2020高考数学(理科)新精准大二轮精准练:专题三 第二讲 空间向量与立体几何

合集下载

2020年高考数学(理)重难点专练03 空间向量与立体几何(解析版)

2020年高考数学(理)重难点专练03  空间向量与立体几何(解析版)

2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩令1x =,得1,y z =⎧⎪⎨=⎪⎩所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛⎫ ⎪ ⎪⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1,22BQ λλ⎛+=-- ⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u ur,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r . 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。

2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1­ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­PA ­C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M ­PA ­C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G ­xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A ­MA 1­N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A ­MA 1­N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O ­xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC ­A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A ­B 1D ­A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A ­B 1D ­A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ­ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ­ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ­ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G ­xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D ­AF ­E 与二面角C ­BE ­F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E ­BC ­A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G ­xyz .由(1)知∠DEF 为二面角D ­AF ­E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C ­BE ­F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E ­BC ­A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H ­xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H ­xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B ­D ′A ­C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A ­PE ­C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A ­EP ­C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A ­EP ­C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz . 当三棱锥M ­ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ­ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A ­xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。

设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。

设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。

设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。

向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。

向量具有平移不变性。

2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。

运算法则包括三角形法则、平行四边形法则和平行六面体法则。

3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。

共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。

4.共面向量:能平移到同一平面内的向量叫做共面向量。

5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。

若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。

6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

2020年高考理科数学二轮专题复习八:立体几何与空间向量(附解析)

2020年高考理科数学二轮专题复习八:立体几何与空间向量(附解析)

2020年高考理科数学二轮专题复习八:立体几何与空间向量(附解析)1.根据直线与平面平行的判定定理与性质定理,以及直线与平面垂直,平面与平面垂直的判定定理与性质定理,判定线面关系以及面面关系; 2.用空间向量求解二面角.1.三视图正视图(主视图)定义:光线从几何体的前面向后面正投影所得的投影图. 侧视图(左视图)定义:光线从几何体的左面向右面正投影得到的投影图. 俯视图定义:光线从几何体的上面向下面正投影得到的投影图. 2.直线与平面平行的判定定理:文字语言:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 3.平面与平面平行的判定定理:一个平面内的两条相交直线分别与另一个平面平行,则两个平面平行. 4.直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一个平面和此平面的交线与该直线平行. 5.平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6.直线与平面垂直的判定定理:一条直线垂直于平面内的二条相交直线,则该直线垂直于这个平面; 7.平面与平面垂直的判定定理:一个平面经过另一个平面的垂线在,则这二个平面垂直;8.直线与平面垂直的性质定理:一条直线垂直于一个平面,则该直线垂直于平面内的任一条直线;9.平面与平面垂直的性质:两个平面垂直,则其中一个平面内垂直于二平面交线的直线与另一个平面垂直;10.空间角:空间中的距离:1.设α,β为两个平面,则αβP 的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条件直线D .α,β垂直于同一平面2.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .3.已知,l m 是平面α外的两条不同直线.给出下列三个论断: ①l m ⊥;②m αP ;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: .经典常规题(45分钟)M N分别是AC,4.正方形ABCD和等腰直角三角形DCE组成如图所示的梯形,,DE的中点,将DCE△沿CD折起(点E始终不在平面ABCD内),则下列说法一定正确的是.(写出所有正确说法的序号)①MN P平面BCE;⊥;②在折起过程中,一定存在某个位置,使MN AC⊥;③MN AE⊥.④在折起过程中,一定存在某个位置,使DE AD5.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE ; (2)求二面角1A MA N --的正弦值.1.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,αI 平面ABCD m =,αI 平面11ABB A n =,则m ,n 所成角的正弦值为( )A.2 B.2 C.3D .132.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,6cm AB BC ==,14cm AA =.3D 打印所用原料密度为30.9g /cm .不考虑打印损耗,制作该模型所需原料的质量为 g .3.α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m n ⊥,m α⊥,//n β,那么αβ⊥; ②如果m α⊥,//n α,那么m n ⊥; ③如果//αβ,m α⊂,那么//m β;④如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)高频易错题4.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.1.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC所成角的余弦值为( )A .2 B.5.5 D.52.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .32643π- B .648π- C .16643π- D .8643π-3.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(1)求证://BF 平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.精准预测题4.如图1,在矩形ABCD 中,AB =BC =E 在线段DC 上,且DE =AED △沿AE 折到AED '△的位置,连接CD ',BD ',如图2.(1)若点P 在线段BC 上,且2BP =,证明AE D P '⊥; (2)记平面ADE'与平面BCD '的交线为l ,若二面角B AE D '--为23π,求l 与平面D CE '所成角的正弦值.2020年高考理科数学二轮专题复习八:立体几何与空间向量(解析)1.根据直线与平面平行的判定定理与性质定理,以及直线与平面垂直,平面与平面垂直的判定定理与性质定理,判定线面关系以及面面关系;2.用空间向量求解二面角.1.三视图正视图(主视图)定义:光线从几何体的前面向后面正投影所得的投影图. 侧视图(左视图)定义:光线从几何体的左面向右面正投影得到的投影图. 俯视图定义:光线从几何体的上面向下面正投影得到的投影图. 2.直线与平面平行的判定定理:文字语言:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 3.平面与平面平行的判定定理:一个平面内的两条相交直线分别与另一个平面平行,则两个平面平行. 4.直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一个平面和此平面的交线与该直线平行. 5.平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6.直线与平面垂直的判定定理:一条直线垂直于平面内的二条相交直线,则该直线垂直于这个平面; 7.平面与平面垂直的判定定理:一个平面经过另一个平面的垂线在,则这二个平面垂直;8.直线与平面垂直的性质定理:一条直线垂直于一个平面,则该直线垂直于平面内的任一条直线;9.平面与平面垂直的性质:两个平面垂直,则其中一个平面内垂直于二平面交线的直线与另一个平面垂直;10.空间角:空间中的距离:1.设α,β为两个平面,则αβP 的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条件直线D .α,β垂直于同一平面 【答案】B【解析】对于A ,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交, 所以A 不正确;对于B ,根据两平面平行的判定定理与性质知,B 正确;对于C ,平行于同一条直线的两个平面可能相交,也可能平行,所以C 不正确; 对于D ,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D 不正确. 综上可知,故选B .2.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .经典常规题(45分钟)【答案】40【解析】如图所示的正方体1111ABCD A B C D -的棱长为4,去掉四棱柱1111MQD A NPC B -(其底面是一个上底为2,下底为4,高为2的直角梯形),所得的几何体为题中三视图对应的几何体,故所求几何体的体积为314(24)24402-⨯+⨯⨯=.3.已知,l m 是平面α外的两条不同直线.给出下列三个论断: ①l m ⊥;②m αP ;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: .【答案】故②③⇒①正确.(答案不唯一)【解析】若l m ⊥,l α⊥,则m αP ,若l α⊥,l m ⊥,则m αP ,显然①③⇒②正确;若l m ⊥,m αP ,则l αP ,l 与α相交但不垂直都可以,故①②⇒③不正确; 若l α⊥,m αP ,则l 垂直α内所有直线,在α内不存在与m 平行的直线,所以可推出l m ⊥,故②③⇒①正确.(答案不唯一).4.正方形ABCD 和等腰直角三角形DCE 组成如图所示的梯形,,M N 分别是AC ,DE 的中点,将DCE △沿CD 折起(点E 始终不在平面ABCD 内),则下列说法一定正确的是 .