选修2-1 空间向量知识点归纳总结材料

合集下载

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图3­1①,AB ,CD 是二面角α­l ­β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图3­1(ⅱ)如图3­1②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图3­2,在四棱锥S ­ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图3­2①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图3­3,已知ABCD ­A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图3­3【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ­ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图3­4,长方体ABCD­A1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图3­4(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图3­5,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′­BCDE ,其中A ′O = 3.(1) (2)图3­5(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′­CD ­B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′­CD ­B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′­CD ­B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图3­6,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图3­6[跟踪训练]4.在如图3­7所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图3­7(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F ­BC ­A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F ­BC ­A 的余弦值为77.。

选修2-1第三章 空间向量及其运算

选修2-1第三章  空间向量及其运算

空间向量及其运算1理解空间向量的有关概念,掌握向量的线性运算;2 掌握空间向量定理及坐标表示;3 能运用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题。

1、向量的概念:我们把既有大小又有方向的量叫向量。

2、向量与有向线段的区别:有向线段:具有方向的线段就叫做有向线段。

三个要素:起点、方向、单位长度.(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,即为相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.3、零向量、单位向量概念:①长度为0的向量叫零向量,记作0。

0的方向是任意的.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.4、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的......起点无关.....5、共线向量与平行向量关系:(1)平行向量的定义:①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行.(2)向量a、b、c平行,记作a∥b∥c.平行向量就是共线向量,因为任一组平行向量都可移到同一直线上(与有向线段.....的起点无关).......6、实数与向量的积:实数与向量的积是一个向量,记作: (1);(2)>0时与方向相同;<0时与方向相反;=0时=;(3)运算定律1、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量,设(单位正交基底)为坐标向量,则存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作.在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标.2、空间向量的直角坐标运算律(1)若,,则,,, ,(2)若,,则.λ→a λ→a ||||||→→=a a λλλλ→a a λλ→a a λλ→a →0.)(,)(,)()(→→→→→→→→→+=++=+=b a b a a a a a a λλλμλμλλμμλa ,,i j k 123(,,)a a a 123a a i a j a k =++123(,,)a a a a O xyz -123(,,)a a a a =O xyz -A (,,)x y z OA xi yj zk =++(,,)x y z A O xyz -(,,)A x y z x y z 123(,,)a a a a =123(,,)b b b b =112233(,,)a b a b a b a b +=+++112233(,,)a b a b a b a b -=---123(,,)()a a a a R λλλλλ=∈112233//,,()a b a b a b a b R λλλλ⇔===∈111(,,)A x y z 222(,,)B x y z 212121(,,)AB x x y y z z =---一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

苏教版高中数学选修2-1知识讲解_空间向量的坐标表示_提高

苏教版高中数学选修2-1知识讲解_空间向量的坐标表示_提高

空间向量的坐标表示: :【学习目标】1.理解空间向量的基本定理,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的加法、减法的坐标运算;3.能通过坐标运算判断向量的共线关系.【要点梳理】要点一、空间向量的基本定理1.空间向量的基本定理:如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z ,使p =x a +y b +z c .2.基底、基向量概念:由空间向量的基本定理知,若三个向量a 、b 、c 不共面,那么所有空间向量所组成的集合就是{p |p =x a +y b +z c ,x 、y 、z ∈R},这个集合可看做是由向量a 、b 、c 生成的,所以我们把{a 、b 、c }称为空间的一个基底.a 、b 、c 叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底.要点诠释:1.空间任意三个不共面的向量都可以作为空间向量的一个基底;2.由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0;3.一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念. 要点二、空间向量的坐标表示1.单位正交基底若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,常用{,,}i j k 表示;2.空间直角坐标系在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz ,点O 叫原点,向量,,i j k 都叫坐标向量。

通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;(3)空间直角坐标系中的坐标 x y z Okj i给定一个空间直角坐标系和向量a ,其坐标向量为i ,j ,k ,若a=a 1i+a 2j+a 3k ,则有序数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,上式可简记作a =(a 1,a 2,a 3).在空间直角坐标系Oxyz 中,对于空间任一点A ,对应一个向量OA ,若OA xi yj zk =++,则有序数组(x ,y ,z )叫点A 在此空间直角坐标系中的坐标,记为A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫点A 的纵坐标,z 叫点A 的竖坐标.写点的坐标时,三个坐标之间的顺序不可颠倒.要点诠释:1.空间任一点P 的坐标的确定.过P 作面xOy 的垂线,垂足为P ',在面xOy 中,过P '分别作x 轴、y 轴的垂线,垂足分别为A 、C ,则x=|P 'C|,y=|AP '|,z=|PP '|.如图.2.空间相等向量的坐标是唯一的;另外,零向量记作0(0,0,0)=。

选修2-1第三章空间向量与立体几何归纳整合

选修2-1第三章空间向量与立体几何归纳整合

→ →
→ →
网络构建
专题归纳
高考真题
【例3】 在棱长为1的正方体ABCD-A1B1C1D1中,E为棱BC的 中点,点F是棱CD上的动点,试确定点F的位置,使得
D1E⊥平面AB1F.
解 如图建立空间直角坐标系: 则 A(1,0,0), B1(1, 1, 1), 1 D1(0, 0, 1), E( , 1, 0). 2 设 F(0,y,0),则AB1=(0, 1, 1), 1 AF= (-1,y,0),D1E= ( ,1,-1), 2



网络构建
专题归纳
高考真题
要使 D1E⊥平面 AB1F,
→ → 1- 1= 0, D1E·AB1=0, 1 只需 即 即 y= . 1 2 → → - +y=0, D1E·AF= 0, 2
∴当 F 为 CD 中点时,有 D1E⊥平面 AB1F.
网络构建
专题归纳




如图所示, 用 a, b, c 分别代表棱OA、

OB、OC上的三个单位向量, 则f1=a,f2=2b,f3=3c,


则f=f1+f2+f3=a+2b+3c,
∴|f|2=(a+2b+3c)(a+2b+3c)
=|a|2+4|b|2+9|c|2+4a· b+6a· c+12b· c =14+4cos 60°+6cos 60°+12cos 60° =14+2+3+6=25, ∴|f|=5,即所求合力的大小为5.
算类似,是平面向量的拓展,主要考查空间向量的共线与
共面以及数量积运算,是用向量法求解立体几何问题的基
础.
网络构建
专题归纳
高考真题
【例1】沿着正四面体 O-ABC 的三条棱OA、OB、OC的方向有大

高二上期末复习6--选修2-1空间向量

高二上期末复习6--选修2-1空间向量

因此,∠AEB是所求二面角的平面角,
EA EB 21 cos( EA, EB ) , 7 | EA | | EB |
21 7
解得所求二面角的余弦值为
例3 如图,在四棱锥P-ABCD中,底面ABCD为矩形, 侧棱PA⊥底面ABCD,AB= 3 ,BC=1,PA=2, E为PD的中点 (Ⅰ)求直线AC与PB所成角的余弦值; (Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC, 解:(Ⅰ)建立如图所示的空间直 角坐标系,则A(0,0,0)、B( ,0,0)、 C( 3 ,1,0)、D(0,1,0) 、P(0,0,2)、 3 1 E(0, ,0),
1 1 NC (1 x ,1 y , z ), MC (1, 0, ), x 1 , y 1, z . 2 2 1 4 要使 AN MC , 只需 AN MC 0即x z 0, 解得 .

