最新辽宁高考数学试题评析(87张幻灯片)

合集下载

2023高考辽宁(理)全解全析

2023高考辽宁(理)全解全析

2023年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A 、B 互斥,那么 球地表面积公式P(A+B)=P(A)+P(B) S=42Rπ如果事件A 、B 相互独立,那么 其中R 表示球地半径 P(A ·B)=P(A)·P(B) 球地体和只公式如果事件A 在一次试验中发生地概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次地概率 V =243R π ()(1)(0,1,2,,)kkn kn n P k C P p k n -=-= 其中R 表示球地半径一、选择题1.已知集合{}30,31x M xN x x x ⎧+⎫=<=-⎨⎬-⎩⎭…,则集合{}1x x …为( )A.M NB.M NC.()R M N ðD.()R M N ð解析:C解析:本小题主要考查集合地相关运算知识。

依题{}{}31,3M x x N x x =-<<=-…,∴{|1}M N x x ⋃=<,()R M N = ð{}1.x x …2.135(21)lim(21)n n n n →∞++++-+ 等于( )A.14 B.12C.1D.2解析:B解析:本小题主要考查对数列极限地求解。

依题22135(21)1lim lim .(21)22n n n n n n n n →∞→∞++++-==++ 3.圆221x y +=与直线2y kx =+没有公共点地充要条件是( )A.(k ∈B.(,)k ∈-∞+∞C.(k ∈D.(,)k ∈-∞+∞ 解析:C解析:本小题主要考查直线和圆地位置关系。

依题圆221x y +=与直线2y kx =+没有公共点1d ⇔=>⇔(k ∈4.复数11212i i +-+-地虚部是( ) A.15i B.15 C.15i - D.15-解析:B解析:本小题主要考查复数地相关运算及虚部概念。

2023年辽宁省高考数学真题及答案解析

2023年辽宁省高考数学真题及答案解析

2023年辽宁省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在复平面内,()()13i 3i +-对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A.2B.1C.23D.1-3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A .4515400200C C ⋅种B.2040400200C C ⋅种C .3030400200C C ⋅种D.4020400200C C ⋅种4.若()()21ln 21x f x x a x -=++为偶函数,则=a ().A.1- B.0C.12D.15.已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A.23B.3C.23-D.23-6.已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A.2e B.eC.1e -D.2e -7.已知α为锐角,15cos 4α+=,则sin 2α=().A.358B.158- C.354- D.154-+8.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A.120B.85C.85- D.120-二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为C.AC =D.PAC △的10.设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A.2p = B.83MN =C.以MN 为直径的圆与l 相切 D.OMN 为等腰三角形11.若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A.0bc > B.0ab > C.280b ac +> D.0ac <12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C.采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D.当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题:本大题共4小题,每小题5分,共20分。

最新普通高等学校招生理科数学全国统一考试试题(辽宁卷)(含解析)

最新普通高等学校招生理科数学全国统一考试试题(辽宁卷)(含解析)

普通高等学校招生全国统一考试(辽宁卷)数 学(理)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出地 四个选项中,只有一项是符合题目要求地 .1.复数地 11Z i =-模为 (A )12(B )2 (C (D )22.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=I ,则A .()01,B .(]02,C .()1,2D .(]12,3.已知点()()1,3,4,1,A B AB -u u u r 则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, 4.下面是关于公差0d >地 等差数列()na 地 四个命题: {}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中地 真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p5.某学校组织学生参加英语测试,成绩地 频率分布直方图如图,数据地 分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分地 人数是15人,则该班地 学生人数是(A )45 (B )50 (C )55 (D )606.在ABC ∆,内角,,A B C 所对地 边长分别为,,.a b c 1sin cos sin cos ,2a B C c B A b +=且a b >,则B ∠=A .6πB .3πC .23πD .56π7.使得()3n x n N n x x +⎛+∈ ⎪⎝⎭的展开式中含有常数项的最小的为A .4B .5 C .6 D .7 8.执行如图所示地 程序框图,若输入10,n S ==则输出的A .511B .1011C .3655D .72559.已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有 A .3b a = B .31b a a =+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--=10.已知三棱柱111ABC A B C -地 6个顶点都在球O 地 球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 地 半径为A .2 B . C .132 D .11.已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中地 较大值,{}min ,p q 表示,p q 中地 较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -= (A )2216aa -- (B )2216a a +- (C )16-(D )16 12.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,(A)有极大值,无极小值(B)有极小值,无极大值(C)既有极大值又有极小值(D)既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.某几何体地三视图如图所示,则该几何体地体积是 .14.已知等比数列{}n a 是递增数列,n S 是{}na 地 前n 项和,若13a a ,是方程2540x x -+=地 两个根,则6S = .15.已知椭圆2222:1(0)x y C a b a b +=>>地 左焦点为,F C 与过原点地 直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 地 离心率e = .16.为了考察某校各班参加课外书法小组地 人数,在全校随机抽取5个班级,把每个班级参加该小组地 认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中地 最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设向量()()3sin ,sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值; (II )设函数()(),.f x a b f x =g 求的最大值18.(本小题满分12分)如图,AB 是圆地 直径,PA 垂直圆所在地 平面,C 是圆上地 点。

高考数学全国卷试题评析

高考数学全国卷试题评析

高考数学全国卷试题评析数学学科核心素养在2023年高考数学全国卷试题中的表现限于篇幅,本文无法涵盖六大数学学科核心素养的方方面面。

这里只选取几个数学学科的核心素养进行深入分析。

(一)数学运算素养数学运算素养实际也体现逻辑推演的过程,具体表现在理解运算对象、掌握运算法则、探究运算思路、选择运算方法、设计运算程序、求得运算结果等过程中[13]。

