全国中考数学试卷解析分类汇编(第一期)专题34投影与视图
中考数学试题分类汇编:投影与视图
(2013•衡阳)下列几何体中,同一个几何体的主视图与俯视图不同的是( ) A .B .C .D .考点: 简单几何体的三视图. 分析: 主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形. 解答:解:A 、圆柱的主视图与俯视图都是矩形,错误; B 、正方体的主视图与俯视图都是正方形,错误;C 、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D 、球体主视图与俯视图都是圆,错误; 故选C . 点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A . 2个B . 3个C . 5个D . 10个考点: 由三视图判断几何体. 分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数. 解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体, 从俯视图可以验证这一点,从而确定小正方体总个数为5个. 故选;C . 点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.(( )株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A BC DA .正方体 B .圆柱C .圆锥 D .球 考点: 简单几何体的三视图 分析: 俯视图是分别从物体上面看所得到的图形.分别写出四个几何体的俯视图即可得到答案. 解答:解:正方体的俯视图是正方形;圆柱体的俯视图是圆;圆锥体的俯视图是圆;球的俯视图是圆. 故选:A . 点评:本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. (2013,成都)如图所示的几何体的俯视图可能是( )(2013•达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。
中考数学试题分项版解析汇编(第01期)专题5.4 投影与视图(含解析)
专题5.4 投影与视图一、单选题1.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A. B. C. D.【来源】江苏省连云港市xx年中考数学试题【答案】A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.2.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.【来源】江苏省盐城市xx年中考数学试题【答案】B【解析】分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.详解:从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:.故选:B.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.图中立体图形的主视图是( )A. B. C. D.【来源】广东省深圳市xx年中考数学试题【答案】B【点睛】本题考查了简单几何体的三视图,明确主视图是从几何体正面看得到的是解题的关键. 4.移动台阶如图所示,它的主视图是()A. B. C. D.【来源】浙江省温州市xx年中考数学试卷【答案】B【解析】分析: 根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可.详解: A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意.故答案为:B.点睛: 本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.如图所示的正六棱柱的主视图是()B.C.D.【来源】四川省成都市xx年中考数学试题【答案】A点睛:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.如图所示的正六棱柱的主视图是()B.C.D.【来源】四川省成都市xx年中考数学试题【答案】A【解析】分析:根据主视图是从正面看到的图象判定则可.详解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选A.点睛:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.如图所示的几何体的左视图是( )A. (A)B. (B)C. (C)D. (D)【来源】山东省潍坊市xx年中考数学试题【答案】D点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【来源】天津市xx年中考数学试题【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9.一个几何体的三视图如图所示,该几何体是()A. 直三棱柱B. 长方体C. 圆锥D. 立方体【来源】浙江省金华市xx年中考数学试题【答案】A点睛:本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.10.一个立体图形的三视图如图所示,则该立体图形是()A. 圆柱B. 圆锥C. 长方体D. 球【来源】四川省宜宾市xx年中考数学试题【答案】A【解析】分析:综合该物体的三种视图,分析得出该立体图形是圆柱体.详解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选A.点睛:本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.11.如图所示的几何体的左视图为A. B. C. D.【来源】江西省xx年中等学校招生考试数学试题【答案】D【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B、C.12.下图所示立体图形的俯视图是()A. B. C. D.【来源】湖南省娄底市xx年中考数学试题【答案】B【详解】从物体上面看可看到有两列小正方形,左边的一列有1个,右边一列有两个,得到的图形如图所示:故选B.【点睛】本题考查了几何体的三视图,明确每个视图是从几何体的哪一面看得到的是解题的关键.为三角形的是()13.下列几何体中,俯视图...A. B. C. D.【来源】xx年浙江省舟山市中考数学试题【答案】C【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面;C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;14.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A. B. C. D.【来源】浙江省义乌市xx年中考数学试题【答案】D点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.15.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()【来源】安徽省xx年中考数学试题【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.16.如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【来源】山东省泰安市xx年中考数学试题【答案】C点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.17.由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是()A. B. C. D.【来源】浙江省衢州市xx年中考数学试卷【答案】C【解析】分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.详解:从正面看得到3列正方形的个数依次为2,1,1.故选C.点睛:本题考查了三视图的知识,掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.二、填空题18.如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为__________.中考数学试题分项版解析汇编(第01期)专题5.4 投影与视图(含解析)【来源】湖北省孝感市xx年中考数学试题【答案】点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】11 / 11。
2022年中考数学真题分类汇编:投影与视图
2022年中考数学真题分类汇编:24 投影与视图一、单选题(共22题;共88分)1.(4分)(2022·贺州)下面四个几何体中,主视图为矩形的是()A.B.C.D.【答案】A【解析】【解答】解:A选项图形的主视图为矩形,符合题意;B选项图形的主视图为三角形,中间由一条实线,不符合题意;C选项图形的主视图为三角形,不符合题意;D选项图形的主视图为梯形,不符合题意;故答案为:A.【分析】主视图是从几何体正面观察所得到的平面图形,据此判断.2.(4分)(2022·海南)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故答案为:C.【分析】主视图就是从几何体的正面所看到的平面图形,据此可得到此几何体的主视图.3.(4分)(2022·鄂州)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【答案】A【解析】【解答】解:从前面看,第一层是两个小正方形,第二层左边一个小正方形,第三层左边1个小正方形.故答案为:A.【分析】主视图是从几何体前面观察所得到的平面图形,根据主视图的概念确定出每行每列小正方形的个数,据此判断.4.(4分)(2022·长沙)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.【答案】B【解析】【解答】解:该几何体的主视图是故答案为:B.【分析】主视图是从几何体正面观察所得到的平面图形,根据主视图的概念确定出每行每列小正方形的个数,据此判断.5.(4分)(2022·威海)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是()A.B.C.D.【答案】B【解析】【解答】解:俯视图从上往下看如下:故答案为:B.【分析】根据三视图的定义求解即可。
6.(4分)(2022·龙东)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【答案】B【解析】【解答】由俯视图可知最底层有5个小正方体,由左视图可知这个几何体有两层,其中第二层最多有3个,那么搭成这个几何体所需小正方体最多有5+3=8个.故答案为:B.【分析】根据三视图的定义求解即可。
中考数学真题专项汇编解析—投影与视图、命题、尺规作图
中考数学真题专项汇编解析—投影与视图、命题、尺规作图一.选择题1.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∵展开图由一个扇形和一个圆构成,∵该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.2.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.3.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.4.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.5.(2022·四川自贡·中考真题)如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.【答案】A【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.【详解】解:矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.6.(2022·湖南衡阳·中考真题)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【答案】A【分析】根据主视图的定义和画法进行判断即可.【详解】解:从正面看过去,看到上下共三个矩形,所以主视图是:故选A【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.7.(2022·云南·中考真题)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱【答案】D【分析】根据三视图逆向即可得.【详解】解:此几何体为一个圆柱.故选:D.【点睛】此题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8.(2022·天津·中考真题)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9.(2022·江西·中考真题)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【答案】A【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A.【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.10.(2022·浙江温州·中考真题)某物体如图所示,它的主视图是()A.B.C.D.