从而 n (2,1,2)
| D1 E n | 2 1 2 1 . 所以点到平面的距离为 h 3 3 |n|
n ( a , b , c ) (3 )设平面 D1EC 的法向量 , ∴ CE (1, x 2, 0), D1C (0, 2, 1), DD1 (0, 0,1),
(2)线线垂直:证两直线的方向向量垂直,即 a b a b 0
(3)线面垂直: ①证直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线的方向向量共线; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线 性变式直线的方向向量.
(4)线面垂直: ①证直线的方向向量与平面的法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行: ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直: ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6.运用空间向量求空间角.

选修2-1-第三章-空间向量及其运算知识点

选修2-1-第三章-空间向量及其运算知识点

空间向量及其运算知识点1.空间向量的有关概念⑴空间向量:在空间中,具有大小和方向的量叫做空间向量.(2)单位向量:模为1的向量称为单位向量(3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.(5)共面向量:平行于同一个平面的向量.2•空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuu uuu uuuu uuuu uuuuuOAn=OA+A| A2+ A2A g+ + An—i A n•运算律:①加法交换律: a + b= b + a ②加法结合律:(a+ b) + c= a + (b + c)③数乘分配律:入(+ b)=入a入b.3.共线向量、共面向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量 a, b(b丰0) a II b的充要条件是存在实数人使得a =^b推论:|点P在直线 AB上的充要条件是:uuu um存在实数人使得AP AB ①uuu uir uur或对空间任意一点O,有OP OA AB ②um uur urn或对空间任意一点O, 有OP xOA yOB其中x+ y= 1 ③urn uur um uir uuu uur uur uur【推论③推导过程: OP OA AB OA (AO OB) (1 )OA OB】(2)共面向量定理如果两个向量a, b不共线,那么p与a, b共面的充要条件是存在唯一有序实数对(x,y)使p = xa+ yb推论:|空间一点P位于平面 ABC内的充要条件|是uur uur uur存在唯一有序实数对(x,y)使AP xAB yAC ,uin uir uur uuu或对空间任意一点O, 有OP OA xAB yACurn uur uur uuu或对空间任意一点O, 有OP xOA yOB zOC,其中x+ y+ z= 1uur uur uuu uuu uur uur uuu【推论③推导过程呈:OP OA xAB yAC (1 x y)OA xOB yOC】(3)空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在有序实数组{x, y, z},使得p = xa+ yb+ zc基底:把{a, b, c}叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量 a , b,在空间任取一点 0,作OA= a, Ofe= b,则/ AOB叫做向量a与b的夹角,记作〈a, b >,其范围是0w〈 a, b >三爭若〈a, b〉=寸,则称a与b互相垂直,记作a丄b.②两向量的数量积:已知空间两个非零向量a, b,向量a, b的数量积记作a b,且a b= | a||b |cos〈 a, b >.(2)空间向量数量积的运算律:①结合律:(扫)b=?(ab);②交换律:a b = b a;③分配律:a ( b+ c)= a b + a c.5.空间向量的坐标表示及应用(1)数量积的坐标运算:a(2) 共线与垂直的坐标表示:b = a 1b 1 + a 2b 2+ a 3b 3.a / b? a= ?b? a 1 =入 b, a 2=入 2, a 3=入 3 (入€ R),a 丄b? a b= 0? a 1b 1+ a 2b 2+ a 3b 3= 0(a, b 均为非零向量). (3)模、夹角和距离公式: | a| = .'a a = 'a ! + a 2 + a 3,a b a 1b 1 + a 2b 2+ a 3b 3C0S a,b |a||b|.'a 2+ a 2+ a 3 • b 1 + b 2 +.设 A(a 1, b 1, C 1), B(a 2, b 2,⑵,贝U d AB = | AB| = : a 2 — a 1 2+b 2— b 1 2+Q —C 1 26. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底{a, b, c}; (2) 用a ,b ,c 表示相关向量; (3) 通过运算完成证明或计算问题.题型一 空间向量的线性运算 用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量 的和与差的形式,进而寻找这些向量与基向量的关系.例1:三棱锥 O —ABC 中,M, N 分别是OA, BC 的中点,G 是厶ABC 的重心,用基向量 OA, OB, OC 表示MG , OG解析:M G = M A + AG= 2O A+ 3AN= ^OA+ |(O N —O A)=苏+f[2(OB+ OC)—OA]= — |O A+ 3<5B + ^OCC )G = O M + M G = ?OA- 6<5A +|<5B +1(5C = £O A+ |OB + 扌OC〉1 T T —urn uu n uuu uuu例 2:如图所示,ABCD — A 1B 1C 1D 1 中,ABCD 是平行四边形.若 AE= |EC A*= 2FD,且 EF =x AB+y AD+zAA ,题型二共线定理应用 向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与b 共线.点共线问题:证明点共线问题可转化为证明向量共线问题,如证明 例3:如图所示,四边形 ABCD, ABEF 都是平行四边形且不共面,1 1•/ E A = — 3心-3( AB+ AD) 1 1 2 uuu A F = AD+ DF= AD — F D= A D — A 1D= A D —; (A 1A+ AD)= — AD 3331 uuu 1 uuu AA EF= EA+ AF= AD3 3 1 uuu AA 31 uuu AB 3a 与b ,化简得出a = b ,从而得出a// b,即A 、B 、C 三点共线,即证明 AB 与AC 共线.M , N 分别是AC, BF 的中点,判断CE 与 MN 是否连接 AF, EF= EA+ A F.ABCD- A 1B 1C 1D 1 中,E 在 A 1D 1 上,且 A 1E= 2EDi,AA 1= c.2 2 2 2 2 2 2 A 1 F= §FC= 5A 1 C=5(AC — AA 1) = 5(AB + AD — AA 1) =5a + £b — £c42 2 2 TTTT2 215b — §c= 5 a — 3b — c , EB= EA + A 1A+ AB= — 3b — c+ a= a — 3b — c,T T2•- EF= 5EB •所以E, F, B 三点共线.题型三共面定理应用yPC,或对空间任一点 O,有 OP= OA+ xPB+ yPC 或 OP= xOA+ yOB+ zOC(x+ y+ z= 1)即可uur CE uir CBuur BE uuu MNuuu MC uir CB uuu BN 1 uuu — AC 2TMN , uir i uu uur 1 uuu uu CB (BA BE) (AC BA)uir CB 1 uur 1 uir2BE"CB1 uur BE 2••• CE= 2MN ,••• CE// 即CE 与MN 共线.例5 :已知A 、B 、2C 三点不共线,对于平面 ABC 外一点O,若OP= 5ITT1 2OA+ 5OB+ 5OC,则点P 是否与A 、B 、C定共面试说明理由. 2 UUU 解析:••• OP 5 1TULT OA 2T1 uu u — OB 52 uuu -OC3 2 uuu uir -(OP + PA) 5 1 uuu uir —(OP + PB) 5 2 uu u uuu uiu 2 uir 1 uir 2 uu —(OP + PC)=OP + —PA+— PB + — PC 3 5 5 3• AP=;AB+;AC,故 A 、B 、C P 四点共面•F 在对角线A 1C 上,且心託点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明P 、A 、B 、C 四点共面,只要能证明 PA= xPB+例4:如图所示,在正方体2 T例6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点, 连结PA 、PB PC PD,点E 、F 、G 、H 分别为△ PAB△ PBC △ PCD △ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长PE 、 ••• E、F 、G 、H 分别是所在三角形的重心,•f f f例7:正方体ABCD- A 1B 1C 1D 1中,E, F 分别是BBi 和A 1D 1的中点,求证向量 A 1B, BQ, EF 是共面向量.Dy Ci157i1 11 1证明:如图所示,EF= EB+ BA i + A 1F = 2B i B-A i B+ 尹1。