(写出所有正确说法的序号) ①MN P 平面BCE ;②在折起过程中,一定存在某个位置,使MN AC ⊥; ③MN AE ⊥;④在折起过程中,一定存在某个位置,使DE AD ⊥.【答案】①④【解析】折起后的图形如图所示,①取CD 的中点为O ,连接MN ,MO ,NO , 则在ACD △中,,M O 分别是,AC CD 的中点,∴////MO AD BC ,同理//NO CE , 又BC CE C =I ,∴平面//MON 平面BCE ,∴//MN 平面BCE ,故①正确; ②易知MO CD ⊥,NO CD ⊥,又MO NO O =I ,∴CD ⊥平面MNO ,∴MN CD ⊥,若MN AC ⊥,又AC CD C =I ,∴MN ⊥平面ABCD ,∴MN MO ⊥,又1122MO AD EC NO ===,∴MN 不可能垂直于MO ,故MN AC ⊥不成立,故②错误;③取CE 的中点为Q ,连接MQ ,则在ACE △中,,M Q 分别是,AC CE 的中点,∴//MQ AE ,由图知MQ 与MN 不可能始终垂直,故③错误;④当平面CDE ⊥平面ABCD 时,又平面CDE I 平面ABCD CD =,AD CD ⊥,AD ⊂平面ABCD ,∴AD ⊥平面CDE ,∴AD DE ⊥,故④正确. 综上所述,正确的说法是①④.5.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,,,E M N 分别是11,,BC BB A D 的中点. (1)证明://MN 平面1C DE ; (2)求二面角1A MA N --的正弦值.【答案】(1)证明见解析;(2 【解析】(1)连接1B C ,ME .因为,M E 分别为1BB ,BC 的中点,所以1//ME B C ,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11//A B DC ,可得11//B C A D ,故//ME ND ,因此四边形MNDE 为平行四边形,//MN ED . 又MN ⊄平面1C DE ,所以//MN 平面1C DE .(2)由已知可得DE DA ⊥.以D 为坐标原点,DA u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -,则(2,0,0)A ,1(2,0,4)A,M ,(1,0,2)N ,1(0,0,4)A A =-u u u r,1(12)AM =--u u u u r ,1(1,0,2)A N =--u u u u r,(0,MN =u u u u r . 设(,,)x y z =m 为平面1A MA 的法向量,则110A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u rm m .所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,可取=m .设(,,)p q r =n 为平面1A MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u u rn n .所以020p r ⎧=⎪⎨--=⎪⎩,可取(2,0,1)=-n .于是||||5cos ,⋅==<>=n m n m n m ,所以二面角1A MA N --的正弦值为5.1.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,αI 平面ABCD m =,αI 平面11ABB A n =,则m ,n 所成角的正弦值为( )A.B.2 C.13【答案】A【解析】因为过点A 的平面α与平面11CB D 平行,平面//ABCD 平面1111A B C D , 所以11////m B D BD ,又1//A B 平面11CB D ,所以1//n A B ,则BD 与1A B 所成的角即为m ,n 所成的角,高频易错题所以m ,n 所成角的正弦值为2,故选A . 2.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,6cm AB BC ==,14cm AA =.3D 打印所用原料密度为30.9g /cm .不考虑打印损耗,制作该模型所需原料的质量为 g .【答案】118.8【解析】由题意得长方体1111ABCD A B C D -的体积为3664144(cm )⨯⨯=,四边形EFGH 为平行四边形,如图所示,连接GE ,HF ,易知四边形EFGH 的面积为11BCC B 面积的一半,即216412(cm )2⨯⨯=,设四棱锥O EFGH -为1V ,所以31131212(cm )3V =⨯⨯=,所以该模型的体积为314412132(cm )-=,所以制作该模型所需原料的质量为1320.9118.8(g)⨯=. 3.α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m n ⊥,m α⊥,//n β,那么αβ⊥; ②如果m α⊥,//n α,那么m n ⊥; ③如果//αβ,m α⊂,那么//m β;④如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号) 【答案】②③④【解析】对于命题①,可运用长方体举反例证明其错误;如图,不妨设AA '为直线m ,CD 为直线n ,ABCD 所在的平面为α,ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立;命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则//l n , 由m α⊥知m l ⊥,从而m n ⊥,结论正确; 由平面与平面平行的定义知命题③正确; 由平行的传递性及线面角的定义知命题④正确.4.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【答案】(1)证明见解析;(2)35. 【解析】方法一:(1)如图,连接1A E ,因为11A A A C =,E 是AC 的中点,所以1A E AC ⊥.又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC I 平面ABC AC =, 所以1A E ⊥平面ABC ,则1A E BC ⊥.又因为1//A F AB ,90ABC ∠=︒,故1BC A F ⊥,所以BC ⊥平面1A EF ,因此EF BC ⊥.(2)取BC 的中点G ,连接EG ,GF ,则1EGFA 是平行四边形, 由于1A E ⊥平面ABC ,故1A E EG ⊥,所以四边形1EGFA 为矩形.连接1A G 交EF 于O ,由(1)得BC ⊥平面1EGFA ,则平面1A BC ⊥平面1EGFA , 所以EF 在平面1A BC 上的射影在直线1A G 上,则EOG ∠是直线EF 与平面1A BC 所成的角(或其补角).不妨设4AC =,则在1A EG Rt △中,1A E =EG =.由于O 为1A G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面1A BC 所成角的余弦值是35. 方法二:(1)连接1A E ,因为11A A A C =,E 是AC 的中点,所以1A E AC ⊥. 又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC I 平面ABC AC =,所以1A E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,1EA 为y ,z 轴的正半轴,建立空间直角坐标系E xyz -.不妨设4AC =,则1A,B,1B,3,22F ,(0,2,0)C .因此,3,2EF =u u u r,(BC =u u u r .由0EF BC ⋅=u u u r u u u r,得EF BC ⊥.(2)设直线EF 与平面1A BC 所成角为θ.由(1)可得(BC =u u u r,1(0,2,AC =-u u u r . 设平面1A BC 的法向量为(,,)x y z =n ,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n,得0y y ⎧+=⎪⎨-=⎪⎩.取=n ,故4sin cos ,5EF EF EF θ⋅===⋅u u u ru u u ru u ur n n n . 因此,直线EF 与平面1A BC 所成角的余弦值为35.1.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC所成角的余弦值为( )A .2 B.5.5 D.5【答案】C【解析】如图,在平面ABC 内过点B 作BD AB ⊥,交AC 于点D ,则30CBD ∠=︒,因为1BB ⊥平面ABC ,故以B 的坐标原点,分别以射线BD ,BA ,1BB 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则(0,0,0)B ,(0,2,0)A ,1(0,0,1)B ,1(cos30,sin 30,1)C ︒-︒,即11,1)2C -, 所以1(0,2,1)AB =-u u u r,11,1)22BC =-u u u u r , 所以11111110(2)()11cos ,5||||AB BC AB BC AB BC +-⨯-+⨯⋅<>===u u u r u u u u ru u u r u u u u r u u u r u u u u r , 所以异面直线1AB 与1BC精准预测题2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .32643π- B .648π- C .16643π- D .8643π- 【答案】C【解析】由三视图知,该几何体是由棱长为4的正方体截去一个底面半径为2,高为4的14圆锥和一个底面半径为2,高为4的14圆柱而得到的, 所以该几何体的体积32211164(2424)64433V πππ=-⨯⨯+⨯⨯=-.3.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(1)求证://BF 平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)证明见解析;(2)49;(3)87. 【解析】可以建立以A 为原点,分别以AB u u u r ,AD u u u r ,AE u u u r的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0)A ,(1,0,0)B ,(1,2,0)C ,(0,1,0)D ,(0,0,2)E , 设(0)CF h h =>,则(1,2,)F h .(1)依题意(1,0,0)AB =u u u r是平面ADE 的法向量,又(0,2,)BF h =u u u r,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以//BF 平面ADE .(2)依题意,(1,1,0)BD =-u u u r ,(1,0,2)BE =-u u u r ,(1,2,2)CE =--u u u r,设(,,)x y z =n 为平面BDE 的法向量,则00BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n ,即020x y x z -+=⎧⎨-+=⎩, 不妨令1z =,可得(2,2,1)=n ,因此有4cos ,9||||CE CE CE ⋅<>==-u u u ru u u r u u u r n n n ,所以直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m ,即020x y y hz -+=⎧⎨+=⎩, 不妨令1y =,可得2(1,1,)h=-m ,由题意,有2|4|||1|cos ,|||||3-⋅<>===m n m n m n ,解得87h =,经检验,符合题意, 所以,线段CF 的长为87. 4.如图1,在矩形ABCD中,AB =BC =E 在线段DC上,且DE =AED △沿AE 折到AED '△的位置,连接CD ',BD ',如图2.(1)若点P 在线段BC上,且BP =AE DP'⊥; (2)记平面ADE'与平面BCD '的交线为l ,若二面角B AE D '--为23π,求l 与平面D CE '所成角的正弦值.【答案】(1)证明见解析;(2)5. 【解析】(1)如图1,2BP =,连接DP 交AE 于点O , 因为四边形ABCD 是矩形,所以在PDC Rt △中,CD AB ==22CP BC BP =-==, 所以1tan 2CP PDC CD ∠==, 在ADE Rt △中,AD BC ==DE =所以1tan 2DE ADE AD ∠==,所以PDC DAE ∠=∠, 所以2DAE ADP PDC ADP π∠+∠=∠+∠=,所以2DOA π∠=,从而AO OD ⊥,AO OP ⊥,那么在图2中,AE OD '⊥,AE OP ⊥, 又D O PO O '=I ,所以AE ⊥平面POD ',又DP'⊂平面POD ',所以AE DP '⊥. (2)法一,由(1)知OD AE '⊥,OP AE ⊥,OP ⊂平面BAEC ,OD '⊂平面AED ',所以D OP '∠是二面角B AE D '--的平面角,从而23D OP π'∠=, 在图2中延长AE ,BC 交于点Q ,连接D Q ',则Q ∈平面ADE',Q ∈平面BCD ', 又D '∈平面ADE',D '∈平面BCD ',所以平面AD E 'I 平面BCD D Q ''=, 直线D Q '即直线l ,在平面POD '内过点O 作OF OP ⊥交D P '于点F ,由(1)知AE ⊥平面POD ',又AE ⊂平面ABCE ,所以平面ABCE ⊥平面POD ', 又平面ABCE I 平面POD OP '=,所以OF ⊥平面ABCE ,以O 为原点,分别以OA u u u r ,OP uuu r ,OF u u u r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图2,在图1中,CE DC DE =-=,在ADE Rt △中,AD =,DE =, 所以5AE =,2OD =,1OE =,在ABQ △中,EC AB P ,所以EQ CEQA AB=,即23EQ AE EQ =+,所以10EQ =,所以11OQ OE EQ =+=,从而(0,D '-,(1,0,0)E -,(3,4,0)C -,(11,0,0)Q -,所以(1,ED '=-u u u u r ,(2,4,0)EC =-u u u r,(11,QD '=-u u u u r,设(,,)x y z =n 为平面D CE '的法向量,则0ED EC ⎧'⋅=⎪⎨⋅=⎪⎩u u u u ru u u rn n,即0240x y x y ⎧-+=⎪⎨-+=⎪⎩,取x =,则y =1z =-,所以1)=-n 是平面D CE '的一个法向量,设l 与平面D CE '所成的角为θ,则sin |cos ,||||||QD OD QD θ'⋅'=<>==='⋅u u u u ru u u u r u u u u r n n n , 所以l 与平面D CE '所成角的正弦值为5。