借助运算解决实际问题,可以促进学生数学思维的发展,培养规范思考问题的品质,养成一丝不苟、严谨求实的科学精神。

以2023年数学新课标Ⅱ卷第21题为例,解析该题体现的数学运算素养。

已知双曲线C的中心为坐标原点,左焦点为(-2√5,0),离心率为√5。

(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与直线NA2交于P。

证明:点P在定直线上。

理解运算对象:这是一道解析几何题,考虑用坐标法解决。

此题涉及的关键点有:左右顶点A1、A2,交点M,N,P,对应的代数表达即为点的坐标;涉及的关键曲线有:双曲线C,直线MN、MA1、NA2,定直线,对应的代数表达是二元二次方程和二元一次方程。

探究运算思路:中学阶段的圆锥曲线问题,经常与二次曲线和直线间的几何动态变化过程有关。

第一问考查基础知识和基本运算,易得双曲线方程为X^2/4-Y^2/16=1。

第二问证明点在定直线上,也即求定直线的方程。

直接找点P的横纵坐标关系比较困难,可以先通过图像分析这条定直线的特点,例如(图1)借助对称性(直线MN,M'N'关于x轴对称),分别做出交点P,P',直观发现PP'⊥x轴,推测点P所在的定直线与x 轴垂直,证明结论转化为求点P的横坐标,结论的运算对象从二维降为一维,这是非常重要的一种探究思路。

当然,常规思路是根据已知条件,设出直线MN方程,与双曲线方程联立,并根据直线MA1、NA2相交于点P,进而探求点P横纵坐标满足的关系。

2022年辽宁省高考数学试卷(新高考II)附答案解析

2022年辽宁省高考数学试卷(新高考II)附答案解析

2022年辽宁省高考数学试卷(新高考II)附答案解析一、选择题1. 题目:设函数 $ f(x) = \sqrt{x^2 + 1} $,求 $ f'(0) $。

答案:$ f'(0) = \frac{1}{2} $。

解析:根据导数的定义,我们有 $ f'(0) = \lim_{x \to 0}\frac{f(x) f(0)}{x 0} $。

将 $ f(x) $ 和 $ f(0) $ 代入,得到$ f'(0) = \lim_{x \to 0} \frac{\sqrt{x^2 + 1} 1}{x} $。

由于$ \sqrt{x^2 + 1} $ 在 $ x = 0 $ 附近可近似为 $ 1 +\frac{x^2}{2} $,所以 $ f'(0) $ 可近似为 $ \lim_{x \to 0}\frac{1 + \frac{x^2}{2} 1}{x} = \frac{1}{2} $。

2. 题目:已知等差数列 $\{a_n\}$ 的首项为 $a_1$,公差为$d$,求 $a_5$。

答案:$a_5 = a_1 + 4d$。

解析:根据等差数列的定义,我们有 $a_5 = a_1 + (5 1)d =a_1 + 4d$。

3. 题目:已知函数 $f(x) = x^3 3x$,求 $f(x)$ 的极值点。

答案:极小值点为 $x = 1$,极大值点为 $x = 1$。

解析:求导数 $f'(x) = 3x^2 3$,令 $f'(x) = 0$,解得 $x = \pm 1$。

然后求二阶导数 $f''(x) = 6x$,当 $x = 1$ 时,$f''(1) = 6 > 0$,所以 $x = 1$ 是极小值点;当 $x = 1$ 时,$f''(1) = 6 < 0$,所以 $x = 1$ 是极大值点。

4. 题目:已知函数 $f(x) = \frac{1}{x}$,求 $f(x)$ 的反函数。

2019-2019年辽宁高考数学试题评析(87张幻灯片)-文档资料

2019-2019年辽宁高考数学试题评析(87张幻灯片)-文档资料
作用.
二试卷考点分布
题号 1 2 3
4 5 6 7 8 9 10 11 12
文科 考
集合的相关运算知识 . 函数的奇偶性 . 对数的运算
对数的运算 平面向量的基本知识 导数的几何意义求切线斜率 等可能事件概率求解问题 函数图像的平移与向量的关系
线性规划问题 考查排列组合知识
考查双曲线的知识 立体几何中空间直线相交
分数 5 48 12 16 14 5 22 22 5 5 12 7
题号(文科) 1
2.4.5.8.13.16.22
20 16.17 5.8,21
3.9.11.21 12,14,19 10 7 18
分数 5 42 12 16 16
22 22 5 5 12
按《考试大纲》
(1)理科(A)有132个知识点,理科(B) 有 138个知识点;
(2)文科(A)有116知识点,文科(B) 有 122个知识点. (3)由试卷可知:文科试卷考查了33个知 识 点;理科试卷考查了42个知识点.
四、试卷基本特点
1.由于前两年数学试题偏难,08年试题 根据考生的实际情况,命题组降低了试 卷的难度,具体可以从以下几个方面看 出:
(1)试题控制试卷入口题的难度.文、 理科选择题的前5题,填空题第一题, 解答题第一题,难度较低,基本属于课 本中的练习题或习题,它对中学数学教 学的有很好的导向作用.
22
考查平面向量,椭圆的定义、标准方程及直 线与椭圆位置关系等基础知识,
等差数列,等比数列,数学归纳法, 不等式 .
函数的导数,单调性,极值,不等式
题号(理科) 集 合1
函数与导数 6.8.12.13.22
数 列 21 三角函数 16.17 平面向量 5.8,20 极 限2 解析几何 3.10.20 立体几何 11.14,19 排列组合 9 概 率7 统计初步 18 不等式 21,22

