北师大版七年级数学上册期末考试测试卷附答案

合集下载

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<2.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-20193.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .944.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .35.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .46.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn7.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( )A .1019x y -B .1019x y +C .1021x y -D .1017x y -8. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm9.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形10.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .201311.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-12.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-二、填空题13.把我国夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.则图1的三阶幻方中,字母a 所表示的数是______,根据图2的三阶幻方中的数字规律计算代数式3m n -+的值为______.14.如图,“汉诺塔”是源于印度一个古老传说的益智玩具,这个玩具由A ,B ,C 三根柱子和若干个大小不等的圆盘组成.其游戏规则是:①每次只能移动一个圆盘(称为移动1次);②被移动的圆盘只能放入A ,B ,C 三根柱子之一;③移动过程中,较大的圆盘始终..不能..叠在较小的圆盘上面;④将A 柱上的所有圆盘全部移到C 柱上.完成上述操作就获得成功.请解答以下问题:(1)当A 柱上有2个圆盘时,最少需要移动_____次获得成功; (2)当A 柱上有8个圆盘时,最少需要移动_____次获得成功.15.月球沿着一定的轨道围绕地球运动,它在近地点时与地球相距约为363000千米,这个数据用科学记数法表示,应记为_____千米.16.若一个角的补角加上10º后等于这个角的4倍,则这个角的度数为____. 17.已知方程2x ﹣a =8的解是x =2,则a =_____.18.在班级联欢会上,数学老师和同学们做了一个游戏.她在A B C ,,三个盘子里分别放了一些小球,小球数依次为000,,a b c ,记为()0000,,G a b c =,游戏规则如下:三个盘子中的小球数000a b c ≠≠,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n 次操作后的小球数记为(),,n n n n G a b c =.若0(3,5,19)G =,则3G =________,2000G =________.19.观察下列等式:①9011⨯+=;②91211⨯+=;③92321⨯+=;④93431⨯+=;⑤94541⨯+=;……作出猜想,它的第n 个等式可表示为__________(n 为正整数).20.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第n 次分割后,正方形纸片共有_________个.21.大于1的正整数的三次方都可以分解为若干个连续奇数的和,如333235,37911,413151719=+=++=+++,按此规律,若3m 分解后,其中有一个奇数为1799,则m 的值为____________.22.整个埃及数学最特异之处,是一切分数都化为单位分数之和,即分子为1的分数.在一部记录古埃及数学的《赖因德纸草书》中,有相当的篇幅写出了“2n”型分数分解成单位分数的结果,如:2115315=+;2117428=+;2119545=+,则221n =-________. 三、解答题23.如图,阶梯图的每个台阶都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻的4个台阶上标着的数的和都相等.尝试:(1)求前4个台阶上标着的数的和; (2)求第5个台阶上标着的数x .应用:(3)求从下到上的前2018个台阶上标着的数的和.发现:(4)试用含k (k 为正整数)的式子表示出“1”所在的台阶数.24.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负.沈师博营运十批乘客里程如下:(单位:千米)+8,-6,+3,-7,+8,+4,-9,-4,+3,-3(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元? 25.先化简,再求值:22113122323a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中22203a b ⎛⎫-++= ⎪⎝⎭. 26.计算:(1)212(3)6(2)()3⨯--÷-⨯- (2)2313(3)(6)76÷-+⨯-+ 27.“一分钟跳绳”是重庆市中考体考项目之一,为了解初一年级学生的跳绳情况,我校体育老师从初一年级学生中随机抽取了部分学生进行一分钟跳绳测试,成绩如下:67,72,77,83,89,97,100,108,110,112,115,118,123,127,129,133,138,142,145,147,149,152,154,157,159,163,165,169,172,174,177,179,180,181,181,183,184,195,203,210,并将测试结果统计后绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题: 组别 次数x频数(人) 频率 第1组 6595x ≤<5 0.125第2组 95125x ≤< 8 a第3组 125155x ≤< 100.25第4组 155185x ≤< 第5组 185215x ≤<b合计c1一分钟跳绳次数频数分布表一分钟跳绳次数频数分布直方图(1)频数分布表中,a =________,b =________,c =________; (2)请补全频数分布直方图;(3)按规定,跳绳次数x 满足125185x ≤<时,等级为“良好”.若我校初一年级共有学生1800人,则其中跳绳等级为“良好”的学生约有多少人?28.我们通常象这样来比较两个数或两个代数式值的大小:若a-b=0,则a=b ;若a-b <0,则a <b ;若a-b >0,则a >b ,我们把这种方法叫“作差法”. 已知A=5m 3+3m 2-2(52m-12),B=5m 3+5(m 2-m )+5,试比较代数式A 与B 的大小.【参考答案】***试卷处理标记,请不要删除1.A 解析:A 【解析】 【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可. 【详解】 解:0a >,0b <,0a b +>,||||a b ∴>,如图,,a b b a ∴-<<-<.故选:A . 【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.B解析:B 【解析】 【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解. 【详解】解:∵任意相邻三个数的和为常数, ∴a 1+a 2+a 3=a 2+a 3+a 4, a 2+a 3+a 4=a 3+a 4+a 5, a 3+a 4+a 5=a 4+a 5+a 6, ∴a 1=a 4,a 2=a 5,a 3=a 6, ∴原式为每三个数一个循环; ∵a 3=2020,a 7=-2018,a 98=-1, ∵732÷=…1,98332÷=…2, ∴a 1= a 7=-2018,a 2=a 98=-1, ∴a 1+a 2+a 3=-2018-1+2020=1; ∵100333÷=…1, ∴a 100=a 1=-2018; ∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100 =133********⨯-=-; 故选择:B.本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.3.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.4.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.5.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.根据角的和差关系可得第一个图形∠α=∠β=45°, 根据等角的补角相等可得第二个图形∠α=∠β, 第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β, 因此∠α=∠β的图形个数共有3个, 故选:C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.6.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B . 【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.7.A解析:A 【解析】 【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.8.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.9.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.10.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.11.D解析:D【解析】【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a、b的值得出结论-a<0,-a>b,-b >0,-b>a,题目比较好,是一道比较容易出错的题目.12.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题13.﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整解析:﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整理变形即得答案.【详解】解:在图1中,设中心数为x ,根据题意得:2104x a x ++=++,解得:8a =; 在图2中,根据题意得:2020m n n -+=++,整理得:32m n -+=-;故答案为:8,﹣2.【点睛】本题以三阶幻方为载体,主要考查了一元一次方程的应用和代数式求值,正确理解题意、掌握解答的方法是关键.14.28-1【解析】【分析】(1)先将小圆盘放在B 柱上,大圆盘放在C 柱上,再将B 柱上的小圆盘放在C 柱上即可得出结果;(2)根据题目已知条件分别得出当A 柱上有2个圆盘时最少需要移动的次数, 解析:28-1【解析】【分析】(1)先将小圆盘放在B 柱上,大圆盘放在C 柱上,再将B 柱上的小圆盘放在C 柱上即可得出结果;(2)根据题目已知条件分别得出当A 柱上有2个圆盘时最少需要移动的次数,当A 柱上有3个圆盘时最少移动的次数,从而推出当A 柱上有8个圆盘时需要移动的次数.【详解】解:(1) 先将小圆盘放在B 柱上,大圆盘放在C 柱上,再将B 柱上的小圆盘放在C 柱上, 最少需要:22-1=3次,(2) 当A柱上有2个圆盘时,最少需要22-1=3次,当A柱上有3个圆盘时,最少需要23-1=7次,以此类推当A柱上有8个圆盘时,最少需要28-1次.故答案为:(1)3;(2) 28-1.【点睛】本题主要考查的是归纳推理,根据题目给出的已知信息,得出一般规律是解题的关键.15.63×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:63×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:363000千米=3.63×105千米.故答案为:3.63×105【点睛】考核知识点:科学记数法.理解科学记数法的要求是关键.16.38º【解析】【分析】先设这个角为x,然后根据补角的定义和已知的等量关系列出方程解答即可.【详解】解:设这个角为x,由题意得:180°-x+10°=4x,解得x=38°故答案为38°.解析:38º【解析】【分析】先设这个角为x,然后根据补角的定义和已知的等量关系列出方程解答即可.【详解】解:设这个角为x,由题意得:180°-x+10°=4x,解得x=38°故答案为38°.【点睛】本题考查了补角的定义和一元一次方程,根据题意列出一元一次方程是解答本题的关键.17.-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为解析:-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.(6,8,13),(8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19)解析:(6,8,13),(8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19),∴G 1=(4,6,17),G 2=(5,7,15),G 3=(6,8,13),G 4=(7,9,11), G 5=(8,10,9),G 6=(9,8,10),G 7=(10,9,8),G 8=(8,10,9),G 9=(9,8,10),G 10=(10,9,8),……∴从G 5开始每3次为一个周期循环,∵(2000-4)÷3=665…1,∴G 2000=G 5=(8,10,9),故答案为:(6,8,13),(8,10,9),.【点睛】本题考查了列代数式,数字的规律,解题的关键是弄清题意得出从G 5开始每3次为一个周期循环的规律.19.【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1解析:()()911011n n n -+=-+【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1)+n=10(n-1)+1=10n-9,即9(n-1)+n=10n-9.故答案为:9(n-1)+n=10n-9.【点睛】找等式的规律时,要分别观察左边和右边的规律,还要注意两边之间的关系. 20.3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,解析:3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,第四次有13=3(4-1)+4,…以此类推,第n次有3(n-1)+4=3n+1.故答案为:3n+1.【点睛】本题考查了规律性的题目,首先至少正确计算三个特殊数据,然后进一步发现数据之间的规律,进行计算即可,本题可看到第一次有4个,第二次有7=3+4,第三次有10=3×2+4,从而得到第n次的规律.21.42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解析:42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(2)(1)2m m+-,∵1799=899×2+1,∴奇数1799是从3开始的第899个奇数,∵(412)(411)=8602+-,(422)(421)9022+-=,∴第899个奇数是底数为42的数的立方分裂的奇数的其中一个,即m=42,故答案为:42.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.22.【解析】【分析】根据已知的三个等式得到规律,由此计算出答案.【详解】∵=,=,=,∴,故答案为:.【点睛】此题考查代数式的规律探究,能依据已知的代数式得到数据变化的规律是解题的 解析:11(21)n n n +- 【解析】【分析】根据已知的三个等式得到规律,由此计算出答案.【详解】 ∵2115315=+=1111(51)5(51)22++⨯+, 2117428=+=1111(71)7(71)22++⨯+, 2119545=+=1111(91)9(91)22++⨯+, ∴1111(211)(21)(211)22221n n n n +=-+-⨯-+=-11(21)n n n +-, 故答案为:11(21)n n n +-. 【点睛】此题考查代数式的规律探究,能依据已知的代数式得到数据变化的规律是解题的关键. 三、解答题23.(1)3;(2)5-;(3)1505;(4)41k -【解析】【分析】(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;(3)根据(1)中的结果和题目中的数据可以求得从下到上的前2018个台阶上标着的数的和;(4)由循环规律即可知“1”所在的台阶数为41k -.【详解】(1)由题意得前4个台阶上数的和是52193--++=;(2)由题意得2193x -+++=,解得:5x =-,则第5个台阶上的数x 是5-;(3)由题意知台阶上的数字是每4个一循环,∵2018÷4=504…2,∴5043521505⨯--=,即从下到上前2018个台阶上数的和为1505;(4)根据题意可知数“1”所在的台阶数为:41k -.【点睛】本题考查了探索规律-数字的变化类,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环.24.(1)将最后一批乘客送到目的地时,沈师傅在距离第一批乘客出发地的西面,距离是3千米;(2)上午8:00~9:15沈师傅开车的平均速度是44千米/小时;(3)沈师傅在上午8:00~9:15一共收入130元.【解析】【分析】(1)根据题意,列出有理数数的加法算式,即可求解;(2)先求各个有理数的绝对值,再求和,最后除以行驶的时间,即可求解;(3)分别求出起步费以及超过3千米的收费总额,再求和,即可求解.【详解】(1)由题意得:(+8)+(−6)+(+3)+(−7)+(+8)+(+4)+(−9)+(−4)+(+3)+(-3)=-3(千米),答:将最后一批乘客送到目的地时,沈师傅在距离第一批乘客出发地的西面,距离是3千米;(2)由题意得:|+8|+|−6|+|+3|+|−7|+|+8|+|+4|+|−9|+|−4|+|+3|+|-3|=55(千米), 上午8:00~9:15李师傅开车的时间是:1小时15分=1.25小时;55÷1.25=44(千米/小时),答:上午8:00~9:15沈师傅开车的平均速度是44千米/小时;(3)一共有10位乘客,则起步费为:8×10=80(元),超过3千米的收费总额为:[(8−3)+(6−3)+(3−3)+(7−3)+(8−3)+(4−3)+(9−3)+(4−3)+(3−3)+(3−3)]×2=50(元),80+50=130(元),答:沈师傅在上午8:00~9:15一共收入130元.【点睛】本题主要考查有理数的绝对值与有理数的加法运算的实际应用,根据题意,列出算式,是解题的关键.25.-3a+b 2,559-【解析】【分析】先对整式进行化简,然后代值求解即可.【详解】解:原式=2221231232323a ab a b a b -+-+=-+, 又22203a b ⎛⎫-++= ⎪⎝⎭,∴22,3a b ==-, 把22,3a b ==-代入求解得:原式=22453265399⎛⎫-⨯+-=-+=- ⎪⎝⎭. 【点睛】本题主要考查整式的化简求值及非负性,熟练掌握整式的运算及绝对值和偶次幂的非负性是解题的关键.26.(1)17;(2)253 【解析】【分析】(1)先算乘方运算,除法化乘法,得到1129623⎛⎫⎛⎫⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭,再进行乘法运算即可求解;(2)先算乘方运算,去绝对值符号,得到()()1927676÷-+⨯-+,再算乘除,最后算加减,即可求解.【详解】解:(1)原式1129623⎛⎫⎛⎫=⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭181=-17=(2)原式()()1927676=÷-+⨯-+()1173⎛⎫=-+-+ ⎪⎝⎭253= 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则为解题关键.27.(1)a=0.2,b=3;(2)见解析;(3)1080【解析】【分析】(1)由第1组的频数及频率,依据总数=频数÷频率计算可得c 的值,用第2组频数除以总数c 即可得出a 的值,再根据题目所给具体数据可得b 的值;(2)根据题目所给数据得出第4组的频数,结合b 的值即可补全图形;(3)算出第3、4组频数和占总数的比例,然后用总人数乘以该比例即可.【详解】解:(1)c=5÷0.125=40,a=8÷40=0.2,由题意知185≤x <215的数据为195,203,210,∴b=3,故答案为:0.2,3,40;(2)155≤x <185的数据有157,159,163,165,169,172,174,177,179,180,181,181,183,184,共14个,补全图形如下:(3) 第3、4组频数和占总数的百分比为:(10+14)÷40×100%=60%,故1800人中,跳绳等级为“良好”的学生约有1800×60%=1080人,【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.28.A<B.【解析】【分析】先计算A-B,求A-B与0的大小关系,从而即可比较A与B的大小.【详解】解:∵A=5m3+3m2-2(52m-12),B=5m3+5(m2-m)+5,∴A-B=5m3+3m2-5m+1-5m3-5m2+5m-5=-2m2-4<0,则A<B.故答案为:A<B.【点睛】本题考查了整式的加减运算.。