(word完整版)选修2-1-第三章-空间向量及其运算知识点,文档.docx

(word完整版)选修2-1-第三章-空间向量及其运算知识点,文档.docx

3.1 空间向量及其运算知识点1. 空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫做空间向量. (2)单位向量:模为 1 的向量称为单位向量 (3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量. (5)共面向量:平行于同一个平面的向量. 2.空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuur uuur uuuur uuuur uuuuur OA n =OA 1+A 1 A 2+ A 2 A 3+ +A n -1 A .n运算律:①加法交换律: a + b = b + a ②加法结合律: (a + b)+ c = a + (b +c) ③数乘分配律: λ(a + b)= λa+ λb.3.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量 a , b(b ≠ 0), a ∥b 的充要条件是存在实数 λ,使得 a = λb .推论: 点 P 在直线 AB 上的充要条件 是:uuuruuur存在实数 λ,使得 APAB ①uuuruuur uur或对空间任意一点O,有 OP OAAB ②uuur uur uuur或对空间任意一点O ,有 OPxOA yOB 其中 x + y = 1 ③uuur uur uuur uur uuur uuur uuruuur 【推论③推导过程:OP OA AB OA (AO OB) (1)OAOB 】(2)共面向量定理如果两个向量 a ,b 不共线,那么 p 与 a ,b 共面的充要条件是存在唯一有序实数对 (x,y )使 p = xa + yb推论: 空间一点 P 位于平面 ABC 内的充要条件 是uuur uuur uuur存在唯一有序实数对 (x,y )使 AP xAB yAC ,uuur uur uuur uuur或对空间任意一点 O ,有 OP OA xAB yACuuur uur uuur uuur或对空间任意一点 O ,有 OP xOA yOB zOC ,其中 x + y + z = 1【推论③推导过程:(3)空间向量基本定理uuur uur uuur uuur uur uuuruuur OP OA xAByAC (1 x y)OA xOByOC 】如果三个向量 a , b , c 不共面,那么对空间任一向量 p ,存在有序实数组 { x , y ,z} ,使得 p = xa + yb + zc 基底:把 { a , b , c} 叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4. 空间向量的数量积及运算律(1)数量积及相关概念→ →①两向量的夹角: 已知两个非零向量 a ,b ,在空间任取一点O ,作 OA = a ,OB = b ,则∠ AOB 叫做向量 a 与 b 的夹π角,记作〈 a ,b 〉,其范围是 0≤〈 a , b 〉≤ π,若〈 a , b 〉= 2,则称 a 与 b 互相垂直,记作 a ⊥b. ②两向量的数量积: 已知空间两个非零向量 a ,b ,向量 a , b 的数量积记作 a ·b ,且 a ·b = |a||b|cos 〈 a , b 〉.(2)空间向量数量积的运算律:①结合律: (λa) ·b = λ(a ·b); ②交换律: a ·b = b ·a ; ③分配律: a ·(b + c)= a ·b + a ·c.5. 空间向量的坐标表示及应用设 a = (a 1,a 2,a 3) ,b = (b 1, b 2, b 3)(1)数量积的坐标运算: a ·b =a 1 b 1+ a 2b 2+ a 3 b 3. (2)共线与垂直的坐标表示:(3)模、夹角和距离公式:|a|= a ·a = 222a 1+ a 2+ a 3,a ·b = a 1b 1+ a 2b 2 +a 3b 3 cos 〈 a ,b 〉= |a||b| 2 2 22 2 2 .1 2 3 1 2 3→设 A(a 1, b 1, c 1), B(a 2, b 2, c 2),则 d AB = |AB|=6. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底 { a , b , c} ;(2) 用 a , b , c 表示相关向量;(3) 通过运算完成证明或计算问题.).a 2- a 1 2+b 2 -b 1 2+c 2- c 1 2 .题型一 空间向量的线性运算用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量的和与差的形式,进而寻找这些向量与基向量的关系.例 1:三棱锥 O — ABC 中, M , N 分别是 OA , BC 的中点, G 是△ ABC 的重心,用基向量 → → →→OA , OB , OC 表示 MG ,→ .OG1 →2 → 1 → 2 → →1 →2 1 → →→1 → 1 → 1 → →→ →解析: MG =MA + AG =OA +AN = OA + (ON - OA)= OA +3 [ (OB + OC)- OA] =-6OA +OB + OC.23 2 322 33→→→→→ →→→→ →OG =OM + MG =1OA -1OA +1OB + 1OC =1OA +1OB +1OC.2633 333 uuur uuur uuur uuur→ 1 → →→, 例 2:如图所示, ABCD - A 1B 1C 1D 1 中,ABCD 是平行四边形. 若 AE = EC ,A 1F = 2FD ,且 EF =x AB+y AD+z AA2 1 试求 x 、 y 、 z 的值..解→ → →→ 1 → 1→ →连接 AF ,EF =EA +AF .∵ EA =-3 AC =-( AB + AD )3→→ → → → → 1 →→ 1 →→2 uuur 1uuur→ → → 1 uuur 1 uuur 1 uuurAF = AD + DF = AD -FD = AD -1 = AD - ( A 1+ AD )=3 AD3A 1A∴ EF = EA + AF =3 AD3AA13 AB3A D3A题型二共线定理应用向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与 b ,化简得出 a =b ,从而得出 a ∥ b ,即a 与b 共线.→ →点共线问题 :证明点共线问题可转化为证明向量共线问题,如证明A 、B 、C 三点共线,即证明AB 与 AC 共线.a ⊥b? a ·b =0? a 1b 1+ a 2b 2+ a 3b 3= 0(a , b 均为非零向量a ∥b? a = λb? a 1= λb 1,a 2 =λb 2, a 3= λb 3(λ∈ R),→→例 3:如图所示,四边形 ABCD , ABEF 都是平行四边形且不共面,M ,N 分别是 AC , BF 的中点,判断 CE 与 MN是否共线?uur uur uur CE CB BE∵uuur uuur uuruuur1 uuur uur 1 uur uur1 uuur uur uur 1 uur1 uur1 uurMNMCCBBNAC CB2( BA BE)2( AC BA) CBBECBBE2222→ → → → → →∴ CE = 2MN ,∴ CE ∥MN ,即 CE 与MN 共线.