【答案】D【分析】根据主视图的定义和画法进行判断即可.【详解】解:某物体如图所示,它的主视图是:故选:D.【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.11.(2022·浙江宁波·中考真题)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的意义和画法可以得出答案.【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C符合题意,故答案选:C.【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键.12.(2022·江苏扬州·中考真题)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【答案】B【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∵该几何体是四棱锥,故选B.【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.13.(2022·浙江绍兴·中考真题)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【答案】B【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B.【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.14.(2022·浙江嘉兴·中考真题)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.15.(2022·浙江丽水·中考真题)如图是运动会领奖台,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:领奖台的主视图是:故选:A.【点睛】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.16.(2022·安徽·中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.17.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∵OAB OCB ≅,∵AOB COB ∠=∠,∵OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∵OBC OAD ≅,∵OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∵AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∵AEC BED ≅△△,∵AE BE =,∵,EAO EBO OA OB ∠=∠=,∵AOE BOE ∠=∠,∵OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∵CD OB ∥,COD CDO =∠∠,∵DOB CDO ∠=∠,∵COD DOB ∠=∠,∵OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∵AOB CBO ≅,∵,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.18.(2022·山东泰安·中考真题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )A .B .C .D .【答案】C【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C19.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边【答案】B【分析】由直线公理可直接得出答案.【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.20.(2022·四川达州·中考真题)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a b<,则22ac bc<D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1 3【答案】D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若a b<,则22ac bc≤,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D选项正确,符合题意;故选:D.【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.21.(2022·湖北随州·中考真题)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.22.(2022·湖北黄冈·中考真题)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱【答案】C【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.23.(2022·广西梧州·中考真题)下列命题中,假命题...是()A.2-的绝对值是2-B.对顶角相等C.平行四边形是中心对称图形D.如果直线,∥∥,那么直线a ba cb c∥【答案】A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A.2-的绝对值是2,故原命题是假命题,符合题意;B.对顶角相等,故原命题是真命题,不符合题意;C.平行四边形是中心对称图形,故原命题是真命题,不符合题意;D.如果直线,a cb c∥∥,那么直线a b∥,故原命题是真命题,不符合题意;故选:A.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.24.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题饿到关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.25.(2022·湖北武汉·中考真题)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【答案】A【分析】根据题意可得这个几何体的三视图为长方形和正方形,即可求解.【详解】解:根据题意得:该几何体的三视图为长方形和正方形,∵该几何体是长方体.故选:A【点睛】本题考查由三视图确定几何体的名称,熟记常见几何体的三视图的特征是解题的关键.26.(2022·黑龙江齐齐哈尔·中考真题)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【答案】C【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层的个数,从而算出总的个数.【详解】解:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=6.故选:C.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.27.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.28.(2022·广西贺州·中考真题)下面四个几何体中,主视图为矩形的是()A.B.C.D.【答案】A【分析】依次分析每个选项中的主视图,找出符合题意的选项即可.【详解】解:A选项图形的主视图为矩形,符合题意;B选项图形的主视图为三角形,中间由一条实线,不符合题意;C选项图形的主视图为三角形,不符合题意;D选项图形的主视图为梯形,不符合题意;故选:A.【点睛】本题考查了几何体的主视图,解题关键是理解主视图的定义.29.(2022·湖南永州·中考真题)我市江华县有“神州摇都”的美涨,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.【答案】B【分析】根据题目描述,判断几何体的俯视图即可;【详解】解:根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形,鼓腰也是圆形,且是不能直接看见,所以中间是虚圆;故选:B.【点睛】本题主要考查几何体的三视图中的俯视图,解本题的关键在于需学生具备一定的空间想象能力.30.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.31.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.32.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:∵作线段2AB ,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;∵连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法不正确的是()A.ABC是等边三角形B.AB CD⊥C.AH BH=D.45∠=︒ACD【答案】D【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB=BC=AC,∵∵ABC是等边三角形,故A选项正确∵等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,∵AB CD⊥,故B选项正确,∵AH BH=,30∠=︒,故C选项正确,D选项错误.故选:D.ACD【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.33.(2022·四川广元·中考真题)如图,在∵ABC中,BC=6,AC=8,∵C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于大于12点E 、F ,则AE 的长度为( )A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∵1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∵C =90°,∵10AB ,∵AD =4,AF =2,4cos 5AC A AB ∠==,∵5cos 2AF AE A ==∠;故选A . 【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.34.(2022·河北·中考真题)∵~∵是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A.∵∵B.∵∵C.∵∵D.∵∵【答案】D【解析】【分析】观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意【详解】解:观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.二、填空题35.(2022·江苏无锡·中考真题)请写出命题“如果a b>,那么0-<”的逆命题:b a________.【答案】如果0-<,那么a b>b a【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b>,那么0b a-<,那么a b>”,-<”的逆命题是“如果0b a故答案为:如果0-<,那么a b>.b a【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.36.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.37.(2022·浙江湖州·中考真题)“如果a b =,那么a b =”的逆命题是___________.【答案】如果a b =,那么a b =【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义. 38.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13mMC CD==,垂直于地面的木棒EF与影子FG的比为2∵3,则点O,M之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.【答案】1010【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD 于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据23EF OMFG MH==,求出OM的长度,证明BIO JIB∽,得出23BI IJ=,49OI IJ=,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ 交BD于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,由题意可知,点O是AB的中点,∵OH AC BD,∵点H是CD的中点,∵13m CD=,∵16.5m2CH HD CD===,∵8.5 6.515m MH MC CH=+=+=,又∵由题意可知:23EF OMFG MH==,∵2153OM=,解得10m=OM,∵点O、M之间的距离等于10m,∵BI∵OJ,∵90BIO BIJ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∵BOI JBI ∠=∠,∵BIO JIB ∽,∵23BI OI IJ BI ==,∵23BI IJ =,49OI IJ =, ∵,OJ CD OH DJ ,∵四边形IHDJ 是平行四边形,∵ 6.5m OJ HD ==, ∵46.5m 9OJ OI IJ IJ IJ =+=+=,∵ 4.5m IJ =,3m BI =,2m OI =,∵在Rt OBI △中,由勾股定理得:222OB OI BI =+,∵OB ,∵OB OK ==,∵(10m MK MO OK =+=,∵叶片外端离地面的最大高度等于(10m,故答案为:10,10+【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.39.