北师大版七年级上册数学期末考试试卷含答案

北师大版七年级上册数学期末考试试卷含答案

北师大版七年级上册数学期末考试试题一、单选题1.﹣2022的绝对值是()A.12022B.12022-C.2022D.﹣20222.如图是正方体的表面展开图,每一个面标有一个汉字,则与“和”相对的面上的字是()A.构B.建C.社D.会3.把704000000这个数用科学记数法表示为()A.7.04×107B.7.04×106C.7.04×108D.7.04×1094.下列代数式的书写格式规范的是()A.a×b÷5+1B.34ab C.ab2D.213x5.某校为了了解初一年级1200名学生的视力情况,从中随机抽取了300名学生进行视力情况的调查,下列说法错误的是()A.总体是1200名学生的视力情况B.样本容量是300C.样本是抽取的300名学生D.个体是每名学生的视力情况6.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1B.2-或2C.2-D.17.下列各组数中,数值相等的是()A.32和23B.-32和(-3)2C.-︱23︱和︱-23︱D.-23和(-2)38.按照如图所示的程序计算,若开始输入的值为-4,则最后输出的结果可能是()A.-8B.-23C.-68D.-329.按一定规律排列的单项式a,﹣3a2,5a3,﹣7a4,9a5,…第n个单项式是()A .(﹣1)n (2n ﹣1)anB .(﹣1)n +1(2n+1)anC .(﹣1)n (2n+1)anD .(﹣1)n +1(2n ﹣1)an10.如图,在数轴上有A 、B 、C 、D 四个点,分别表示不同的四个数,若从这四点中选一点做原点,使得其余三点表示的数中有两个正数和一个负数,则这个点是()A .点AB .点BC .点CD .点D二、填空题11.若2|2|(3)0x y ++-=,则y x =________.12.-2x 与3x-1互为相反数,则x =________________.13.已知代数式﹣5x 2yn 与3xm +3y 3是同类项,则m+n 的值为_______________.14.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.15.若方程()1270k k x--+=是关于x 的一元一次方程,则k 的值等于______.16.单项式234x y -的系数是___________,次数是___________次17.多项式3532913633x y x y xy +++是________次_______项式.18.用“☆”定义一种新运算:对于任意实数a ,b ,都有a ☆b =2a -3b +1.例如:2☆1=2×2-3×1+1.若x ☆(-3)=2,则x =________.三、解答题19.(1)-10-8÷1(2)(2-⨯-(2)-22-(-3)2×(-23)-42÷|-4|(3)()31324864⎛⎫+-⨯- ⎪⎝⎭20.先化简,再求值:22224()3()23x y xy x y y xy y +----的值,其中1,2x y =-=21.解下列方程:(1)43(12)6x x --=(2)2152122362x x x-+--=-22.由6个棱一样长的正方体组成的几何体如图所示.在指定的方格内画出该几何体从三个方向看到的形状图.23.如图在线段AB 上有一点C ,线段AB=6cm ,AC=4cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长24.有一位工人师傅将底面直径为10cm ,高为80cm 的实心圆柱,锻造成底面直径为40cm 的实心圆柱,求锻造后圆柱的高是多少?25.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小亮家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km )﹣7﹣12﹣13﹣17+40+9(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶50km 需用汽油4升,汽油价6.8元/升,计算小亮家这7天的汽油费用大约是多少元?26.一个自行车赛车队进行训练,训练时所有队员都以35km/h的速度前进,突然一号队员以45km/h的速度独自行进10km后掉转车头,仍以45km/h的速度往回骑,直到与其他队员会合,一号队员从离队开始到与队员重新会合,经过了多长时间?27.某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:()1学校这次调查共抽取了名学生;()2求m的值并补全条形统计图;()3在扇形统计图中,“围棋”所在扇形的圆心角度数为;()4设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.参考答案1.C【分析】根据绝对值的意义可直接得出答案.【详解】解:−2022的绝对值是2022,故选:C.【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.2.D【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“构”与面“谐”相对,面“建”与面“社”相对,面“和”与面“会”相对.故选D【点睛】本题考查了正方体向对面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数.【详解】解:解:704000000=7.04×108.故选:C .【点睛】本题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.B【分析】根据代数式的书写格式:系数不能写成带分数,必须写成假分数,字母与数字相乘,数字必须写在前面等判断即可.【详解】解:A 、15ab,所以原书写格式不规范,故本选项不符合题意;B 、34ab ,书写格式规范,故本选项符合题意;C 、2ab ,所以原书写格式不规范,故本选项不符合题意;D 、53x ,所以原书写格式不规范,故本选项不符合题意;故选:B【点睛】本题考查了代数式,熟练掌握代数式的书写格式是解题的关键.5.C【分析】根据题意可得1200名学生的视力情况,从中抽取了300名学生进行视力调查,这个问题中的总体是1200名学生的视力情况,样本是抽取的300名学生进行视力情况,个体是每一个学生的视力情况,样本容量是300,注意样本容量不能加任何单位.【详解】A.总体是1200名学生的视力情况,正确;B.样本容量是300,正确;C.样本是抽取的300名学生的视力情况,此选项错误;D.个体是每名学生的视力情况,正确;故选:C.【点睛】本题考查总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.A【分析】根据绝对值的几何意义列绝对值方程解答即可.【详解】解:由题意得:|2a+1|=3当2a+1>0时,有2a+1=3,解得a=1当2a+1<0时,有2a+1=-3,解得a=-2所以a的值为1或-2.故答案为A.【点睛】本题考查了绝对值的几何意义,根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键.7.D【分析】把各项计算得到的结果进行比较即可.【详解】A.32=9,23=8,不相等,.不符合题意B.-32=-9,(-3)2=9,不相等,不符合题意.-2=-8,3-2=8,不相等,不符合题意.C.3D.-23=-8,(-2)3=-8,相等,符合题意.故选D【点睛】本题考查了有理数的乘方,熟练掌握乘方的运算法则是解题的关键,解题是要注意运算符号.8.Dx ,若所得的值大于或等于﹣20,则将所得的值代【分析】根据程序可知,输入x计算31入计算,直到所得的值小于﹣20即可输出.x+=﹣11,【详解】解:当x=﹣4时,31∵﹣11>﹣20,x+=﹣32,∴当x=﹣11时,31x+=﹣32<﹣20,则最后输出的结果为﹣32,∴当x=﹣11时,31故选:D.【点睛】此题考查了程序计算,有理数混合运算,正确理解程序图计算是解题的关键.9.D【分析】根据题目中的单项式可以发现数字因数奇数项都正的、偶数项都是负的,数字因数的绝对值是一些连续的奇数,字母的指数依次变大且均为偶数,从2开始,然后即可写出第n个单项式,本题得以解决.【详解】∵a=(﹣1)1+1×(2×1﹣1)a,﹣3a2=(﹣1)2+1×(2×2﹣1)a2,5a3=(﹣1)3+1×(2×3﹣1)a3,﹣7a4=(﹣1)4+1×(2×4﹣1)a4,9a5=(﹣1)5+1×(2×5﹣1)a5,…∴第n个单项式为:(﹣1)n+1(2n﹣1)an.故选:D.【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.10.B【分析】根据数轴上的点表示的数一一分析即可.【详解】解:A.当A为原点,则剩余三个点表示的数均是正数,故A不合题意.B.当B为原点,则A表示负数,C与D表示正数,故B符合题意.C.当C为原点,则A与B表示负数,D表示正数,故C不符合题意.D.当D为原点,A、B与C表示负数,故D不符合题意.故选:B.【点睛】本题主要考查数轴上的点表示的数,熟练掌握数轴上的点表示的数是解决本题的关键.11.-8【分析】先利用非负性确定x ,y 的值,然后代入计算求值即可.【详解】∵2|2|(3)0x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3,∴3(2)yx=-=-8.故答案为:-8.【点睛】本题考查了非负性,乘方的运算,熟练掌握非负数的性质:几个非负数的和为零则它们都为零,是解题的关键.12.1【分析】根据相数的定义列出关于x 的方程,-2x+3x-1=0,解方程即可.【详解】解:根据题意,-2x+3x-1=0,解之得x=1.故答案为:1.【点睛】本题考查了相反数的概念和一元一次方程的解法.若两个数互为相反数,则它们的和为零,反之也成立.13.2【分析】根据同类项的定义求出m ,n 的值,然后代入式子进行计算即可解答.【详解】解:解:∵代数式﹣5x 2yn 与3xm +3y 3是同类项,∴m+3=2,n =3,∴m =﹣1,∴m+n =﹣1+3=2.故答案为:2.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.14.100【分析】根据利润率=(售价-进价)÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】解: 商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x 解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.15.-2【分析】依据一元一次方程的定义得到k-2≠0,|k|-1=1,从而可求得k 的取值.【详解】解:∵方程(k-2)x |k |-1+7=0是关于x 的一元一次方程,∴k-2≠0,|k|-1=1.解得:k=-2.故答案为:-2.【点睛】本题主要考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键,一元一次方程的定义:只含有一个未知数、未知数的最高次数为1且两边都为整式的等式是一元一次方程.16.34-3【分析】根据单项式的系数与次数即可求出答案.【详解】解:该单项式的系数为34-,次数为3,故答案为:34-,3;【点睛】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.17.八四【分析】根据多项式的项和多项式的次数的定义得出即可.【详解】解:多项式中次数最高的项为536x y ,次数为8,多项式3532913633x y x y xy +++共有4项,故答案为:八,四.【点睛】本题考查了多项式的次数和项的定义,能熟记多项式的次数和项的定义是解此题的关键,注意:两个或两个以上的单项式的和,叫多项式,其中每个单项式,叫多项式的项,多项式中,次数最高的项的次数,叫多项式的次数.18.-4【详解】解:由题意得,x ☆(-3)=2可转化为:2x-3×(-3)+1=2,∴x=-4.故答案为-4.19.(1)-12;(2)-2;(3)5【分析】(1)根据有理数的混合运算法则计算即可;(2)先计算乘方,再根据有理数的混合运算法则、绝对值的意义等知识计算即可;(3)根据乘法分配律运算即可.【详解】(1)110822()()÷-⨯---10(4(12)⨯--=--102=--12=-;(2)2222-2-(-3)(-4-43⨯÷-23449(16=---⨯÷-464=-+-2=-;(3)313()(24)864+-⨯-()(313242)()424864⨯-⨯--⨯-=+9418=--+5=.【点睛】本题考查了有理数的四则混合运算法则、绝对值的应用、求一个数的平方数等知识,掌握相关的运算法则、清楚计算的先后顺序是解答本题的关键.20.222x y xy +,-6【分析】原式去括号合并得到最简结果,再把x 与y 的值代入计算即可求出值.【详解】解:22224()3()23x y xy x y y xy y+----=2222443323x y xy x y y xy y+-+--=222x y xy +;当1,2x y =-=时,原式=22(1)22(1)2286-⨯+⨯-⨯=-=-21.(1)6x =(2)1x =-【分析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.(1)解:去括号得:4x ﹣36+3x =6,移项得:4x+3x =6+36,合并得:7x =42,系数化为1得:x =6;(2)解:去分母得:2(2x ﹣1)﹣(5x+2)=3(1﹣2x )﹣12,去括号得:4x ﹣2﹣5x ﹣2=3﹣6x ﹣12,移项得:4x ﹣5x+6x =3﹣12+2+2,合并得:5x =﹣5,系数化为1得:x =﹣1.22.见解析【分析】根据三视图的画法分别画出从正面看、从左面看,从上面看所得到的图形即可.【详解】解:这个组合体的三视图如下:23.3【分析】根据题意可得BC =AB ﹣AC =6﹣4=2,由点M 是线段AC 的中点,点N 是线段BC 的中点,可得MC =12AC ,NC =12BC ,即MN =MC+NC 即可得出答案.【详解】解:∵AB =6cm ,AC =4cm ,∴BC =AB ﹣AC =6﹣4=2,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC =12AC =1422⨯=,NC =12BC=1212⨯=,∴MN =MC+NC =2+1=3.∴线段MN 的长3(cm).【点睛】本题主要考查了两点间的距离,熟练掌握两点的距离计算的方法进行计算是解决本题的关键.24.5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱的体积不变建立方程,求出其解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意,得2210408022x ππ⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭解得:x=5.答:锻造后圆柱的高是5cm .【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,形积问题的数量关系的运用,解答时由形积问题的数量关系建立方程是关键.25.(1)50千米(2)190.4元【分析】(1)根据有理数的加法,可得超出或不足部分的路程平均数,再加上50,可得平均路程;(2)先求出平均一天的耗油量,根据总价=单价×数量可求一天的需要的钱数,再乘天数7,可得答案.(1)17×(﹣7﹣12﹣13+0﹣17+40+9)=0,∴50+0=50(千米).答:这七天平均每天行驶50千米;(2)50×450×6.8=27.2(元),27.2×7=190.4(元).答:小亮家这7天的汽油费用大约是190.4元.26.1h4【详解】解:设一号队员从离队开始到与队员重新会合,经过了h x ,由题意得:4535210x x +=⨯,解得14x =.答:一号队员从离队开始到与队员重新会合,经过了1h 4.27.(1)100;(2)m=20,补图见解析;(3)36°;(4)250.【分析】(1)用“围棋”的人数除以其所占百分比可得;(2)用总人数乘以“书法”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“围棋”人数所占百分比即可得;(4)用总人数乘以样本中“舞蹈”人数所占百分比可得.【详解】(1)学校本次调查的学生人数为10÷10%=100(名).故答案为:100;(2)m=100﹣25﹣25﹣20﹣10=20,∴“书法”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°.故答案为:36°;(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.。