→→→例 4:如图所示,在正方体ABCD - A 1 B 1C 1D 1 中, E 在 A 1D 1 上,且 A 1E = 2ED 1, F 在对角线 A 1C 上,且 A 1F = 2F C .3求证: E , F , B 三点共线.→→→证明: 设 AB = a , AD = b , AA 1= c.→→ → = 2 →→→→ → → → →∴ A 1 = 2ED 1=2 1 =2 FC = 212 (AC -AA 1 2 (AB + AD - AA 1 2 2 2 c35 3 3 5 55 5 5 → → → 2 4 2 2 2 → → → → 2 2 = A 1 - A 1 = =EA 1+ A 1 + AB =-∴ E F 5a - 15b -5c = 5a - b - c3b -c + a = a -3b - c , F E 3 , EBA →→2∴ EF = 5EB.所以 E , F , B 三点共线.题型三共面定理应用→→点共面问题 :证明点共面问题可转化为证明向量共面问题,如要证明→ → → → → → →P 、A 、B 、 C 四点共面,只要能证明 → → PA = xPB+ yPC ,或对空间任一点 O ,有 OP =OA + xPB + yPC 或 OP = xOA + yOB + zOC(x +y + z = 1)即可→2→→→例 5:已知 A 、 B 、C 三点不共线,对于平面 ABC 外一点 O ,若 OP =125OA + OB + OC ,则点 P 是否与 A 、 B 、C55一定共面?试说明理由.1 uur2 uuuruuur uur 1uuur 2 uur1 uur2 uuuruuur 2 uur2 uuur uur 2 uuur uuur 解析: ∵ OPOAOBOC5 (OP+PA)(OP+PB)3(OP+ PC)=OP+ PA+PB+PC5 5 3 55 5 3→→→12∴ AP = 5AB + 5AC ,故 A 、 B 、C 、 P 四点共面 .例 6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点,连结PA 、PB 、PC 、PD ,点 E 、F 、 G 、H 分别为△ PAB 、△ PBC 、△ PCD 、△ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长 PE 、 PF 、 PG 、 PH 交对边于 M 、 N 、 Q 、 R.∵ E 、 F 、 G 、H 分别是所在三角形的重心,∴ M 、 N 、 Q 、 R 为所在边的中点→ → →→ →→ →→顺次连结 M 、 N 、 Q 、 R ,所得四边形为平行四边形,且有222 2PE = PM, PF = PN,PG = PQ , PH = PR.333 3→ → → 2 →2 → 2 →2 → → 2 → → 2 → → 23 → 3 → 2 3 → 3 → ∴ EG =PG - PE = PQ -PM = MQ = ( MN + MR)= (PN - PM)+ (PR - PM)=( PF - PE)+ ( PH - 2 PE)3333333 223 2→ →= EF + EH . ∴由共面向量定理得E 、F 、G 、H 四点共面 .→ → →例 7:正方体 ABCD - A 1 B 1C 1 D 1 中, E , F 分别是 BB 1 和 A 1D 1 的中点,求证向量 A 1B , B 1C , EF 是共面向量.→→→→ → → → →→→ → →=1 - A + 1 = 1 +BC = 1- A 证明: 如图所示, EF = EB + BA + A(B 1B )-A 1B 1B.2 222→ → →由向量共面的充要条件知A 1B ,B 1C , EF 是共面向量.题型四 空间向量数量积的应用例 8:①如图所示,平行六面体ABCD — A 1B 1C 1D 1 中,以顶点 A 为端点的三条棱长都为1,且两两夹角为 60°.(1) 求 AC 1 的长;(2) 求 BD 1 与 AC 夹角的余弦值.解析: → → →(1)记 AB = a ,AD = b ,AA 1= c ,则 |a|= |b|= |c|= 1,〈 a ,b 〉=〈 b ,c 〉=〈 c , a 〉= 60°, ∴ a ·b = b ·c = c ·a = 1.2→2(a ·b + b ·c + c ·a)= 1+ 1+ 1+ 2×1 1 1→|= 6,|AC 1|2= ( a + b + c)2= a 2+ b 2+ c 2+2 + +2= 6, ∴ |AC 12即 AC 1 的长为 6. → → → (2)BD 1= b + c - a , AC = a + b ,∴ |BD 1|=→ → → → 6 BD ·AC∴ cos 〈BD 1,AC 〉= 1= 6 .∴ AC → → |BD 1||AC|→ → →2, |AC|= 3, BD 1·AC = (b + c - a) ·(a + b)= b 2- a 2+ a ·+cb ·=c 1. 6 与 BD 1 夹角的余弦值为6 .→ →②已知空间四边形ABCD的每条边和对角线的长都等于a ,点E 、F分别是BC 、AD的中点,则AE ·AF 的值为()2A .a B.1a 22C.1a 24D.3a 24→→ →解析: 设 AB = a , AC = b ,AD = c ,则 |a|= |b|= |c|= a ,且 a , b , c 三向量两两夹角为 60°.→→ → →1 1 1 1 1 1 1AE =(a + b), AF = c ,∴ AE ·AF =(a + b) ·c = (a ·c + b ·c)= (a 2cos60°+ a 2cos60 °)= a 2.22 2 2 4 4 4题型五 空间向量坐标运算例 9:如图所示, PD 垂直于正方形→ →3 ABCD 所在平面, AB = 2, E 为 PB 的中点, cos 〈 DP , AE 〉=,若以 DA ,3DC , DP 所在直线分别为 x , y , z 轴建立空间直角坐标系,则点 E 的坐标为 ()A . (1,1,1) B. 1, 1, 1 C. 1, 1, 3D . (1,1,2)2 2设 PD = a (a>0) ,则 A(2,0,0) , B(2,2,0) ,P(0,0, a), E 1, 1,a2 ,→ → a → →3, ∴ a 2 2+ a 2 3, ∴ a = 2.∴ E 的坐标为 (1,1,1) .∴ DP = (0,0, a), AE = - 1, 1,2 , cos 〈DP , AE 〉=3= a 4 ·23例 10:已知 a = (2,- 1,3), b =(- 1,4,- 2),c = (7,5, λ).若 a , b , c 三向量共面,则实数 λ=________________33 t = 7,7= 2t - μ,17,解析:由题意得 c = ta + μb =(2t - μ,- t + 4μ, 3t - 2μ),∴ 5=- t +4μ,∴ μ=7λ=3t -2μ. 65λ= 7.例 11:已知△ ABC 的顶点 A(1,1,1) , B(2,2,2) , C(3,2,4) ,试求△ ABC 的面积→→→→→ →AB =(1,1,1) , AC = (2,1,3) , |AB|= 3, |AC|= 14, AB ·AC = 2+1+ 3= 6,→ → 6 6 36= 1∴ cosA = cos 〈 AB , AC 〉= = .∴ sinA = 1- .3· 14 42 427→ → 1 1 61 = × 3× 14× =∴ S △ABC = |AB| |AC ·| sinA · 27.2 2例 12:已知 a = (λ+ 1,0,2), b =(6,2μ- 1,2λ),若 a ∥ b ,则 λ与 μ的值可以是 ()A . 