普通高等学校招生国统一考试数学理试题辽宁卷,解析 试题

普通高等学校招生国统一考试数学理试题辽宁卷,解析 试题

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学理试题〔卷,解析〕本卷须知:1. 本套试卷分第一卷(选择题)和第二卷(非选择题)两局部,.2. 答复第一卷时,选出每一小题答案后,用铅笔把答题卡上对应题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在套本套试卷上无效.3. 答复第二卷时,将答案写在答题卡上,写在套本套试卷上无效.4. 在在考试完毕之后以后,将本套试卷和答题卡一起交回.第一卷一、选择题:本大题一一共12小题,每一小题5分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.(1) a 为正实数,i 为虚数单位,2a ii+=,那么a=〔〕〔A 〕2〔B (D)1(3)F 是抛物线y 2=x 的焦点,A,B 是该抛物线上的两点,=3AF BF +,那么线段AB 的中点到y 轴的间隔为〔〕 (A)34(B)1(C)54(D)74答案:C解析:设A 、B 的横坐标分别是m 、n ,由抛物线定义,得AF BF 3+==m+14+n+14=m+n+12=3,故m+n=52,524m n +=,故线段AB 的中点到y 轴的间隔为54.〔4〕△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asinAsinB+bcos 2那么ba=〔〕(A)〔6〕执行右面的程序框图,假设输入的n 是4,那么输出的P 是(A)8(B)5(C)3(D)2 答案:C解析:第一次执行结果:p=1,s=1,t=1,k=2; 第二次执行结果:p=2,s=1,t=2,k=3;第三次执行结果:p=3,s=2,t=3,k=4;完毕循环,输出p 的值4.〔7〕设sin 1+=43πθ(),那么sin 2θ=〔〕(A)79-(B)19-(C)19(D)79答案:A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭〔8〕如图,四棱锥S-ABCD 的底面为正方形,SD ⊥底面ABCD ,那么以下结论中不正确的选项是.......〔〕 (A)AC ⊥SB (B)AB ∥平面SCD(C)SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 (D)AB 与SC 所成的角等于DC 与SA 所成的角 答案:D解析:对于A:因为SD ⊥平面ABCD ,所以DS ⊥AC.因为四边形ABCD 为正方形,所以AC ⊥BD ,故AC ⊥平面ABD,因为SB ⊂平面ABD,所以AC ⊥SB ,正确. 对于B :因为AB//CD,所以AB//平面SCD. 对于C:设ACBD O =.因为AC ⊥平面ABD ,所以SA 和SC 在平面SBD 内的射影为SO ,那么∠ASO 和∠CSO 就是SA 与平面SBD 所成的角和SC 与平面SBD 所成的角,二者相等,正确.应选D.〔9〕设函数f 〔x 〕=⎩⎨⎧≤,>,,,1x x log -11x 22x -1那么满足f 〔x 〕≤2的x 的取值范围是〔〕〔A 〕[-1,2]〔B 〕[0,2]〔C 〕[1,+∞〕〔D 〕[0,+∞〕〔11〕函数f 〔x 〕的定义域为R ,f 〔-1〕=2,对任意x ∈R ,f ’(x)>2,那么f 〔x 〕>2x+4的解集为〔〕〔A 〕〔-1,1〕〔B 〕〔-1,+∞〕〔C 〕〔-∞,-1〕〔D 〕〔-∞,+∞〕 答案:B解析:设g(x)=f(x)-(2x+4),g ’(x)=f ’x R ∈,f ’〔x 〕>2,所以对任意x R ∈,g ’(x)>0,那么函数g(x)在R 上单调递增.又因为g(-1)=f(-1)-(-2+4)=0,故g(x)>0,即f(x)>2x+4的解集为(-1,+∞).〔12〕球的直径SC=4,A,B 是该球球面上的两点,AB=3,︒=∠=∠30B SC ASC ,那么棱锥S-ABC的体积为〔〕〔A 〕33〔B 〕32〔C 〕3〔D 〕1第二卷本卷包括必考题和选考题两局部.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题一一共4小题,每一小题5分.〔13〕点〔2,3〕在双曲线C :1by -a x 2222=〔a >0,b >0〕上,C 的焦距为4,那么它的离心率为_____________.答案:2解析:由题意得,24,2cc ==,22491a b-=,224a b +=,解得a=1,故离心率为2. (14)调查了某地假设干户家庭的年收入x 〔单位:万元〕和年饮食支出y 〔单位:万元〕,调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:^y =0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元. 〔16〕函数f 〔x 〕=Atan 〔ωx+ϕ〕〔ω>0,2π<ω〕,y=f 〔x 〕的局部图像如以下列图,那么f 〔24π〕=____________.解析:函数f(x)的周期是32882πππ⎛⎫-= ⎪⎝⎭,故22πωπ==,由tan 1,3tan 20,8A A ϕπϕ=⎧⎪⎨⎛⎫⋅+= ⎪⎪⎝⎭⎩得,14A πϕ==.所以()tan 24f x x π⎛⎫=+ ⎪⎝⎭,故tan 224244f πππ⎛⎫⎛⎫=⋅+= ⎪ ⎪⎝⎭⎝⎭三、解答题:解容许写文字说明,证明过程或者演算步骤. 〔17〕〔本小题总分值是12分〕 等差数列{a n }满足a 2=0,a 6+a 8=-10〔I 〕求数列{a n }的通项公式;〔II 〕求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和. 〔18〕〔本小题总分值是12分〕 如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA=AB=12PD. 〔I 〕证明:平面PQC ⊥平面DCQ〔II 〕求二面角Q-BP-C 的余弦值.即PQ DQ ⊥,PQ DC ⊥.故PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ. 〔II 〕依题意得B(1,0,1),(1,1,0),(1,2,1)CBBP ==--,设n =(x,y,z)是平面PBC 的法向量,那么0,0.n CB n BP ⎧⋅=⎪⎨⋅=⎪⎩即0,20.x x y z =⎧⎨-+-=⎩因此,取n =(0,-1,-2).设m 是平面PBQ 的法向量,那么0,0.m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩可取m =(1,1,1),所以cos ,5m n <>=-,故二面角Q-BP-C 的余弦值为5-. 19.〔本小题总分值是12分〕某农场方案种植某种新作物,为此对这种作物的两个品种〔分别称为品种甲和品种乙〕进展田间试验.