乙车相遇,乙车17点与丙相遇,18点追上丁车。
问:丙和丁车在几点几分相遇
2.如图,在一个大圆周上均匀分布着 200 个小球,沿顺时针方向依次编号为1,2,3,…, 200。
每个小球均以各自编号的速度沿顺时针方向绕圆周运动(单位是米/秒),当在某一个时刻有若干小球相遇在一起时,这些小球就会合并成一个小球,并以原来这些小球速度的平均值继续沿顺时针方向运动。
经过充分长的时间之后,圆周上最终剩下几个球在运动速度等于多少
3.正方形跑道ABCD,甲乙丙三人同时从A点出发同向跑步,他们的速度分别为每秒5米,4米,3米。
若干时间后,甲开始看到乙和丙都与自己在正方形的同一条边上,且他们在自己的前方。
从这次甲看到乙、丙在自己的前方的开始时刻算起,又经过21秒,甲乙丙三人处在跑道的同一位置,这是出发后三人第一次处在同一位置。
请计算出正方形的周长所有可能值。
4.三轮挎斗摩托车有前、左后和右后三个车轮。
如果把轮胎放在前轮可以行驶45000千米,如果把轮胎放在左后轮可以行驶20000千米,如果把轮胎放在右后轮可以行驶36000千米。
现有一辆刚刚换上新车胎的三轮挎斗摩托车,可以在恰当的时候将两个轮胎对换。
请问:
(1)这辆三轮摩托车最多可以行驶几千米而不需要购买新的轮胎?
(2)在这期间最少需要对换几次轮胎请说明理由;
(3)请详细叙述在行驶多少千米之后如何对调这些轮胎.。