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ∵BC ,DE ∵EF ,DE =2.47m ,则AB =_________m .【答案】9.88【分析】根据平行投影得AC ∵DE ,可得∵ACB =∵DFE ,证明Rt ∵ABC ∵∵Rt ∵DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .∵AC ∵DE ,∵∵ACB =∵DFE ,∵AB ∵BC ,DE ∵EF ,∵∵ABC =∵DEF =90°,∵Rt ∵ABC ∵∵Rt ∵DEF , ∵AB BC DE EF =,即8.722.47 2.18AB =,解得AB =9.88, ∵旗杆的高度为9.88m .故答案为:9.88.【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt ∵ABC ∵∵Rt ∵DEF 是解题的关键.40.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴=8AC =,15BC =,81523,ACD CAC CD AD AC CD BD AC BC 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.三.解答题41.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ∵OD ,EF ∵FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明∵AOD ∵∵EFG ,利用相似比计算出AO 的长,再证明∵BOC ∵∵AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:∵AD ∵EG ,∵∵ADO =∵EGF . 又∵∵AOD =∵EFG =90°,∵∵AOD ∵∵EFG . ∵AO ODEF FG =.∵ 1.820152.4EF OD AO FG ⋅⨯===. 同理,∵BOC ∵∵AOD .∵BO OCAO OD =.∵15161220AO OC BO OD ⋅⨯===. ∵AB =OA −OB =3(米).∵旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.42.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)。
中考数学真题分类汇编(第一期)专题34 投影与视图试题(含解析)-人教版初中九年级全册数学试题
投影与视图一、选择题1.2018•某某某某•3分)如图所示的正六棱柱的主视图是()A.B.C.D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。
2.(2018•某某某某•3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3. (2018•某某•3分)如图所示的几何体的左视图为第3题A B C D【解析】本题考察三视图,容易,但注意错误的选项B和C.【答案】D ★4. (2018•某某某某•3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B.C. D.【答案】B【考点】简单几何体的三视图【解析】【解答】解:从左面看到的图形是故答案为:B【分析】在侧投影面上的正投影叫做左视图;观察的方法是:从左面看几何体得到的平面图形。
5.(2018·某某省某某·3分)如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:该几何体的主视图为:;左视图为;俯视图为;故选:C.【点评】此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.6.(2018·某某省某某·3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【点评】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7.(2018·某某省某某·3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(2018·某某省某某·3分)如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层有1个正方形,且位于中间.故选:A.9(2018·某某潍坊·3分)如图所示的几何体的左视图是()A. B. C. D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个等宽的矩形,矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.10(2018·某某某某·3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm2【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.11(2018·某某某某·3分)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.【分析】直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.【解答】解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选:C.【点评】此题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题关键.12(2018·某某威海·3分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25π B.24π C.20π D.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13(2018·某某潍坊·3分)如图所示的几何体的左视图是()A. B. C. D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个等宽的矩形,矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.14.(2018••2分)下列几何体中,是圆柱的为A.B. C.D.【答案】A【解析】A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.【考点】立体图形的认识15. (2018•某某•4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.16. (2018•某某省永州市•4分)如图几何体的主视图是()A. B. C. D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.17 (2018年某某省某某市•3分)下列几何体中,主视图与俯视图不相同的是()A. B. C. D.正方体四棱锥圆柱球【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:四棱锥的主视图与俯视图不同.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.18. (2018·某某生产建设兵团·5分)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看竖直叠放2个正方形.故选:C.【点评】此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.19 (2018·某某某某·3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱 B.圆锥 C.长方体D.球【考点】U3:由三视图判断几何体.【分析】综合该物体的三种视图,分析得出该立体图形是圆柱体.【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.【点评】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.20. (2018·某某·3分)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.21. (2018·某某某某·4分)下面几何的主视图是()A.B.C.D.【分析】主视图是从物体正面看所得到的图形.【解答】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.22.(2018•某某某某•3分)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则搭成这个几何体的小正方体最少有5个.故选:B.【点评】此题主要考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.23.(2018•某某某某•3分)如图,该几何体的俯视图是()A.B.C. D.【分析】找到从几何体的上面所看到的图形即可.【解答】解:从几何体的上面看可得,故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.24.(2018•某某某某•3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.8【分析】直接利用左视图以及俯视图进而分析得出答案.【解答】解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.【点评】此题主要考查了由三视图判断几何体,正确想象出最少时几何体的形状是解题关键.25.(2018·某某临安·3分)小明从正面观察如图所示的两个物体,看到的是()A.B.C.D.【考点】三视图【分析】分别找出四个选项中图形是从哪个方位看到的,此题得解.【解答】解:A、从上面看到的图形;B、从右面看到的图形;C、从正面看到的图形;D、从左面看到的图形.故选:C.【点评】本题考查了简单组合体的三视图,观察组合体,找出它的三视图是解题的关键.26.(2018·某某某某·4分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【考点】三视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.27.(2018·某某某某·3分)由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是()A.B.C.D.【考点】三视图【分析】得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到3列正方形的个数依次为2,1,1.故选C.【点评】考查三视图的相关知识;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.28(2018·某某某某·3分)下列几何体中,俯视图为三角形的是()A. B.C. D.【考点】简单几何体的三视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】A、圆锥的俯视图是一个圆并用圆心,故A不符合题意;B、长方体的俯视图是一个长方形,故B不符合题意;C、直三棱柱的俯视图是三角形,故C符合题意;D、四棱锥的俯视图是一个四边形,故D不符合题意;故答案为C。
2019年全国各地中考数学试题分类汇编之 专题34 投影与视图(含解析)