2020年高考数学(理)二轮专题学与练 13 立体几何中的向量方法(考点解读)(解析版)

2020年高考数学(理)二轮专题学与练 13 立体几何中的向量方法(考点解读)(解析版)

专题13 立体几何中的向量方法空间向量及其应用一般每年考一道大题,试题一般以多面体为载体,分步设问,既考查综合几何也考查向量几何,诸小问之间有一定梯度,大多模式是:诸小问依次讨论线线垂直与平行→线面垂直与平行→面面垂直与平行→异面直线所成角、线面角、二面角→体积的计算.强调作图、证明、计算相结合.考查的多面体以三棱锥、四棱锥(有一条侧棱与底面垂直的棱锥、正棱锥)、棱柱(有一侧棱或侧面与底面垂直的棱柱,或底面为特殊图形一如正三角形、正方形、矩形、菱形、直角三角形等类型的棱柱)为主.1.共线向量与共面向量(1)共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . (2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对(x ,y ),使p =xa +yb .2.两个向量的数量积向量a 、b 的数量积:a ·b =|a ||b |cos 〈a ,b 〉. 向量的数量积满足如下运算律: ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一有序实数组{x ,y ,z },使p =xa +yb +zc .推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组{x ,y ,z },使OP →=xOA →+yOB →+zOC →.4.空间向量平行与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R);a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 5.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a ·a =a 21+a 22+a 23, cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23.(2)距离公式设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则 |AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(3)平面的法向量如果表示向量a 的有向线段所在的直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α. 如果a ⊥α,那么向量a 叫做平面α的法向量. 6.空间角的类型与范围 (1)异面直线所成的角θ:0<θ≤π2;(2)直线与平面所成的角θ:0≤θ≤π2;(3)二面角θ:0≤θ≤π.7.用向量求空间角与距离的方法(1)求空间角:设直线l 1、l 2的方向向量分别为a 、b ,平面α、β的法向量分别为n 、m . ①异面直线l 1与l 2所成的角为θ,则cos θ=|a ·b ||a ||b |.②直线l 1与平面α所成的角为θ,则sin θ=|a ·n ||a ||n |.③平面α与平面β所成的二面角为θ,则|cos θ|=|n ·m ||n ||m |. (2)求空间距离①直线到平面的距离,两平行平面间的距离均可转化为点到平面的距离. 点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).②设n 与异面直线a ,b 都垂直,A 是直线a 上任一点,B 是直线B 上任一点,则异面直线a 、b 的距离d =|AB →·n ||n |.高频考点一 向量法证明平行与垂直1.(2019·高考浙江卷)如图,已知三棱柱ABC ­A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】法一:(1)证明:如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 的中点G ,连接EG ,GF ,则EGF A 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGF A 1为矩形. 连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGF A 1,则平面A 1BC ⊥平面EGF A 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上. 则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152,所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.法二:(1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E ­xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0), B 1(3,3,23),F (32,32,23),C (0,2,0). 因此,EF →=⎝⎛⎭⎫32,32,23,BC →=(-3,1,0).由EF →·BC →=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1,3,1)故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.【举一反三】如图,在四棱锥P ­ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .【证明】 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥P A ,P A ∩AD =A ,所以AB ⊥平面P AD , 所以向量AB →=(1,0,0)为平面P AD 的一个法向量. 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB ,又BE ⊄平面P AD ,所以BE ∥平面P AD .(3)由(2)知平面P AD 的一个法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0), 设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量.且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →.所以平面PCD ⊥平面P AD .【变式探究】如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .【证明】以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系A -xyz 如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB .又AB ⊂平面P AB ,EF ⊄平面P AB , 所以EF ∥平面P AB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, 所以AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .又因为AP ∩AD =A ,AP ⊂平面P AD ,AD ⊂平面P AD , 【方法规律】 利用空间向量证明平行与垂直的步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素; (3)通过空间向量的运算研究平行、垂直关系; (4)根据运算结果解释相关问题.【变式探究】在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系B -xyz ,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0), 所以BA →=(a,0,0),BD →=(0,2,2),B 1D →=(0,2,-2), B 1D →·BA →=0,B 1D →·BD →=0+4-4=0, 即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,BA ,BD ⊂平面ABD , 因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝⎛⎭⎫a2,1,4,F (0,1,4), 则EG →=⎝⎛⎭⎫a 2,1,1,EF →=(0,1,1),B 1D →·EG →=0+2-2=0,B 1D →·EF →=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,EG ,EF ⊂平面EGF ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 高频考点二、 向量法求空间角例2、(2019·高考全国卷Ⅱ)如图,长方体ABCD ­A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B ­EC ­C 1的正弦值.【解析】(1)证明:由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故B 1C 1⊥BE . 又BE ⊥EC 1, 所以BE ⊥平面EB 1C 1.(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB . 以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长,建立如图所示的空间直角坐标系D ­xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC →1=(0,0,2).设平面EBC 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x =0,x -y +z =0, 所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧CC →1·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 1=0,x 1-y 1+z 1=0, 所以可取m =(1,1,0). 于是cos n ,m =n ·m |n ||m |=-12.所以,二面角B ­EC ­C 1的正弦值为32. 【变式探究】(2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M ­AB ­D 的余弦值. 【解析】 (1)证明:取P A 的中点F ,连接EF ,BF . 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°得BC ∥AD , 又BC =12AD ,所以EF 綊BC ,四边形BCEF 是平行四边形,CE ∥BF .又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的法向量, 所以|cos 〈BM →,n 〉|=sin 45°,|z |x -12+y 2+z 2=22,即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去),或⎩⎨⎧x =1-22,y =1,z =62,所以M ⎝⎛⎭⎫1-22,1,62,从而AM →=⎝⎛⎭⎫1-22,1,62.设m =(x 0,y 0,z 0)是平面ABM 的法向量,则⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧2-2x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2).于是cos〈m,n〉=m·n|m||n|=10 5.因此二面角M­AB­D的余弦值为10 5.【方法技巧】(1)利用空间向量求空间角的一般步骤①建立恰当的空间直角坐标系.②求出相关点的坐标,写出相交向量的坐标.③结合公式进行论证、计算.④转化为几何结论.【变式探究】(2017·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角B­PD­A的大小;(3)求直线MC与平面BDP所成角的正弦值.【解析】(1)证明:如图,设AC,BD交于点E,连接ME,因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为四边形ABCD是正方形,所以E为BD的中点,所以M为PB的中点.(2)取AD 的中点O ,连接OP ,OE . 因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形,所以OE ⊥AD .如图,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z = 2. 于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=12.(3)由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0),MC →=⎝⎛⎭⎫3,2,-22.设直线MC 与平面BDP 所成角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269,所以直线MC 与平面BDP 所成角的正弦值为269.高频考点三 探索性问题要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由,这类问题常用“肯定顺推”的方法.例 3、如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A ­CD ­F 为60°,DE ∥CF ,CD ⊥DE ,AD =2,DE =DC =3,CF =6.(1)求证:BF ∥平面ADE ;(2)在线段CF 上求一点G ,使锐二面角B ­EG ­D 的余弦值为14.【解】 (1)证明:因为四边形ABCD 为矩形, 所以BC ∥AD .因为AD ⊂平面ADE ,BC ⊄平面ADE , 所以BC ∥平面ADE .同理CF ∥平面ADE .又BC ∩CF =C ,所以平面BCF ∥平面ADE . 因为BF ⊂平面BCF ,所以BF ∥平面ADE . (2)因为CD ⊥AD ,CD ⊥DE ,所以∠ADE 是二面角A ­CD ­F 的平面角,即∠ADE =60°. 因为AD ∩DE =D ,所以CD ⊥平面ADE . 因为CD ⊂平面CDEF , 所以平面CDEF ⊥平面ADE .如图,作AO ⊥DE 于点O ,则AO ⊥平面CDEF . 由AD =2,DE =3,得DO =1,EO =2.以O 为坐标原点,平行于DC 的直线为x 轴,DE 所在的直线为y 轴,OA 所在的直线为z 轴建立空间直角坐标系O ­xyz ,则O (0,0,0),A (0,0,3),C (3,-1,0),D (0,-1,0),B (3,0,3),E (0,2,0),F (3,5,0),OB →=OA →+AB →=OA →+DC →=(3,0,3),设G (3,t ,0),-1≤t ≤5,则BE →=(-3,2,-3),BG →=(0,t ,-3), 设平面BEG 的法向量为m =(x ,y ,z ), 则由⎩⎪⎨⎪⎧m ·BE →=0m ·BG →=0,得⎩⎨⎧-3x +2y -3z =0ty -3z =0,可取⎩⎪⎨⎪⎧x =2-ty =3z =3t, 故平面BEG 的一个法向量为m =(2-t ,3,3t ), 又平面DEG 的一个法向量为n =(0,0,1),所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=3|t |4t 2-4t +13, 所以3|t |4t 2-4t +13=14,解得t =12或t =-1322(舍去),此时CG =32.即所求线段CF 上的点G 满足CG =32.【举一反三】如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【解析】 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面P AD ,PD ⊂平面P AD ,所以AB ⊥PD . 又因为P A ⊥PD , 所以PD ⊥平面P AB .(2)取AD 的中点O ,连接PO ,CO . 因为P A =PD ,所以PO ⊥CD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图,建立空间直角坐标系O -xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1).设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.(3)设M 是棱P A 上一点, 则存在λ∈[0,1]使得AM →=λAP →.因此点M (0,1-λ,λ), BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD 当且仅当BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0. 解得λ=14.所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.【方法技巧】空间向量最适合于解决这类立体几何中的探索性问题,它无须进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【变式探究】如图所示,已知正三棱柱ABC-A1B1C1中,AB=2,AA1=3,点D为AC的中点,点E的线段AA1上.(1)当AE EA1=12时,求证:DE⊥BC1;(2)是否存在点E,使二面角D­BE­A等于60°?若存在,求AE的长;若不存在,请说明理由.【解析】(1)证明:连接DC1,因为ABC-A1B1C1为正三棱柱,所以△ABC为正三角形.又因为D为AC的中点,所以BD⊥AC.又平面ABC⊥平面ACC1A1,所以BD⊥平面ACC1A1.所以BD⊥DE.因为AE EA1=12,AB=2,AA1=3,所以AE=33,AD=1.所以在Rt△ADE中,∠ADE=30°.在Rt△DCC1中,∠C1DC=60°.所以∠EDC1=90°,即ED⊥DC1.所以DE⊥平面BDC1.又因为BC1⊂平面BDC1,所以ED⊥BC1.(2)假设存在点E满足条件,设AE=h.取A1C1的中点D1,连接DD1,则DD1⊥平面ABC,所以DD1⊥AD,DD1⊥BD.如图,分别以DA ,DB ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (1,0,0),B (0,3,0),E (1,0,h ).所以DB →=(0,3,0),DE →=(1,0,h ),AB →=(-1,3,0),AE →=(0,0,h ). 设平面DBE 的一个法向量为n 1=(x 1,y 1,z 1)则⎩⎪⎨⎪⎧n 1·DB →=0,n 1·DE →=0,即⎩⎨⎧3y 1=0,x 1+hz 1=0.令z 1=1,得n 1=(-h,0,1).同理,设平面ABE 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·AB →=0,n 2·AE →=0,即⎩⎨⎧-x 2+3y 2=0,hz 2=0.得n 2=(3,1,0). 所以|cos 〈n 1,n 2〉|=|-3h |h 2+1·2=cos60°=12.解得h =22<3,故存在点E 满足条件. 当AE =22时,二面角D ­BE ­A 等于60°.1.(2019·高考全国卷Ⅱ)如图,长方体ABCD ­A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B ­EC ­C 1的正弦值.【解析】(1)证明:由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故B 1C 1⊥BE . 又BE ⊥EC 1, 所以BE ⊥平面EB 1C 1.(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB . 以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长,建立如图所示的空间直角坐标系D ­xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC →1=(0,0,2).设平面EBC 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x =0,x -y +z =0, 所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧CC →1·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 1=0,x 1-y 1+z 1=0, 所以可取m =(1,1,0). 于是cos n ,m =n ·m|n ||m |=-12. 所以,二面角B ­EC ­C 1的正弦值为32.2. (2019·高考天津卷)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E ­BD ­F 的余弦值为13,求线段CF 的长.【解析】依题意,可以建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).(1)证明:依题意,AB →=(1,0,0)是平面ADE 的法向量,又BF →=(0,2,h ),可得BF →·AB →=0,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1).因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49.所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设m =(x ,y ,z )为平面BDF 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x +y =0,2y +hz =0,不妨令y =1,可得m =(1,1,-2h ).由题意,有|cos 〈m ,n 〉|=|m·n ||m||n|=⎪⎪⎪⎪4-2h 32+4h 2=13,解得h =87,经检验,符合题意. 所以,线段CF 的长为87.3.(2019·高考浙江卷)如图,已知三棱柱ABC ­A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】法一:(1)证明:如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 的中点G ,连接EG ,GF ,则EGF A 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGF A 1为矩形. 连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGF A 1,则平面A 1BC ⊥平面EGF A 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上. 则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35. 因此,直线EF 与平面A 1BC 所成角的余弦值是35.法二:(1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E ­xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0), B 1(3,3,23),F (32,32,23),C (0,2,0).因此,EF →=⎝⎛⎭⎫32,32,23,BC →=(-3,1,0).由EF →·BC →=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎨⎧-3x +y =0,y-3z =0. 取n =(1,3,1)故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.1. (2018年浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅱ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值. 【答案】(Ⅱ)见解析 (Ⅱ)【解析】 方法一: (Ⅱ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.学科.网由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅱ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅱ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.2. (2018年天津卷)如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【答案】(Ⅱ)证明见解析;(Ⅱ);(Ⅱ).【解析】依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅱ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅱ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.3. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅱ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅱ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】(Ⅱ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅱ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.4. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以,因此,.设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为.5. (2018年江苏卷)在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1⊂平面A1B1C,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .6. (2018年全国I 卷理数) 如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF . 又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz . 由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2, 故PE ⊥PF .可得PH =32,EH =32.则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,-32,0,DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. 7. (2018年全国Ⅱ卷理数)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析 (2)【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .又 BC CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,,所以面MAB与面MCD所成二面角的正弦值是.8. (2018年全国Ⅱ卷理数)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)见解析(2)【解析】(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.。

(完整版)空间向量与立体几何知识点和习题(含答案)[1].doc

(完整版)空间向量与立体几何知识点和习题(含答案)[1].doc

∴∠ PB1Q 是异面直线 AM 和 CN 所成的角.
设正方体的棱长为 2,易知 B1P B1Q
5, PQ PC 2 QC 2 6,
cosPB Q ∴
1 B1P2
BQ 1
2
PQ2
2 ,
2B1 P B1Q5
∴异面直线 AM 和 C90°的角,因此按向量的夹角公式计算时,分子的数量积
由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线 l ⊥平面 ,取直线 l 的方向向量 a,则向量 a 叫做平面 的法向量.
由此可知,给定一点 A 及一个向量 a,那么经过点 A 以向量 a 为法向量的平面惟一确定.
(2) 用空间向量刻画空间中平行与垂直的位置关系: 设直线 l, m 的方向向量分别是 a, b,平面 , 的法向量分别是 u , v,则
(2) 空间向量的基本定理: ①共线 (平行 )向量定理:对空间两个向量
a, b(b≠ 0), a∥b 的充要条件是存在实数
,使得 a∥ b.
②共面向量定理:如果两个向量 a, b 不共线,则向量 c 与向量 a,b 共面的充要条件是存在惟一一 对实数 , ,使得 c= a+ b.
③空间向量分解定理:如果三个向量 a,b,c 不共面,那么对空间任一向量 p,存在惟一的有序实数
(4) 根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问 题.【复习要求】
1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表 示.
2.掌握空间向量的线性运算及其坐标表示. 3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量. 5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】

2020年高考数学(理)二轮专题学与练 13 立体几何中的向量方法(考点解读)(原卷版)

2020年高考数学(理)二轮专题学与练 13 立体几何中的向量方法(考点解读)(原卷版)