北师大版七年级上册数学期末试卷及答案完整版 3套

北师大版七年级上册数学期末试卷及答案完整版 3套

七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。

√2 是一个无理数。

2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。

3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。

4. 决算表中列出了一个公司在一年中的所有收入和支出。

决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。

5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。

6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。

7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。

8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。

北师大版七年级上学期数学《期末检测题》附答案

北师大版七年级上学期数学《期末检测题》附答案

北师大版数学七年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.2.如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. -13. ﹣2的绝对值是()A. 2B. 12C.12- D. 2-4.计算:(3)9-⨯的结果等于()A. 27- B. 6- C. 27 D. 65. 下列结果为负数的是( )A.-(-3)B. -32C. (-3)2D. |-3|6.若12m a b+-与323a b是同类项,则m=()A. 2 B. 3 C. 4 D. 5 7.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查8.某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( ) 星期 一 二 三 四 最高气温 21℃ 22℃ 14℃ 20℃ 最低气温 11℃14℃-1℃11℃A. 星期一B. 星期二C. 星期三D. 星期四9.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在C 处,小强站在B 处,两人同时逆时针方向跑步,小斌每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A. 半圆跑道AB 上B. 直跑道BC 上C. 半圆跑道CD 上D. 直跑道AD 上10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A. B. C. D.二、填空题(本题共6小题,每题4分,满分24分,将答案填在答题纸上)11.比-2大3的数是__________. 12.单项式232x y的次数是__________. 13.据某网站报道2019年10月我国的初中生数已接近43100000人,数43100000用科学记数法表示为:__________.14.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.15.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________16.已知一列数a ,b ,+a b ,2+a b ,23a b +,35a b +,……,按照这个规律写下去,第10个数是__________.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).18.计算: (1)21324()368-⨯-+ (2)22(3)|8|4-⨯---÷19.先化简,再求值:22(4)2(3)a ab a ab ---,其中1a =-,2b =. 20.解方程:(1)42(3)0x --=(2)412123x x -+-=21.如图,已知线段12AB cm =,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 的中点,则DE =cm ; (2)若4AC cm =,求DE的长.22.为弘扬中华民族传统文化,某校举办了“燕城诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别 分数人数 第1组 90100x ≤≤16第2组 8090x ≤< a第3组 7080x ≤<20第4组 6070x ≤<b第5组 5060x << 6请根据以上信息,解答下列问题:(1)此次随机抽取的学生数是 人,a = ,b = ; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1500名学生,那么成绩低于70分的约有多少人?23.“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费: 月用水量(吨) 单价(元/吨) 不超过25吨 1.4 超过25吨的部分2.1另:每吨用水加收0.95元的城市污水处理费(1)如果1月份小明家用水量为18吨,那么小明家1月份应该缴纳水费 元; (2)小明家2月份共缴纳水费104.5元,那么小明家2月份用水多少吨?(3)小明家的水表3月份出了故障,只有80%的用水量记入水表中,这样小明家在3月份只缴纳了56.4元水费,问小明家3月份实际应该缴纳水费多少元?24.已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.25.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简) (2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大?(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x的值;如果不是正方形,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.【答案】C【解析】【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.2.如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. -1【答案】D【解析】【分析】直接利用数轴得出结果即可.【详解】解:数轴上蝴蝶所在点表示的数可能为-1,故选D.【点睛】本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.3. ﹣2的绝对值是()A. 2B.12C. 12-D. 2-【答案】A 【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A .4.计算:(3)9-⨯的结果等于( ) A. 27- B. 6-C. 27D. 6【答案】A 【解析】 【分析】根据有理数的乘法法则进行计算即可 【详解】解:(3)9=-27-⨯ 故选A【点睛】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法法则. 5. 下列结果为负数的是( ) A. -(-3) B. -32C. (-3)2D. |-3|【答案】B 【解析】试题分析:A 、-(-3)=3;B 、-23=-9;C 、2(3)-=9;D 、3-=3.考点:有理数的计算6.若12m a b +-与323a b 是同类项,则m =( ) A. 2 B. 3C. 4D. 5【答案】A 【解析】 【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同,据此列出方程m 13+=即可解答本题. 【详解】解:因为m 12a b +-与323a b 是同类项, 所以m 13+=,,所以m2故选:A.【点睛】本题考查的是同类项的定义,直接利用定义解决即可.7.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校的每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查【答案】A【解析】【分析】抽取样本要注意样本必须有代表性.【详解】A. 从全校的每个班级中随机抽取几个学生作调查,有代表性,合适;B. 在低年级学生中随机抽取一个班级作调查,样本没有代表性,不合适;C. 在学校门口通过观察统计佩戴眼镜的人数,样本没有代表性,不合适;D. 从学校的男同学中随机抽取50名学生作调查,样本没有代表性,不合适.故选A【点睛】本题考核知识点:抽样调查.解题关键点:注意抽取的样本应该具有代表性.8.某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】C【解析】【分析】本题考查的是最大温差,先求出星期一、星期二、星期三、星期四的温差,再进行比较,找到最大的即可.【详解】解:星期一的温差是21-11=10,星期二的温差是22-14=8,星期三的温差是14-(-1)=15,星期四的温差是20-11=9,因为15>10>9>8,所以星期三的温差最大,故选:C.【点睛】本题考查的是温差,温差=最高温度-最低温度,依次计算这四天的温差,之后按照有理数的大小比较,找到最大的值就可以了.9.如图,跑道由两个半圆部分AB,CD和两条直跑道AD,BC组成,两个半圆跑道的长都是115m,两条直跑道的长都是85m.小斌站在C处,小强站在B处,两人同时逆时针方向跑步,小斌每秒跑4m,小强每秒跑6m.当小强第一次追上小斌时,他们的位置在()A. 半圆跑道AB上B. 直跑道BC上C. 半圆跑道CD上D. 直跑道AD上【答案】D【解析】【分析】本题考查是一元一次方程,设小强第一次追上小彬的时间为x秒,根据小强的路程-小彬的路程=BC的长度,也就是85米,再进一步判断即可求解本题.【详解】解:设小强第一次追上小彬的时间为x秒,-=,根据题意,得:6x4x85解得x=42.5,则4x=170>115,170-115=55,所以他们的位置在直跑道AD上,故选:D.【点睛】本题主要考查一元一次方程的应用,解题的关键是理解题意找到环形跑道上路程间的相等关系:小强的路程-小彬的路程=路程差BC 直跑道的长.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A. B. C. D.【答案】C 【解析】 【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得. 【详解】由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有:故选C .【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.二、填空题(本题共6小题,每题4分,满分24分,将答案填在答题纸上)11.比-2大3的数是__________. 【答案】1 【解析】 【分析】本题要注意有理数运算中的加法法则:异号两数相加,取绝对值较大数的符号,并把绝对值相减. 【详解】解:-2+3=3-2=1, 故答案为:1.【点睛】解题的关键是理解加法的法则,先确定和的符号,再进行计算. 12.单项式232x y 的次数是__________. 【答案】3 【解析】【分析】本题考查的是单项式的次数,一个单项式中,所有字母的指数的和叫做单项式的次数,注意指数为1时省略不写.【详解】解:因为x 的指数为2,y 的指数为1, 所以单项式的次数是2+1=3, 故答案为:3.【点睛】本题正确理解单项式的次数,注意到y 的指数为1即可.13.据某网站报道2019年10月我国的初中生数已接近43100000人,数43100000用科学记数法表示为:__________. 【答案】74.3110⨯ 【解析】 【分析】本题考查的是科学记数法,直接将题目中的数据43100000数出位数,位数-1即为10的指数就可以解答本题. 【详解】解:因为43100000是8位数, 所以43100000=4.31×107, 故答案为:74.3110⨯.【点睛】本题考查的是科学记数法,是指把一个数表示成a ×10的n 次幂的形式(1a 10≤<,n 为正整数). 14.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____. 【答案】两点确定一条直线 【解析】 【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线, 故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.15.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________ 【答案】甲班 【解析】 【分析】分别求出甲班与乙班成绩为D 等级的人数进行比较即可. 【详解】由频数分布直方图知甲班成绩为D 等级的人数为13人, 由扇形统计图知乙班成绩为D 等级的人数为40×30%=12, ∴D 等级较多的人数是甲班, 故答案为甲班.【点睛】本题考查了频数分布直方图,扇形统计图,读懂统计图,从中找到必要的信息是解题的关键. 16.已知一列数a ,b ,+a b ,2+a b ,23a b +,35a b +,……,按照这个规律写下去,第10个数是__________. 【答案】2134a b + 【解析】 【分析】认真读题可知,本题的规律是:从第3个数开始,每个数均为前两个数的和,从而可以得出答案. 【详解】解:由题意可知第7个数是5a+8b, 第8个数是8a+13b, 第9个数是13a+21b, 第10个数是21a+34b, 故答案为:21a+34b .【点睛】本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).【答案】【解析】【分析】从上面看可以得到3列正方形的个数一次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示【点睛】本题主要考查作三视图,需要注意我们从物体的正面、左面和上面看所得到的图形的不同,每个观察面所对应的最大数需要注意.18.计算:(1)21324()368-⨯-+(2)22(3)|8|4-⨯---÷【答案】(1)-21;(2)10 【解析】【分析】本题为基础的计算题:(1) 需要注意可以先算括号内,也可以运用运算律直接拆开,注意负号的存在; (2) 注意到绝对值,减数这部分要先算绝对值再算除法. 【详解】(1)原式213242424368=-⨯+⨯⨯- 1649=-+-21=-(2)原式4384=-⨯--÷()122=-10=【点睛】本题考查的是有理数的混合运算,这里掌握它们的运算法则是解题的关键. 19.先化简,再求值:22(4)2(3)a ab a ab ---,其中1a =-,2b =. 【答案】22a ab -+,-5 【解析】 【分析】根据去括号、合并同类项,可化简整式,之后将题目中的数值代入,即可求得答案. 【详解】原式22426a ab a ab =--+22a ab =-+当1a =-,2b =时原式21212=--+⨯-⨯()()14=-- 5=-【点睛】本题考查了整式的化简求值,去括号是解题关键,括号前面是正数去括号不变号,括号前面是负数去括号都变号. 20.解方程:(1)42(3)0x --=(2)412123x x -+-=【答案】(1)5x =;(2) 1.3x = 【解析】 【分析】根据一元一次方程的解法:(1) 去括号、移项,即可解答;(2) 先利用等式的性质去分母,之后去括号、移项,即可解答. 【详解】(1)4260x -+=246x -=--210x -=- 5x =(2) ()()341622x x --=+123624x x --=+ 122436x x -=++ 1013x =1.3x =【点睛】本题是一元一次方程的解法,属于基础题目,在解题的时候,需要注意:括号前面是负号去掉括号要变号;去分母的时候要注意每一项都要乘,不要漏项.21.如图,已知线段12AB cm =,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 的中点,则DE = cm ; (2)若4AC cm =,求DE 的长. 【答案】(1)6DE cm =;(2)6cm 【解析】 【分析】(1)C 是AB 的中点,先求AC 和CB ,再根据D 、E 是AC 和BC 的中点,即可求解; (2)由AC 和AB 可求BC ,再根据D 、E 分别是AC 和BC 的中点,即可求解. 【详解】(1)因为AB=12cm,C 是AB 的中点,所以AC=BC=6cm,因为D 、E 是AC 和BC 的中点,所以CD=CE=3cm, 所以DE=3+3=6cm, 所以DE=6cm .(2)1248BC AB AC =-=-=114222CDAC ==⨯= 118422CE BC ==⨯= ∴246DE DC CE cm =+=+=【点睛】本题考查的是线段的中点问题,注意线段中点的计算即可.22.为弘扬中华民族传统文化,某校举办了“燕城诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别 分数人数 第1组 90100x ≤≤16第2组 8090x ≤< a第3组 7080x ≤< 20第4组 6070x ≤<b第5组 5060x <<6请根据以上信息,解答下列问题:(1)此次随机抽取的学生数是 人,a = ,b = ; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数; (3)若该校共有1500名学生,那么成绩低于70分的约有多少人?【答案】(1)80,24,14;(2)27︒;(3)375人【解析】【分析】(1)抽取学生人数我们找到一组数据以及所占整体的百分率即可求解,之后可依次求出a、b的值;(2)由第5组学生的人数为6人,即可求得所占圆心角为63602780︒⨯=︒;(3)由样本估计整体,根据抽查学生中低于70分的学生占80名学生的比,即可求得答案.【详解】(1)20÷25%=80(人),b=20-6=14(人),a=80-16-20-20=24(人)(2)∵6 3602780︒⨯=︒∴“第五组”所在扇形的圆心角为27︒(3)∵614 150037580+⨯=∴成绩低于70分的约有375人.【点睛】本题主要考查的是数据的统计和分析,我们在解题的时候,需要注意认真计算,同时需要牢固掌握统计表和扇形统计图.23.“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费:(1)如果1月份小明家用水量为18吨,那么小明家1月份应该缴纳水费元;(2)小明家2月份共缴纳水费104.5元,那么小明家2月份用水多少吨?(3)小明家的水表3月份出了故障,只有80%的用水量记入水表中,这样小明家在3月份只缴纳了56.4元水费,问小明家3月份实际应该缴纳水费多少元?【答案】(1)42.3;(2)40吨;(3)74元【解析】分析】本题是一个实际应用题:(1)小明家用水量没有超过25吨,直接单价×数量即可;(2)设小明家2月份用水量为x 吨,可列方程()25 1.4x 25 2.10.95x 104.5⨯+-⨯+=,求出x 的值即可; (3)应先算出水表中3月的用水量,再计算实际的用水量,最后根据收费标准计算应缴纳水费. 【详解】(1)18×(1.4+0.95)=42.3(元) (2)∵25(1.40.95)58.75104.5⨯+=< ∴小明家2月份用水超过25吨. 设小明家2月份用水x 吨根据题意得:25 2.35(25)(2.10.95)104.5x ⨯+-⨯+= 解这个方程得:40x = 答:小明家2月份用水40吨 (3)水表计数:56.4 2.3524÷= 实际用水:2480%30÷=应缴水费:25 2.35(3025) 3.05⨯+⨯-74=(元) 答:小明家3月份实际应交水费74元.【点睛】本题考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程;易错点是忽略污水处理费.24.已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE ∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.【答案】(1)45︒;(2)ACE BCF ∠=∠,理由见解析;(3)45BCF ACD ∠=︒+∠或45BCF ACD ∠-∠=︒ 【解析】 【分析】(1)根据角平分线的性质求出∠FCA ,即可求出∠ACE ; (2)根据同角的余角相等即可求出;(3)∠ACD 和∠BCF 都和∠ACF 关系紧密,分别表示它们与∠ACF 的关系即可求解. 【详解】(1)∵CF 平分ACB ∠ ∴11904522ACF ACB ∠=∠=⨯= ∴90ACE ACF ∠=︒-∠904545=︒-︒=︒(2)猜想:ACE BCF ∠=∠ 理由:∵90ACF BCF ∠=︒-∠90ACE ACF ∠=︒-∠∴9090ACE BCF ∠=︒-︒-∠()9090BCF =︒-︒+∠ BCF =∠(3)因为CA 在∠DCF 内侧,所以∠DCA=∠DCF -∠ACF=45°-∠ACF ,∠BCF=∠BCA -∠ACF=90°-∠ACF , 所以45BCF ACD ∠=︒+∠或45BCF ACD ∠-∠=︒【点睛】本题考查了角平分线的性质,角和角之间的关系,同角的余角相等的性质,要善于观察顶点相同的角之间的关系.25.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大? /x cm 12 3 4 5 3/cm V160 ________ 216 ________ 80(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x 的值;如果不是正方形,请说明理由.【答案】(1)()()182122x x x --;(2)224,160;(3)不可能是正方形,理由见解析【解析】【分析】本题考查的是长方体的构造:(1) 根据题意,分别表示出来长方体的长、宽、高,即可写出其体积;(2) 根据给到的x 的值求得体积即可;(3) 列出方程求得x 的值后,即可确定能否为正方形.【详解】(1)182122x x x --()()(2)224,160当x 取2cm 时,长方体盒子的容积最大(3)从正面看长方体,形状是正方形时,有182x x =-解得6x =当6x =时,1220x -=所以,不可能是正方形【点睛】本题考查了简单的几何题的三视图的知识,解题的关键是根据题意确定长方体的长、宽、高,之后依次解答题目.。

北师大版七年级上学期数学《期末测试卷》及答案

北师大版七年级上学期数学《期末测试卷》及答案
情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
22.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.
15.已知 ,则 ______.
16.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,当线段AB上有n个点时,线段总数共有多少__________.
三、解答题
17.计算
(1)3-(-8)+(-5)+6
(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP
(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的 ;
(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的
答案与解析
一、选择题
1. 的相反数是()
A. B.2C. D.
[答案]D
[解析]
[详解]因为- + =0,所以- 的相反数是 .
故选D.2. 小星同学在“”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()
A.617×105B.6.17×106C.6.17×107D.0.617×108
16.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,当线段AB上有n个点时,线段总数共有多少__________.