投影与视图一.选择题1.(2019▪广西池河▪3分)某几何体的三视图如图所示,该几何体是()A.圆锥B.圆柱C.三棱锥D.球【分析】由已知三视图得到几何体是圆锥.【解答】解:由已知三视图得到几何体是以圆锥;故选:A.【点评】本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.2. (2019,四川成都,3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A. B. C. D.【解析】此题考查立体几何里三视图的左视图,三视图的左视图,应从左面看,故选B 3.(2019,山东淄博,4分)下列几何体中,其主视图、左视图和俯视图完全相同的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A.圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,不符合题意;B.三棱柱的主视图和左视图、俯视图都不相同,不符合题意;C.长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,不符合题意;D.球的三视图都是大小相同的圆,符合题意.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4. (2019•湖南长沙•3分)某个几何体的三视图如图所示,该几何体是()A.B.C.D.【分析】根据几何体的三视图判断即可.【解答】解:由三视图可知:该几何体为圆锥.故选:D.【点评】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.5. (2019•湖南邵阳•3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.6. (2019•湖南湘西州•4分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A.主视图是三角形,故不符合题意;B.主视图是矩形,故不符合题意;C.主视图是圆,故符合题意;D.主视图是正方形,故不符合题意;故选:C.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.7. (2019•湖南岳阳•3分)下列立体图形中,俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的上面看物体,所得到的图形,分析每个几何体,解答出即可.【解答】解:A.圆柱的俯视图是圆;故本项不符合题意;B.圆锥的俯视图是圆;故本项不符合题意;C.立方体的俯视图是正方形;故本项符合题意;D.球的俯视图是圆;故本项不符合题意.故选:C.【点评】本题主要考查了简单几何体的俯视图,锻炼了学生的空间想象能力.8. (2019•广东•3分)如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图9. (2019•广西贵港•3分)某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】先细心观察原立体图形中正方体的位置关系,从正面看去,一共两列,左边有2竖列,右边是1竖列,结合四个选项选出答案.【解答】解:从正面看去,一共两列,左边有2竖列,右边是1竖列.故选:B.【点评】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力.10.(2019▪黑龙江哈尔滨▪3分)七个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个立体图形的左视图有2列,从左到右分别是2,1个正方形,故选:B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.11.(2019▪湖北黄石▪3分)如图,该正方体的俯视图是()A.B.C.D.【分析】俯视图是从物体上面看所得到的图形,据此判断正方体的俯视图.【解答】解:正方体的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形都是正方形,故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.12. (2019•山东省聊城市•3分)如图所示的几何体的左视图是()A.B.C.D.【考点】三视图【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从左向右看,得到的几何体的左视图是.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.13. (2019•山东省滨州市•3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【考点】三视图【分析】根据该几何体的三视图可逐一判断.【解答】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选:A.【点评】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.14. (2019•湖北十堰•3分)如图是一个L形状的物体,则它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.15. (2019•湖北天门•3分)如图所示的正六棱柱的主视图是()A.B.C.D.【分析】主视图是从正面看所得到的图形即可,可根据正六棱柱的特点作答.【解答】解:正六棱柱的主视图如图所示:故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.16. (2019•湖北武汉•3分)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形,如图所示:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.17. (2019•湖北孝感•3分)下列立体图形中,左视图是圆的是()A.B.C.D.【分析】左视图是从物体左面看,所得到的图形.【解答】解:A.圆锥的左视图是等腰三角形,故此选项不合题意;B.圆柱的左视图是矩形,故此选项不合题意;C.三棱柱的左视图是矩形,故此选项不合题意;D.球的左视图是圆形,故此选项符合题意;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.18.(2019•浙江嘉兴•3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.19.(2019•浙江宁波•4分)如图,下列关于物体的主视图画法正确的是()A.B.C.D.【分析】根据主视图是从正面看到的图形,进而得出答案.【解答】解:物体的主视图画法正确的是:.故选:C.【点评】本题考查了三视图的知识,关键是找准主视图所看的方向.20.(2019•浙江衢州•3分)如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A B C D【答案】A【考点】简单组合体的三视图【解析】【解答】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案. 21.(2019•浙江绍兴•4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.22.(2019•浙江金华•3分)如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr·r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π×= .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr·r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.23. (2019安徽)(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.24.(3分)(2019甘肃省陇南市)下列四个几何体中,是三棱柱的为()A.B.C.D.【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【解答】解:A.该几何体为四棱柱,不符合题意;B.该几何体为四棱锥,不符合题意;C.该几何体为三棱柱,符合题意;D.该几何体为圆柱,不符合题意.故选:C.【点评】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.25. (2019甘肃省天水市)如图所示,圆锥的主视图是()A.B.C.D.【答案】A【解析】解:圆锥的主视图是等腰三角形,如图所示:故选:A.主视图是从正面看所得到的图形即可,可根据圆锥的特点作答.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,主视图是从物体的正面看得到的视图.10.二.填空题1. (2019•甘肃•3分)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为(18+2)cm2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).故答案为(18+2)cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.三.解答题1.2.。
全国各地中考数学真题分类解析汇编投影与视图
投影与视图、选择题1. (2014?安徽省,第3题4分)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,A. B .考点:简单几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是故选: D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2. (2014?畐建泉州,第3题3分)如图的立体图形的左视图可能是()D.考点:简单几何体的三视图.分析:左视图是从物体左面看,所得到的图形.解答:解:此立体图形的左视图是直角三角形,故选:A.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. (2014?广西贺州,第8题3分)如图是由5个大小相同的正方体组成的几何体,它的A.ffl主视图是()考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:从正面看,第一层是两个正方形,第二层左边是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4. (2014?广西玉林市、防城港市,第5题3分)如图的几何体的三视图是()主视方向考点:简单组合体的三视图.:分别找出图形从正面、左面、和上面看所得到的图形即可.小正方形;从几何体的正面看可得有 2列小正方形,左面有 2个小正方形,右面下边有1个小正 方形;从几何体的上面看可得有 2列小正方形,左面有 2个小正方形,右上角有1个小正方 形; 故选:C. 本题考查了三视图的知识,注意所有的看到的棱都应表现在三视图中. 考点:简单几何体的三视图. 分析:根据从上面看得到的图形是俯视图,可得答案. 解答: 解;A 、的俯视图是止方形,故 A 正确; B D 的俯视图是圆,故 A D 错误;C 的俯视图是三角形,故 C 错误;故选:A.点评: 本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.(2014年天津市,第5题3分)如图,从左面观察这个立体图形,考点:简单组合体的三视图:解:从几何体的正面看可得有2列小正方形,左面有 2个小正方形,右面下边有A. B. C.5. (2014四川资阳,第2题3分)下列立体图形中,俯视图是正方形的是()分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选: A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.7. (2014?新疆,第2题5分)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()考点:简单组合体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:上面看,是上面2个正方形,左下角1个正方形,故选 C.点评:本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误地选其它选项.& (2014年云南省,第4题3分)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体. 分析: 由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答: 解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个 几何体应该是圆锥,故选 D.点评: 主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.9. (2014?温州,第3题4分)如图所示的支架是由两个长方形构成的组合体,则它的主视图是( )考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得此几何体的主视图是 故选: D. 点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10. ( 3分)(2014?毕节地区,第 2题3分)如图是某一几何体的三视图,则该几何体是 考点:由三视图判断几何体 分析: 三视图中有两个视图为矩形,那么这个几何体为柱体,根据第三棱柱B. 长方体C. 圆柱D. 主视圏A . 圆锥 B.左视图A .个视图的形状可得几何体的具体形状.解答: 解:•••三视图中有两个视图为矩形,•••这个几何体为柱体,•••另外一个视图的形状为圆,•••这个几何体为圆柱体,故选C.点评: 考查由三视图判断几何体;用到的知识点为:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的形状.11. (2014?武汉,第7题3分)如图是由4个大小相同的正方体搭成的几何体,其俯视图是()考点:简单组合体的三视图. 分析:找到从上面看所得到的图形即可. 解答:解:从上面看可得到一行正方形的个数为 3,故选D. 点评: 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.12. (2014?襄阳,第4题3分)如图几何体的俯视图是( )考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看,第一层是三个正方形,第二层右边一个正方形,故选:B.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.13. (2014?