2,1B .- 1,1C .- 3,2D . 2,223 2λ+ 1= 2 ,λ= 2,λ=- 3,解析 由题意知:62λ解得1或 12μ- 1= 0,μ=2μ=2.例 13:已知空间中三点→ →A(- 2,0,2) , B(- 1,1,2) , C(-3,0,4) ,设 a = AB , b = AC.,若 ka + b 与 ka - 2b 互相垂直,求实数 k 的值.方法一 ∵ ka +b = (k - 1,k,2) .ka - 2b = (k +2, k ,- 4),且 ka + b 与 ka - 2b 互相垂直,∴ (k - 1, k,2) ·(k + 2, k ,- 4)= (k - 1)(k + 2)+ k 2- 8= 0, ∴ k =2 或- 5, 2方法二由 (2) 知 |a|= 2,|b|= 5,a ·b =- 1,∴( ka +b) ·(ka - 2b)= k 2a 2- ka ·b - 2b 2= 2k25 + k - 10= 0,得 k =2 或- .2例 14:已知空间三点 A (0,2,3), B (- 2,1,6),C(1,- 1,5).→ →(1)求以 AB , AC 为边的平行四边形的面积;(2)若 |a|= → →3,且 a 分别与 AB , AC 垂直,求向量 a 的坐标.→ → - 2+ 3+67 1 → →3→ →AB ·AC解 (1)cos 〈 AB , AC 〉= → →=14× 14 = 14=2.∴ sin 〈AB , AC 〉=2,|AB||AC|→ →1 → → → → 3 3.∴ 以 AB , AC 为边的平行四边形的面积为S = 2× |AB | |AC ·| ·sin 〈 AB , AC 〉= 14×= 7 22x 2+ y 2+z 2= 3x =1 x =- 1( 2)设 a = (x , y ,z),由题意得 - 2x - y + 3z =0 ,解得y = 1 或 y =- 1 ,x - 3y + 2z = 0z = 1z =- 12 1例 15:如图所示, 在正方体 ABCD —A 1B 1C 1D 1 中,E 、F 分别在 A 1D 、AC 上,且 A 1E = A 1D ,AF = AC ,则 ()3 3A . EF 至多与 A 1D 、 AC 之一垂直B . EF 与 A 1D 、 AC 都垂直 C .EF 与 BD 1 相交D . EF 与 BD 1 异面解析: 设 AB =1,以 D 为原点, DA 所在直线为 x 轴, DC 所在直线为 y 轴, DD 1 所在直线为z 轴建立空间直角坐标11 2 1 →系,则 A 1(1,0,1) ,D (0,0,0) ,A(1,0,0) ,C(0,1,0) ,E 3, 0,3 ,F3,3, 0 , B(1,1,0) ,D 1 (0,0,1) ,A 1D =(- 1,0,- 1),→ → 1 11 → →1 → → → → →AC = (- 1,1,0),EF = 3, 3,-3,BD 1=(-1,-1,1),EF=-3BD 1,A 1D ·EF =AC ·EF =0,从而EF∥BD 1,EF⊥ A 1D,EF ⊥ AC.→ →例 16:已知 O(0,0,0), A (1,2,3) , B(2,1,2) , P(1,1,2),点 Q 在直线 OP 上运动,当 QA ·QB 取最小值时,点 Q 的坐标是 __________.→ → → →解析: 设 OQ =λOP = (λ, λ, 2λ),则 QA = (1- λ,2- λ, 3- 2λ), QB = (2- λ, 1- λ,2- 2λ).→ →42∴ QA ·QB = (1- λ)(2- λ)+ (2- λ)(1 - λ)+ (3-2λ)(2- 2λ)= 6λ2- 16λ+ 10=6( λ- 3)2- 3.→ → →4 4 8 4 2∴当 λ=3时, QA ·QB 取最小值为- 3.此时, OQ = ( 3, 3,3),综合练习一、选择题1、下列命题:其中不正确 的所有命题的序号为 __________....①若 A 、 B 、 C 、D 是空间任意四点,则有 → → → → = 0; ② |a|- |b|= |a + b|是 a 、 b 共线的充要条件;AB + BC + CD + DA ③若 a 、 b 共线,则 a 与 b 所在直线平行;④对空间任意一点 → → → →O 与不共线的三点 A 、 B 、 C ,若 OP = xOA + yOB + zOC (x 、 y 、z ∈ R ),则 P 、 A 、 B 、C 四点共 面. ⑤设命题 p : a , b , c 是三个非零向量;命题q : { a , b , c} 为空间的一个基底,则命题 p 是命题 q 的充要条件解析:选②③④⑤,①中四点恰好围成一封闭图形,正确;②中当a 、b 同向时,应有 | a | + | | =| + | ;③中 a 、ba bb 所在直线可能重合;④中需满足x + y + z = 1,才有 P 、 A 、B 、 C 四点共面;⑤只有不共面的三个非零向量才能作为空间的一个基底,应改为必要不充分条件2、有下列命题:其中真命题的个数是 ( ) ①若 p = xa + yb ,则 p 与 a , b 共面; ②若 p 与 a ,b 共面,则 p = xa +yb ;→ → →→ → → ③若 MP = xMA + yMB ,则 P , M , A 、 B 共面; ④若 P , M , A , B 共面,则 MP = xMA + yMB. A . 1 B . 2 C . 3 D .4 解析 其中 ①③ 为真命题. ② 中,若 a , b 共线,则 p ≠xa + yb ;→ → → 3、已知 A(1,0,0), B(0,- 1,1),OA + λOB 与 OB 的夹角为 120°,则 λ的值为 ()6 6 6A . ±6 B. 6 C .- 6 D . ± 6→ → λ+ λ 1 666 解析: OA + λOB = (1,- λ,λ),cos120°= ,得 λ= ±不合题意, 舍去, ∴ λ=-=- 2 6.经检验 λ=66 .1+ 22λ· 24、 如图所示,已知 PA ⊥平面 ABC ,∠ ABC = 120 °,PA = AB = BC =6,则 PC 等于( )A .6 2B . 6C .12D . 144→ 2→ → → 2→ 2 → 2 → 2→ →→解析 PC = (PA + AB + BC) =PA + AB + BC + 2AB ·BC =36+ 36 +36+ 2× 36cos 60 °= 144∴ |PC |= 12→→ →→ → → → 3 → 1 311c , 证明 设 AB = a ,AC =b , AD = c ,则 BG = BA + AG = BA + AM =- a + (a + b + c)=-4 a + b + → → → → 1 → →11 4 → 444 4→ →,即 B 、G 、N 三点共线.BN = BA + AN = BA + (AC + AD )=- a +b +c = BG.∴ BN ∥BG33335、正方体 ABCD — A 1B 1C→ 1 →→1D 1 的棱长为 a ,点 M 在 AC 1 上且 AM = MC 1, N 为 B 1B 的中点,则 |MN |为 ()2A.21 6 aB.6 6 aC.15 6 aD.15 3a解析以 D 为原点建立如图所示的空间直角坐标系Dxyz ,则 A(a,0,0),C 1a , a ,a2.(0,a ,a),N设 M(x , y , z). ∵ 点 M 在 AC 1 → 1 →1上且 AM =MC 1, ∴ (x -a , y , z)= (- x , a - y , a - z)222 a a 2a a a, ∴→2 a2+a - a 2= 21∴ x = a ,y = , z = .