专题13 立体几何中的向量方法空间向量及其应用一般每年考一道大题,试题一般以多面体为载体,分步设问,既考查综合几何也考查向量几何,诸小问之间有一定梯度,大多模式是:诸小问依次讨论线线垂直与平行→线面垂直与平行→面面垂直与平行→异面直线所成角、线面角、二面角→体积的计算.强调作图、证明、计算相结合.考查的多面体以三棱锥、四棱锥(有一条侧棱与底面垂直的棱锥、正棱锥)、棱柱(有一侧棱或侧面与底面垂直的棱柱,或底面为特殊图形一如正三角形、正方形、矩形、菱形、直角三角形等类型的棱柱)为主.1.共线向量与共面向量(1)共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . (2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对(x ,y ),使p =xa +yb .2.两个向量的数量积向量a 、b 的数量积:a ·b =|a ||b |cos 〈a ,b 〉. 向量的数量积满足如下运算律: ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一有序实数组{x ,y ,z },使p =xa +yb +zc .推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组{x ,y ,z },使OP →=xOA →+yOB →+zOC →.4.空间向量平行与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R);a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 5.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a ·a =a 21+a 22+a 23, cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23.(2)距离公式设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则 |AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(3)平面的法向量如果表示向量a 的有向线段所在的直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α. 如果a ⊥α,那么向量a 叫做平面α的法向量. 6.空间角的类型与范围 (1)异面直线所成的角θ:0<θ≤π2;(2)直线与平面所成的角θ:0≤θ≤π2;(3)二面角θ:0≤θ≤π.7.用向量求空间角与距离的方法(1)求空间角:设直线l 1、l 2的方向向量分别为a 、b ,平面α、β的法向量分别为n 、m . ①异面直线l 1与l 2所成的角为θ,则cos θ=|a ·b ||a ||b |.②直线l 1与平面α所成的角为θ,则sin θ=|a ·n ||a ||n |.③平面α与平面β所成的二面角为θ,则|cos θ|=|n ·m ||n ||m |. (2)求空间距离①直线到平面的距离,两平行平面间的距离均可转化为点到平面的距离. 点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).②设n 与异面直线a ,b 都垂直,A 是直线a 上任一点,B 是直线B 上任一点,则异面直线a 、b 的距离d =|AB →·n ||n |.高频考点一向量法证明平行与垂直1.(2019·高考浙江卷)如图,已知三棱柱ABC­A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC =30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.【举一反三】如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.证明:(1)BE⊥DC;(2)BE∥平面P AD;(3)平面PCD⊥平面P AD.【变式探究】如图所示,在底面是矩形的四棱锥P-ABCD中,P A⊥底面ABCD,E,F分别是PC,PD的中点,P A=AB=1,BC=2.(1)求证:EF∥平面P AB;(2)求证:平面P AD⊥平面PDC.【方法规律】利用空间向量证明平行与垂直的步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;(3)通过空间向量的运算研究平行、垂直关系;(4)根据运算结果解释相关问题.【变式探究】在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD . 高频考点二、 向量法求空间角例2、(2019·高考全国卷Ⅱ)如图,长方体ABCD ­A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B ­EC ­C 1的正弦值.【变式探究】(2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE∥平面P AB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M­AB­D的余弦值.【方法技巧】(1)利用空间向量求空间角的一般步骤①建立恰当的空间直角坐标系.②求出相关点的坐标,写出相交向量的坐标.③结合公式进行论证、计算.④转化为几何结论.【变式探究】(2017·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角B­PD­A的大小;(3)求直线MC与平面BDP所成角的正弦值.高频考点三 探索性问题要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由,这类问题常用“肯定顺推”的方法.例 3、如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A ­CD ­F 为60°,DE ∥CF ,CD ⊥DE ,AD =2,DE =DC =3,CF =6.(1)求证:BF ∥平面ADE ;(2)在线段CF 上求一点G ,使锐二面角B ­EG ­D 的余弦值为14.【举一反三】如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【方法技巧】空间向量最适合于解决这类立体几何中的探索性问题,它无须进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【变式探究】如图所示,已知正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,点D 为AC 的中点,点E 的线段AA 1上.(1)当AE EA 1=12时,求证:DE ⊥BC 1;(2)是否存在点E ,使二面角D ­BE ­A 等于60°?若存在,求AE 的长;若不存在,请说明理由.1.(2019·高考全国卷Ⅱ)如图,长方体ABCD ­A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B ­EC ­C 1的正弦值.2. (2019·高考天津卷)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E ­BD ­F 的余弦值为13,求线段CF 的长.3.(2019·高考浙江卷)如图,已知三棱柱ABC ­A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.1. (2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅱ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.2. (2018年天津卷)如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.3. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅱ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅱ)证明:直线FG与平面BCD相交.4. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.5. (2018年江苏卷)在平行六面体中,.求证:(1);(2)6. (2018年全国I卷理数)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.7. (2018年全国Ⅱ卷理数)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.8. (2018年全国Ⅱ卷理数)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.。

2020年高考理科数学《立体几何》题型归纳与训练及答案解析

2020年高考理科数学《立体几何》题型归纳与训练及答案解析

12020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明1例1如图,高为1的等腰梯形 ABCD 中,AM = CD = 3AB = 1•现将△AMD 沿MD 折起,使平面 AMD 丄 平面 MBCD ,连接 AB , AC.试判断:在AB 边上是否存在点【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法: 1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证1【答案】当AP = 3AB 时,有AD //平面MPC. 理由如下:连接BD 交MC 于点N ,连接NP.在梯形 MBCD 中,DC // MB ,DN NB DC MB 12,Ap 1在△ADB 中,pp 二」AD 〃 PN . •/ AD?平面 MPC , PN?平面 MPC , ••• AD //平面 MPC.P ,使AD //平面 MPC?并说明理由AD平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

PP上一方法二方法三2.构造面面平行,然后推出线面平行。

(新高考)2020高考数学二轮复习题型篇专题三立体几何第二讲大题考法——立体几何与空间向量课件

(新高考)2020高考数学二轮复习题型篇专题三立体几何第二讲大题考法——立体几何与空间向量课件

n ·―B→D =0,

n
=(x,y,z)为平面
BDE
的法向量,则 n
·―B→E =0,
即- -xx+ +y2=z=00,, 不妨令 z=1,可得 n =(2,2,1).
因此有
cos〈―C→E ,n
―C→E ·n 〉=|―C→E ||n
=-49. |
所以直线 CE 与平面 BDE 所成角的正弦值为49.
因此二面角 B-CG-A 的大小为 30°.
题型(二) 立体几何中的探索性问题 [典例] (2019·汕头一模)如图,四棱锥 P-ABCD 中,PA 垂直于菱形 ABCD 所在的平 面,∠ABC=60°,E 是 BC 中点,F 是 PC 上的点. (1)求证:平面 AEF⊥平面 PAD. (2)若 M 是 PD 的中点,当 AB=AP 时,是否存在点 F, 使直线 EM 与平面 AEF 所成角的正弦值为15?若存在,请求出 PPFC的值;若不存在,请说明理由.
题点二 计算直线与平面所成的角 [例 2] (2018·全国卷Ⅰ)如图,四边形 ABCD 为正方形,E,F 分别为 AD,BC 的 中点,以 DF 为折痕把△DFC 折起,使点 C 到达点 P 的位置,且 PF⊥BF. (1)证明:平面 PEF⊥平面 ABFD; (2)求 DP 与平面 ABFD 所成角的正弦值. [解] (1)证明:由已知可得 BF⊥PF,BF⊥EF, 又 PF∩EF=F,所以 BF⊥平面 PEF. 又 BF⊂平面 ABFD, 所以平面 PEF⊥平面 ABFD.
(2)以 A 为坐标原点,AE,AD,AP 所 在直线分别为 x 轴、y 轴、z 轴建立空间直角 坐标系.不妨设 AB=AP=2,则 AE= 3, 则 A(0,0,0),C( 3,1,0),D(0,2,0),P(0,0,2), E( 3,0,0),M(0,1,1),∴―A→P =(0,0,2),―P→C =( 3,1,-2), ―A→E =( 3,0,0).

2020版高考理科数学大二轮专题复习新方略讲义:5.3空间向量与立体几何

2020版高考理科数学大二轮专题复习新方略讲义:5.3空间向量与立体几何

第3讲 空间向量与立体几何考点1 向量法证明平行与垂直设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为u =(a 2,b 2,c 2),v =(a 3,b 3,c 3).(1)线面平行:l ∥α⇔a ⊥u ⇔a·u =0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 2=ka 3,b 2=kb 3,c 2=kc 3.(4)面面垂直:α⊥β⇔u ⊥v ⇔u·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.[例1] [2019·甘肃兰州质检]在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ;(2)平面EGF ∥平面ABD .【证明】 (1)以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系B -xyz ,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以=(a,0,0),=(0,2,2),=(0,2,-2),BA → BD → B 1D → ·=0,·=0+4-4=0,B 1D → BA → B 1D → BD →又EG∩EF=E,EG,EF⊂平面EGF,因此B1D⊥平面EGF.结合(1)可知平面EGF∥平面ABD.利用空间向量证明平行与垂直的步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题『对接训练』如图,在直三棱柱都是正方形且互相垂直,M的中点,运用向量方法证明:EFCD.(0,0,0),B (1,0,0).12)BA →所以·=0,所以⊥.OM BA OM BA 因为棱柱ADE -BCF 是直三棱柱,所以AB ⊥平面BCF ,所以是平面BCF 的一个法向量,且OM ⊄平面BCF ,所以OM ∥平面BA → BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).1[2019·浙江卷]如图,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A BC所成角的余弦值.本题主要考查空间直线与直线垂直的证明及直线与平AC的中点,ABC,所以cos ∠EOG ==.因此,直线EF 与平面EO 2+OG 2-EG 22EO ·OG 35A 1BC 所成角的余弦值是.35解法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,xyz .(0,0,2),B (,1,0)33,=(-,1,0))BC → 3BC .(1)利用空间向量求空间角的一般步骤①建立恰当的空间直角坐标系.②求出相关点的坐标,写出相交向量的坐标.③结合公式进行论证、计算.④转化为几何结论.(2)[警示] 求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cosα=|cosβ|.②两平面的法向量的夹角不『对接训练』湖北部分重点中学联考]如图,四棱锥DP,BA=BP.=60°,BA=BP=证明:如图,取AP的中点M,连接,,∴PA⊥平面DMB,又BD⊂平面DMB,∴PA⊥BD.(2)∵DA=DP,BA=BP,DA⊥DP,∠ABP=60°,∴△DAP是等腰直角三角形,△ABP是等边三角形,∵AB=PB=BD=2,3湖北武昌质检]ABCD 中,侧面PAD PD ,底面ABCD BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求证:平面POC ⊥平面PAD ;(2)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为?若存在,求出的值;若不存在,请说明理由.63PQQD 【解析】 (1)在△PAD 中,PA =PD ,O 为AD 的中点,∴PO ⊥AD .PAD .两两垂直,所以以O 所在直线为y 轴,OP 所在直线为,如图所示,A (0,-1,0),C (1,0,0)(0≤λ≤1).PD →弦值为,3∴|cos 〈m ,n 〉===,|m ·n ||m ||n ||λ+1|(1-λ)2+(λ-1)2+(λ+1)2×163整理化简,得3λ2-10λ+3=0,解得λ=或λ=3(舍去),13空间向量最适合于解决这类立体几何中的探索性问题,它无须进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把『对接训练』安徽江南名校联考]如图,在四棱锥的余弦值;若不存在,请说明理由.解析:(1)证明:取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N,如图在四边形ABCD中,∵CN⊥AB,DA⊥AB,∴CN∥DA.又AB∥CD,∴四边形CDAN为矩形,AN=6,102-82=6,DE⊄平面PBC,∴DE∥DC,DP两两垂直,如图,以⊥BD,BC=1,AD(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.解析:(1)证明:因为BB1⊥平面ABCD,AC⊂平面ABCD,所以BB1⊥AC.因为AC⊥BD且BD∩BB1=B,所以AC⊥平面BB1D,又B1D⊂平面BB1D,所以AC⊥B1D.两两垂直,如图,以所在直线分别为x轴,y轴,z轴,建立空间直角坐标B(t,0,0),1,3),广东五校第一次诊断]如图,在菱形ABCD 中,∠ABC =60°,AC 与BD 交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2.(1)求证:BD ⊥平面ACFE ;所成的角为45°ABCD 是菱形,平面ABCD ,为原点,OA ,OB 所在直线分别为建立如图所示的空间直角坐标系O ­xyz ,则B ,则=(0,,OB → 3=(x ,y ,z ),由a >0,得a =3,=(-1,0,3),=(1,-,2),OF → BE → 3cos 〈,〉==,OF → BE → OF → ·BE → |OF →|·|BE → |545]-A 1B 1C 1D 1的底面是菱形,侧面是正方形,的延长线上一点,经过点⊥平面BCC 1B 1;的余弦值.证明:设四棱柱ABCD -A 1B 1C 1D∴CH ⊥AC 1,又CG ⊥AC 1,CG ∩CH =C ,∴AC 1⊥平面CGH ,AC 1⊥GH ,∴∠CGH 是二面角E -AC 1-C 的平面角.在Rt △ACC 1中,AC =a ,CC 1=a ,AC 1=2a ,CG =a ,3323213231313与平面ABP 所成角的正弦值.解析:(1)证明:取PA 的中点H ,连接HE ,BH ,如图.的中点,∴HE 为△APD 的中位线,=AD .12AD ,∴HE ∥BC ,HE =BC 12为平行四边形,∴CE ∥BH .CE ⊄平面ABP ,∴CE ∥平面∴E ,∴=,=(2,2,0),=(-1,0,(22) (22)).3设平面ABP 的法向量为n =(x ,y ,z ),则Error!∴Error!故可取n =(3,-3,),3n ·AE → 210AD ⊥AB ,AB =AD ;BDE 所成角的正弦值;的余弦值为,求线段13本题主要考查直线与平面平行、二面角、直线与平面所成为原点,分别以AB 轴正方向的空间直角坐标系A ­xyz (如图,E (0,0,2).设(1)依题意,=(1,0,0)是平面ADE 的法向量,又=(0,2,h ),AB → BF → 可得·=0,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .BF → AB → (2)依题意,=(-1,1,0),=(-1,0,2),BD → BE → =(-1,-2,2).CE →(1)证明:B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为,求线段AM 的长.26C E 中,,AB 两两垂直,如图,以点所在直线为x 轴,y 轴,z (0,0,2),C (1,0,1),B 1(0,2,2),-1),=(-1,1,-CE → =(x ,y ,z ),sin 〈m ,〉=,B 1C 1→ 7所以二面角B 1-CE -C 1的正弦值为.217(3)由(2)知=(0,1,0),=(1,1,1),设=λ,则AE → EC 1→ EM → EC 1→ =(λ,λ,λ)(0≤λ≤1),则=+=(λ,λ+1,λ).EM → AM → AE → EM →。