选取两大块地,每大块地分成n 小块地,在总一共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. 〔I 〕假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;〔II 〕试验时每大块地分成8小块,即n=8,试验完毕以后得到品种甲和品种乙在个小块地上的每公顷产量〔单位:kg/hm 2〕如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x 1,x 2,…,x a的样本方差()()()2222111n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中x 为样本平均数.解析:〔I 〕X 可能的取值为0,1,2,3,4,且 即X 的分布列为X 的数学期望是:()1818810123427035353570E X =⨯+⨯+⨯+⨯+⨯=. 〔II 〕品种甲的每公顷产量的样本平均数和样本方差分别是:()14033973904043884004124064008x =+++++++=甲, ()()()()22222222213310412012657.258s =+-+-++-+++=甲. 品种乙的每公顷产量的样本平均数和样本方差分别是:()14194034124184084234004134128x =+++++++=乙, ()()()()22222222217906411-121568s =+-+++-+++=乙, 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 〔20〕〔本小题总分值是12分〕如图,椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D. 〔I 〕设12e=,求BC 与AD的比值;〔II 〕当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由解析:〔I 〕因为C 1,C 2的离心率一样,故依题意可设()22222122242:1,:1,0x y b y x C C a b a b a a+=+=>>.设直线:(||)l x t t a =<分别和C 1,C 2联立,求得,A t B t ⎛⎛ ⎝⎝.当12e =时,2b a =,分别用y A,y B表示A 、B 的纵坐标,可知 |BC|:AD|=222||3.2||4B A y b y a ==〔II 〕t=0时的l 不符合题意,t ≠0时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即a b t t a=-,解得222221ab e t a a b e-=-=-⋅-. 因为||t a <,又01e <<,所以2211e e -<1e <<.所以当02e <≤时,不存在直线l ,使得BO//AN ;当12e <<时,存在直线l 使得BO//AN. (21)(本小题总分值是12分) 函数f 〔x 〕=lnx-ax 2+〔2-a 〕x.(I)讨论f 〔x 〕的单调性; 〔II 〕设a >0,证明:当0<x <1a 时,f 〔1a +x 〕>f 〔1a-x 〕; 〔III 〕假设函数y=f 〔x 〕的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f ’〔x 0〕<0.解析:(I)f(x)的定义域为(0,+∞),()()()()2111'22x ax f x ax a x x+-=-+-=-, ①假设a ≤0,()'0f x >,所以f(x)在(0,+∞)单调增加;②假设a>0,那么由()'0f x =得1x a =,且当10,x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >,当1x a >时, ()'0f x <,所以f(x)在10,a ⎛⎫ ⎪⎝⎭单调增加,在1,a ⎛⎫+∞ ⎪⎝⎭单调减少.〔II 〕设()11gx f x f x a a ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭,那么()()()ln 1ln 12g x ax ax ax =+---, ()32222'2111a a a x g x a ax ax a x =+-=+--,当10x a<<时,()'0,g x >而()00g =,所以()0g x >.故当10x a<<时,11f x f x a a ⎛⎫⎛⎫+>- ⎪ ⎪⎝⎭⎝⎭请考生在第22、23、24三题中任选一题做答,假设多做,那么按所做的第一题计分.做答是需要用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 〔22〕〔本小题总分值是10分〕选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC=ED.〔I 〕证明:CD//AB ;〔II 〕延长CD 到F ,延长DC 到G ,使得EF=EG ,证明:A ,B ,G ,F 四点一共圆. 〔23〕〔本小题总分值是10分〕选修4-4:坐标系统与参数方程在平面直角坐标系xOy 中,曲线C 1的参数方程为cos ,sin ,x y ϕϕ=⎧⎨=⎩〔ϕ为参数〕曲线C 2的参数方程为cos ,sin ,x a y b ϕϕ=⎧⎨=⎩〔0a b >>,ϕ为参数〕在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2α=0时,这两个交点间的间隔为2,当α=2π时,这两个交点重合. 〔I 〕分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II)设当α=4π时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-4π时,l 与C 1, C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积. 解析:〔I 〕C 1为圆,C 2为椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别是(1,0),(a,0),因为这两点间的间隔为2,所以a=3. 当2πα=时,射线l 与C 1,C 2交点的直角坐标分别是(0,1),(0,b),因为这两点重合,所以b=1.〔II 〕C 1,C 2的普通方程分别为22221,19x x y y +=+=,当4πα=时,射线l 与C 1交点A 1的横坐标是2x=,与C 2交点B 1的横坐标是'x =当4πα=-时,射线l 与C 1、C 2的两个交点A 2、B 2的分别与A 1、B 1关于x 轴对称,因此,四边形与A 1 A 2B 2B 1为梯形.故四边形与A 1 A 2B 2B 1的面积为()()2'2'325x x x x +-=.〔24〕〔本小题总分值是10分〕选修4-5:不等式选讲 函数f 〔x 〕=|x-2|-|x-5|. 〔I 〕证明:-3≤f 〔x 〕≤3;〔II〕求不等式f〔x〕≥x2-8x+15的解集.。