北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试题一、单选题1.-2的倒数是()A .-2B .12-C .12D .22.下列调查中适合采用普查方式的是()A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解成都市中小学生环保意识3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是()A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直5.数据42600用科学记数法表示为()A .4.26×103B .4.26×104C .42.6×103D .0.426×1056.解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x+=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-7.如图,已知点D 在点O 的北偏西30°方向,点E 在点O 的北偏东50︒方向,那么DOE ∠的度数为()A .30°B .50︒C .80︒D .100︒8.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为()A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 9.某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A .喜欢篮球的人数为16人B .喜欢足球的人数为28人C .喜欢羽毛球的人数为10人D .被调查的学生人数为80人10.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.如图,把一张长方形纸片沿对角线BD 折叠,25CBD ∠=︒,则ABF ∠的度数是()A .25︒B .30°C .40︒D .50︒12.如图所示的运算程序中,如果开始输入的x 值为48-,我们发现第1次输出的结果为24-,第2次输出的结果为12-,…,第2021次输出的结果为()A .6-B .3-C .24-D .12-二、填空题13.如图所示在数轴上的点A 对应的数为a ,B 对应的数为b ,则a ,b 与0的大小关系为_____<0<_____.14.方程260x +=的解是______.15.如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为___________cm .16.某地制作一年来每个月平均气温变化统计图,请你帮忙选择最恰当的统计图是_________.(从条形统计图、折线统计图、扇形统计图中选一个)17.已知A =2x 2+x+1,B =mx+1,若关于x 的多项式A+B 不含一次项,则常数m =_____.18.如图,是一个正方体的六个面的展开图形,则“力”所对的面是_____.19.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是___________.三、解答题20.计算:(1)()211713-+--(2)214(3)()()39⎡⎤-⨯-+-⎢⎥⎣⎦.21.如图所示,已知线段AB ,点P 是线段AB 外一点.按要求画图,保留作图痕迹;(1)作射线PA ,作直线PB ;(2)延长线段AB 至点C ,使得AC=2AB .22.化简并求值:2(2a -3b)-(3a+2b+1),其中a=2,b=12-.23.解方程:(1)6234y y +=-(2)151136x x +--=24.如图,∠AOC 和∠BOD 都是直角.(1)如果∠DOC =35°,则∠AOB =;(2)找出图中一组相等的锐角为:;(3)选择,若∠DOC 变小,∠AOB 将变;(A .大B .小C .不变)25.某商店购进A 、B 两种商品共100件,花费3100元,其进价和售价如表:(元/件)售价(元/件)进价A2530B3545(1)B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?26.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,则经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?27.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m=_____,E组对应的圆心角度数为______︒;(2)补全频数分布直方图;参考答案1.B 【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12,故选:B .【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.C 【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】解:A 、具有破坏性,必须抽查,故选项错误;B 、人数多,不容易调查,适合抽查,故选项错误;C 、事关重大,是精确度要求高的调查,需全面调查,故本选项正确;D 、人数多,不容易调查,适合抽查,故选项错误;故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B 【分析】根据球、圆柱、圆锥、三棱柱的形状判断即可,可用排除法.【详解】解:球、圆锥不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、三棱柱,一共有2个.故选:B .【点睛】本题考查几何体的截面,关键要理解面与面相交得到线,注意:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.4.C 【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.5.B 【分析】用科学记数法表示较大的数时,一般形式为10n a⨯,其中11|0|a ≤<,n 为整数.【详解】解:44.264260010=⨯.故选B .6.D 【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.7.C 【分析】利用方向角的定义求解即可.【详解】解:∵D 在点O 的北偏西30°方向,点E 在点O 的北偏东50°方向,∴∠DOE=30°+50°=80°,故选:C .【点睛】本题主要考查了方向角,解题的关键是理解方向角的定义:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x 辆汽车到甲队,由题意得100+x =2(68﹣x),故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.9.B 【分析】先求出被调查的学生的人数,可求得喜欢篮球的人数,从而得到喜欢足球的和喜欢羽毛球的人数之和,根据爱好足球的人数是爱好羽毛球的人数的4倍,可求出喜欢足球的人数,喜欢羽毛球的人数,即可求解.【详解】解:根据题意得:被调查的学生的人数:2130%70÷=(人),故D 错误;∴喜欢篮球的人数为:7020%14⨯=(人),故A 错误;∴喜欢足球的和喜欢羽毛球的人数之和为:70211435--=,∵爱好足球的人数是爱好羽毛球的人数的4倍,∴喜欢羽毛球的人数为()35417÷+=(人),故C 错误;∴喜欢足球的人数为35728-=(人),故B正确;故选:B.【点睛】本题主要考查了扇形统计图,解题的关键是从扇形统计图中获取准确的信息.10.A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.11.C【分析】利用折叠的特性可得:∠CBD=∠EBD=25°,再利用长方形的性质∠ABC =90°,则∠ABE=90°−∠EBC,结论可得.【详解】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°,∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°−∠EBC=40°,故C正确.故选:C.【点睛】本题主要考查了角的计算,折叠的性质,利用折叠得出:∠CBD=∠EBD是解题的关键.12.A【分析】根据程序得出一般性规律,确定出第2021次输出结果即可.【详解】解:把x=-48代入得:12×(-48)=-24;把x=-24代入得:12×(-24)=-12;把x=-12代入得:12×(-12)=-6;把x=-6代入得:12×(-6)=-3;把x=-3代入得:-3-3=-6,依此类推,从第3次输出结果开始,以-6,-3循环,∵(2021-2)÷2=1009…1,∴第2021次输出的结果为-6,故选:A .【点睛】此题考查了代数式求值,理解题意,根据程序得出一般性规律是解本题的关键.13.a b 【分析】根据数轴上点的位置进行判断,0的右边大于0,0的左边小于0,据此分析即可【详解】解:∵在数轴上的点A 对应的数为a ,B 对应的数为b ,A 点在原点的左侧,B 点在原点的右侧,正数大于负数,∴0a b<<故答案为:,a b【点睛】本题考查了根据数轴判断有理数的大小,数形结合是解题的关键.14.x =−3【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:2x +6=0,移项得:2x =−6,解得:x =−3.故答案为:x =−3.【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.15.10【分析】根据线段中点的性质可得AD DC =,由DC DB CB =-求得AD ,根据AB AD DB =+求解即可.【详解】解:∵743cm DC DB CB =-=-=,点D 为AC 的中点,∴3cmAD DC ==∴AB AD DB =+3710cm=+=故答案为:10【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.16.折线统计图【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】制作一年来每个月平均气温变化统计图,选择折线统计图合适.故答案为:折线统计图【点睛】本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.17.1-【分析】先计算A B +,合并同类项之后,根据题意令一次项系数为0,即可求得m 的值.【详解】A B +222112(1)2x x mx x m x ++++=+++=,若关于x 的多项式A+B 不含一次项,10m ∴+=,解得1m =-.故答案为:1-.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.18.我【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“力”字相对的面上的汉字是“我”.故答案为:我【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.11【分析】观察看出,所求的代数式是已知代数式变形得到的,利用代入法求得代数式的值即可.【详解】∵x+2y=3,∴代数式两边分别乘以2得:2x+4y=6,代入2x+4y+5,得:原式=6+5=11.故本题答案为:11.【点睛】考查代数式的变形及代入法的运用.注意整体思想的应用.20.(1)9(2)-7【解析】(1)()211713-+--413=-+9=(2)214(3)(()39⎡⎤-⨯-+-⎢⎥⎣⎦149939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭34=--7=-21.(1)见解析(2)见解析【分析】(1)根据题意作射线PA ,作直线PB ;(2)以B 为圆心AB 的长为半径画弧,交AB 的延长线于点C ,连接BC ,则AC=2AB(1)如图所示,射线PA ,直线PB 即为所求作;(2)如图所示,延长线段AB 至点C ,使得AC=2AB22.a -8b -1;5【分析】根据去括号的法则去括号,然后合并同类项,然后代入求值即可.【详解】2(2a -3b )-(3a +2b +1)=4a -6b -3a -2b -1=a -8b -1.当a =2,b =-12,代入原式=2-8×(-12)-1=5考点:整式的化简求值23.(1)2y =-(2)1x =-【解析】(1)原方程可化为:6342y y -=--36y =-2y =-(2)原方程可化为:()21651x x +-=-2451x x -=-33x -=1x =-24.(1)145°(2)∠AOD 与∠BOC(3)A【分析】(1)根据题意可得90AOD DOC ∠=︒-∠,进而根据AOB AOD DOB ∠=∠+∠即可求解;(2)根据DOC ∠的余角相等求解即可;(3)由(1)可知AOB ∠180DOC =︒-∠,进而即可求得答案.(1)∠AOC 和∠BOD 都是直角∴90AOD DOC ∠=︒-∠,AOB AOD DOB ∠=∠+∠9090DOC =︒-∠+︒180DOC =︒-∠ ∠DOC =35°,∴AOB ∠=145°故答案为:145°(2)∠AOC 和∠BOD 都是直角∴90AOD AOC DOC DOC ∠=∠-∠=︒-∠,90BOC DOB DOC DOC ∠=∠-∠=︒-∠∴AOD ∠=BOC∠故答案为:AOD ∠与BOC∠(3)由(1)可知AOB ∠180DOC=︒-∠若∠DOC 变小,∠AOB 将变大故答案为:A【点睛】本题考查了几何图形中角度的计算,同角的余角相等,数形结合是解题的关键.25.(1)A 、B 两种商品分别购进40件、60件;(2)两种商品售完后共获取利润800元【分析】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A 、B 两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【详解】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,()25351003100a a +-=,解得,40a =,则10060a -=,答:A 、B 两种商品分别购进40件、60件;(2)()()302540453560-⨯+-⨯5401060=⨯+⨯200600800=+=(元),答:两种商品售完后共获取利润800元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.26.(1)30秒(2)经过6秒或18秒P ,Q 两点相距30cm ,此时|QB ﹣QC|是16cm 或20cm【分析】(1)根据题意求得OC 的长,进而根据时间等于路程除以速度列算式求解即可;(2)根据题意,分相遇前和相遇后相距30cm ,两种情形列一元一次方程求解即可.(1)由题意知:OC=OA+AB+BC=20+20+20=60(cm),∴当P运动到点C时,t=60÷2=30(秒);(2)①当点P、Q还没有相遇时,2t+3t=60﹣30,解得:t=6,此时,QC=3×6=18(cm),QB=BC﹣QC=20﹣18=2(cm),∴|QB﹣QC|=|2﹣18|=16(cm),②当点P、Q相遇后,2t+3t=60+30,解得:t=18,此时,QC=3×18=54(cm),QB=QC﹣BC=54﹣20=34(cm),∴|QB﹣QC|=|34﹣54|=20(cm),综上所述,经过6秒或18秒P,Q两点相距30cm,此时|QB﹣QC|是16cm或20cm【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数形结合以及分类讨论是解题的关键.27.(1)40;14.4(2)见解析【分析】(1)由B组有21人和B组占抽查学生总数的21%可计算出被抽查学生的总数,根据C组人数为40人,即可计算出C组占总数的百分比,从而得到:“m”的值;由E组人数4除以总人数再乘以360°即可得到扇形统计图中E组所对应的圆心角度数;(2)根据(1)计算出的被抽查学生的总数,由总数减去A、B、C、E各组的人数可得D 组的人数,即可补全频数直方图.(1)由题意可得:被抽查的总人数为:21÷21%=100(人),C组占总人数的百分比为:40100%=40% 100⨯,∴m=40;“E”组对应的圆心角度数为:4360=14.4 100⨯︒︒;故答案为:40;14.4.(2)D组的频数为:100-10-21-40-4=25(人),频数分布直方图补充完整如下:。

北师大版七年级数学上册期末考试试卷(附带答案)

北师大版七年级数学上册期末考试试卷(附带答案)