2020版高考理科数学大二轮专题复习新方略课时作业: 13空间向量与立体几何

2020版高考理科数学大二轮专题复习新方略课时作业: 13空间向量与立体几何

⊥BD,BC=1,AD(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.解析:(1)证明:因为BB1⊥平面ABCD,AC⊂平面ABCD,所以BB1⊥AC.因为AC⊥BD且BD∩BB1=B,所以AC⊥平面BB1D,又B1D⊂平面BB1D,所以AC⊥B1D.两两垂直,如图,以所在直线分别为x轴,y轴,z轴,建立空间直角坐标B(t,0,0),1,3),广东五校第一次诊断]如图,在菱形ABCD 中,∠ABC =60°,AC 与BD 交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2.(1)求证:BD ⊥平面ACFE ;所成的角为45°ABCD 是菱形,平面ABCD ,为原点,OA ,OB 所在直线分别为建立如图所示的空间直角坐标系O ­xyz ,则B ,则=(0,,OB → 3=(x ,y ,z ),由a >0,得a =3,=(-1,0,3),=(1,-,2),OF → BE → 3cos 〈,〉==,OF → BE → OF → ·BE → |OF →|·|BE → |545]-A 1B 1C 1D 1的底面是菱形,侧面是正方形,的延长线上一点,经过点⊥平面BCC 1B 1;的余弦值.证明:设四棱柱ABCD -A 1B 1C 1D∴CH ⊥AC 1,又CG ⊥AC 1,CG ∩CH =C ,∴AC 1⊥平面CGH ,AC 1⊥GH ,∴∠CGH 是二面角E -AC 1-C 的平面角.在Rt △ACC 1中,AC =a ,CC 1=a ,AC 1=2a ,CG =a ,3323213231313与平面ABP 所成角的正弦值.解析:(1)证明:取PA 的中点H ,连接HE ,BH ,如图.的中点,∴HE 为△APD 的中位线,=AD .12AD ,∴HE ∥BC ,HE =BC 12为平行四边形,∴CE ∥BH .CE ⊄平面ABP ,∴CE ∥平面∴E ,∴=,=(2,2,0),=(-1,0,(22) (22)).3设平面ABP 的法向量为n =(x ,y ,z ),则Error!∴Error!故可取n =(3,-3,),3n ·AE → 210AD ⊥AB ,AB =AD ;BDE 所成角的正弦值;的余弦值为,求线段13本题主要考查直线与平面平行、二面角、直线与平面所成为原点,分别以AB 轴正方向的空间直角坐标系A ­xyz (如图,E (0,0,2).设(1)依题意,=(1,0,0)是平面ADE 的法向量,又=(0,2,h ),AB → BF → 可得·=0,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .BF → AB → (2)依题意,=(-1,1,0),=(-1,0,2),BD → BE → =(-1,-2,2).CE →(1)证明:B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为,求线段AM 的长.26C E 中,,AB 两两垂直,如图,以点所在直线为x 轴,y 轴,z (0,0,2),C (1,0,1),B 1(0,2,2),-1),=(-1,1,-CE → =(x ,y ,z ),sin 〈m ,〉=,B 1C 1→ 7所以二面角B 1-CE -C 1的正弦值为.217(3)由(2)知=(0,1,0),=(1,1,1),设=λ,则AE → EC 1→ EM → EC 1→ =(λ,λ,λ)(0≤λ≤1),则=+=(λ,λ+1,λ).EM → AM → AE → EM →。

2020版高考数学二轮复习专题限时集训8空间向量与立体几何理 (2)

2020版高考数学二轮复习专题限时集训8空间向量与立体几何理 (2)

专题限时集训(八) 空间向量与立体几何[专题通关练] (建议用时:20分钟)1.(20xx·泰安一模)在直三棱柱ABC ­A 1B 1C 1.∠BCA =90°.M .N 分别是A 1B 1.A 1C 1的中点.BC =AC =CC 1=1.则AN 与BM 所成角的余弦值为( )A.110B.22C.25D.3010D [建立如图所示的空间直角坐标系:则A (1,0,0).B (0,1,0).N ⎝ ⎛⎭⎪⎫12,0,1.M ⎝ ⎛⎭⎪⎫12,12,1.∴AN →=⎝ ⎛⎭⎪⎫-12,0,1.BM→=⎝ ⎛⎭⎪⎫12,-12,1. cos 〈AN →.BM →〉 =AN →·BM →|AN →||BM →|=-12×12+114+0+1×14+14+1=3452×62=3010.故选D.]2.二面角的棱上有A .B 两点.直线AC .BD 分别在这个二面角的两个半平面内.且都垂直于AB .已知AB =2.AC =3.BD =4.CD =17.则该二面角的大小为( )A .30°B .45°C .60°D .120°C [由已知可得CA →·AB →=0.AB →·BD →=0.如图. CD →=CA →+AB →+BD →.∴|CD →|2=(CA →+AB →+BD →)2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=32+22+42+2×3×4cos〈CA →.BD →〉=(17)2. ∴cos〈CA →.BD →〉=-12.即〈CA →.BD →〉=120°.∴所求二面角的大小为60°.故选C.]3.(20xx·全国卷Ⅰ)在长方体ABCD ­A 1B 1C 1D 1中.AB =BC =2.AC 1与平面BB 1C 1C 所成的角为30°.则该长方体的体积为( )A .8B .6 2C .8 2D .8 3C [在长方体ABCD ­A 1B 1C 1D 1中.AB ⊥平面BCC 1B 1.连接BC 1.AC 1.则∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角.∠AC 1B =30°.又AB =BC =2.所以在Rt△ABC 1中.BC 1=ABtan∠AC1B=2 3.在Rt△BCC 1中.CC 1=232-22=2 2.所以该长方体体积V=BC ×CC 1×AB =8 2.]4.(20xx·汕头模拟)如图.在正方体ABCD ­A 1B 1C 1D 1中.M .N 分别是BC 1.CD 1的中点.则下列判断错误的是( )A .MN ⊥CC 1B .MN ⊥平面ACC 1A 1 C .MN ∥平面ABCD D .MN ∥A 1B 1D [在正方体ABCD ­A 1B 1C 1D 1中.M .N 分别是BC 1.CD 1的中点.以D 为原点.DA 为x 轴.DC 为y 轴.DD 1为z 轴.建立空间直角坐标系.设正方体ABCD ­A 1B 1C 1D 1的棱长为2.则M (1,2,1).N (0,1,1).C (0,2,0).C 1(0,2,2).MN →=(-1.-1,0).CC1→=(0,0,2).MN →·CC1→=0.∴MN ⊥CC 1.故A 正确;A (2,0,0).AC →=(-2,2,0).MN →·AC →=0.∴MN ⊥AC .∵AC ∩CC 1=C .∴MN ⊥平面ACC 1A 1.故B 正确; ∵平面ABCD 的法向量n =(0,0,1).MN →·n =0.又MN 平面ABCD .∴MN ∥平面ABCD .故C 正确;A 1(0,2,2).B 1(2,2,2).∴A1B1→=(2,0,0).∴MN 与A 1B 1不平行.故D 错误.故选D.]5.(20xx·全国卷Ⅲ)如图.点N 为正方形ABCD 的中心.△ECD 为正三角形.平面ECD ⊥平面ABCD .M 是线段ED 的中点.则( )A .BM =EN .且直线BM .EN 是相交直线B .BM ≠EN .且直线BM .EN 是相交直线C .BM =EN .且直线BM .EN 是异面直线D .BM ≠EN .且直线BM .EN 是异面直线B [取CD 的中点O .连接ON .EO .因为△ECD 为正三角形.所以EO ⊥CD .又平面ECD ⊥平面ABCD .平面ECD ∩平面ABCD =CD .所以EO ⊥平面ABCD .设正方形ABCD 的边长为2.则EO = 3.ON =1.所以EN 2=EO 2+ON 2=4.得EN =2.过M 作CD 的垂线.垂足为P .连接BP .则MP =32.CP =32.所以BM 2=MP 2+BP 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322+22=7.得BM =7.所以BM ≠EN .连接BD .BE .因为四边形ABCD 为正方形.所以N 为BD 的中点.即EN .MB 均在平面BDE 内.所以直线BM .EN 是相交直线.选B.]6.[一题多解]如图.AB 是⊙O 的直径.PA 垂直于⊙O 所在平面.点C 是圆周上不同于A .B 两点的任意一点.且AB =2.PA =BC = 3.则二面角A ­BC ­P 的大小为________.π3[法一:(几何法)由题意可知AC ⊥BC . 又PA ⊥平面ABC . ∴PA ⊥BC ∵PA ∩AC =A . ∴BC ⊥平面PAC . ∴BC ⊥PC .∴∠PCA 为二面角A ­BC ­P 的平面角. 在Rt△BCA 中.AB =2.BC = 3.∴AC =1. 在Rt△PCA 中.PA = 3. ∴tan∠PCA =PAAC = 3.∴∠PCA =π3.法二:(坐标法)以A 为原点.AP 为z 轴.AC 为y 轴.过A 且垂直于AC 的直线为x 轴.建立空间直角坐标系.如图所示.由AB =2.PA =BC = 3.可知AC =22-3=1.∴P (0,0.3).B ( 3.1,0).C (0,1,0). PB →=( 3.1.-3).PC →=(0,1.-3). 设平面PBC 的法向量n =(x .y .z ).则 ⎩⎪⎨⎪⎧n ·PB →=0,n ·PC →=0,即⎩⎨⎧3x +y -3z =0,y -3z =0,取z =1得n =(0. 3.1).平面ABC 的法向量m =(0,0,1) 设二面角A ­BC ­P 的平面角为θ. 则cos θ=|m·n||m||n|=12.∴θ=π3.][能力提升练] (建议用时:15分钟)7.如图.在各棱长均为2的正三棱柱ABC ­A 1B 1C 1中.D .E 分别为棱A 1B 1与BB 1的中点.M .N 为线段C 1D 上的动点.其中.M 更靠近D .且MN =C 1N .(1)证明:A 1E ⊥平面AC 1D ;(2)若NE 与平面BCC 1B 1所成角的正弦值为1020.求异面直线BM 与NE 所成角的余弦值.[解](1)证明:由已知得△A 1B 1C 1为正三角形.D 为棱A 1B 1的中点. ∴C 1D ⊥A 1B 1.在正三棱柱ABC ­A 1B 1C 1中.AA 1⊥底面A 1B 1C 1.C 1D 底面A 1B 1C 1.则AA 1⊥C 1D . 又A 1B 1∩AA 1=A 1.A 1B 1.AA 1平面ABB 1A 1.∴C 1D ⊥平面ABB 1A 1. 又A 1E平面ABB 1A 1.∴C 1D ⊥A 1E . 易证A 1E ⊥AD . 又AD ∩C 1D =D .AD .C 1D 平面AC 1D .∴A 1E ⊥平面AC 1D .(2)取BC 的中点O .B 1C 1的中点O 1.连接AO .则AO ⊥BC .OO 1⊥BC .OO 1⊥AO . 以O 为坐标原点.建立如图所示的空间直角坐标系O ­xyz . 则B (0,1,0).E (0,1,1).C 1(0.-1,2).D ⎝⎛⎭⎪⎫32,12,2. 设C1N →=λC1D →=⎝ ⎛⎭⎪⎫32λ,32λ,0.则NE →=C1E →-C1N →=(0,2.-1)-⎝ ⎛⎭⎪⎫32λ,32λ,0=⎝ ⎛⎭⎪⎫-32λ,2-32λ,-1. 易知n =(1,0,0)是平面BCC 1B 1的一个法向量.∴|cos〈NE →.n 〉|=32λ3λ2-6λ+5=1020.解得λ=13(负值舍去).∴NE →=⎝ ⎛⎭⎪⎫-36,32,-1.C1M →=2λC1D →=⎝ ⎛⎭⎪⎫33,1,0BM →=BC1→+C1M →=⎝ ⎛⎭⎪⎫33,-1,2.∴cos〈NE →.BM →〉=-16-32-2103×163=-111040.∴异面直线NE 与BM 所成角的余弦值为111040.8.如图.CD .AB 分别是圆柱的上、下底面圆的直径.四边形ABCD 是边长为2的正方形.E 是底面圆周上不同于A .B 两点的一点.AE =1.(1)求证:BE ⊥平面DAE ; (2)求二面角C ­DB ­E 的余弦值.[解](1)证明:由圆柱的性质知.DA ⊥平面ABE .又BE平面ABE .∴BE ⊥DA .又AB 是底面圆的直径.E 是底面圆周上不同于A .B 两点的一点.∴BE ⊥AE . 又DA ∩AE =A .DA .AE 平面DAE .∴BE ⊥平面DAE .(2)过A 在平面AEB 内作垂直于AB 的直线. 建立如图所示的空间直角坐标系. ∵AB =AD =2.AE =1.∴BE = 3. ∴E ⎝⎛⎭⎪⎫32,12,0.D (0,0,2).B (0,2,0). ∴ED →=⎝ ⎛⎭⎪⎫-32,-12,2.BD →=(0.-2,2).取平面CDB 的一个法向量为n 1=(1,0,0).设平面EBD 的法向量为n 2=(x 2.y 2.z 2). 则⎩⎪⎨⎪⎧n2·ED →=0,n2·BD →=0,即⎩⎪⎨⎪⎧-32x2-12y2+2z2=0,-2y2+2z2=0,取z 2=1.则n 2=( 3.1,1)为平面EBD 的一个法向量.∴cos〈n 1.n 2〉=n1·n2|n1||n2|=35=155.又易知二面角C ­DB ­E 为钝角. ∴二面角C ­DB ­E 的余弦值为-155.内容押题依据探索性问题.线面平行的性质、线面角的求法探索性问题高考还未考查.可以较好的考查考生的思维.逻辑推理、运算等核心素养【押题】 如图.在四棱锥P ­ABCD 中.底面ABCD 是平行四边形.PD ⊥平面ABCD .PD =AD =BD =2.AB =2 2.E 是棱PC 上的一点.(1)若PA ∥平面BDE .证明:PE =EC ;(2)在(1)的条件下.棱PB 上是否存在点M .使直线DM 与平面BDE 所成角的大小为30°?若存在.求PM ∶MB 的值;若不存在.请说明理由.[解] (1)连接AC 交BD 于点F .连接EF . 则EF 是平面PAC 与平面BDE 的交线. 因为PA ∥平面BDE .PA平面PAC .所以PA ∥EF .又因为F 是AC 中点.所以E 是PC 的中点.所以PE =EC . (2)由已知条件中.AD 2+BD 2=AB 2.所以AD ⊥BD . 以D 为原点.DA 为x 轴.DB 为y 轴.DP 为z 轴建立空间直角坐标系.则D (0,0,0).A (2,0,0).B (0,2,0).P (0,0,2).C (-2,2,0).E (-1,1,1).DE →=(-1,1,1).DB →=(0,2,0).假设在棱PB 上存在点M .设PM →=λPB →(0≤λ≤1). 得M (0,2λ.2-2λ).DM →=(0,2λ.2-2λ). 记平面BDE 的法向量为n 1=(x 1.y 1.z 1). 则⎩⎪⎨⎪⎧n1·DE →=0,n2·DB →=0,即⎩⎪⎨⎪⎧-x1+y1+z1=0,y1=0.取z 1=1.则x 1=1.n 1=(1,0,1).要使直线DM 与平面BDE 所成角的大小为30°. 则|DM →·n1||DM →|·|n1|=sin 30°. 即|1×0+0×2λ+1×2-2λ|12+02+12·02+2λ2+2-2λ2=12.解得λ=12∈[0,1].所以在棱PB 上存在点M 使直线PM 与平面BDE。