邵阳,第3题3分)如图的罐头的俯视图大致是()考点:简单几何体的三视图分析:俯视图即为从上往下所看到的图形,据此求解.解答:解:从上往下看易得俯视图为圆.故选D.点评:本题考查了三视图的知识,俯视图即从上往下所看到的图形.14. (2014?孝感,第2题3分)如图是某个几何体的三视图,则该几何体的形状是()A. 长方体B.圆锥|C.圆柱D.三棱柱考点:由三视图判断几何体分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.15. (2014?四川自贡,第3题4分)如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()它的主视图是()考点:由三视图判断几何体;简单组合体的三视图分析:由俯视图,想象出几何体的特征形状,然后按照三视图的要求,得出该几何体的正视图和侧视图.解答:丿解 :由俯视图可知,小正方体的只有2排,前排右侧1叠3块;后排从做至右木块个数 1 , 1, 2;故选D.点评::本题是基础题,考查空间想象能力,绘图能力,常考题型.16、(2014 •云南昆明, 第2题3分)左下图是由3个完全相同的小正方体组成的立体图形,D考点:简单组合体的三视图•分析:根据主视图是从正面看到的识图分析解答.A B CD.解答:解:从正面看,是第1行有1个正方形,第2行有2个并排的正方形.故选B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.17.(2014 •浙江金华,第3题4分)一个几何体的三视图如图所示,那么这个几何体是【】【答案】D.【解析】试题分析:主视图、左视图、俯视图是分别从物体正面、左而和上面看,所得至!I的图形.由二视图可知$ 这个几何体的上方是一个圆锥,下方杲一个圆柱一故选D・肴点皐由三视图判断几何悴・18.(2014?湘潭,第5题,3分)如图,所给三视图的几何体是(王视團左视團俯视團(第1题图)考点:由三视图判断几何体 分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥. 故选C.点评:本题考查了由三视图判断几何体的知识,解题的关键是了解主视图和左视图的大致轮廓为长方形的几何体为锥体.19.(2014?株洲,第5题,3分)下列几何体中,有一个几何体的主视图与俯视图的形状考点:简单几何体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案. 解答:解:A 主视图、俯视图都是正方形,故A 不符合题意;B 、主视图、俯视图都是矩形,故 B 不符合题意;C 主视图是三角形、俯视图是圆形,故 C 符合题意;D 主视图、俯视图都是圆,故 D 不符合题意;故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.20. (2014?泰州,第4题,3分)一个几何体的三视图如图所示, 则该几何体可能是 ( )A.: 球B. |圆柱 C. 圆锥棱锥 不一样,这个几何体是( D.考点:由三视图判断几何体.分析:根据三视图判断圆柱上面放着小圆锥,确定具体位置后即可得到答案. 解答:解:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥的底面和圆柱的底面完全重合. 故选C.点评:本题考查了由三视图判断几何体,解题时不仅要有一定的数学知识,而且还应有一定 的生活经验.4题3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(21. (2014?呼和浩特,第C .90 n D.A. 160 n60 n B.70 n (考点:由三视图判断几何体.分析:易得此几何体为空心圆柱,圆柱的体积=底面积X 高,把相关数值代入即可求解.解答:解:观察三视图发现该几何体为空心圆柱,其内径为3,外径为4,高为10,所以其体积为10X ( 42n- 32n ) =70 n , 故选B .点评:本题考查了由三视图判断几何体的知识,解决本题的关键是得到此几何体的形状, 易错点是得到计算此几何体所需要的相关数据.22. (2014?德州,第3题3分)图甲是某零件的直观图,则它的主视图为()考点:简单组合体的三视图.分析:根据主视图是从正面看得到的视图判定则可. 解答:解:从正面看,主视图为 ______________ . 故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.23. ( 2014年山东泰安,第3题3分)下列几何体,主视图和俯视图都为矩形的是 ( )解:A 、圆柱主视图是矩形,俯视图是圆,故此选项错误;B 圆锥主视图是等腰三角形,俯视图是圆,故此选项错误;C 三棱柱主视图是矩形, 俯视图是三角形,故此选项错误; D 长方体主视图和俯视图都为矩形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现A .D. A . C.D.B.在三视图中..填空题1.(2014年广东汕尾,第15题5分)写出一个在三视图中俯视图与主视图完全相同的几何体•分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形. 故答案为:球或正方体.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2.(2014?浙江湖州,第12题4分)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是_________________ .分析:根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,案.解:从上面看三个正方形组成的矩形,矩形的面积为1X 3=3, 故答案为:3.点评:本题考查了简单组合体的三视图,先确定俯视图,再求面积.3.(2014?扬州)如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18 cm i .3 -X31主视图住视圉(第1题图)考点:由三视图判断几何体.分析:-首先确定该几何体为立方体,并说出其尺寸,直接计算其体积即可.解答:〕解:观祭其视图知:该几何体为立方体,且立方体的长为3,宽为2,咼为3, 故其体积为:3X 3X 2=18,故答案为:18.点评:: 本题考查了由三视图判断几何体,牢记立方体的体积计算方法是解答本题的关键.可得答。
2020年全国中考数学试卷分类汇编(一)专题34 视图与投影(含解析)
视图与投影一.选择题1. (2020年辽宁省辽阳市)2.(3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.【分析】根据简单几何体的主视图的画法,利用“长对正”,从正面看到的图形.【解答】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C的图形符合题意,故选:C.【点评】本题考查简单几何体的三视图的画法,画三视图时要注意“长对正、宽相等、高平齐”.2.(2020年德州市)4.(4分)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.【点评】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.3 (2020•江苏省盐城市•3分)如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:观察图形可知,该几何体的俯视图是.故选:A.【点评】本题考查了简单组合体的三视图,从上面看到的视图是俯视图.4(2020•湖北武汉•3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看上下各一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(2020•湖北襄阳•3分)如图所示的三视图表示的几何体是()A.B.C.D.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A.【点评】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体.6.(2020•湖北孝感•3分)如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.【分析】从左侧看几何体所得到的图形就是该几何体的左视图,从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C符合题意.【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.【点评】本题考查简单几何体的三视图,明确三种视图的形状和大小是正确判断的前提.7. (2020•江苏省常州市•2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥【分析】该几何体的主视图与左视图均为矩形,俯视图为正方形,易得出该几何体的形状.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.【点评】主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.8. (2020•江苏省淮安市•3分)下列几何体中,主视图为圆的是()A.B.C.D.【分析】根据各个几何体的主视图的形状进行判断.【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.【点评】考查简单几何体的三视图,明确各个几何体的三视图的形状是正确判断的前提.9. (2020•江苏省连云港市•3分)如图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.【分析】找到从几何体的正面看所得到的图形即可.【解答】解:从正面看有两层,底层是两个小正方形,上层的左边是一个小正方形.故选:D.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.10(2020•江苏省苏州市•3分)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【解析】【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案.【详解】组合体从上往下看是横着放的三个正方形.故选C.【点睛】本题主要考查组合体的三视图,熟练掌握三视图的概念,是解题的关键.11. (2020•湖南省怀化市•3分)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是24π(结果保留π).【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π,∴这个圆柱的侧面积是4π×6=24π.故答案为:24π.【点评】本题考查由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12. (2020•湖南省张家界·3分)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A. B. C. D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看有三列,从左到右依次有2.1.1个正方形,图形如下:故选A.【点睛】本题考查了简单组合体的三视图,解题时注意从正面看得到的图形是主视图.13. (2020•河南省•3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A.主视图和左视图是长方形,一定相同,故本选项不合题意题意;B.主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C.主视图和左视图都是圆,一定相同,故选项不符合题意;D.主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.。
中考数学分类汇编汇总知识点投影三视图与展开图(第一期) 解析版