北师大版七年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.∠A =60°,则∠A 的补角是A .160°B .120°C .60°D .30° 2.点M 是线段AB 上一点,下面的四个等式中,不能判定M 一定是AB 中点的是( )A .12MB AB = B .AM MB = C .AM MB AB += D .2AM AB =3.若∠A =36°,则∠A 的余角等于( ) A .144° B .64° C .54° D .44°4.单项式224a b 的系数是( )A .2B .3C .4D .55.如图是一个正方体的平面展开图,每个面分别标有相应的字母,字母E 所对的面所标的字母应该是()A .LB .OC .VD .Y6.近似数4.50所示的数值a 的取值范围是( )A .4.495 4.505a ≤<B .4.040 4.60a ≤<C .4.495 4.505a ≤≤D .4.500 4.5056a ≤≤7.在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( )A .0B .1C .2D .38.如图,直线AB 、CD 相交于点O ,90AOE ∠=︒则EOC ∠和AOD ∠的关系( )A .相等B .互补C .互余D .以上三种都有可能9.小马虎在下面的计算中,只做对了一道题,他做对的题目是( )A .-(a -1)=a -1B .a 4+a 4=a 8C .6a 2b -6ab 2=0D .2ab -2ba =0A.4个B.3个C.2个D.1个二、填空题(共8小题,满分32分)14.如图,图形都是由同样大小的小圆圈按一定规律所组成的,其中第1个形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一有19个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数.15.已知点C在直线AB上,若AC=6cm,BC=8cm,E,F分别是线段AC,BC的中点,则线段EF的长是cm.16.据统计,韶关1月份的历史最低温是零下4℃,用数表示这个温度是℃.17.在迎来了中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下,12800个贫困村全部出列.将数据12800用科学记数法表示应为 .18.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且13CF BC =,则长方形ABCD 的面积是阴影部分面积的 倍.三、解答题(共6小题,每题8分,满分48分)19.如图,直线,,AB CD EF 相交于点O ,且OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.20.阅读材料:我们知道,4x+2x -x=(4+2-1)x=5x ,类似地,我们把(a+b )看成一个整体,则4(a+b )+2(a+b )-(a+b )-(4+2-1)(a+b )=5(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)BC=______;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为10-,求出点A,B,D所对应数的和.24.计算(1)149 0.52335⎛⎫-⨯+÷-⨯⎪⎝⎭;(2)2222153(5)933⎛⎫⎛⎫-⨯-+--÷⎪ ⎪⎝⎭⎝⎭.参考答案:1.B2.C3.C4.C5.B6.A7.B8.C9.D 10.C 11.7.78×104 12.5 13.1920.14.()212n nn++15.7或116.4-17.41.2810⨯18.319.(1) 51°48′,(2). OG是EOB∠的平分线20.(1)-2(a-b)2;(2)1812;(3)16.21.(1)66;98(2)()0.6150a a ≤ ()0.830150a a ->(3)小张家这个月用电180度.22.(1)前5个台阶上的数的和为-1.(2)答:第6个台阶上的数x 为-3,从下往上前2022个台阶上的数的和为-409.(3)第51k -次出现标“1”所在的台阶数.23.(1)2 (2)点A ,C ,D 分别对应-2,2,4,和为4 (3)-34 24.(1)1- (2)10-。

北师大版数学七年级上册期末测试卷(含答案)

北师大版数学七年级上册期末测试卷(含答案)

北师大版数学七年级上册期末测试卷(含答案)七年级数学上册期末试卷一、选择题(每小题3分,共30分)1.(3分)(-2)^3表示()A。

2乘以-3B。

2个-3相加C。

3个-2相加D。

3个-2相乘2.(3分)下列各式中,与3÷4÷5运算结果相同的是()A。

3÷(4÷5)B。

3÷(4×5)C。

3÷(5÷4)D。

4÷3÷53.(3分)数轴上表示-5和3的点分别是A和B,则线段AB的长为()A。

-8B。

-2C。

2D。

84.(3分)将正方体展开需要剪开的棱数为()A。

5条B。

6条C。

7条D。

8条5.(3分)用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A。

圆锥B。

五棱柱C。

正方体D。

圆柱6.(3分)2019年9月25日,北京大兴国际机场正式投入运营。

预计2022年实现年旅客吞吐量xxxxxxxx次。

数据xxxxxxxx科学记数法表示为()A。

4.5×10^6B。

45×10^6C。

4.5×10^7D。

0.45×10^87.(3分)如图,填在下面每个正方形中的四个数之间都有相同的规律,则m的值为()A。

107B。

118C。

146D。

1668.(3分)小明种了一棵小树,想了解小树生长的过程,记录小树每周的生长高度,将这些数据制成统计图,下列统计图中较好的是()A。

折线图B。

条形图C。

扇形图D。

不能确定9.(3分)下列调查中,适合用普查方式收集数据的是()A。

要了解我市中学生的视力情况B。

要了解某电视台某节目的收视率C。

要了解一批灯泡的使用寿命D。

要保证载人飞船成功发射,对重要零部件的检查10.(3分)已知,每本练本比每根水性笔便宜2元,小刚买了6本练本和4根水性笔正好用去18元,设水性笔的单价为x元,下列方程正确的是()A。

6(x+2)+4x=18B。

北师大版七年级上学期数学《期末检测试卷》含答案解析

北师大版七年级上学期数学《期末检测试卷》含答案解析
[详解]圆台的截面不能得到长方形;圆锥的截面不能得到长方形;圆柱的截面不能得到等腰梯形;当截面经过正方体的3个面时,得到三角形,当截面经过正方体相对的两个面时得到长方形,当截面经过正方体相对的两个面且这两个面中截得的线段不等长时,可得到等腰梯形.
故选D.
[点睛]本题考查的是截几何体,解决本题的关键是掌握几何体的截面特点.
故答案为:-7.
[点睛]此题主要考查相反数,解题的关键是熟知相反数的定义.
12.用科学记数法表示80000000为______.
[答案]
[解析]
[分析]
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
C.若x=2,则x2=2xD.若ax=bx,则a=b
3.如图所示,A、B、C、D四个图形中各有一条射线和一条线段,它们能相交的是()
A. B. C. D.
4.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()
A. 120元B. 125元C. 135元D. 140元
2.下列判断错误的是()
A.若a=b,则ac-3=bc-3B.若a=b,则
C.若x=2,则x2=2xD.若ax=bx,则a=b
[答案]D
[解析]
[分析]
利用等式的性质对每个等式进行变形即可找出答案.
[详解]A.利用等式性质2,两边都乘以c,得到ac=bc,再利用等式性质1,两边都减去3,得到ac﹣3=bc﹣3,所以A成立;
…;

北师大版数学七年级上册期末试卷含答案

北师大版数学七年级上册期末试卷含答案

北师七年级(上)期末数学试卷1第一部分 选择题一.选择题(每小题3分)1. 下列选项中,比3-小的数是( )A. 1-B.0C.21D.5- 2. 第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是( )3. 下列各式符合代数式书写规范的是( )A.a b B.7⨯a C. 12-m 元 D. x 213 4.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为( ) A. 1110395.0⨯元 B.101095.3⨯元 C. 91095.3⨯ 元 D.9105.39⨯元5. 下列计算正确的是( )A. 2624a a a =+B.ab ba ab =-67C.ab b a 624=+D.325=-a a6. 如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是( )7. 现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为( )A. 两点之间线段的长度,叫做这两点之间的距离B. 过一点有无数条直线C. 两点确定一条直线D. 两点之间,线段最短8. 深圳市12月上旬每天平均空气质量指数(AQI )分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A. 折线统计图B.频数直方图C.条形统计图D.扇形统计图9. 如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD :CB=1:3,则DB 的长度为( )A.12B.18C.16D.2010. 若2=x 是方程01424=-+m x 的解,则m 的值为( )A.10B.4C.3D.-311. 在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是( )A.86B.78C.60D.10112. 下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC ,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有( )A.2B.3C.4D.5二、填空题(每小题3分)13. 已知323y x m 和n y x 22-是同类项,则式子n m +的值是 .14. 在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是 .15. 某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为 元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为 .三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+ (3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x(2)(2)142312-=+--y y20.(本题8分)为了解某校学生对A 《最强大脑》、B 《朗读者》、 C 《中国诗词大会》、D 《出彩中国人》四个电视节目的喜爱情况,随机抽取了m 学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1) m= ,n= ;(2) 扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角读书是 度.(3) 根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB ,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x 辆.(1)则小型汽车的车辆数为 (用含x 的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A 表示的数a 、点B 表示数b ,a 、b 满足|a-30|+(b+6)2=0.点O 是数轴原点.(1)点A 表示的数为 __,点B 表示的数为 ,线段AB 的长为 .(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C,使AC=2BC,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?参考答案北师大版数学七年级上册期末试卷2一、选择题(每题3分,共30分)1.下列各数中,比-2小的数是()A.0 B.-3 C.-1 D.|-0.6|2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36 000千米的地球同步轨道.将36 000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033.下面的调查中,适合采用普查的是()A.对全国中学生心理健康现状的调查B.对某市食品合格情况的调查C.对天水电视台《直播天水》收视率的调查D.对你所在班级同学身高情况的调查4.如图,该几何体从上面看是()5.下列立体图形的名称与平面展开图不相符...的是()6.下列计算正确的是()A.3-5=2 B.3a+2b=5abC.4-|-3|=1 D.3x2y-2xy2=xy7.某超市进了一批商品,每件进价为a元,若每件要想获利25%,则每件商品的零售价应定为()A.25%a元B.(1-25%)a元C .(1+25%)a 元D .a 1+25%元 8.如图是某市PM2.5来源统计图,根据该统计图,下列判断正确的是( )A .表示汽车尾气污染的圆心角约为72°B .建筑扬尘等约占6%C .汽车尾气污染约为建筑扬尘等的5倍D .煤炭以及其他燃料燃放占所有PM 2.5污染源的129.下图是一个数值运算的程序,若输出的y 值为3,则输入的x 值为( )A .3.5B .-3.5C .7D .-710.已知线段AB =8 cm ,在直线AB 上有一点C ,且BC =3 cm ,点M 为线段AC的中点,则线段AM 的长是( )A .2.5 cmB .5.5 cmC .2.5 cm 或5.5 cmD .4 cm 或12 cm 二、填空题(每题3分,共30分)11.-12πab 的系数为________,次数为________.12.林林的爸爸只用了两枚钉子就把一根木条固定在墙上,用到的数学原理是___________________________________________________________.13.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检测.在这个问题中,总体是__________________________________,样本是________________________________________.14.如图,在直角三角形ABC 中,∠ACB =90°,以边BC 所在的直线为轴旋转一周所得到的几何体是________.15.若4x 2m y n +1与-3x 4y 3的和是单项式,则m +n =________.16.如图,∠AOB 是直角,∠AOC =40°,OD 平分∠BOC ,则∠AOD 等于________.17.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有_____人.18.如图,这是一个正方体的展开图,如果将它折叠成一个正方体后相对面上的数相等,则xy 的值为_______________________________________.19.小明和小丽同时从甲村出发到乙村,小丽的速度为4 km/h ,小明的速度为5km/h ,小丽比小明晚到15 min ,则甲、乙两村的距离是__________.20.高杨同学用木棒和硬币摆成如图所示的“列车”形状,第1个图需要4根木棒、2枚硬币,第2个图需要7根木棒、4枚硬币,照这样的方式摆下去,第n 个图需要__________根木棒、__________枚硬币.三、解答题(21~23题每题8分,其余每题12分,共60分)21.计算:(1)-22+|5-8|+24÷(-3)×13; (2)-24×⎝ ⎛⎭⎪⎫-56+38-1112.22.先化简,再求值:2(ab 2-a 2b )-(-2a 2b -ab 2+1),其中a =4,b =12.23.解下列方程:(1)32x -64=16x +32;(2)1-x 3-x =3-x +24.24.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图: 等级次数 百分率 不合格100≤x <120 a 合格120≤x <140 b 良好140≤x <160 优秀 160≤x <180请结合上述信息完成下列问题:(1)a =________,b =________;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是________;(4)若该校有2 000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.25.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲木工组每天修桌凳16套,乙木工组每天修桌凳比甲木工组多8套,甲木工组单独修完这些桌凳比乙木工组单独修完这些桌凳多用20天,学校每天付甲木工组80元修理费,付乙木工组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元的生活补助费,现有三种修理方案:①由甲木工组单独修理;②由乙木工组单独修理;③由甲、乙两木工组同时修理.你认为哪种方案省时又省钱?为什么?26.阅读理解:已知A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点.例如,如图①,点A表示的数为-1,点B表示的数为2,表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:(1)如图②,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数________所对应的点是【M,N】的好点;②在数轴上,数________和数________所对应的点都是【N,M】的好点.(2)如图③,A,B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以每秒2个单位长度的速度向左运动,到达点A停止.当点P的运动时间t为何值时,点P,A和B中恰有一个点为其余两点的好点?答案一、1.B 2.C 3.D 4.B 5.A 6.C7.C 8.C 9.D 10.C二、11.-12π;2 12.两点确定一条直线13.该中学七年级学生的视力情况;抽取的25名学生的视力情况14.圆锥 15.4 16.65° 17.9018.4或-4 19.5 km 20.(3n +1);2n三、21.解:(1)原式=-4+3+24×⎝ ⎛⎭⎪⎫-13×13=-4+3+⎝ ⎛⎭⎪⎫-83=-1-83=-113; (2)原式=24×56-24×38+24×1312=20-9+26=37.22.解:原式=2ab 2-2a 2b +2a 2b +ab 2-1=3ab 2-1.当a =4,b =12时,3ab 2-1=3×4×⎝ ⎛⎭⎪⎫122-1=3-1=2. 23.解:(1)移项、合并同类项,得16x =96.系数化为1,得x =6.(2)去分母,得4(1-x )-12x =36-3(x +2).去括号,得4-4x -12x =36-3x -6.移项,得-4x -12x +3x =36-6-4.合并同类项,得-13x =26.系数化为1,得x =-2.24.解:(1)10%;35%(2)补全频数分布直方图如图所示.(3)108°(4)2 000×40-440=1 800(名).估计该校学生一分钟跳绳次数达到合格及以上的有1 800名.25.解:(1)设该中学库存x 套桌凳,则甲木工组单独修完需要x 16天,乙木工组单独修完需要x 16+8天. 由题意,得x 16-x 16+8=20. 解得x =960.答:该中学库存960套桌凳.(2)方案③省时又省钱.理由如下:设①②③三种修理方案的费用分别为y 1元、y 2元、y 3元,则y 1=(80+10)×96016=5 400,y 2=(120+10)×96016+8=5 200, y 3=(80+120+10)×96016+16+8=5 040. 因为5 040<5 200<5 400,且易知方案③最省时,所以方案③省时又省钱.26.解:(1)①2 ②0;-8(2)设点P 表示的数为y ,分四种情况:①点P 为【A ,B 】的好点.由题意,得y -(-20)=2(40-y ),解得y =20,则t =(40-20)÷2=10(秒).②点A 为【B ,P 】的好点.由题意,得40-(-20)=2[y -(-20)],解得y =10,则t =(40-10)÷2=15(秒).③点P 为【B ,A 】的好点.由题意,得40-y =2[y -(-20)],解得y =0,则t=(40-0)÷2=20(秒).④点B为【A,P】的好点.由题意,得40-(-20)=2(40-y),解得y=10,则t=(40-10)÷2=15(秒).综上可知,当t为10秒、15秒或20秒时,点P,A和B中恰有一个点为其余两点的好点.北师大版数学七年级上册期末试卷3一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0 B.-2 C.1 D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5 B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1 C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7 B.2x-2=3x+7C.3x-2=2x-7 D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40 cm,则绳子的原长为()A.30 cmB.60 cmC.120 cmD.60 cm或120 cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5 kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25 kg B.20 kgC.30 kg D.15 kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156 B.157C.158 D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37 000 t,把数37 000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1 dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20 m 3,每立方米收费2元;若用水量超过20 m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15); (2)⎝ ⎛⎭⎪⎫-911÷9121-⎝ ⎛⎭⎪⎫12+23-34×(-24).20.解方程:(1)3x +7=32-2x ; (2)x -1-x 3=x +56.21.化简求值:已知|2x +1|+3⎝ ⎛⎭⎪⎫y -142=0,求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC 是∠AOD 的平分线,∠BOC =12∠COD ,那么∠BOC 是∠AOD的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.答案一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30 kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33 dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28 m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x =5.(2)去分母,得6x -2(1-x )=x +5,去括号,得6x -2+2x =x +5,移项、合并同类项,得7x =7,系数化为1,得x =1.21.解:由|2x +1|+3⎝ ⎛⎭⎪⎫y -142=0得2x +1=0,y -14=0,即x =-12,y =14. 原式=4x 2y -6xy +12xy -6+x 2y +1=5x 2y +6xy -5.当x =-12,y =14时,原式=5x 2y +6xy -5=516-34-5=-5716.22.解:如图.23.解:∠BOC 是∠AOD 的四分之一.理由如下:因为OC 是∠AOD 的平分线,所以∠COD =12∠AOD .因为∠BOC =12∠COD ,所以∠BOC =12×12∠AOD =14∠AOD .24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1 375(元),在乙店付款:22.5×40+450=1 350(元),1 350<1 375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。