20届高考数学(理)二轮复习 第2部分 专题3 第2讲 立体几何

20届高考数学(理)二轮复习 第2部分 专题3 第2讲  立体几何

第2讲 立体几何(大题)热点一 平行、垂直关系的证明用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.例1 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12. OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF . (2)设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧ n 1·DF →=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA → =-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又BF ,BC ⊂平面BCF ,OM ⊄平面BCF , ∴OM ∥平面BCF .(2)由题意及(1)知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0,∴OM →⊥CD →,OM →⊥FC →, 即OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C ,CD ,FC ⊂平面EFCD , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .跟踪演练1 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AD ⊥CD ,BC =2,AD =CD =1,M 是PB 的中点.(1)求证:AM ∥平面PCD ; (2)求证:平面ACM ⊥平面P AB .证明 (1)如图,以C 为坐标原点建立空间直角坐标系C -xyz ,则A (1,1,0),B (0,2,0),C (0,0,0),D (1,0,0),P (1,1,a )(a >0),M ⎝⎛⎭⎫12,32,a 2,CP →=(1,1,a ),CD →=(1,0,0),AM →=⎝⎛⎭⎫-12,12,a 2, 设平面PCD 的法向量为n 1=(x 0,y 0,z 0),则⎩⎪⎨⎪⎧x 0+y 0+az 0=0,x 0=0,令y 0=a ,则n 1=(0,a ,-1), 所以AM →·n 1=a 2-a 2=0,又AM ⊄平面PCD , 所以AM ∥平面PCD .(2)由(1)得,CA →=(1,1,0),CM →=⎝⎛⎭⎫12,32,a 2, 设平面ACM 的法向量为n 2=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧x 1+y 1=0,12x 1+32y 1+a2z 1=0, 令x 1=1,则n 2=⎝⎛⎭⎫1,-1,2a , AP →=(0,0,a ),AB →=(-1,1,0),设平面P AB 的法向量为n 3=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧-x 2+y 2=0,az 2=0,令x 2=1,则n 3=(1,1,0), 所以n 2·n 3=1-1=0. 所以平面ACM ⊥平面P AB .热点二 利用空间向量求空间角设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21 a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)二面角设α-a -β的平面角为θ(0≤θ≤π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 例2 (2019·南昌模拟)如图,四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,CC 1⊥底面ABCD ,且∠BAD =60°,CD =CC 1=2C 1D 1=4,E 是棱BB 1的中点.(1)求证:AA 1⊥BD ;(2)求二面角E -A 1C 1-C 的余弦值.(1)证明 因为C 1C ⊥底面ABCD ,所以C 1C ⊥BD . 因为底面ABCD 是菱形,所以BD ⊥AC . 又AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1A 1, 所以BD ⊥平面ACC 1A 1. 又AA 1⊂平面ACC 1A 1, 所以BD ⊥AA 1.(2)解 如图,设AC 交BD 于点O ,依题意,A 1C 1∥OC 且A 1C 1=OC , 所以四边形A 1OCC 1为平行四边形, 所以A 1O ∥CC 1,且A 1O =CC 1. 所以A 1O ⊥底面ABCD .以O 为原点,OA ,OB ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (23,0,0),A 1(0,0,4),C 1(-23,0,4),B (0,2,0), AB →=(-23,2,0).由A 1B 1----→=12AB →,得B 1(-3,1,4).因为E 是棱BB 1的中点, 所以E ⎝⎛⎭⎫-32,32,2, 所以EA 1→=⎝⎛⎭⎫32,-32,2,A 1C 1----→=(-23,0,0).设n =(x ,y ,z )为平面EA 1C 1的法向量,则⎩⎨⎧n ·A 1C 1----→=-23x =0,n ·EA 1→=32x -32y +2z =0,取z =3,得n =(0,4,3),平面A 1C 1C 的法向量m =(0,1,0),又由图可知,二面角E -A 1C 1-C 为锐二面角, 设二面角E -A 1C 1-C 的平面角为θ, 则cos θ=|m ·n ||m ||n |=45,所以二面角E -A 1C 1-C 的余弦值为45.跟踪演练2 (2019·河南名校联盟联考)如图,在四棱锥P -ABCD 中,∠P AB =90°,AB ∥CD ,且PB =BC =BD =6,CD =2AB =22,∠P AD =120°.E 和F 分别是棱CD 和PC 的中点.(1)求证:CD ⊥BF ;(2)求直线PB 与平面PCD 所成的角的正弦值. (1)证明 ∵E 为CD 中点,CD =2AB , ∴AB =DE .又AB∥CD,∴四边形ABED为平行四边形.∵BC=BD,E为CD中点,∴BE⊥CD,∴四边形ABED为矩形,∴AB⊥AD.由∠P AB=90°,得P A⊥AB,又P A∩AD=A,P A,AD⊂平面P AD,∴AB⊥平面P AD.∵AB∥CD,∴CD⊥平面P AD.又PD⊂平面P AD,∴CD⊥PD.∵EF∥PD,∴CD⊥EF.又CD⊥BE,BE∩EF=E,BE,EF⊂平面BEF,∴CD⊥平面BEF.又∵BF⊂平面BEF,∴CD⊥BF.(2)解由(1)知AB⊥平面P AD.以A为原点,AB所在直线为x轴,AD所在直线为y轴,平面P AD内过点A且与AD垂直的线为z轴建立空间直角坐标系A-xyz,如图所示.∵∠P AD=120°,∴∠P Az=30°.又PB=6,AB=2,AB⊥P A,∴P A=2.∴点P到z轴的距离为1.∴P(0,-1,3),同时知A(0,0,0),B(2,0,0).又BC=BD=6,CD=22,∴BE=2.∴C (22,2,0),D (0,2,0).设平面PCD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PD →=(x ,y ,z )·(0,3,-3)=0,n ·CD →=(x ,y ,z )·(-22,0,0)=0,得⎩⎨⎧3y -3z =0,-22x =0.令y =1,则n =(0,1,3). 又PB →=(2,1,-3),设直线PB 与平面PCD 所成的角为θ. 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n |·|PB →|=22+1+3×1+3=66.即直线PB 与平面PCD 所成的角的正弦值为66. 热点三 利用空间向量解决探索性问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则是:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.例3 (2019·临沂模拟)如图,平面ABCD ⊥平面ABE ,四边形ABCD 是边长为2的正方形,AE =1,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)线段AD 上是否存在一点M ,使平面ABE 与平面MCE 所成二面角的余弦值为34?若存在,试确定点M 的位置;若不存在,请说明理由. (1)证明 ∵BF ⊥平面ACE ,AE ⊂平面ACE , ∴BF ⊥AE ,∵四边形ABCD 是正方形,∴BC ⊥AB ,又平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB , ∴CB ⊥平面ABE , ∵AE ⊂平面ABE , ∴CB ⊥AE ,∵BF ∩BC =B ,BF ,BC ⊂平面BCE , ∴AE ⊥平面BCE .(2)解 线段AD 上存在一点M ,当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. ∵AE ⊥平面BCE ,BE ⊂平面BCE , ∴AE ⊥BE ,在Rt △AEB 中,AB =2,AE =1, ∴∠ABE =30°,∠BAE =60°,以A 为原点,建立空间直角坐标系A -xyz , 设AM =h ,则0≤h ≤2, ∵AE =1,∠BAE =60°, ∴M (0,0,h ),E ⎝⎛⎭⎫32,12,0,B (0,2,0),C (0,2,2),所以ME →=⎝⎛⎭⎫32,12,-h ,CE →=⎝⎛⎭⎫32,-32,-2,设平面MCE 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·ME →=3x 2+12y -hz =0,n ·CE →=3x 2-32y -2z =0,令z =2,解得n =⎝⎛⎭⎫33(2+3h ),h -2,2,平面ABE 的一个法向量m =(0,0,1),由题意可知cos 〈m ,n 〉=m ·n|m ||n |=213(2+3h )2+(h -2)2+4=34, 解得h =3,所以当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. 跟踪演练3 如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =AA 1=2,点P 为棱B 1C 1的中点,点Q 为线段A 1B 上一动点.(1)求证:当点Q 为线段A 1B 的中点时,PQ ⊥平面A 1BC ;(2)设BQ →=λBA 1→,试问:是否存在实数λ,使得平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010?若存在,求出这个实数λ;若不存在,请说明理由. (1)证明 连接AB 1,AC 1,∵点Q 为线段A 1B 的中点, ∴A ,Q ,B 1三点共线, 且Q 为AB 1的中点, ∵点P 为B 1C 1的中点, ∴PQ ∥AC 1.在直三棱柱ABC -A 1B 1C 1中, AC ⊥BC ,∴BC ⊥平面ACC 1A 1, 又AC 1⊂平面ACC 1A 1, ∴BC ⊥AC 1.∵AC =AA 1,∴四边形ACC 1A 1为正方形, ∴AC 1⊥A 1C ,又A 1C ,BC ⊂平面A 1BC ,A 1C ∩BC =C , ∴AC 1⊥平面A 1BC , 而PQ ∥AC 1, ∴PQ ⊥平面A 1BC .(2)解 由题意可知,CA ,CB ,CC 1两两垂直,以C 为原点,分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系C -xyz , 连接B 1Q ,PB ,设Q (x ,y ,z ), B (0,2,0),A 1(2,0,2), P (0,1,2),B 1(0,2,2), ∵BQ →=λBA 1→,∴(x ,y -2,z )=λ(2,-2,2), ∴⎩⎪⎨⎪⎧x =2λ,y =2-2λ,z =2λ,∴Q (2λ,2-2λ,2λ). ∵点Q 在线段A 1B 上运动,∴平面A 1PQ 的法向量即为平面A 1PB 的法向量, 设平面A 1PB 的法向量为n 1=(x ,y ,z ), BP →=(0,-1,2),P A 1→=(2,-1,0), 由⎩⎪⎨⎪⎧n 1·BP →=0,n 1·P A 1→=0,得⎩⎪⎨⎪⎧-y +2z =0,2x -y =0,令y =2,得n 1=(1,2,1),设平面B 1PQ 的法向量为n 2=(x ,y ,z ), PB 1→=(0,1,0),B 1Q →=(2λ,-2λ,2λ-2).