一、选择题1. 〔202XX省X市,3,3分〕以下立体图形中,俯视图不是圆的是〔〕A B C D【答案】C【解析】正方体的俯视图与正方形,其它三个的俯视图都是圆,应选择C.【知识点】物体的三视图2. 〔202XX省X市,5,3〕一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是〔〕A.长方体B.四棱锥C.三棱锥D.圆锥【答案】A【解析】此题考查了由视图推断几何体,主视图、左视图、俯视图都是长方形的几何体是长方体,应选A. 【知识点】三视图3. 〔202XXX,4,3分〕如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,以下说法正确的选项是〔〕A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】观察该几何体,主视图有四个小正方形,面积为4;左视图有3个小正方形,面积为3;俯视图有四个小正方形,面积为4,故A正确.【知识点】三视图4. 〔202XX省X市,7,3分〕如图,一个几何体上半部为正四校锥,下半部为立方体,且有一个面涂有颜色,该几何体的外表展开图是〔〕第7题图A B C D【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.【知识点】立体图形的展开图5. (202XXX,2,3分)如下图的几何体的左视图是第2题图【答案】B【解析】A中间是虚线,∴是从右边看得到的图形,故A错误;B是左视图,正确;C是主视图,故C错误;D是俯视图,故D错误;应选B.【知识点】三视图6.〔202XX省X市,4,3分〕如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的选项是〔〕A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】通过小正方体①的位置可知,只有从正面看会少一个正方形,故主视图会改变,而俯视图和左视图不变,应选择A.【知识点】三视图7. 〔202X XX,3,4分〕以下几何体中,其主视图、左视图和俯视图完全相同的是〔〕A.B.C.D.【答案】D.【解析】:A、圆柱的主视图和左视图是长方形、俯视图是圆形,故本选项不符合题意;B、三棱柱的主视图和左视图是相同的长方形,但是俯视图是一个三角形,故本选项不符合题意;C、长方体的主视图和左视图是不一样的长方形,俯视图也是一个长方形,故本选项不符合题意;D、球体的主视图、左视图和俯视图是相同的圆,故本选项符合题意.应选:D.【知识点】简单几何体的三视图8. (202XXX,4,4分)如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是( )【答案】C【解析】从正面看这个组合体,可以看到四个正方体和一个圆锥的侧面,下面一层是三个正方形,上面一层左边是正方形,右边是三角形,应选C.【知识点】三视图9.〔202XXX,题号4,3分〕以下图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是〔〕【答案】C【解析】这个几何体的第一行有三层,第二行有一层,故应选C【知识点】三视图10. 〔202XX省X市,3,3分〕如图是由6个完全相同的小正方体组成的立体图形,它的左视图是【答案】D【解析】解:从左侧看,共有3列,第一列有两个正方形,第二列有一个正方形,第三列有一个正方形,应选D.【知识点】立体图形的三视图11. (202XX省X市,5,4分)以下图是一个水平放置的全封闭物体,则它的俯视图是〔〕【答案】C.【解析】解:俯视图就是从上面看,从上面看可以看到两个矩形,并且都是实线.应选C.【知识点】三视图12.〔202XX市,5,3分〕右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】从正面看由两层组成,上面一层1个正方形,下面一层三个正方形,所以选B【知识点】三视图.13. (202XXX,5题,4分) 如图,以下关于物体的主视图画法正确的选项是第5题图【答案】C【解析】如下图是一个空心圆柱,其左视图轮廓应该是长方形,内部的两条线段看不到,应该用虚线表示,应选C.【知识点】三视图的画法14. 〔202XX 省X 市,3,3分〕 如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图...是〔A 〕 【答案】A【解析】此题考查主视图的识别,该几何体从正面看看到的图形是A 图,应选A 。
2022年各地中考数学解析版试卷分类汇编(第1期)专题34投影与视图
投影与视图一、选择题1.〔2022·黑龙江大庆〕由假设干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如下列图,那么构成这个几何体的小正方体有〔〕个.A.5B.6 C.7D.8【考点】由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图可知,这个几何体的底层应该有2+1+1+1=5个小正方体,第二层应该有2个小正方体,因此搭成这个几何体所用小正方体的个数是5+2=7个.应选C【点评】此题意在考查学生对三视图掌握程度和灵活运用能力,同时也表达了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章〞就更容易得到答案.2. 〔2022·湖北鄂州〕一个几何体及它的主视图和俯视图如下列图,那么它的左视图正确的选项是〔〕【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章〞分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中.从俯视图可知,此题几何体是正六棱柱,所以棱应该在正中间。
【解答】解:从物体的左面看是正六棱柱的两个侧面,因C项只有1个面,D项有3个面,故排除C,D;从俯视图可知,此题几何体是正六棱柱,所以棱应该在正中间,故排除A.应选B.【点评】此题考查的是简单组合体的三视图〔由几何体判断三视图〕. 解题的关键,一是要熟知“俯视图打地基,主视图疯狂盖,左视图拆违章〞口诀,二是注意所有的看到的棱都应表现在左视图中.3. 〔2022·湖北黄冈〕如下左图,是由四个大小相同的小正方体拼成的几何体,那么这个几何体的左视图是从正面看ABCD〔第5题〕【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章〞分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中.【解答】解:从物体的左面看易得第一列有2层,第二列有1层.应选B.4.〔2022·湖北十堰〕下面几何体中,其主视图与俯视图相同的是〔〕A.B.C.D.【考点】简单几何体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:A、圆柱主视图是矩形,俯视图是圆;B、圆锥主视图是三角形,俯视图是圆;C、正方体的主视图与俯视图都是正方形;D、三棱柱的主视图是矩形与俯视图都是三角形;应选:C.【点评】此题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5. 〔2022·湖北咸宁〕下面四个几何体中,其中主视图不是中心对称图形的是〔〕ABCD【考点】简单几何体的三视图,中心对称图形.【分析】根据从正面看得到的图形是主视图,可得到各几何体的主视图;根据中心对称图形的定义判断即可得到答案。
2021-2022全国各中考数学试卷分考点解析汇编-投影与视图
2021-2022全国各中考数学试卷分考点解析汇编-投影与视图一、选择题1.(2011天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度差不多上同一长度.则它的三视图是【答案】A。
【考点】几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观看原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。
故选A。
2.(2011重庆綦江4分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是【答案】C。
【考点】简单组合体的三视图。
【分析】俯视图是从上面看,圆锥看见的是圆和点,两个正方体看见的是两个正方形。
故选C。
3.(2011重庆潼南4分)下面四个几何体中,主视图与其它几何体的主视图不同的是【答案】C。
【考点】简单几何体的三视图。
【分析】找到从正面看所得到的图形比较即可:A、主视图为长方形;B、主视图为长方形;C、主视图为两个相邻的三角形;D、主视图为长方形。
故选C。
4.(2011浙江舟山、嘉兴3分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是(A)两个外离的圆(B)两个外切的圆(C)两个相交的圆(D)两个内切的圆【答案】D。
【考点】圆与圆的位置关系,简单组合体的三视图。
【分析】观看图形可知,两球都与水平线相切,因此,几何体的左视图为相内切的两圆。
故选D 。
5.(2011浙江温州4分)如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是【答案】A 。
【考点】简单组合体的三视图。
【分析】主视图是从正面看,圆柱从正面看是两个圆柱,看到两个长方形。
故选A 。
6.(2011浙江绍兴4分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是【答案】D 。
【考点】简单组合体的三视图。
【分析】从左面看易得第一层有1个正方形,第二层左边有2个正方形,右边有1个正方形。
新初中数学投影与视图分类汇编附答案解析
新初中数学投影与视图分类汇编附答案解析一、选择题1.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键. 2.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.3.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.33C.32D.62【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为12×2×2=2,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5.下面是一个几何体的俯视图,那么这个几何体是()A.B.C.D.【答案】B【解析】【分析】根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B中的图形是和题目中的俯视图看到的一样,故选:B.【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.6.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体A.10:2B.9:2C.10:1D.9:1【答案】C【解析】【分析】由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C.【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.7.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.8.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.9.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】C【解析】【分析】由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥.【详解】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是3个三角形组成的大三角形,∴该物体的形状是三棱锥.故选:C.【点睛】本题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.10.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()A.3 B.4 C.5 D.6【答案】D【解析】【分析】根据主视图和左视图画出可能的俯视图即可解答.【详解】由主视图和左视图得到俯视图中小正方形的个数可能为:∴这个几何体的小正方形的个数可能是3个、4个或5个,故选:D.【点睛】此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键. 11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.12.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是()A.B.C.D.【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.13.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.14.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( ) A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.15.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.16.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.如图:22-=,543⨯=,326全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.17.如图所示的几何体,从左面看到的形状图是()A.B.C.D.【答案】A【解析】【分析】观察图形可知,从左面看到的图形是2列分别为2,1个正方形;据此即可画图.【详解】如图所示的几何体,从左面看到的形状图是。
最新初中数学投影与视图全集汇编附答案解析(1)