辽宁省盘锦市(新版)2024高考数学苏教版能力评测(评估卷)完整试卷

辽宁省盘锦市(新版)2024高考数学苏教版能力评测(评估卷)完整试卷

辽宁省盘锦市(新版)2024高考数学苏教版能力评测(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知向量,,则()A.B.5C.7D.25第(2)题掷铁饼是一项体育竞技活动.如图是一位掷铁饼运动员在准备掷出铁饼的瞬间,张开的双臂及肩部近似看成一张拉满的“弓”.经测量此时两手掌心之间的弧长是,“弓”所在圆的半径为1.25米,这位掷铁饼运动员两手掌心之间的距离为()米.A.B.C.D.第(3)题已知二次函数的图象如图所示,则它与轴所围图形的面积为( )A.B.C.D.第(4)题已知,则的值为()A.B.C.D.第(5)题如图,这是一个正方体的平面展开图,若将其还原成正方体,下列直线中,与直线是异面直线的是()A.B.C.D.第(6)题已知三棱锥的外接球的体积为,平面,,,则三棱锥的体积为()A.B.C.D.第(7)题已知向量,,若,则实数的值为()A.B.C.D.第(8)题已知集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,在棱长为1的正方体中,分别为和的中点,是截面上的一个动点(不包含边界),若,则下列结论正确的是()A.的最小值为B.三棱锥的体积为定值C.有且仅有一个点,使得平面D.的最小值为第(2)题数列首项,对一切正整数,都有,则()A.对一切正整数都有B.数列单调递减C.存在正整数,使得D.都是数列的项第(3)题已知点是圆锥的顶点,四边形内接于的底面圆,,,,,均在球的表面上,若,,,,球的表面积是,则()A.B.平面C.与的夹角的余弦值是D.四棱锥的体积是三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,函数.若过点的直线l与曲线相切于点P,与曲线相切于点,当P、Q两点不重合时,线段PQ的长为______.第(2)题若函数则________.第(3)题天津相声文化是天津具有代表性的地域文化符号,天津话妙趣横生,天津相声精彩纷呈,是最具特色的旅游亮点之一.某位北京游客经常来天津听相声,每次从北京出发来天津乘坐高铁和大巴的概率分别为0.6和0.4,高铁和大巴准点到达的概率分别为0.9和0.8,则他准点到达天津的概率是_________(分数作答).若他已准点抵达天津,则此次来天津乘坐高铁准点到达比乘坐大巴准点到达的概率高__________(分数作答).四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图所示,在等腰梯形中,,,,将三角形沿折起,使点在平面上的投影落在上.(1)求证:平面平面;(2)若点为的中点,求三棱锥的体积.第(2)题某中学体育组对高三的800名男生做了单次引体向上的测试,得到了如图所示的频率分布直方图(引体向上个数只记整数).体育组为进一步了解情况,组织了两个研究小组.(1)第一小组决定从单次完成1~15个引体向上的男生中,采用比例分配的分层随机抽样的方法抽取22人进行全面的体能测试.①在单次完成6~10个引体向上的所有男生中,男生甲被抽到的概率是多少?②该小组又从这22人中抽取3人进行个别访谈,记抽到“单次完成引体向上1~5个”的人数为随机变量X,求X的分布列;(2)第二小组从学校学生的成绩与体育锻炼相关性角度进行研究,得到了这800人的学业成绩与体育成绩之间的列联表.体育成绩学业成绩合计优秀不优秀不优秀200400600优秀100100200合计300500800根据小概率值的独立性检验,分析体育锻炼是否与学业成绩有关?参考公式:独立性检验统计量,其中.临界值表:α0.10.050.010.0050.0012.7063.8416.6357.87910.828第(3)题选修4—1,几何证明选讲如图所示,圆的两弦和交于点,∥,交的延长线于点,切圆于点.(1)求证:△∽△;(2)如果,求的长.第(4)题已知函数.(1)讨论函数的单调性;(2)证明:对任意都有恒成立.第(5)题罗尔定理是高等代数中微积分的三大定理之一,它与导数和函数的零点有关,是由法国数学家米歇尔·罗尔于1691年提出的.它的表达如下:如果函数满足在闭区间连续,在开区间内可导,且,那么在区间内至少存在一点,使得.(1)运用罗尔定理证明:若函数在区间连续,在区间上可导,则存在,使得.(2)已知函数,若对于区间内任意两个不相等的实数,都有成立,求实数的取值范围.(3)证明:当时,有.。

辽宁省丹东市(新版)2024高考数学统编版真题(评估卷)完整试卷

辽宁省丹东市(新版)2024高考数学统编版真题(评估卷)完整试卷

辽宁省丹东市(新版)2024高考数学统编版真题(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知三棱锥的外接球的表面积为,平面,,,则该三棱锥中的,,面积之和的最大值为()A.B.C.D.第(2)题在棱长为4的正方体中,点满足,,分别为棱,的中点,点在正方体的表面上运动,满足面,则点的轨迹所构成的周长为()A.B.C.D.第(3)题已知向量,,则“”是“与共线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件第(4)题中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪音干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,若在带宽为,信噪比为1000的基础上,将带宽增大到,信噪比提升到200000,则信息传递速度大约增加了()(参考数据:)A.187%B.230%C.530%D.430%第(5)题设,若,,则( )A.B.C.D.第(6)题直线l与双曲线的左,右两支分别交于点A,B,与双曲线的两条渐近线分别交于点C,D(A,C,D,B从左到右依次排列),若,且,,成等差数列,则双曲线的离心率的取值范围是()A.B.C.D.第(7)题某社区计划在该小区内如图所示的一块空地布置花卉,要求相邻区域布置的花卉种类不同,且每个区域只布置一种花卉,若有5种不同的花卉可供选择,则不同的布置方案有()A.360种B.420种C.480种D.540种第(8)题已知向量,若,且,则实数()A.3B.4C.5D.6二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数.有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知函数,则下列结论正确的有()A.函数的值域为B.函数的图象关于点成中心对称图形C.函数的导函数的图象关于直线对称D.若函数满足为奇函数,且其图象与函数的图象有2024个交点,记为,则第(2)题已知抛物线的焦点为,直线,过的直线交抛物线于两点,交直线于点,则()A.的面积的最大值为2B.C.D.第(3)题某物理量的测量结果服从正态分布,则()A.该正态分布对应的正态密度曲线关于直线对称B.越大,该正态分布对应的正态密度曲线越尖陡C.越小,在一次测量中,的取值落在内的概率越大D.在一次测量中,的取值落在与落在的概率相等三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设为复数,若,则的最大值为_______.第(2)题关于下列两个命题:设是定义在上的偶函数,且当时,单调,则方程的所有根之和为______;对于有性质:“对时,必有.现给定①;②;现与对比,①中、②中同样也有性质的序号为______.第(3)题__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,求数列的前项和.第(2)题已知函数.(1)若单调递增,求的取值范围;(2)若有两个极值点,,其中,求证:.第(3)题已知函数.(1)若过点仅能作曲线的一条切线,求的取值范围;(2)若任意,都有,求的取值范围.第(4)题已知函数,不等式的解集为.(1)求实数的值;(2)若对一切实数恒成立,求实数的取值范围.第(5)题某中学将100名高一新生分成水平相同的甲、乙两个平行班,每班50人,某教师采用、两种不同的教学模式分别在甲、乙两个班进行教改实验,为了了解教学效果,期末考试后,该教师分别从两班中各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示,记成绩不低于90分为“成绩优秀”.(1)在乙班的20个个体中,从不低于86分的成绩中随机抽取2人,求抽出的两个人均“成绩优秀”的概率;(2)由以上统计数据填写列联表;能否在犯错误的概率不超过0.10的前提下认为成绩优秀与教学模型有关.甲班()乙班()总计成绩优秀成绩不优秀总计附:.0.250.150.100.050.0251.3232.072 2.7063.847 5.024。