2023-2024学年七年级上册数学期末试卷及答案北师大版

2023-2024学年七年级上册数学期末试卷及答案北师大版

2023-2024学年七年级上册数学期末试卷及答案北师大版一、单选题1.计算314 +(–2 35 )+5 34 +(–8 25 )时,运算律用得最为恰当的是( )A .[3 14 +(–2 35 )]+[5 34 +(–8 25 )]B .(3 14 +5 34 )+[–2 35 +(–8 25 )]C .[3 14 +(–8 25 )]+(–2 35 +5 34 )D .(–2 35 +5 34 )+[3 14 +(–8 25)]2.以下调查中,适宜全面调查的是( )A .调查某批次汽车的抗撞击能力B .调查某市居民日平均用水量C .调查全国春节联欢晚会的收视率D .调查某班学生的身高情况3.把一条弯曲的高速路改为直道,可以缩短路程,其道理用几何知识解释为( ) A .两点之间,线段最短B .点到直线上所有点的连线中,垂线段最短C .两点确定一条直线D .平面内过一有且只有一条直与已知直线垂直4.下列计算,结果正确的是( ) A .4a 2b ﹣5ab 2=﹣a 2﹣b B .5a 2+3a 2=8a 4C .2x+3y =5xyD .3xy ﹣5yx =﹣2xy5.下列运算中,正确的是( )A .3x+2y=5xyB .4x-3x=1C .2ab-ab=abD .2a+a=2a 26.某同学解方程 513x x -=+ 时,把“ ”处的系数看错了,解得 4x =- ,他把“ ”处的系数看成了( ) A .4B .9-C .6D .6-7.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a-8.用火柴棒按右面的方式拼图形,①中有7根火柴棒,②中有12根火柴棒,③中有17根火柴棒……,则图形⑩中火柴棒的根数是( )A .42B .47C .52D .579.下列运用等式的性质对等式进行的变形中,错误的是( ) A .若m =n ,则mp =npB .若a (|x|+1)=b (|x|+1),则a =bC .若a =b ,则a b c c=D .若x =y ,则x ﹣2=y ﹣210.已知有理数a ≠1,我们把11a - 称为a 的差倒数,如:2的差倒数是 112- =-1,-1的差倒数 11(1)-- = 12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+……+a 100的值是( ) A .7.35B .-7.5C .5.5D .-5.5二、填空题11.若a 2b 10++-=,则3b 2a -的值是 .12.如图,点O 在直线 AB 上, OD OE ⊥ ,垂足为O , OC 是 DOB ∠ 的平分线,若 70AOD ∠=︒ ,则 COE ∠= 度.13.已知点C 是直线AB 上一点,且AC :BC =7:3,若AB =10,则AC = .14.下列图形均是用长度相同的火柴棒按一定的规律搭成,搭第1个图形需要4根火柴棒,搭第2个图形需要10根火柴棒,…,依此规律,搭第10个图形需要 根火柴棒.15.如图,点B 1在直线l :y =12x 上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l ,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;照这个规律进行下去,则第n 个正方形A n B n B n+1∁n 的边长为 (结果用含正整数n 的代数式表示).三、计算题16.计算: (1)()45834⎛⎫-⨯-⨯ ⎪⎝⎭(2)()412637921⎛⎫-+⨯- ⎪⎝⎭17.已知x+y= 15 ,xy=﹣ 12.求代数式(x+3y ﹣3xy )﹣2(xy ﹣2x ﹣y )的值. 四、解答题18.出租车司机小王某天上午的营运全是在东西方向的大道上运行的,若规定向东为正,向西为负,他这天上午的行车里程如下:10,-3,2,-1,8,-6,-2,12,3,-4(单位:km ).(1)将最后一位乘客送到目的地时,小王离最开始的出发点有多远?在出发点的哪个方向?(2)若汽车的耗油量是每千米耗油0.75(L ),这天上午小王共耗油多少升?19.把下列各数填入相应的横线上:4,122-,12-,3.14159,0,25负数:{ };非负数:{ };整数:{ };分数:{ }。

七年级数学上册期末测试卷含答案(北师大版)

七年级数学上册期末测试卷含答案(北师大版)

(北师大版)七年级数学上册期末测试卷含答案七年级数学上册期末测试卷班级姓名得分一、选择题(每题2分,共20分)1.对于如图所示几何体的说法正确的是().A.几何体是四棱柱 B. 几何体的底面是长方形C.几何体有3条侧棱 D.几何体有4个侧面(第1题)(第7题)2.火星围绕太阳公转的轨道半长径为230 000 000 km.将230 000 000用科学记数法表示为( ).A.23×107B. 2.3×108C.2.3×109D.0.23×1093.下列四组变形中,属于移项变形的是().A.由2x-1=0,得x=12B.由5 x+6=0,得5 x= -6C. 由x3=2,得x=6 D.由5 x=2,得x=254.最适合采用全面调查的是( ).A.调查全国中学生的体重B.调查“神舟十三号”载人飞船的零部件C.调查某市居民日平均用水量D.调查某种品牌电器的使用寿命5.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,照这样计算,若按标价的6折出售则().A.赚30元B.亏30元C.赚5元D.亏5元6.对于两个不相等的有理数α,b,我们规定符号min{α,b}表示α,b两数中较小的数,例如min{-2,3}=-2.按照这个规定,方程min{x,- x}= -2 x -1的解为( ).A. x=−13B. x= -1C. x=1D. x=-1或x=−137.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A B C D8.如图一副三角板按不同的方式摆放得到下面四个图形,满足∠1=∠2的图形个数有( ).A.1个 B.2个 C.3个 D.4个9.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程( ).A.4(x-1)=2 x+8B.4(x+1)=2 x-8C.x4+1=x+82D.x4-1=x−8210.在直线l上有四个点A,B,C,D,已知AB=10,AC=6,点D是BC的中点,则线段AD的长是( ).A.2 B.8 C.4或8 D.2或8二、填空题(每题2分,共16分)11. 已知(k2-1)x2-(k+1)x+10=0是关于x的一元一次方程,则k的值为 .12.已知有理数a,b,c在数轴上的对应位置如图所示,则|a-b|-2|b-c|-|a-1|化简后的结果是(第12题)(第13题)(第15题)13.如图,已知∠AOB=40°,自O点引射线OC,若∠AOC:∠COB=2:3,OC与∠AOB的平分线所成的角的度数为。

北师大版2022-2023学年七年级数学上册期末测试卷(附答案)

北师大版2022-2023学年七年级数学上册期末测试卷(附答案)

2022-2023学年七年级数学上册期末测试卷(附答案)一.选择题(满分30分)1.有理数5,﹣2,0,﹣4中最小的一个数是()A.5B.﹣2C.0D.﹣42.新冠病毒的直径约为11m,若11用科学记数法记作1.1×10﹣7,则n的值为()A.5B.6C.7D.83.如图的一个几何体,其左视图是()A.B.C.D.4.下列运算中,正确的是()A.a6÷a2=a4B.a2+a3=a5C.a•a3=a3D.(a3)3=a6 5.为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为()A.500B.被抽取的500名学生C.被抽取500名学生的视力状况D.我市八年级学生的视力状况6.已知a﹣b=2,a﹣c=,则代数式(b﹣c)2+3(b﹣c)+的值是()A.﹣B.C.0D.7.如图,表示阴影部分面积的代数式正确的是()A.ab+bc B.ab﹣cdC.c(b﹣d)+d(a﹣c)D.ad+c(b﹣d)8.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.9.下列正确的有()个①倒数等于本身的数是0,1,﹣1.②多项式与单项式的和一定是多项式.③如果∠POB=∠AOB,则OP是平分∠AOB.④(﹣0.8)2021×(﹣)2020=0.8.⑤2a﹣3=.⑥(﹣1﹣3a)2=1+6a+9.A.3B.2C.1D.010.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1二.填空题(满分20分)11.若x2y与3x m﹣1y是同类项,则m的值为.12.在全国足球甲级A组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.13.若2m=a,32n=b,m,n为正整数,则23m+10n=.14.如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点;则DE的长为cm.15.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x22=.三.解答题(满分70分)16.(1)计算:﹣12+()﹣2﹣(π﹣3)0﹣|﹣1|.(2)解方程:=4.17.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.18.甲、乙、丙三名候选人要参加学校学生会干部竞选,按程序分别进行答辩、笔试和民主投票.答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分.统计得票后,绘出如下所示不完整的统计图.答辩、笔试成绩统计表:人员甲乙丙答辩成绩(分)958886笔试成绩(分)808690根据以上信息,请解答下列问题.(1)参加投票的共有人,乙的得票率是.(2)补全条形统计图.(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选.19.已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c相反数的位置;用﹣a,﹣b,﹣c表示;(3)若|a|=5,|b|=2.5,|c|=7.5,求a,b,c的值.20.第24届冬季奥林匹克运动会于2022年2月4日至2022年2月20日在北京市和张家口市联合举行,北京是唯一个既举办冬季奥运会又举办夏季奥运会的城市.为了迎接2022年北京冬季奥运会,某校准备举行冬季长跑比赛,为奖励长跑优胜者,学校需要购买一些冬奥会吉祥物冰墩墩、雪容融水杯和徽章.了解到某商店水杯的单价比徽章的单价多11元,若买2个水杯和3个徽章共需67元.(1)水杯和徽章的单价各是多少元?(2)该商店推出两种优惠方案,方案一:消费金额超过200元的部分打八折;方案二:全店商品打九折.若学校需要购买10个水杯和30个徽章,选择哪种方案更优惠?21.我们知道,从一个角的顶点出发把这个角分成两个相等的角的射线,叫做这个角的平分线.类似的我们给出一些新的概念:从一个角的顶点出发把这个角分成度数为1:2的两个角的射线,叫做这个角的三分线:从一个角的顶点出发把这个角分成度数为1:3的两个角的射线,叫做这个角的四分线…显然,一个角的三分线、四分线都有两条.例如:如图1,若∠BOC=2∠AOB,则OB是∠AOC的一条三分线;若∠AOD=2∠COD,则OD是∠AOC的另一条三分线.(1)如图2,OB是∠AOC的三分线,∠BOC>∠AOB,若∠AOC=60°,则∠AOB =;(2)如图3,∠DOF=120°,OE是∠DOF的四分线,∠DOE>∠EOF,过点O作射线OG,当OG刚好为∠DOE的三分线时,求∠GOF的度数;(3)如图4,∠AOD=120°,射线OB、OC是∠AOD的两条四分线,将∠BOC绕点O 沿顺时针方向旋转α(0≤α≤180°),在旋转的过程中,若射线OB、OC、OD中恰好有一条射线是其它两条射线组成夹角的四分线,请直接写出α的值.22.已知多项式x3﹣3xy2﹣4的常数项是a,次数是b(1)直接写出a,b,并将这两个数在数轴上所对应的点A、B表示出来;(2)数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|,设点P在数轴上对应的数为x,当|P A|+|PB|=13时,直接写出x的值;(3)若点A、点B同时沿数轴向正方向运动,点A的速度是点B的2倍,且3秒后,AO=OB,求点B的速度.参考答案一.选择题(满分30分)1.解:∵|﹣2|=2,|﹣4|=4,而2<4,∴﹣2>﹣4,∴﹣4<﹣2<0<5,∴有理数5,﹣2,0,﹣4中最小的一个数是﹣4.故选:D.2.解:∵1.1×10﹣7=0.00000011,∴n=7,故选:C.3.解:从左边看,是一列三个相邻的矩形.故选:B.4.解:A.a6÷a2=a4,正确,故选项符合题意;B.a2,a3不能合并,原说法错误,故选项不符合题意;C.a•a3=a4,原说法错误,故选项不符合题意;D.(a3)3=a9,原说法错误,故选项不符合题意;故选:A.5.解:为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为被抽取500名学生的视力状况,故选:C.6.解:∵a﹣b=2,a﹣c=,∴两式左右分别相减,得b﹣c=﹣,∴(b﹣c)2+3(b﹣c)+=(﹣)2+3×(﹣)+=﹣+=0.故选:C.7.解:如图,阴影部分的面积是:ad+c(b﹣d).故选:D.8.解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:.故选:C.9.解:①因为0没有倒数,因此①不正确;②多项式与单项式的和不一定是多项式,也可能是单项式,如多项式2x﹣3y与单项式3y的和就是单项式,因此②不正确;③当OP不在∠AOB的内部,这个结论就不正确,因此③不正确;④原式=(﹣0.8)×(﹣0.8)2020×(﹣)2020=(﹣0.8)×[﹣0.8×(﹣)]2020=﹣0.8,因此④不正确;⑤,故⑤正确;⑥(﹣1﹣3a)2=1+6a+9a2,故⑥不正确,故正确的有⑤,共有1个.故选:C.10.解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1﹣(﹣1)+1=1,故选:D.二.填空题(满分20分)11.解:由题意得,2=m﹣1.∴m=3.故答案为:3.12.解:设该队已胜x场,那么该队平场的场数为(11﹣x),根据题意得:3x+(11﹣x)=25,答:该队已胜7场.故答案为:7.13.解:32n=25n=b,则23m+10n=23m•210n=a3•b2=a3b2.故答案为:a3b2.14.解:∵AC=12cm,CB=AC,∴CB=12×=8(cm),∴AB=AC+CB=12+8=20(cm),∵D、E分别为AC、AB的中点,∴AD=AC=×12=6(cm),AE=AB=×20=10(cm),∴DE=AE﹣AD=10﹣6=4(cm),故答案为:4.15.解:由题意得,=7,解得x3=10,=10,解得x4=13,同理x5=16,x6=19,x7=22,…因此这列数为4,7,10,13,16,19,22,25…所以x22=4+3(22﹣1)=67,故答案为:67.三.解答题(满分70分)16.解:(1)原式=﹣1+4﹣1﹣1=1.(2)+=4.3(x﹣3)+2(x﹣1)=24,3x﹣9+2x﹣2=24,5x=35,x=7.17.解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.18.解:(1)204÷34%=600(人),1﹣30%﹣34%=36%.故答案为:600,36%;(2)600×30%=180(人),补图如下:(3)将答辩、笔试和学生投票三项得分按4:4:2的比例确定每人的最终成绩为:甲的成绩:95×0.4+80×0.4+204×0.2=110.8(分),乙的成绩:88×0.4+86×0.4+216×0.2=112.8(分),丙的成绩:86×0.4+90×0.4+180×0.2=106.4(分),∵112.8>110.8>106.4,∴乙当选.19.解:(1)观察数轴,可知:a<0,b>0,c>0;(2)﹣a、﹣b、﹣c在数轴上的位置如图所示:(3)∵|a|=5,a<0,∴a=﹣5,∵|b|=2.5,b>0,∵|c|=7.5,c>0,∴c=7.5.20.解:(1)设水杯的单价是x元,则徽章的单价是(x﹣11)元,根据题意,得:2x+3(x﹣11)=67,解得x=20,徽章:x﹣11=20﹣11=9.答:水杯的单价是20元,徽章的单价是9元;(2)方案一:10×20+9×30=470(元),(470﹣200)×0.8=216(元),200+216=416(元),方案二:(10×20+9×30)×0.9=423(元),∵416<423,∴选择方案一更优惠.21.解:(1)∵OB是∠AOC的三分线,∴∠BOC=2∠AOB,又∵∠AOC=∠BOC+∠AOB=60°,∴∠AOB=20°.故答案为:20°(2)如图所示:∵OE是∠DOF的四分线,∴∠EOF=∠DOF=30°,∠DOE=∠DOF=90°,又∵OG为∠DOE的三分线,∴当∠DOG>∠GOE时,∴∠GOE=∠DOE=30°,∴∠GOF=∠GOE+∠EOF=60°.当∠DOG<∠GOE时,∴∠GOE=∠DOE=60°,∴∠GOF=∠GOE+∠EOF=90°.综上所述,∠GOF的度数为60°或90°.(3)∵∠AOD=120°,OB、OC是∠AOD的两条四分线,∴∠AOB=∠DOC=∠AOD=30°,∴∠BOC=∠AOD﹣∠AOB﹣∠DOC=60°,①当OC为∠BOD的四分线时,∠DOC=30°﹣α,∠BOD=∠BOC+∠DOC=90°﹣α,即30°﹣α=(90°﹣α),解得α=10°,②当OD为四分线时,∠COD=α﹣30°,则有∠COD=∠BOC或∠COD=∠BOC,即α﹣30°=×60°或α﹣30°=×60°,解得α=45°或α=75°,③当OB为四分线时,∠BOD=α﹣90°,∠COD=α﹣30°,则有∠BOD=∠COD或∠BOD=∠COD,即α﹣90°=(α﹣30°)或α﹣90°=(α﹣30°),解得α=110°或α=270°(舍去),综上所述,α的值为10°或45°或75°或110°.22.解:(1)∵多项式x3﹣3xy2﹣4的常数项是a,次数是b,∴a=﹣4,b=3,点A、B在数轴上如图所示:(2)根据题意得|x﹣(﹣4)|+|x﹣3|=13,点P在A点左边,﹣x﹣4﹣x+3=13,解得x=﹣7;点P在A点右边,x+4+x﹣3=13,解得x=6.故x的值为6或﹣7;(3)设B速度为v,则A的速度为2v,3秒后点,A点在数轴上表示的数为(﹣4+6v),B点在数轴上表示的数为3+3v,当A还在原点O的左边时,由OA=OB可得(4﹣6v)=3+3v,解得v=;当A在原点O的右边时,由OA=OB可得(6v﹣4)=3+3v,v=.故点B的速度为或.故答案为:6或﹣7.。