最新初中数学投影与视图全集汇编附答案解析(1)一、选择题1.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.2.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等【答案】D【解析】【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.3.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.4.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.5.如图是空心圆柱,则空心圆柱在正面的视图,正确的是()A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【答案】D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.7.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A 错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.8.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.12.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.13.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!14.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.15.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.16.如图所示的几何体的俯视图为( )A.B.C.D.【答案】C【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选:C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.17.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几+=个.何体的小正方体最多为437故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.18.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.19.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个【答案】B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B .20.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )A .B .C .D . 【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B 选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.。
中考数学考试分类汇编:考点()投影与视图(Word版含解析)
中考数学考试分类汇编:考点() 投影与视图(Word版含解析)作者:日期: 2考点38投影与视图一•选择题(共45小题)1.(2018?广安)下列图形中,主视图为①的是()n图①【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图, 案.【解答】解:A、主视图是等腰梯形,故此选项错误;B主视图是长方形,故此选项正确;C主视图是等腰梯形,故此选项错误;D主视图是三角形,故此选项错误;故选:B.【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【解答】解:A、C、D主视图是矩形,故A、C D不符合题意;B主视图是三角形,故B正确;故选:B.即可得到答2.(2018?眉山)下列立体图形中,主视图是三角形的是()3.(2018?泰州)下列几何体中,主视图与俯视图不相同的是(2A.球【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析. 【解答】解:四棱锥的主视图与俯视图不同.故选:B.4.(2018?昆明)下列几何体的左视图为长方形的是(【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;【分析】找到个图形从左边看所得到的图形即可得出结论.D.圆锥的左视图是三角形.故选:C.5.(D.2018?圭林)如图所示的几何体的主视图是()从正面看下面【分析】根据主视图是从正面看到的图形,可得答案. 故C选项符合题意,故选:C.6.(2018?湘潭)如图所示的几何体的主视图是(【分析】找出从几何体的正面看所得到的图形即可.7.(2018?常德)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.&(2018?长春)下列立体图形中,主视图是圆的是()【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B圆柱的柱视图是矩形,故B错误;C圆台的主视图是梯形,故C错误;D球的主视图是圆,故D正确;故选:D.9.(2018?扬州)如图所示的几何体的主视图是(【分析】找到从正面看所得到的图形即可.【解答】 解:从正面看可得从左往右 2列正方形的个数依次为 2, 1 ,【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形, 第三层左边一小正方形, 故选:B.10.( 2018?新疆)如图是由三个相同的小正方体组成的几何体, 则该几何体的左视图是(A.D.【分析】细心观察图中几何体中正方体摆放的位置, 可.【解答】 解:从左边看竖直叠放 2个正方形. 根据左视图是从左面看到的图形判定则故选:C.11.( 2018?资阳)如图是由四个相同的小正方体堆成的物体,它的正视图是( )故选:A.12. ( 2018?十堰)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是(D. 【分析】找出从几何体的正面看所得到的图形即可. 【解答】 解:由图可得,该礼盒的主视图是左边一个矩形,右面一个小正方形, 故选:C. 13. ( 2018?黄石)如图,该几何体的俯视图是( ) C. 【分析】找到从几何体的上面所看到的图形即可. 【解答】解:从几何体的上面看可得故选:A.14. (2018?江西)如图所示的几何体的左视图为( ) B.A. B. D .【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.15.(2018?香坊区)如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()16.(2018?泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是止曲TF面故选:D.()【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.17.(2018?广州)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是()正页故选:B.18.(2018?宁波)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.19.(2018?娄底)如图所示立体图形的俯视图是()【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上边看立体图形得到俯视图即可得立体图形的俯视图是故选:B.20. ( 2018?泰安)如图是下列哪个几何体的主视图与俯视图(【分析】直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.【解答】解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C 符合题意. 故选:C. 21. ( 2018?荆门)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所 示,则搭成这个几何体的小正方体最少有() A.主视團俯视图D.A.B. C.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:则搭成这个几何体的小正方体最少有5个. 故选:B.22.(2018?襄阳)一个几何体的三视图如图所示,则这个几何体是(B..【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:C.23.(2018?贵阳)如图是一个几何体的主视图和俯视图,则这个几何体是(视A. C.三棱锥 D.长方体【分析】根据三视图得出几何体为三棱柱即可.【解答】解:由主视图和俯视图可得几何体为三棱柱,故选:A.24.(2018?恩施州)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()左现團傭视图A. 5B. 6C. 7D. 8【分析】直接利用左视图以及俯视图进而分析得出答案.【解答】解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.25.(2018?武汉)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()圭视囹俯视图A. 3 B. 4 C. 5 D. 6【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.26.(2018?包头)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()L£丄【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:27.(2018?金华)一个几何体的三视图如图所示,该几何体是(A.直三棱柱B .长方体 C.圆锥D .立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.28.(2018?黔南州)如图的几何体是由四个大小相同的正方体组成的,它的俯视图是()【分析】找到从上面看所得到的图形即可.【解答】解:从上面可看到从上往下2行小正方形的个数为:2, 1,并且下面一行的正方形靠左,故选C.29.(2018?随州)如图是一个由4个相同正方体组成的立体图形,它的左视B.C. D.图是(【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形, 故选:D.A.30.(2018?哈尔滨)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()【解答】解:俯视图从左到右分别是2, 1, 2个正方形.故选:B.31.(2018?郴州)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A. C.______【解答】解:从几何体的上面看可得【分析】找到几何体的上面看所得到的图形即可.故选:B.32.(2018?沈阳)如图是由五个相同的小C.立方块搭成的几何体,这个几何体的左视图是()【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.上向A.【解答】解:从左边看,从左往右小正方形的个数依次为:2, 1.左视图如下:故选:D.33.(2018?深圳)图中立体图形的主视图是()【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【分析】分别找出四个选项中图形是从哪个方位看到的,此题得解.【解答】解:A、从上面看到的图形;B从右面看到的图形;C从正面看到的图形;D从左面看到的图形.故选:C.35.(2018?潍坊)如图所示的几何体的左视图是()正观方向A. B. C. D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个等宽的矩形,矩形的公共边是虚线,故选:D.36.(2018?聊城)如图所示的几何体,它的左视图是(【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.37.(2018?曲靖)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看去,是两个有公共边的矩形,如图所示:故选:D.38.(2018?湖州)如图所示的几何体的左视图【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】解:从左边看是一个圆环, 故选:D.39.(2018?荷泽)如图是两个等直径圆柱构成的“ T”形管道,其左视图是(是()A.A.正面【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】解:从左边看如图-,故选:B.40.(2018?嘉兴)下列几何体中,俯视图为三角形的是(【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是圆,故A不符合题意;B俯视图是矩形,故B不符合题意;C俯视图是三角形,故C符合题意;D俯视图是四边形,故D不符合题意;故选:C.41.(2018?安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看上边是一个三角形,下边是一个矩形,故选:A.【解答】解:A、圆柱的主视图为矩形,••• A不符合题意;B 正方体的主视图为正方形, ••• B 不符合题意;C 球体的主视图为圆形, • C 不符合题意;D 圆锥的主视图为三角形, • D 符合题意. 故选:D.【解答】 解:从几何体正面看,从左到右的正方形的个数为: 2, 1 , 2.故选B.44. (2018?遂宁)如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主【分析】根据从正面看得到的图形是主视图,可得答案.【解答】 解:从正面看第一层是三个小正方形,第二层中间一个小正方形, 故选:D.45. ( 2018?温州)移动台阶如图所示,它的主视图是(A. B. 43.( 2018?自贡)下面几何的主视图是( ) 视图是( )【解答】解:从正面看是三个台阶,故选:B.•填空题(共5小题)主規方向46.(2018?