∴M, , 3|MN |=a - a 2+ a -3 2 3 a.3333336π→→6、如图所示,已知空间四边形OABC ,OB = OC ,且∠ AOB =∠ AOC = 3,则 cos 〈 OA , BC 〉的值为 ()1 32A . 0B. 2C. 2D. 2解析→ → →π设 OA = a ,OB = b , OC = c ,由已知条件〈a ,b 〉=〈 a ,c 〉= ,且 |b|= |c|,1 13→ →→ →OA ·BC = a ·(c - b)=a ·c - a ·b = |a||c|- |a||b|= 0,∴ cos 〈 OA , BC 〉= 0.227、如图所示,在平行六面体ABCD — A 1B 1C 1D 1 中, M 为 A 1C 1 与 B 1D 1→ → →的交点.若 AB =a , AD = b , AA 1= c ,则下列→)向量中与 BM 相等的向量是 (.1 1 1 11 1 1 1A - 2a + 2b + c B. 2a +2b + c C .- 2a - 2b +c D. 2a - 2b + c解析 →→→→ 1 → →1 (b - a)=- 1 a + 1 b +c. BM = BB 1+ B 1M = AA 1+ (AD - AB)= c +2 22 28、平行六面体 → → → 60°,且 →→ → ABCD - A 1B 1 C 1D 1 中,向量 AB ,AD ,AA 1两两的夹角均为 |AB|= 1,|AD|= 2,|AA 1|=3,则 → )[|AC 1|等于 ( A .5 B . 6 C .4 D . 8 → → → → → →设 AB = a , AD = b , AA 1= c ,则 AC 1= a + b + c , AC 12= a 2+ b 2+ c 2+ 2a ·+b 2b ·+c 2c ·=a 25, |AC 1|= 5.9、在下列条件中,使 M 与 A 、 B 、 C 一定共面的是 ( )→→→ → →→ → →→ → →→→ →→A. OM = 3OA - 2OB - OC B .OM +OA + OB + OC = 0C . MA + MB + MC = 0D .OM =1OB - OA +1OC42→ → →解析:C 中 MA =- MB - MC .故 M 、 A 、 B 、C 四点共面.二、填空题10、同时垂直于 a = (2,2,1) 和 b = (4,5,3) 的单位向量是 ____________________ .解析 设与 a =(2,2,1) 和 b =(4,5,3) 同时垂直 b 单位向量是 c = (p , q ,r ),则11p 2+ q 2+ r 2= 1,p =3,p =- 3,2,2,1,- 2, 2或 - 1, 2,- 22p + 2q + r = 0, 解得或所求向量为q =- 3q = 33 3 3 3 3 3 .4p + 5q + 3r =0,2,2,r = 3r =- 311. 若向量 a = (1,λ, 2), b = (2,- 1,2)且 a 与 b 的夹角的余弦值为 8,则 λ= ________.9解析 由已知得 8 a ·b = 2- λ+ 4 , ∴ 8 2-λ),解得 λ=- 2 或 λ= 2 .=5+ λ=3(655212. 在空间直角坐标系中,以点 A(4,1,9)、 B(10,- 1,6)、C(x,4,3)为顶点的△ ABC 是以 BC 为斜边的等腰直角三角形,则实数 x 的值为 ________.解析 由题意知 → → → →AB ·AC = 0, |AB|= |AC|,可解得 x = 2.13. 已知 a +3b 与 7a -5b 垂直,且 a - 4b 与 7a -2b 垂直,则〈 a , b 〉= ________.解析 由条件知 (a + 3b) ·(7a - 5b)= 7|a|2+ 16a ·b - 15|b|2= 0,及 (a -4b) ·(7a -2b)= 7|a|2+ 8|b|2- 30a ·b =0.1两式相减,得 46a ·b = 23|b|2,∴ a ·b = |b|2.21代入上面两个式子中的任意一个,即可得到|a|= |b|.∴ cos 〈 a , b 〉= a ·b2|b|21= 2 =.∴ 〈a , b 〉= 60°.|a||b| |b| 2π, 2, ⊥ , ⊥ , 在平面 内, 在 上, 14. 如图所示,已知二面角 α— l — β的平面角为 0AB BC BC CD AB BC l θ θ βCD 在平面 α内,若 AB = BC = CD = 1,则 AD 的长为 ________.→→ → →2=→→→→ →→ →→ →π- θ=) 3- 2cos θ.解析 :AD 2= (AB + BC +CD ) AB 2+ BC 2+ CD 2+ 2AB ·CD + 2AB ·BC + 2BC ·CD = 1+ 1+ 1+2cos(15. 已知 a =(1- t,1- t , t), b =(2, t ,t),则 |b - a|的最小值为 ________.19 1 3 5解析 b -a = (1+ t,2t - 1,0),∴ |b -a|=1+ t 2+ 2t - 1 2=5 t -5 2+ 5 ,∴当 t = 5 时,|b -a|取得最小值 5.三、解答题16、如图所示,在各个面都是平行四边形的四棱柱ABCD — A 1B 1C 1D 1 中, P 是 CA 1 的中点, M 是 CD 1 的中点, N 是→ → →C 1D 1 的中点,点 Q 在 CA 1 上,且 CQ ∶QA 1= 4∶ 1,设 AB = a , AD = b ,AA 1= c ,用基底 { a , b , c} 表示以下向量:→ → → → (1)AP ; (2) AM ; (3)AN ; (4) AQ.→ 1 → →1 → →→1(a + b + c).(1) AP = (AC + AA1)= (AB +AD + AA1)= 222→=1→→1→→→1(2) AM+ AD+ 2AD+AA222→ 1 →→1→ →→→ → 1 →→→11a+ b+ c.(3) AN=(AC1+ AD1)=[( AB+ AD +AA1)+(AD+AA1)]=(AB+2AD+2AA1)=(a+ 2b+2c)=22222→ → → → 4 →→1 → 4 → 1 → 1 → 4 → 114(4) AQ= AC+CQ= AC+(AA1-AC)= AC + AA 1=AB+AD + AA1=a+ b+ c55555555517、如图,已知M、 N 分别为四面体ABCD 的面 BCD 与面 ACD 的重心,且G 为 AM 上一点,且GM ∶GA= 1∶ 3.求证: B、 G、 N 三点共线.18. (13 分 )直三棱柱ABC—A′ B′ C′中,AC= BC= AA′,∠ ACB= 90°,D 、E 分别为 AB 、BB′的中点.(1)求证: CE⊥ A′D ;(2)求异面直线 CE 与 AC′所成角的余弦值.→→→(1)证明:设 CA= a,CB=b,CC′=c,根据题意, |a|= |b|= |c|且 a·b=b·c→1→11→→11→ →,即∴ CE= b+ c, A′ D=- c+b-a.∴CE· A′ D=-c2+b2= 0,∴ CE⊥A′D22222=c·a= 0. CE⊥A′D.→→→5→→112=12,(2) AC′=- a+ c,∴ |AC′|=2|a|, |CE|=|a |.AC′· CE= (- a+ c) ·c2 12222→→2|a|=1010∴ cos〈 AC′,CE〉=510.即异面直线 CE 与 AC′所成角的余弦值为10.2·2 |a|2。