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。

北师大版七年级数学上册期末测试题【含答案】

北师大版七年级数学上册期末测试题【含答案】

北师大版七年级数学上册期末测试题【含答案】期末测试卷(时间:100分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 中国人最早使用负数,可追溯到两千多年前的秦汉时期,-0.5的相反数是(A)A.0.5 B.±0.5 C.-0.5 D.52. 我国推行“一带一路”倡议以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为(A) A.4.6×109 B.46×108 C.0.46×1010 D.4.6×10103. 如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是(C)4. 下列调查中,最适合采用全面调查(普查)方式的是(D) A.对市辖区水质情况的调查B.对电视台“商城聚焦”栏目收视率的调查C.对某小区每天丢弃塑料袋数量的调查D.对乘坐飞机的旅客是否违规携带违禁物品的调查5. 下列运算正确的是(A)A.-a2b+2a2b=a2b B.2a-a=2 C.3a2+2a2=5a4 D.2a+b=2ab6. 若关于x的方程ax-4=a的解是x=3,则a的值是(B) A.-2 B.2 C.-1 D.17. 如图,点C,D是线段AB上的两点,且点D是线段AC 的中点,若AB=10 cm,BC=4 cm,则AD的长为(B) A.2 cm B.3 cm C.4 cm D.6 cm,第7题图) ,第8题图) ,第10题图)8. 如图是某班一次数学测试成绩的频数直方图,则数学成绩在69.5~89.5分范围内的学生共有(A)A.24人B.10人C.14人D.29人9. 一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是(A) A.150元B.80元C.100元D.120元10. 如图,∠1=∠2,∠3=∠4,则下列结论正确的有(C)①AD平分∠BAE;②AF平分∠EAC;③AE平分∠DAF;④AF平分∠BAC;⑤AE平分∠BAC.A.4个B.3个C.2个D.1个二、填空题(本大题6小题,每小题4分,共24分)11. -2πx2y3的系数是-2π3,次数是3.12. 计算:-22-(-2)2=-8.13. 一个正方体的每个面都写着一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的汉字是自. ,第13题图) ,第14题图) ,第15题图)14. 如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为27πcm3.(结果保留π)15. 如图,已知线段AB,反向延长线段AB到点C,使AC =12AB,点D是AC的中点,若AD=2,则BD=10. 16. 如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是15 ,第n个“广”字中的棋子个数是2n+5.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 计算(1)(-2)2×5-(-2)3÷4; (2)-24×(-56+38-112).解:22 解:1318. 化简求值:(3a2-8a)+(2a2-13a2+2a)-2(a3-3),其中a=-2. 解:原式=-2a3-8a2-6a+6;当a=-2时,原式=219. 解方程:(1)2(x+3)=-3(x-1)+2; (2)1-x3-x=3-x+24. 解:x=-15 解:x=-2四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图是某几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)若从正面看的长为10 cm,从上面看的圆的直径为4 cm,求这个几何体的侧面积(结果保留π).解:(1)圆柱(2)该几何体的侧面积为2π×2×10=40π(cm2)21. 为了加快新农村建设,国务院决定:凡农民购买家电和摩托车享受政府13%的补贴(凭购物发票到乡镇财政所按13%领取补贴).农民李伯伯家购买了一台彩电和一辆摩托车共花去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600元.(1)李伯伯可以到镇财政所领到的补贴是多少元?(2)求李伯伯家所买的摩托车与彩电的单价各是多少元?解:(1)根据题意可得:6000×13%=780,李伯伯可以从政府领到补贴780元(2)设彩电的单价为x元/台,摩托车的单价为(2x+600)元,则x+2x+600=6000,解得x=1800,2x+600=2×1800+600=4200,彩电与摩托车的单价分别为1800元/台,4200元/辆22. (9分)图甲表示的是某综合商场今年1~5月的商品各月销售总额的情况,图乙表示的是商场服装部各月销售额占商场每月销售总额的百分比情况,观察图甲、图乙,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图甲中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图乙后认为,5月份商场服装部的销售额比4月份减少了,你同意他的看法吗?请说明理由.解:(1)410-100-90-65-80=75(万元),图略(2)5月份的销售额为12.8万元(3)不同意他的看法.4月份销售额为12.75万元.因为12.75<12.8,所以不同意他的看法五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,点P是线段AB上任一点,AB=12 cm,C,D 两点分别从点P,B同时向点A运动,且点C的运动速度为2 cm/s,点D的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm,①运动1 s后,求CD的长;②当点D在线段PB上运动时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.解:(1)①由题意可知:CP=2 cm,DB=3 cm,所以PB=AB-AP=4 cm,所以CD=CP+PB-DB=2+4-3=3(cm)②因为AP=8,AB=12,所以BP=4,AC=8-2t,所以DP=4-3t,所以CD=CP+DP=2t+4-3t=4-t,所以AC=2CD(2)当t=2时,CP=2×2=4 cm,DB=3×2=6(cm),当点D在C的右边时,如图所示:由于CD=1 cm,所以CB=CD+DB=7 cm,所以AC=AB-CB=5(cm),所以AP=AC+CP=9(cm),当点D在C 的左边时,如图所示:AD=。