2023辽宁高考数学试卷及参考解析(完整)

2023辽宁高考数学试卷及参考解析(完整)

2023辽宁高考数学试卷及参考解析(完整)2023辽宁高考数学试卷及参考解析(完整)小编带来了2023辽宁高考数学试卷及参考解析,大家知道吗?数学其英语源自于古希腊语,有学习,学问和科学的意思。

下面是小编为大家整理的2023辽宁高考数学试卷及参考解析,希望能帮助到大家!2023辽宁高考数学试卷及参考解析高中数学成绩下降的原因有哪些1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理:跟随老师惯性运作。

没有掌握学习的主动权.其表现有:不定计划,坐等上课,课前不预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.一切的一切造成没能真正理解所学内容的无奈表态。

2.学不得法.老师上课一般都要讲述知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课不能做到专心听讲,对要点听不清或听不全。

于是笔记记了一大本,问题留了一大堆。

而课后呢,又不能及时巩固、总结,找不到知识间的联系,只是一味地赶做作业,乱套题型。

对概念、法则、公式、定理一知半解,死记硬背的结果是一味地“机械模仿”。

也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套。

最终是事倍功半,收效甚微.3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,一贯做法是只求知道怎么做,不去认真演算书写。

其心理诱因是仅对难题感兴趣,以示自己的“水平”高。

这种好高鹜远,重“量”轻“质”的做法导致的结果是陷入题海,不自拔.而到正规作业或考试中却是演算出错或中途“卡壳”.4.不具备进一步学习条件.高中数学与初中数学相比,知识的广度、深度更进一程,能力要求更进一步.这就要求必须掌握基础知识与基本技能,为进一步学习作好充分准备.高中数学很多地方难度大、方法新、分析能力要求高.如:二次函数在闭区间上的最值问题,函数值域的求法问题,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合的应用和实际应用问题解答等.客观上,这些问题的能力要求就是数学学习的分化点,更何况有的数学知识点还是高、初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.怎么学好高中的数学一、课后及时回忆如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。

2023辽宁高考数学试题

2023辽宁高考数学试题

2023辽宁高考数学试题
导语:
2023年辽宁高考数学试题作为高考的重要组成部分,对学生的未来发展具有举足轻重的影响。

了解试题特点,掌握解题策略,是提高数学成绩的关键。

本文将对2023年辽宁高考数学试题进行详细分析,并提供实用的解题方法和备考建议。

试题分析:
2023年辽宁高考数学试题题型丰富,涵盖了我省高考数学考试的基本考点。

试题整体难度适中,注重考察学生的基本数学素养和思维能力。

具体来说,试题包括以下几个部分:
1.选择题:试题设置了一系列具有迷惑性的选择题,考查学生的基本概念理解和运算能力。

2.填空题:试题以填空题形式考察学生的基本知识掌握和应用能力。

3.解答题:试题涵盖了高中数学的主要知识点,如函数与导数、概率与统计、向量与平面解析几何等。

4.综合题:试题注重考察学生的综合分析能力和创新思维。

解题策略:
针对不同题型,以下是一些实用的解题方法和技巧:
1.选择题:仔细阅读题目,利用排除法、代入法等方法,快速筛选出正确答案。

2.填空题:熟记基本公式和定理,注意细节,避免粗心大意。

3.解答题:理清题意,列出解题步骤,注重过程书写。

对于综合题,要学会化繁为简,逐步解决。

4.备考建议:
(1)系统复习高中数学知识点,强化基础;
(2)多做真题,了解高考命题趋势;
(3)培养解题思路和应试技巧,提高解题速度;
(4)合理安排时间,坚持备考,保持良好的心态。