由⎩⎪⎨⎪⎧n 2·PB 1→=0,n 2·B 1Q →=0,得⎩⎪⎨⎪⎧y =0,2λx -2λy +(2λ-2)z =0,令z =1得n 2=⎝⎛⎭⎫1-λλ,0,1=1λ(1-λ,0,λ), 取n 2=(1-λ,0,λ),由题意得|cos 〈n 1,n 2〉|=|()1,2,1·()1-λ,0,λ|6·(1-λ)2+λ2=16×2λ2-2λ+1=3010,∴9λ2-9λ+2=0, 解得λ=13或λ=23,∴当λ=13或λ=23时,平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010.真题体验(2019·全国Ⅰ,理,18)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.(1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,所以MN ∥平面C 1DE .(2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的一个法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A -MA 1-N 的正弦值为105.押题预测如图1,在梯形ABCD 中,AB ∥CD ,过A ,B 分别作AE ⊥CD ,BF ⊥CD ,垂足分别E ,F ,AB =AE =2,CD =5,已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE -BCF ,如图2.(1)若AF ⊥BD ,证明:DE ⊥平面ABFE ;(2)若DE ∥CF ,CD =3,线段AB 上存在一点P ,满足CP 与平面ACD 所成角的正弦值为520,求AP 的长.(1)证明 由已知得四边形ABFE 是正方形,且边长为2,在图2中,AF ⊥BE , 由已知得AF ⊥BD ,BE ∩BD =B ,BE ,BD ⊂平面BDE , ∴AF ⊥平面BDE ,又DE ⊂平面BDE ,∴AF ⊥DE ,又AE ⊥DE ,AE ∩AF =A ,AE ,AF ⊂平面ABFE , ∴DE ⊥平面ABFE .(2)解 在图2中,AE ⊥DE ,AE ⊥EF ,DE ∩EF =E ,DE ,EF ⊂平面DEFC ,即AE ⊥平面DEFC ,在梯形DEFC 中,过点D 作DM ∥EF 交CF 于点M ,连接CE , 由题意得DM =2,CM =1, 由勾股定理可得DC ⊥CF , 则∠CDM =π6,CE =2,过E 作EG ⊥EF 交DC 于点G , 可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA →,EF →,EG →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则A (2,0,0),B (2,2,0),C (0,1,3),D ⎝⎛⎭⎫0,-12,32,AC →=(-2,1,3),AD →=⎝⎛⎭⎫-2,-12,32.设平面ACD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,得⎩⎪⎨⎪⎧-2x +y +3z =0,-2x -12y +32z =0, 取x =1,得n =(1,-1,3), 设AP =m ,则P (2,m ,0),0≤m ≤2, 得CP →=(2,m -1,-3), 设CP 与平面ACD 所成的角为θ, sin θ=|cos 〈CP →,n 〉|=|m |5×7+(m -1)2=520⇒m =23(舍负). 所以AP =23.A 组 专题通关1.(2019·全国Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B -EC -C 1的正弦值.(1)证明 由已知得,B 1C 1⊥平面ABB 1A 1,因为BE ⊂平面ABB 1A 1,故B 1C 1⊥BE . 又BE ⊥EC 1,EC 1∩B 1C 1=C 1, 所以BE ⊥平面EB 1C 1. (2)解 由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC 1→=(0,0,2). 设平面EBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x =0,x -y +z =0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧CC 1→·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 1=0,x 1-y 1+z 1=0,所以可取m =(1,1,0).于是cos 〈n ,m 〉=n ·m |n ||m |=-12,sin 〈n ,m 〉=1-⎝⎛⎭⎫-122=32, 所以二面角B -EC -C 1的正弦值为32. 2.(2019·全国Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B —CG —A 的大小.(1)证明 由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG , 故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,BE ∩BC =B , BE ,BC ⊂平面BCGE ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°, 可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0.所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0), 所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.3.(2019·马鞍山模拟)如图,在三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34?若存在,确定点P 的位置;若不存在,请说明理由. (1)证明 如图,∵AC =AA 1, ∴四边形AA 1C 1C 为菱形,连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1,且A 1C ∩A 1B =A 1, A 1C ,A 1B ⊂平面A 1CB ,∴AC 1⊥平面A 1CB ,则AC 1⊥BC , 又∠ACB =90°,即BC ⊥AC ,又AC 1∩AC =A ,AC 1,AC ⊂平面A 1ACC 1, ∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)解 在平面ACC 1A 1中,过点C 作CE ⊥AC 交A 1C 1于E , 由(1)知,CE ⊥平面ABC ,以C 为坐标原点,分别以CA ,CB 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系C -xyz ,∵AC =AA 1=4,BC =2,∠A 1AC =60°, ∴C (0,0,0),B (0,2,0),A (4,0,0),A 1(2,0,23).设在线段AC 上存在一点P ,满足AP →=λAC →(0≤λ<1),使得二面角B -A 1P -C 的平面角的余弦值为34. 则AP →=(-4λ,0,0).BP →=BA →+AP →=(4,-2,0)+(-4λ,0,0) =(4-4λ,-2,0),A 1P →=A 1A →+AP →=(2-4λ,0,-23), CA 1→=(2,0,23).设平面BA 1P 的一个法向量为m =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧m ·BP →=(4-4λ)x 1-2y 1=0,m ·A 1P →=(2-4λ)x 1-23z 1=0,取x 1=1,得m =⎝⎛⎭⎪⎫1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n =(0,1,0). 由|cos 〈m ,n 〉|=|m ·n ||m ||n |=|2-2λ|1+(2-2λ)2+(1-2λ)23×1=34, 解得λ=43或λ=34,因为0≤λ<1,所以λ=34.故在线段AC 上存在一点P ,满足AP →=34AC →,使二面角B -A 1P -C 的平面角的余弦值为34.B 组 能力提高4.如图所示,在四棱锥P -ABCD 中,P A =PD =AD =2CD =2BC =2,且∠ADC =∠BCD =90°.(1)当PB =2时,证明:平面P AD ⊥平面ABCD ;(2)当四棱锥P -ABCD 的体积为34,且二面角P -AD -B 为钝角时,求直线P A 与平面PCD所成角的正弦值.(1)证明 如图所示,取AD 的中点O ,连接PO ,OB .∵P A =PD ,∴PO ⊥AD . ∵∠ADC =∠BCD =90°, ∴BC ∥AD ,又BC =12AD =1,∴BC =OD ,∴四边形BCDO 为矩形, ∴OB =CD =1.在△POB 中,PO =3,OB =1,PB =2, ∴∠POB =90°,则PO ⊥OB .∵AD ∩OB =O ,∴PO ⊥平面ABCD , 又PO ⊂平面P AD , ∴平面P AD ⊥平面ABCD .(2)解 由(1)知AD ⊥PO ,AD ⊥BO , ∵PO ∩OB =O ,∴AD ⊥平面POB , 又AD ⊂平面ABCD , ∴平面POB ⊥平面ABCD . 过点P 作PE ⊥平面ABCD ,则垂足E 一定落在平面POB 与平面ABCD 的交线OB 上. ∵四棱锥P -ABCD 的体积为34,∴13×PE ×12×(AD +BC )×CD =13×PE ×12×(2+1)×1 =12PE =34, ∴PE =32.∵PO =3,∴OE =PO 2-PE 2=32. 以O 为坐标原点,OA ,OB 所在直线分别为x 轴,y 轴, 在平面POB 内过点O 作垂直于平面AOB 的直线为z 轴, 建立如图所示的空间直角坐标系O -xyz . 由题意可知A (1,0,0),P ⎝⎛⎭⎫0,-32,32,D (-1,0,0),C (-1,1,0), 则DP →=⎝⎛⎭⎫1,-32,32,DC →=(0,1,0),P A →=⎝⎛⎭⎫1,32,-32.设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DP →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x -32y +32z =0,y =0,令x =1,则y =0,z =-23,∴n =⎝⎛⎭⎫1,0,-23. 设直线P A 与平面PCD 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=22×133=31313,故直线P A 与平面PCD 所成角的正弦值为31313.5.如图,已知圆锥OO 1和圆柱O 1O 2的组合体(它们的底面重合),圆锥的底面圆O 1的半径为r =5,OA 为圆锥的母线,AB 为圆柱O 1O 2的母线,D ,E 为下底面圆O 2上的两点,且DE =6,AB =6.4,AO =52,AO ⊥AD .(1)求证:平面ABD ⊥平面ODE; (2)求二面角B -AD -O 的正弦值.(1)证明 依题意知,圆锥的高为h =(52)2-52=5,又圆柱的高为AB =6.4,AO ⊥AD ,所以OD 2=OA 2+AD 2, 因为AB ⊥BD , 所以AD 2=AB 2+BD 2,连接OO 1,O 1O 2,DO 2,易知O ,O 1,O 2三点共线,OO 2⊥DO 2,所以OD 2=OO 22+O 2D 2, 所以BD 2=OO 22+O 2D 2-AO 2-AB 2=(6.4+5)2+52-(52)2-6.42=64,解得BD =8,又因为DE =6,圆O 2的直径为10,圆心O 2在∠BDE 内, 所以∠BDE =90°,所以DE ⊥BD .因为AB ⊥平面BDE ,DE ⊂平面BDE ,所以DE ⊥AB , 因为AB ∩BD =B ,AB ,BD ⊂平面ABD , 所以DE ⊥平面ABD . 又因为DE ⊂平面ODE , 所以平面ABD ⊥平面ODE .(2)解 如图,以D 为原点,DB ,DE 所在直线为x ,y 轴,建立空间直角坐标系.则D (0,0,0),A (8,0,6.4),B (8,0,0),O (4,3,11.4).所以DA →=(8,0,6.4),DB →=(8,0,0),DO →=(4,3,11.4), 设平面DAO 的法向量为u =(x ,y ,z ),所以DA →·u =8x +6.4z =0,DO →·u =4x +3y +11.4z =0,令x =12,则u =(12,41,-15).可取平面BDA 的一个法向量为v =(0,1,0),所以cos 〈u ,v 〉=u·v |u||v |=41582=8210, 所以二面角B -AD -O 的正弦值为3210.。