高中数学新湘教版选修2-1 空间向量与立体几何 章末小结复习

高中数学新湘教版选修2-1 空间向量与立体几何   章末小结复习

1.空间向量基本定理设e1,e2,e3是空间中的三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.空间向量的坐标运算公式(1)加减法:(x1,y1,z1)±(x2,y2,z2)=(x1±x2,y1±y2,z1±z2).(2)与实数的乘法:a(x,y,z)=(ax,ay,az).(3)数量积:设v=(x,y,z),则|v|=x2+y2+z2.(4)向量的夹角:cos θ=v1·v2 |v1|·|v2|=x1x2+y1y2+z1z2x21+y21+z21·x22+y22+z22.3.空间向量在立体几何中的应用设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,ν,则[例1]M ,N 分别为AB ,PC 的中点.求证:(1)MN ∥平面PAD ; (2)平面PMC ⊥平面PDC .[证明] 如图所示,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系A -xyz .设PA =AD =a ,AB =b .则有,(1)P (0,0,a ),A (0,0,0),D (0,a,0),C (b ,a,0),B (b,0,0). ∵M ,N 分别为AB ,PC 的中点, ∴M ⎝⎛⎭⎫b 2,0,0,N ⎝⎛⎭⎫b 2,a 2,a 2. ∴MN ―→=⎝⎛⎭⎫0,a 2,a 2,AP ―→=(0,0,a ),AD ―→=(0,a,0), ∴MN ―→=12AD ―→+12AP ―→.又∵MN ⊄平面PAD ,∴MN ∥平面PAD . (2)由(1)可知:PC ―→=(b ,a ,-a ),PM ―→=⎝⎛⎭⎫b2,0,-a , PD ―→=(0,a ,-a ).设平面PMC 的一个法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧n 1·PC ―→=0⇒bx 1+ay 1-az 1=0,n 1·PM ―→=0⇒b 2x 1-az 1=0,∴⎩⎪⎨⎪⎧x 1=2a b z 1,y 1=-z 1,令z 1=b ,则n 1=(2a ,-b ,b ).设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n 2·PC ―→=0⇒bx 2+ay 2-az 2=0,n 2·PD ―→=0⇒ay 2-az 2=0,∴⎩⎪⎨⎪⎧x 2=0,y 2=z 2.令z 2=1,则n 2=(0,1,1), ∵n 1·n 2=0-b +b =0,∴n 1⊥n 2. ∴平面PMC ⊥平面PDC .(1)用向量法证明立体几何中的平行或垂直问题,主要应用直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行或垂直的定理.(2)用向量法证明平行或垂直的步骤:①建立空间图形与空间向量的关系(通过取基或建立空间直角坐标系的方法),用空间向量或以坐标形式表示问题中涉及的点、直线和平面;②通过向量或坐标,研究向量之间的关系;③根据②的结论得出立体几何问题的结论.(3)在用向量法研究线面平行或垂直时,上述判断方法不唯一,如果要证直线l ∥平面α,只需证l =λa ,l ⊄α,其中l 是直线l 的方向向量,a ⊂α;如果要证l ⊥α,只需在平面α内选取两个不共线向量m ,n ,证明⎩⎪⎨⎪⎧l ·m =0,l ·n =0,即可.1.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .证明:法一:设A 1B 1―→=a ,A 1D 1―→=b ,A 1A ―→=c , 则a ·b =0,b ·c =0,a ·c =0, A 1O ―→=A 1A ―→+AO ―→=A 1A ―→+12(AB ―→+AD ―→)=c +12(a +b ),BD ―→=AD ―→-AB ―→=b -a ,OG ―→ =OC ―→ +CG ―→ =12(AB ―→+AD ―→ )+12CC 1―→=12(a +b )-12c ,∴A 1O ―→·BD ―→=⎝⎛⎭⎫c +12a +12b ·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=c ·b -c ·a +12(b 2-a 2)=12(|b |2-|a |2)=0,∴A 1O ―→⊥BD ―→.∴A 1O ⊥BD . 同理可证A 1O ―→⊥OG ―→.∴A 1O ⊥OG . 又OG ∩BD =O , ∴A 1O ⊥平面GBD .