结语:
高考是人生的重要转折点,面对挑战,我们要充满信心。

通过对2023年辽宁高考数学试题的分析,相信广大考生能够找到适合自己的备考方法,提高数学成绩。

(辽宁卷)高考数学试题详细解答及考点解读

(辽宁卷)高考数学试题详细解答及考点解读

普通高等学校招生全国统一考试(辽宁卷)数学(理科类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷22.---24.题为选考题,其它题为必答题.第I 卷1至3页,第II 卷4至6页.考试结束后,将本试卷和答题卡一并交回. 参考公式: 样本数据123,,,,n x x x x ⋅⋅⋅的标准差s =其中x 为样本的平均数柱体的体积公式 V sh = 其中S 为底面积,h 为高锥体的体积公式 13V sh =其中S 为底面积,h 为高 球的表面积、体积公式 24πS R = 34π3V R = 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一项是符合题目要求的.1.已知集合M ={x|-3<x ≤5},N ={x |-5<x<5},则M ∩N =( ).A. {x |-5<x <5}B. {x |-3<x <5}C. {x |-5<x ≤5}D. {x |-3<x ≤5}2.已知复数12i z =-,那么1z=( ).+ C.12i 55+ D.12i 55- 3.平面向量a 与b 的夹角为60︒,(2,0)=a ,1=b 则2+=a b ( ).B. 4.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x+y =0上,则圆C 的方程为( ).A.22(1)(1)2x y ++-=B.22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D.22(1)(1)2x y +++=5.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( ).A.70种B. 80种C. 100种D.140种 6.设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =( ). A. 2 B. 73C. 83D. 37.曲线y =2xx -在点(1,-1)处的切线方程为( ). A.2=-y x B.32=-+y x C.23=-y x D.22=-+y x 8.已知函数()f x =Acos(x ωϕ+)的图象如图所示,π223⎛⎫=- ⎪⎝⎭f ,则(0)f =( ).A.23-B. 12-C. 23D. 129.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<13⎛⎫⎪⎝⎭f 的x 取值范围是( ). A. 13⎛⎝,23⎫⎪⎭ B. 13⎡⎢⎣,23⎫⎪⎭ C. 12⎛ ⎝,23⎫⎪⎭ D. 12⎡⎢⎣,23⎫⎪⎭10.某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,...N a ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( ).A. A>0,V=S-TB. A<0,V=S-TC. A>0, V=S+TD.A<0, V=S+T11.正六棱锥P-ABCDEF 中,G 为PB 的中点,则三棱锥D-GAC 与三棱锥P-GAC 体积之比为( ). A.1:1 B. 1:2 C. 2:1 D. 3:212.若1x 满足2x+2x=5, 2x 满足2x+22log (x-1)=5, 则1x +2x =( ). A.52 B.3 C. 72D.4第II 卷本卷包括必考题和选考题两部分.第13.---21.题为必考题,每个试题考生都必须做答.第22.---24.题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1, 用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用 寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分 别为980h ,1020h ,1032h ,则抽取的100件产品的使用寿命的平均值为 h . 14.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a =15.设某几何体的三视图如下(尺寸的长度单位为m ). 则该几何体的体积为 3m16.已知F 是双曲线221412x y -=的左焦点,(1,4),A P是双曲线右支上的动点,则PF PA +的最小值 为 .三、解答题:解答应写出文字说明,证明过程或解题步骤 17.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=0.1km .试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km ≈1.414≈2.449)18.(本小题满分12分)如图,已知两个正方行ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点 . (I )若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正值弦;(II )用反证法证明:直线ME 与 BN 是两条异面直线. 19.(本小题满分12分)某人向一目射击4次,每次击中目标的概率为13.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(Ⅰ)设X 表示目标被击中的次数,求X 的分布列;(Ⅱ)若目标被击中2次,A 表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P (A ).(20)(本小题满分12分)已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值. 21.(本小题满分12分) 已知函数f(x)=21x 2-ax+(a-1)ln x ,1a >. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.请考生在第22.、23.、24.三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)选修4-1:几何证明讲已知 ∆ABC 中,AB=AC, D 是 ∆ABC 外接圆劣弧AC 上的点(不与点A,C 重合),延长BD 至E .(Ⅰ)求证:AD 的延长线平分∠CDE ; (Ⅱ)若∠BAC=30,∆ABC 中BC边上的高为2+∆ABC外接圆的面积.23.(本小题满分10分)选修4-4 :坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos (3πθ-)=1,M,N 分别为C 与x 轴,y 轴的交点.(Ⅰ)写出C 的直角坐标方程,并求M,N 的极坐标; (Ⅱ)设MN 的中点为P ,求直线OP 的极坐标方程. 24.(本小题满分10分)选修4-5:不等式选讲 设函数()|1|||f x x x a =-+-.(Ⅰ)若1,a =-解不等式()3f x ≥;(Ⅱ)如果x R ∀∈,()2f x ≥,求a 的取值范围.普通高等学校招生全国统一考试(辽宁卷)数学(理科)试题答案及解读一、选择题:(1)B 【解读与点评】M N ⋂={|35}x x -<<.【命题立意】考查集合的交集运算,并用数轴观察法得到相对应答案. (2)D 【解读与点评】111212,125iz i iz -=+==+. 易错点:受分数线干扰,考生没有看到共轭符号“—”,直接将12z i =-代入而得错误答案C .课本原型:选修2-2 第96页练习B 2题【命题立意】考察复数的基本运算及共轭复数的概念。