北师大版七年级上册数学期末考试试卷含答案

北师大版七年级上册数学期末考试试卷含答案

北师大版七年级上册数学期末考试试题一、单选题1.下列几何体,都是由平面围成的是()A .圆柱B .三棱柱C .圆锥D .球2.在-2,-3,0,2四个数中,最小的一个是()A .0B .2C .-2D .-33.已知下列方程:①x ﹣2=1x ;②0.4x =1;③1x=2x ﹣2;④x ﹣y =6;⑤x =0.其中一元一次方程有()A .2个B .3个C .4个D .5个4.数字4020000000用科学记数法表示为()A .840.210⨯B .94.0210⨯C .940.210⨯D .104.0210⨯5.某校在八年级成立了书法、绘画、体育、歌舞手工五个兴趣小组,每位学生只能参加一个兴趣小组,学生会对学生参加情况进行了问卷调查,并初步绘制了扇形统计图(如图),但图中未显示歌舞和手工部分,请你根据图中信息判断参加歌舞兴趣小组的学生人数一定不可能是()A .50人B .100人C .130人D .200人6.从n 边形的一个顶点出发,可以作5条对角线,则n 的值是()A .6B .8C .10D .127.若x =﹣1是关于x 的方程2x+m =1的解,则m+1的值是()A .4B .2C .﹣2D .﹣18.学校新建教学大楼拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A .(4a+2b)米B .(a 2+ab)米C .(6a+2b)米D .(5a+2b)米9.一个几何体是由一些大小相同的小正方体摆成其主视图和左视图如图所示则组成这个几何体的小正方体最少有a 个,最多有b 个,b a-=()A .3B .4C .5D .610.如图所示的运算程序中,若开始输入的x 值为24,我们发现第1次输出的结果为12,第2次输出的结果为6,…,则第2021次输出的结果为()A .6B .3C .24D .12二、填空题11.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是__.12.-2022(1)-的相反数是____.13.若单项式23413m x y --与3x 5yn +1的和仍是单项式,则mn =.14.为了解某校九年级学生的体能情况,学校随机抽查了其中的40名学生,测试了一分钟仰卧起坐的次数,并绘制成如图的频数分布直方图,则仰卧起坐的次数在20~30之间的频数是_____.15.在等式3526a a +=+的两边同时减去一个多项式可以得到等式1a =,则这个多项式是________.16.定义:对任意有理数a ,b 都有2a b a b =--∇,例如:221213=--=-∇,求()202713=∇∇__________.17.香蕉的单价为a 元/千克,苹果的单价为b 元/千克,买2千克苹果和3千克香蕉共需______元.18.如图是一个正方体的表面展开图,在原正方体中,与“陕”字所在面相对的面上的汉字是_____.三、解答题19.计算:33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭.20.在如图所示的六个方格中,分别填入-2;4;12-;8;14;18,使围成正方体后相对两面的两个数互为倒数.21.先化简,再求值:()223233()a ab a b ab b ⎡⎤---++⎣⎦,其中3a=-,13b =.22.为传承中华优秀传统文化,提升学生文学素养,某中学开展“假期读一本好书”的活动.某校为了了解学生活动开展的情况,从全校学生中随机抽取了部分学生调查他们的读书种类情况,并进行统计分析,绘制了不完整的统计图表.种类频数占抽取总人数的百分比A.科普类a32%B.文学类20bC.艺术类8cD.其他类612%请根据以上信息解答下列问题:(1)求统计表中a,b,c的值;(2)补全条形统计图;(3)若绘制“读书种类情况扇形统计图”,求“文学类”所对应扇形的圆心角度数.23.已知有理数ab<0,a+b>0,且|a|=2,|b|=3.(1)求a、b的值;(2)求223a b-÷的值.24.某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.(1)求甲、乙两种商品的每件进价分别是多少元?(2)该商场从厂家购进了甲、乙两种商品共50件,所用资金恰好为4400元.在销售时,甲种商品的每件售价为100元,要使得这50件商品卖出后获利20%,乙商品的每件售价为多少元?25.如图,在数轴上有A、B两点,点C是线段AB的中点,AB=12,OA=8.(1)求点C所表示的数;(2)动点P、Q分别从A、B同时出发,沿着数轴的正方向运动,点P、Q的运动速度分别是每秒3个单位和每秒2个单位(当P与Q相遇,运动停止),点M是线段PQ的中点,设运动时间为t秒,请用含t的式子表示CM的长;(3)在(2)的条件下,试问t为何值时,CM=52 PC26.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM 平分∠BOC时,求∠BON的度数;(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系,并说明理由.27.某校为了了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下的统计图,请你结合图中所给的信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是;(3)若该校七年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?参考答案1.B2.D3.A4.B5.D6.B7.A8.D9.C10.B11.圆柱.【详解】长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.故答案为:圆柱.12.1【分析】先算乘方得1-,然后根据相反数的定义求解即可.【详解】解:()202211--=-,∴1-的相反数为1,故答案为:1.【点睛】本题考查了乘方与相反数.解题的关键在于正确的运算.13.12【分析】根据整式的加减法则可知单项式23413m x y --与513n x y +是同类项,故可得到235m -=,14n +=,求出m ,n ,故可求解.【详解】由“单项式23413m x y --与513n x y +的和仍是单项式”,可得235m -=,14n +=,即4m =,3n =,则12mn =.故答案为:12.【点睛】此题主要考查整式的加减,解题的关键是熟知同类项的运算特点.同类项是字母相同且相同字母的指数也相同.14.28【分析】首先计算出20~30次的频数,然后根据频率公式:频率=频数÷总数,即可求解.【详解】解:∵被调查的总人数40,由频率分布直方图可以得出,∴仰卧起坐次数在20~30次的学生人数为:12+16=28,∴仰卧起坐次数在20~30次之间的频数28.故答案为:28.【点睛】本题考查了频数与频率,关键是掌握频率公式:频率=频数÷总数.15.25a +【分析】根据3526a a +=+,可得()()25251a a a ++=++,则等式两边同时减去25a +得:1a =,由此即可得到答案.【详解】解:∵3526a a +=+,∴()()25251a a a ++=++,∴等式两边同时减去25a +得:1a =,∴等式3526a a +=+的两边同时减去一个多项式25a +可以得到等式1a =,故答案为:25a +.【点睛】本题主要考查了等式的性质:等式两边同时加上(或减去)同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.16.2019【分析】根据题中的新定义化简,计算即可得到结果.【详解】20271∇=-2027−12=﹣2028,(-2028)3∇=-(-2028)−32=2028-9=2019.故答案为2019.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(3a+2b )【分析】用买2千克苹果的钱数加上3千克香蕉的钱数即可.【详解】解:根据题意得:买2千克苹果和3千克香蕉共需(3a+2b )元,故答案为:(3a+2b ).【点睛】本题考查了列代数式,弄清题意是解本题的关键.18.塔【分析】这种展开图是属于“1,4,1”的类型,其中,上面的1和下面的1是相对的2个面.【详解】解:由正方体的展开图特点可得:“陕”和“塔”相对;“东”和“金”相对;“方”和“字”相对.故答案为:塔.【点睛】本题考查正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.19.-3【分析】按照有理数混合运算的顺序进行运算,即可求得.【详解】解:原式=3(8)()634-⨯---663=--=-3【点睛】本题考查了有理数的混合运算,严格按照有理数混合运算的顺序和法则进行运算是解决本题的关键.20.见解析【分析】利用正方体的表面展开图的特点和互为倒数的特点进行解题即可.【详解】解:根据互为倒数的两个数特点可得:-2和-12是相对面,4和14是相对面,8和18是相对面;再根据正方体的表面展开图的特点填入即可;如图所示,填法不唯一【点睛】本题考查了正方体的表面展开图和倒数的概念,掌握正方体表面展开图的特点是解答本题的关键.21.229a ab -;27【分析】先去括号,再合并同类项,然后将值代入计算即可.【详解】解:原式2236333a ab a b ab b=--+--229a ab=-当3a =-,13b =时,原式212(3)9(3)3=⨯--⨯-⨯27=.【点睛】本题考查整式的加减.去括号时,注意要正确运用去括号法则考虑括号内的符号是否变号.22.(1)16,40%,16%a b c ===;(2)见解析;(3)144°【分析】(1)先根据其他类的频数和百分比求出调查总人数,则可进一步计算a ,b ,c 的值;(2)根据(1)中求得的a 的值以及频数分布表补全统计图即可;(3)用360°乘以“文学类”所占百分比即可.【详解】解:(1)本次调查的学生总人数为612%50÷=(人)5032%16a =⨯=.2050100%40%b =÷⨯=.850100%16%c =÷⨯=.(2)补全的条形统计图如图所示:(3)“文学类”所对应扇形的圆心角度数为:36040%144⨯︒=︒.【点睛】本题主要考查条形统计图、频数分布表、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)a=-2,b=3(2)49【分析】(1)去绝对值得2a =±,3b =±,由有理数00ab a b <+>,,可得,a b 的值;(2)将,a b 的值代入计算即可.(1)解:∵2=a ,3b =,∴2a =±,3b =±,∵有理数00ab a b <+>,,∴23a b =-=,.(2)解:∵23a b =-=,,∴223a b -÷28142(23)3369=--÷⨯=⨯=.【点睛】本题考查了去绝对值,代数式求值.解题的关键在于求出,a b 的值.24.(1)甲、乙两种商品的每件进价分别是80元/件,100元/件;(2)乙商品的每件售价为114元.【分析】(1)设甲种商品的每件进价为x 元,从而可得乙种商品的每件进价为(20)x +元,再根据“若购进甲种商品7件,乙种商品2件,需要760元”建立方程,然后解方程即可得;(2)首先设进甲种产品y 件,则乙种产品为(50-y )件,根据题意列出方程,求出y 的值,然后设乙种商品的每件售价为z 元,根据“利润=(售价-进价)⨯件数”建立方程,再解方程即可得.【详解】(1)设甲种商品的每件进价为x 元,则乙种商品的每件进价为(20)x +元,由题意得:72(20)760x x ++=,解得80x =(元),则208020100x +=+=(元),答:甲种商品的每件进价为80元,则乙种商品的每件进价为100元;(2)设进甲种产品y 件,则乙种产品为(50-y )件,由题意得:80100(50)4400y y +-=解得:30y =∴进甲种产品30件,则乙种产品为20件设乙种商品的每件售价为z 元,由题意得:30(10080)20(100)440020%z ⨯-+-=⨯,解得114z =(元),答:乙种商品的每件售价为114元.【点睛】本题考查了一元一次方程的实际应用,依据题意,正确建立方程是解题关键.25.(1)-2(2)CM=52t (3)t=32或3【分析】(1)利用AB 的长度以及点C 是线段AB 的中点可得AC 长度,结合OA 长度可求出OC 长度,最后根据数轴上点的坐标特征可求出点C 表示的数.(2)根据动点移动的方向和速度可分别用含t 的式子表示出运动路程,进而求解CM 长度即可.(3)在移动过程中,点P 可能在C 点左侧或者右侧,需要分情况讨论,利用含t 的式子表示出PC ,进而根据CM=52PC 求解t 即可.(1)解:∵点C 是线段AB 的中点.∴AC=BC=12AB=6,∴OC=OA -AC=8-6=2,OB=BC -OC=6-2=4,∴点C 所表示数为-2.(2)解:∵OA=8,OB=4.∴点A 所表示的数为-8,点B 所表示的数为4,由题意可得:点P 在运动过程中所表示的数为-8+3t ,点Q 在运动过程中所表示的数为4+2t .又∵点M 是PQ 的中点,∴点M 在运动过程中所表示的数为83425422t t t -+++-=.∴CM=545(2)22t t ---=即线段CM 的长为52t .(3)解:①当点P 位于C 点左侧时,PC=-2-(-8+3t )=6-3t ∴52t =5(63)2t -解得:32t =②当点P 位于C 点右侧时,PC=-8+3t -(-2)=3t -6,52t =5(36)2t -解得:t=3,综上,当t=32或3时,CM=52PC .【点睛】本题主要考查了数轴上的动点问题,动点问题要注意“化动为静”,找到关键点的位置根据等量信息求解即可,熟知数轴上的点与长度之间的联系是解决本题的关键.26.(1)60°(2)见解析(3)30NOC AOM ∠-∠=︒,理由见解析【分析】(1)由180BOC AOC ∠=︒-∠求出BOC ∠的度数,12BOM BOC ∠=∠取出BOM ∠的值,根据BON NOM BOM ∠=∠-∠计算求解即可;(2)对顶角相等可知60AOP BON ∠=∠=︒,由POC AOC AOP ∠=∠-∠求POC ∠的值,进而结论得证;(3)由题意知120AON NOC ∠=︒-∠,90AON AOM ∠=︒-∠,则12090NOC AOM ︒-∠=︒-∠,整理可得,NOC AOM ∠∠的关系.(1)解:∵120AOC ∠=︒,∴18012060BOC ∠=︒-︒=︒,又∵OM 平分∠BOC ,∴30BOM ∠=︒,又∵90NOM ∠=︒,∴903060BON ∠=︒-︒=︒,∴∠BON 的值为60°.(2)解:∵60AOP BON ∠=∠=︒,∴60POC AOC AOP ∠=∠-∠=︒,∴12AOP POC AOC ∠=∠=∠,∴射线OP 是∠AOC 的平分线.(3)解:30NOC AOM ∠-∠=︒.理由如下:∵120AOC ∠=︒,∴120AON NOC ∠=︒-∠,∵90MON ∠=︒,∴90AON AOM ∠=︒-∠,∴12090NOC AOM ︒-∠=︒-∠,∴30NOC AOM ∠-∠=︒.27.(1)见解析(2)36°(3)120人【分析】(1)根据A 等人数为10人,占扇形图的20%,求出总人数,可以得出D 的人数,即可画出条形统计图;(2)根据D 的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A 组所占比例即可得出A 级学生人数.【详解】解:(1)总人数是:10÷20%=50,则D 级的人数是:50−10−23−12=5.条形统计图补充如下:(2)D 级的学生人数占全班学生人数的百分比是:1−46%−20%−24%=10%;D 级所在的扇形的圆心角度数是360×10%=36°;(3)∵A 级所占的百分比为20%,∴A 级的人数为:600×20%=120(人).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020北师大版
七年级数学上册期末试卷(附答案)
一、你一定能选对!(每小题只有一个正确的选项,每小题3分,共30分) 1.5的相反数是( ) A .5
1-
B .51
C .5-
D .5
2.2008北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为( )
A .0.91×105
B .9.1×104
C .91×103
D .9.1×103
3.已知某地一天中的最高温度为10°C ,最低温度为5-°C ,则这天最高温度与最低温度的温差为( )
A .15°C
B .5°
C C .10-°C
D .5-°C
4.如图,AB=CD ,那么AC 与BD 的大小关系是 ( )
A .AC=BD
B .A
C <B
D C .AC >BD D .不能确定
5.下面合并同类项正确的是( ) A .3x +3y=6x y
B .2 m 2n -m 2 n = m 2 n
C .ab ab 954=+
D .7x 2-5x 2 =2
6.下列计算中正确的是( )
A .()()1113
4
=-⨯- B .()933
=--
C .931313
=⎪⎭⎫ ⎝⎛-÷ D .9313=⎪⎭

⎝⎛-÷-
7.在公式1
()2
S a b h =
+,已知a =3,h =4,S =16,那么b =( ) A .-1 B .11 C .5 D .25
8.如图是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的( ).
9.下列事件,你认为是必然事件的是( )
A .今年大年初一的天气晴空万里.
B .小明说昨晚突然停电,因光线不好,吃饭时不小心咬到自己的鼻子.
C .元旦节这一天刚好是1月1日.
D .一个袋子里装有白球1个、红球9个,每个球除颜色外都相同,任意摸出一个球是红色的.
10.表示“m 的5倍与n 的平方的差”的代数式是( )
A .22n )m 5(-
B .2n m 5-
C .2)n m 5(-
D .22n m 5- 二、你能填得又快又准吗?(每小题3分,共30分)
11.-4的绝对值是 .
12.如果向东走10米记为+10米,那么向西走5米记为 . 13.代数式2
xy
-
的系数是 . 14.计算 (-3)-(-7) = .
A C
B
D
A .
B .
C .
D .
15.计算 0.25︒= 分. 16.如图,OC 平分∠AOB ,若∠BOC =22°,
则∠AOB = .
17.俯视图为圆的立体图形可能是 . 18.右图是2008年10月份的
日历,如果用 d c b a 表示
类似灰色矩形框中的4个
数,试用等式写出d c b a ,,,
之间的数字关系 .
19.初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任
意找一名学生,找到男生的可能性比找到女生的可能性 (填“大”或“小” ).
20.一个数的平方为16,这个数是 .
三、请你来算一算、做一做,千万别出错哟! (共60分)
21.计算:(每小题5分,共10分)
(1)[]2
2
3)2()3(28⨯-+-⨯- (2)
)8
1()31(8332-+---
22.解方程:(每小题5分,共10分) (1)
5234x x -=- (2)
311
236
x x -+-=
23.(本小题6分)
先化简,再求值:)543(22
222xy y x xy y x +--,其中x =1,y =-1.
24.(本小题8分)数学与生活!
得 分
评卷人
A
C
B
O
日 一 二 三 四 五 六
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
请聪明的你根据图中的对话内容,求出1盒饼干和1袋牛奶各需多少钱.
一盒饼干可比一袋
牛奶贵7.9元哦!
小朋友,本来你用10元钱买一盒饼干是
够的,但要再买一袋牛奶就不够了!今天是2008年1月1日,我给你买的饼干打9折,两样东西请拿好!还有找你的8角. 阿姨,我买一盒饼干一袋牛奶(递上10元钱)钱)
25.(本小题8分)问题解决!
下表是某中学七年级(4)班的同学就“父母回家后,你会主动给他们倒一杯水吗?”情况调查结果,请你按照要求用扇形统计图表示该调查结果.
(1)计算各类人数所占百分比及各个扇形圆心角的度数,并填入下表:
(2)制作扇形统计图,标上相应的类及百分比,并写上统计图的名称.
26.(本小题8分)实践操作! 如图:
(1)过点A 画出直线l 1的垂线,并注明垂足C . (2)过点A 画直线l 1的平行线l 2.
(3)在直线l 1上任取一点D (D 不与C 重合),过点D 画直线l 2的垂线DB ,并注明垂足B .
(4)通过画图,试判断直线AC 与BD 的位置关系.
27.(本小题10分)
观察下面的点阵图和相应的等式,探究其中的规律: (1)认真观察,并在④后面的横线上写出相应的等式.
(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.
(3)通过猜想,写出(2)中与第n 个点阵相对应的等式____________________.
… ①
1=1 ②1+2=()2221⨯+=3 ③1+2+3=()23
31⨯+=6 ④___________________ l 1
参考答案
一、你一定能选对!(每小题只有一个正确的选项,每题3分,共30
分)
1.C 2.B 3.A 4.A 5.B 6.D 7.C 8.D 9.C 10.B 二、你能填得又快又准吗?(每小题3分,共30分)
11.4 12.-5米 13.12- 14.4 15.15 16.44° 17.球或圆柱 18.a + d = b + c (b =a +1,d =c +1,c =a +7,d =b +7 等答案不唯一)
19.小 20.±4
三、请你来算一算、做一做,千万别出错哟!(共60分)
21.计算:(每小题5分,共10分)
22282(3)[(2)3]829(6)81836103626
-⨯-+-⨯=-⨯+-=-+=-+=(1)
2311
2()()
383823112131()()3838338811122
---+-=-+-=++--=-=
() 22.解方程:(每小题5分,共10分)
1 52345342
22
21
x x x x x x -=--=-+=-=-()解:移项,得
合并同类项,得
方程两边同除于,得 311
2236
3(3)2(1)13922112
x x x x x x x -+-=--+=---==()
解:去分母,得去括号,得
移项、合并同类项,得
23.(本小题6分)
解:原式22225432xy y x xy y x -+-=2
286xy y x -= 当x =1,y =-1时,
原式2
2
61(1)81(1)6814=⨯⨯--⨯⨯-=--=-
24.(本小题8分)解:设买1袋牛奶需x 元,则买一盒饼干需(x +7.9)元。

由题得方程
x +(x +7.9)×90%+0.8=10
x +0.9 x +7.11+0.8=10 1.9 x =2.09
x =1.1
当x =1.1 时,x +7.9=9
答:买1袋牛奶需1.1元,买一盒饼干需9元。

25.(本小题8分)(1)解:(每空1分,共6分)
(2)略(2分) 26.(本小题8分)(1)、(2)、(3)略;(4)平行 27.(本小题10分)
解:(1) ()102
4414321=⨯+=
+++ (3分)
(2) 10+15=52 (3分) (3)
()()22
121n n n n n =++- (4分)。

相关文档
最新文档