青岛)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9 B.【分析】根据从正面看得到的图形4, 2, 3,再根据左视确定每一行最大分别为个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有10种.③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示: 421421421412411113113113113123 211121112121211411411411411411312312311311321121112*********图6 图7 图8 图9 图e故答案为:10.47.(2018?东营)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为20 n■ •g【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长I为5,然后根据圆锥的侧面积公式:S侧=冗rl代入计算即可.【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长1= ——7=5,所以这个圆锥的侧面积是n X 4 X 5=20 n .故答案为:20 n48.(2018?孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算, 这个几何体的表面积为16 n cm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=n rl+ n r2= n X 2 X 6+nX 22=16 n (cm).故答案为:16 n .49.(2018?白银)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108 .俯视圉【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3X 6X 6=108,故答案为:108.EFG 中,EF=8cm EG=12cm /50.(2018?齐齐哈尔)三棱柱的三视图如图所示,已知△EFG=45 .贝U AB的长为4典cm.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQL FG于点Q,由题意可得出:EQ=AB•/ EF=8cm / EFG=45 ,/• EQ=AB= X 8=4- (cm)2故答案为:4匸.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题1. (2015•浙江衢州,第2题3分)一个几何体零件如图所示,则它的俯视图是【】A. B. C. D.【答案】C.【考点】简单组合体的三视图.【分析】细心观察图中几何体摆放的位置,根据俯视图是从上面看到的图形判定,从物体上面看,外面一个长方形,中间有一个小长方形.故选C.2.(2015湖南岳阳第2题3分)有一种圆柱体茶叶筒如图所示,则它的主视图是()A. B.C.D.考点:简单组合体的三视图..分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.点评:此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2015湖南邵阳第2题3分)如图,下列几何体的左视图不是矩形的是()A.B.C.D.考点:简单几何体的三视图..分析:根据左视图是从物体左面看所得到的图形,分别得出四个几何体的左视图,即可解答.解答:解:A、圆柱的左视图是矩形,不符合题意;B、圆锥的左视图是等腰三角形,符合题意;C、三棱柱的左视图是矩形,不符合题意;D、长方体的左视图是矩形,不符合题意.故选:B.点评:本题主要考查简单几何体的三视图;考查了学生的空间想象能力,属于基础题.4.(2015·湖北省武汉市,第7题3分)如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是()1.B【解析】圆柱的主视图是长方形,长方体的主视图是长方形,因此这个几何体的主视图是两个长方形组成,下面长方形的长大于上面长方形的长,且上面长方形位于下面长方形的中间,所以选择B .备考指导:确定简单组合体的三视图,首先确定每一个组成部分的三视图,再按照几何体组合方式确定各个组成部分的排放位置.5.(2015·湖南省衡阳市,第3题3分)如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( ).6.(2015·湖北省孝感市,第1题4分)如图是一个几何体的三视图,则这个几何体是A .正方体B .长方体C .三棱柱D .三棱锥考点:由三视图判断几何体..)4(题第分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:根据主视图和左视图为矩形是柱体,根据俯视图是正方形可判断出这个几何体应该是长方体.故选:B.点评:本题考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.7. (2015•山东莱芜,第6题3分)右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )A. B. C.D.【答案】D【解析】试题分析:俯视图是从物体上面看所得到的图形.从几何体上面看,是左边2个,右边1个正方形.考点:俯视图8. (2015威海,第4题4分)【答案】C【解析】左视图是从几何体左边看得到的图形,题中的几何体从左边看,得到的图形是上下叠放的两个正方形,满足条件的只有C 项.【备考指导】小正方体组成的几何体的视图的判断,先根据观察方向看组成该几何体的小正方体共有几列,再看每一列最高有几个小正方体,然后确定每一列中小正方体的摆放位置,最后结合选项中的图形判断。
9.(2015·湖南省益阳市,第4题5分)一个几何体的三视图如图所示,则这个几何体是( )A . 三棱锥B . 三棱柱C . 圆柱D . 长方体考点: 由三视图判断几何体.分析:根据三视图的知识,正视图为两个矩形,侧视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱.解答: 解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故选:B .点评: 本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识..(2015•江苏南昌,第4题3分)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( ).(第4题)正面DCBA答案:解析:选C . ∵根据光的正投影可知,几何体的左视图是图C . ∴选C .10.(2015湖北鄂州第5题3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是【答案】A.考点:简单组合体的三视图.11.(2015•甘肃武威,第5题3分)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B. C. D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.12.(2015•广东佛山,第4题3分)如图所示的几何体是由若干大小相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.13.(2015•广东广州,第6题3分)如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.考点:由三视图判断几何体;几何体的展开图.分析:由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱,再根据圆柱展开图的特点即可求解.解答:解:∵主视图和左视图是长方形,∴该几何体是柱体,∵俯视图是圆,∴该几何体是圆柱,∴该几何体的展开图可以是.故选:A.点评:此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.同时考查了几何体的展开图.14.(2015•广东梅州,第2题4分)如图所示几何体的左视图为()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A.点评:本题考查了简单组合体的三视图,从左边看看得到的图形是左视图.15. (2015•四川南充,第3题3分)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()【答案】A 【解析】试题分析:根据三视图的法则可得:正六棱柱的主视图为3个矩形,旁边的两个矩形的宽比中间的矩形的宽要小.考点:三视图.16.(2015•四川资阳,第2题3分)如图1是一个圆台,它的主视图是考点:简单几何体的三视图..分析:主视图是从物体正面看,所得到的图形.解答:解:从几何体的正面看可得等腰梯形,故选:B .点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17. (2015•四川自贡,第4题4分) 如图是一种常用的圆顶螺杆,它的俯视图是 ( )考点:立体图形的三视图、俯视图.分析:立体图形的俯视图是从上面看立体图形所得到的平面图形.略解:从上面看圆顶螺杆得到俯视图是两个圆.故选B .ABCD18. (2015•浙江丽水,第3题3分)由4个相同小立方体搭成的几何体如图所示,则它的主视图是【】A. B. C. D.【答案】A.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,从正面看易得有两层,下层有2个正方形,上层左边有一个正方形.故选A.19. (2015•浙江宁波,第5题4分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是【】A. B. C. D. [【答案】A.【考点】简单组合体的三视图..【分析】根据俯视图的定义,找出从上往下看到的图形,从上往下看,俯视图有两排,前排中间有一个正方形后排三个正方形. 故选A.20. (2015•绵阳第8题,3分)由若干个边长为1cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是()A. 15cm2B. 18cm2C. 21cm2D. 24cm2考点:由三视图判断几何体;几何体的表面积..分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:综合三视图,我们可以得出,这个几何模型的底层有2+1=3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是3+1=4个.所以表面积为3×6=18cm2.故选:B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.21. (2015•四川省内江市,第3题,3分)如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A.B.C.D.考点:简单组合体的三视图..分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得俯视图为.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.22. (2015•四川省宜宾市,第2题,3分)如图,立体图形的左视图是( A )DCBA正面[23. (2015•浙江省绍兴市,第3题,4分) 有6个相同的立方体搭成的几何体如图所示,则它的主视图是[来&~考点:简单组合体的三视图..分析:根据主视图是从正面看得到的图形,可得答案.解答:解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.24. (2015•浙江省台州市,第2题)下列四个几何体中,左视图为圆的是( )A B C D25. (2015•四川成都,第2题3分)如图所示的三棱柱的主视图是(A)(B)(C)(D)【答案】:B【解析】:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中。
从正面看易得三棱柱的一条棱位于三棱柱的主视图内,选B。
26. (2015•四川乐山,第2题3分)下列几何体中,正视图是矩形的是()A. B. C. D.【答案】B.考点:简单几何体的三视图.27. (2015•四川凉山州,第2题4分)如图是由四个相同小正方体摆成的立体图形,它的俯视图是( )A .B .C .D .【答案】B .考点:简单组合体的三视图.28. (2015•四川泸州,第3题3分)如左下图所示的几何体的左视图是DCBA考点:简单几何体的三视图..分析:根据左视图是从物体左面看,所得到的图形,通过观察几何体可以得到答案.解答:解:从几何体的左面看是一个矩形,∴几何体的左视图是矩形.故选:C.点评:本题考查了几何体的三视图,掌握定义是关键,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.29. (2015•四川眉山,第4题3分)下列四个图形中是正方体的平面展开图的是()A.B.C.D.考点:几何体的展开图..分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:A、不是正方体的平面展开图;B、是正方体的平面展开图;C、不是正方体的平面展开图;D、不是正方体的平面展开图.故选:B.点评:此题主要考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.30.(2015·深圳,第5题分)下列主视图正确的是()【答案】A.【解析】由前面往后面看,主视图为A。