2023年辽宁省高考数学真题及答案解析

2023年辽宁省高考数学真题及答案解析

2023年辽宁省高考数学真题及答案解析一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在复平面内,()()13i 3i +-对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A.2B.1C.23D.1-3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A .4515400200C C ⋅种B.2040400200C C ⋅种C .3030400200C C ⋅种D.4020400200C C ⋅种4.若()()21ln 21x f x x a x -=++为偶函数,则=a ().A.1- B.0C.12D.15.已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A.23B.3C.23-D.23-6.已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A.2e B.eC.1e -D.2e -7.已知α为锐角,15cos 4α+=,则sin 2α=().A.358B.158- C.354- D.154-+8.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A.120B.85C.85- D.120-二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为C.AC =D.PAC △的10.设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A.2p = B.83MN =C.以MN 为直径的圆与l 相切 D.OMN 为等腰三角形11.若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A.0bc > B.0ab > C.280b ac +> D.0ac <12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C.采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D.当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题:本大题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)较难的解答题采用分步设问, 分步给分的设计方法。试卷中后 面的几个解答题往往较难,为了 降低难度,试卷采用分步设问的 办法使其逐步深入,这样即可化 解试题难度,又能合理区分不同 层次的考生.
2.试卷突出理性思维,倡导通性
通法 数学思想方法是对数学知识的最高
层次的概括与提炼,是适用于中学数学 全部内容的通法,是高考的核心.转化 与化归的思想、函数与方程的思想、数 形结合的思想、分类与整合的思想,解 析法、数学归纳法、换元法、割补法、 配方法等等是考查的重点;如:理科的 第3题、第10题、第11题、第12题、 第20题、第21题、第22题.文科第3 题、第16题、第19题等.
辽宁高考数学试题评析(87 张幻灯片)
一、总体评价
2008年辽宁高考数学试题以《考试大 纲》为依据,科学地考查了学生继续学习 所应具备的数学素养和潜能,注重对数学 本质理解的考查,为高校录取新生提供了 有效的数学成绩,试题贴近中学教学,结合 中学数学的知识、思想方法和能力等要求, 贯彻新课程的理念,符合现行中学课程的 实际,试题立意朴实但又不失新颖,选材 寓于教材又高于教材,发挥了良好的导向
作用.
(2)控制新题型的比例.无论是 设问方式新颖的试题、情境设置 新颖的试题,还是应用型试题, 对考生来说都比常规题难,这类 题的多少与难易会直接影响整份 试卷的难度.08年试卷中文 (18)、理科(18)各只有一题.这 对保持试卷的总体难度的稳定起 到了保障作用.
(3)控制较难题的比例.为了充 分体现试卷的选拔功能,设置适 量的较难题是必要的,关键是如 何把握其数量和难度,今年的试 卷比较适度,难题文科有最后三 题,理科有最后两题.而选择题、 填空题基本上没有难题.
理22.设函数f. (x)lnxlnxln(x1) 1x
⑴求f(x)的单调区间和极值;
⑵是否存在实数,使得关于的不等式f(x) ≥a的解集为(0,+∞)若存在,求a的取值范围; 若不存在,试说明理由.
说明:本小题主要考查函数的导数,单调 性,极值,不等式等基础知识,考查综合 利用数学知识分析问题、解决问题的能 力.
⑴写出C的方程;
⑵若 OAOB ,求K的值;
⑶若点A在第一象限,证明:当K>0时,恒有.OA OB
说明:本小题主要考查平面向量,椭圆的定义、 标准方程及直线与椭圆位置关系等基础知识, 考查综合运用解析几何知识解决问题的能 力.满分12分.
理21.在数列{an},{bn} 中,a1=2,b1=4,an,bn,an+1成等差数 列,bn,an+1,bn+1=成等比数列.
⑴求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}
的通项公式,并证明你的结论;
⑵证明:.
1 1 1 5
a1b1 a2b2
anbn 12
说明:本小题主要考查等差数列,等比数列, 数学归纳法,不等式等基础知识,考查综 合运用数学知识进行归纳、总结、推理、 论证等能力.第二问的证明有两个难关:
六、2009年复习建议
• 说明:本小题主要考查频率、概率、数学期望等 基础知识,考查运用概率知识解决实际问题的能 力..
(文理) 19.如图,在棱长为1的正方体ABCDA1,B1C1D1中AP=BQ=b(0<b<1),截面 PQEF//A1D,截面PQGH//AD1.
⑴证明:平面PQEF和平面PQGH互相垂直;
⑵证明:截面PQEF和截面PQGH面积之和是
3.正确区分文理科考生
命题注意到文、理科考生在数学 学习上的差异以及高校对文、理科 考生的不同要求,对文、理科考生 坚持不同的考查标准。试卷文理科 完全相同题8道,共46分,姊妹题5 道,共30分.总分76.这样设计试题, 有利于降低文科试题难度,激发文 科学生学习数学的兴趣.
五、试题分析
(理11.文12)在正方体 ABCDA1B1C1D 1 中, E , F 分别为棱
进行分段求解以及反函数的定义域问题。 新教材有分段函数
(理文17).在△ABC中,内角A,B,C对边
的边长
分别是a,b,c.已知.
C=2,C=
3
⑴若△ABC的面积等于 3 ,求; a,b
⑵若sinC+sin(B-C)=2sin2A,求
△ABC的面积.
说明:本小题主要考查三角形的边角关
系,三角函数公式等基础知识,考查综
定值,并求出这个值;
⑶若与平面所成的角为450,求D1E与平面PQGH所 成角的正弦值.
说明:本小题主要考查空间中的线面关系,面面关系,
解三角形等基础知识,考查空间想象能力与逻辑思
维能力。满分12分.
H
G
P D
F A
Q
C E B
理20.在直角坐标系xoy中,点到(0,- 3 ),(0, 3 )两 点的距离之和为4,设点P的轨迹为C,直线 y=kx+1与C交于A,B两点.
合应用三角函数有关知识的能力.
• 18.某批发市场对某种商品的周销售量(单位:吨) 进行统计,最近100周的统计结果如下表所示:
周销售量 2
3
4
频数
20
50
30
• ⑴根据上面统计结果,求周销售量分别为2吨,3吨 和4吨的频率;(文理)
• ⑵已知每吨该商品的销售利润为2千元,ζ表示该 种商品两周销售利润的和(单位:千元),若以上述 频率作为概率,且各周的销售量相互独立,求ξ的分 布列和数学期望.
AA1, C C1 的中点,则在空间中与三条直线 A1D1,EF,CD 都相交的直线( )
A.不存在 B.有且只有两条 C.有且只有三条 D.有无数条 答案:D
(评析)展露新意、闪现亮点是高考命题者所追求的, 本题知识虽然是新的,能力却没有超纲,以考生熟悉的 正方体考查空间想象能力、逻辑推理能力。
理12.设f(x)是连续的偶函数,且当x>0 时f(x)是单调函数,
则满足 f (x) f ( x3)
为( )
x4
的所有之和
A. -3 B.3 C.-8 D.8 答案:C
解析:本小题主要考查函数的奇偶性性 质的运用。函数与方程的思想,也是新 课改的思想
理__1__3_._函__数_y___ex_x本小题主要考查求反函数基本知 识。求解过程要注意依据函数的定义域
相关文档
最新文档