2020版高考数学二轮复习教程第二编专题四立体几何与空间向量第2讲空间中的平行与垂直练习理

2020版高考数学二轮复习教程第二编专题四立体几何与空间向量第2讲空间中的平行与垂直练习理

第2讲空间中的平行与垂直「考情研析」 1.从具体内容上:(1)以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题.(2)以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查. 2.从高考特点上,难度中等,常以一道选填题或在解答题的第一问考查.分值一般为5分.核心知识回顾1。

直线与平面平行的判定和性质(1)判定①判定定理:错误!a∥b,b⊂α,a⊄α⇒a∥α.错误!α∥β,a⊂α⇒a∥β.(2)性质:□,03l∥α,l⊂β,α∩β=m⇒l∥m。

2.直线和平面垂直的判定和性质(1)判定①判定定理:错误!a⊥b,a⊥c,b,c⊂α,b∩c=O⇒a⊥α.②线面垂直的其他判定方法:a。

□,02a∥b,a⊥α⇒b⊥α.b。

□,03l⊥α,α∥β⇒l⊥β。

c。

□04α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β。

(2)性质①错误!l⊥α,a⊂α⇒l⊥a.②错误!l⊥α,m⊥α⇒l∥m.3.两个平面平行的判定和性质(1)判定①判定定理:错误!a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α。

②面面平行的其他判定方法:a.错误!l⊥α,l⊥β⇒α∥β。

b.错误!α∥γ,α∥β⇒β∥γ。

(2)性质:错误!α∥β,γ∩α=a,γ∩β=b⇒a∥b。

4.两个平面垂直的判定和性质(1)判定:错误!a⊂α,a⊥β⇒α⊥β.(2)性质:错误!α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β。

热点考向探究考向1 空间线面位置关系的判定例1 (1)(2019·陕西延安高考模拟)已知m,n表示两条不同的直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α答案B解析若m∥α,n∥α,则m,n相交或平行或异面,故A错误;若m⊥α,n⊥α,由线面垂直的性质定理可知m∥n,故B正确;若m ⊥α,m⊥n,则n∥α或n⊂α,故C错误;若m∥α,m⊥n,则n∥α或n⊂α或n⊥α或n与α斜交,故D错误.故选B。

2020年高考理科数学重难点03 空间向量与立体几何(原卷板)

2020年高考理科数学重难点03  空间向量与立体几何(原卷板)

重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.82.(2019·天津高考模拟(理))已知四面体ABCD的四个面都为直角三角形,且AB 平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ;1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:①若m α⊂,αβ⊥,则m β⊥; ①若//a β,m β⊂,则//m α;①若m α⊥,//m n ,//αβ,则n β⊥; ①若//m α,//n β,//m n ,则//αβ 其中正确命题的序号是( )A .①①B .①①C .①①D .①①5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ;(2)求锐二而角A PB C --的余弦值.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒,PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD 所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ;(2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切(①)证明://BC 平面PAD ;(①)若M 是BP 的中点,求二面角P CD M --的余弦值.10 (2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F M ,N 分别是棱AB , AD 11A B 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。

2020版高考数学大二轮复习第二部分专题3立体几何第3讲空间向量与立体几何课件理

2020版高考数学大二轮复习第二部分专题3立体几何第3讲空间向量与立体几何课件理

[题后悟通] 利用空间向量证明空间垂直、平行的一般步骤 (1)建立空间直角坐标系,建系时要尽可能地利用条件中的垂直关系. (2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、 平面的要素. (3)通过空间向量的运算求出直线的方向向量或平面的法向量,再研究平行、垂直关系. (4)根据运算结果解释相关问题.
以 D 为坐标原点,DE,DC,DP 所在的直线分别为 x 轴,y 轴,z 轴建立空间直角坐 标系,如图所示.
则 D(0,0,0),P(0,0,3),N(323,12,0),C(0,3,0),A(323,-32,0),M(0,0,1),所以A→M =(-3 2 3,32,1),P→C=(0,3,-3),N→C=(-3 2 3,52,0). 设平面 PNC 的法向量为 n=(x,y,z),
所以 EF∥BC1. 又 EF⊄平面 BCC1B1,BC1⊂平面 BCC1B1, 所以 EF∥平面 BCC1B1.
(2)以 A1 为原点建立如图所示的空间直角坐标系 A1-xyz, 则 A(0,0,6),B1(0,4,0),E(2,0,3),F(0,2,6), 所以B→1F=(0,-2,6),A→E=(2,0,-3),A→F=(0,2,0). 设平面 AEF 的法向量为 n=(x,y,z),
n·A→E=2x-3z=0
则n·A→F=2y=0
,令 x=3,得 n=(3,0,2).

B1F
与平面
AEF
所成ห้องสมุดไป่ตู้为
θ,则
sin
θ=|cos〈B→1F,n〉|=3
130 65 .
2.(2019·保定模拟)如图,已知四棱锥中,四边形 ABCD 为矩形,AB=2 2,BC=SC =SD=2,BC⊥SD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2019·合肥二模)如图,三棱台ABC -EFG 的底面是正三角形,平面ABC ⊥平面BCGF ,CB =2GF ,BF =CF .(1)求证:AB ⊥CG ;(2)若BC =CF ,求直线AE 与平面BEG 所成角的正弦值.详细分析:(1)证明:取BC 的中点为D ,连接DF .由ABC -EFG 是三棱台得,平面ABC ∥平面EFG ,从而BC ∥FG .∵CB =2GF ,∴CD 綊GF ,∴四边形CDFG 为平行四边形,∴CG ∥DF .∵BF =CF ,D 为BC 的中点,∴DF ⊥BC ,∴CG ⊥BC .∵平面ABC ⊥平面BCGF ,且交线为BC ,CG ⊂平面BCGF ,∴CG ⊥平面ABC ,而AB ⊂平面ABC ,∴CG ⊥AB .(2)连接AD .由△ABC 是正三角形,且D 为中点得,AD ⊥BC .由(1)知,CG ⊥平面ABC ,CG ∥DF ,∴DF ⊥AD ,DF ⊥BC ,∴DB ,DF ,DA 两两垂直.以DB ,DF ,DA 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设BC =2,则A (0,0,3),E ⎝⎛⎭⎫-12,3,32,B (1,0,0),G (-1,3,0), ∴AE →=⎝⎛⎭⎫-12,3,-32,BG →=(-2,3,0),BE →=⎝⎛⎭⎫-32,3,32.设平面BEG 的一个法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧ BG →·n =0BE →·n =0,可得⎩⎪⎨⎪⎧ -2x +3y =0,-32x +3y +32z =0.令x =3,则y =2,z =-1,∴n =(3,2,-1).设AE 与平面BEG 所成角为θ,则直线AE 与平面BEG 所成角的正弦值为sin θ=|cos 〈AE →,n 〉|=⎪⎪⎪⎪⎪⎪AE →·n |AE →|·|n |=64.2.(2019·湖南五市十校联考)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AD =CD =22,BC =42,P A =2.(1)求证:AB ⊥PC ;(2)在线段PD 上,是否存在一点M ,使得二面角M -AC -D 的大小为45°,如果存在,求出BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.详细分析:(1)证明:由已知得四边形ABCD 是直角梯形,由AD =CD =22,BC =42,可得△ABC 是等腰直角三角形,即AB ⊥AC ,因为P A ⊥平面ABCD ,所以P A ⊥AB ,又P A ∩AC =A ,所以AB ⊥平面P AC ,所以AB ⊥PC .(2)建立如图所示的空间直角坐标系,则A (0,0,0),C (22,22,0),D (0,22,0),P (0,0,2),B (22,-22,0),PD →=(0,22,-2),AC →=(22,22,0),AP →=(0,0,2).设PM →=tPD →(0<t <1),则PM →=(0,22t ,-2t ),所以AM →=AP →+PM →=(0,22t,2-2t ).设平面MAC 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AC →=0,n ·AM →=0,即⎩⎪⎨⎪⎧ 22x +22y =0,22ty +(2-2t )z =0, 则可取n =⎝ ⎛⎭⎪⎫1,-1,2t 1-t . 又m =(0,0,1)是平面ACD 的一个法向量,所以|cos 〈m ,n 〉|=|m·n ||m ||n |=⎪⎪⎪⎪⎪⎪2t t -12+⎝ ⎛⎭⎪⎫2t t -12=cos 45°=22,解得t =12,即点M 是线段PD 的中点. 此时平面MAC 的法向量n =(1,-1,2),M (0,2,1),BM →=(-22,32,1).设BM 与平面MAC 所成的角为θ,则sin θ=|cos 〈n ,BM →〉|=|n ·BM →||n ||BM →|=269. 所以存在PD 的中点M 使得二面角M -AC -D 的大小为45°,且BM 与平面MAC 所成角的正弦值为269.3.(2019·郑州二模)如图,等腰直角△ABC 中,∠B =90°,平面ABEF ⊥平面ABC,2AF =AB =BE ,∠F AB =60°,AF ∥BE .(1)求证:BC ⊥BF ;(2)求二面角F -CE -B 的正弦值.详细分析:(1)证明:∵等腰直角△ABC 中,∠B =90°,∴BC ⊥AB ,∵平面ABEF ⊥平面ABC ,平面ABEF ∩平面ABC =AB ,∴BC ⊥平面ABEF ,∵BF ⊂平面ABEF ,∴BC ⊥BF .(2)由(1)知BC ⊥平面ABEF ,故以B 为原点,建立如图所示的空间直角坐标系B -xyz ,设2AF =AB =BE =2,∵∠F AB =60°,AF ∥BE .∴B (0,0,0),C (0,2,0),F ⎝⎛⎭⎫32,0,32,E (-1,0,3), EC →=(1,2,-3),EF →=⎝⎛⎭⎫52,0,-32,BC →=(0,2,0), 设平面CEF 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·EC →=0,n ·EF →=0,即⎩⎪⎨⎪⎧ x +2y -3z =0,52x -32z =0,令x =3,得n =(3,23,5),设平面BCE 的一个法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ m ·EC →=0,m ·BC →=0,即⎩⎪⎨⎪⎧x 1+2y 1-3z 1=0,2y 1=0,取x 1=3,得m =(3,0,1), 设二面角F -CE -B 的平面角为θ.则|cos θ|=⎪⎪⎪⎪m·n |m |·|n |=82×210=105, ∴sin θ=155, ∴二面角F -CE -B 的正弦值为155. 4.(2019·高考全国卷Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.详细分析:(1)证明:由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG ,所以AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B ,所以AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ CG →·n =0,AC →·n =0,即⎩⎪⎨⎪⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0),所以cos 〈n ,m 〉=n ·m |n ||m |=32. 因此二面角B -CG -A 的大小为30°.5.(2019·汉阳区校级模拟)如图,四边形ABCD 与BDEF 均为菱形,F A =FC ,且∠DAB =∠DBF =60°.(1)求证:AC ⊥平面BDEF ;(2)求直线AD 与平面ABF 所成角的正弦值.详细分析:(1)证明:设AC 与BD 相交于点O ,连接FO , ∵四边形ABCD 为菱形,∴AC ⊥BD ,且O 为AC 的中点,∵F A =FC ,∴AC ⊥FO ,又FO ∩BD =O ,∴AC ⊥平面BDEF .(2)连接DF ,∵四边形BDEF 为菱形,且∠DBF =60°,∴△DBF 为等边三角形,∵O 为BD 中点,∴FO ⊥BD ,又AC ⊥FO ,∴FO ⊥平面ABCD .∵OA ,OB ,OF 两两垂直,∴建立空间直角坐标系O -xyz ,如图所示,设AB =2,∵四边形ABCD 为菱形,∠DAB =60°,∴BD =2,AC =2 3.∵△DBF 为等边三角形,∴OF = 3.∴A (3,0,0),B (0,1,0),D (0,-1,0),F (0,0,3),∴AD →=(-3,-1,0),AF →=(-3,0,3),AB →=(-3,1,0). 设平面ABF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AF →·n =-3x +3z =0,AB →·n =-3x +y =0,取x =1, 得n =(1,3,1).设直线AD 与平面ABF 所成角为θ,则直线AD 与平面ABF 所成角的正弦值为:sin θ=|cos 〈AD →,n 〉|=|AD →·n ||AD →|·|n |=155.。

相关文档
最新文档