法二:如图所示,以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0), DG ―→=(0,2,1),则A 1O ―→·DB ―→=(-1,1,-2)·(2,2,0)=0, A 1O ―→·DG ―→=(-1,1,-2)·(0,2,1)=0,所以A 1O ―→⊥DB ―→,A 1O ―→⊥DG ―→.即A 1O ⊥DB ,A 1O ⊥DG . 又DB ∩DG =D ,故A 1O ⊥平面GBD .法三:以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0),DG ―→=(0,2,1). 设向量n =(x ,y ,z )为平面GBD 的一个法向量, 则n ⊥DB ―→,n ⊥DG ―→. 即n ·DB ―→=0,n ·DG ―→=0.所以⎩⎪⎨⎪⎧2x +2y =0,2y +z =0.令x =1,则y =-1,z =2, 所以n =(1,-1,2). 所以A 1O ―→=-n .即A 1O ―→∥n . 所以A 1O ⊥平面GBD .2.如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,B 1C 的中点. (1)用向量法证明平面A 1BD ∥平面B 1CD 1;(2)用向量法证明MN ⊥平面A 1BD . 证明:(1)在正方体ABCD -A 1B 1C 1D 1中, BD ―→=AD ―→-AB ―→,B 1D 1―→=A 1D 1―→-A 1B 1―→, 又∵AD ―→=A 1D 1―→,AB ―→=A 1B 1―→,∴BD ―→=B 1D 1―→, ∴BD ∥B 1D 1. 同理可证A 1B ∥D 1C ,又BD ∩A 1B =B ,B 1D 1∩D 1C =D 1, 所以平面A 1BD ∥平面B 1CD 1.(2)MN ―→=MB ―→+BC ―→+CN ―→=12AB ―→+AD ―→+12(CB ―→+BB 1―→)=12AB ―→+AD ―→+12(-AD ―→+AA 1―→) =12AB ―→+12AD ―→+12AA 1―→.设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则MN ―→=12(a +b +c ).又BD ―→=AD ―→-AB ―→=b -a , ∴MN ―→·BD ―→=12(a +b +c )·(b -a )=12(b 2-a 2+c ·b -c ·a ). 又∵A 1A ⊥AD ,A 1A ⊥AB ,∴c ·b =0,c ·a =0. 又|b |=|a |,∴b 2=a 2.∴b 2-a 2=0. ∴MN ―→·BD ―→=0.∴MN ⊥BD . 同理可证MN ⊥A 1B . 又A 1B ∩BD =B , ∴MN ⊥平面A 1BD .[例2] 四棱锥=AD =2,点M ,N 分别在棱PD ,PC 上,且PC ⊥平面AMN .(1)求AM 与PD 所成的角; (2)求二面角P -AM -N 的余弦值;(3)求直线CD 与平面AMN 所成角的余弦值.[解] 建立如图所示的空间直角坐标系. ∵A (0,0,0),C (2,2,0),P (0,0,2),D (0,2,0), ∴PC ―→=(2,2,-2),PD ―→=(0,2,-2). 设M (x 1,y 1,z 1),PM ―→=λPD ―→, 则(x 1,y 1,z 1-2)=λ(0,2,-2). ∴x 1=0,y 1=2λ,z 1=-2λ+2. ∴M (0,2λ,2-2λ).∵PC ⊥平面AMN ,∴PC ―→⊥AM ―→, ∴PC ―→·AM ―→=0.∴(2,2,-2)·(0,2λ,2-2λ)=0⇒4λ-2(2-2λ)=0. ∴λ=12.∴M (0,1,1).设N (x 2,y 2,z 2),PN ―→=t PC ―→, 则(x 2,y 2,z 2-2)=t (2,2,-2).∴x 2=2t ,y 2=2t ,z 2=-2t +2. ∴N (2t,2t,2-2t ).∵PC ―→⊥AN ―→,∴AN ―→·PC ―→=0. ∴(2t,2t,2-2t )·(2,2,-2)=0. ∴4t +4t -2(2-2t )=0, ∴t =13.∴N ⎝⎛⎭⎫23,23,43. (1)∵cos 〈AM ―→,PD ―→〉=(0,1,1)·(0,2,-2)0+1+1×0+4+4=0,∴AM 与PD 所成角为90°.(2)∵AB ⊥平面PAD ,PC ⊥平面AMN ,∴AB ―→,PC ―→分别是平面PAD ,平面AMN 的法向量. ∵AB ―→·PC ―→=(2,0,0)·(2,2,-2)=4, |AB ―→|=2,|PC ―→|=23, ∴cos 〈AB ―→,PC ―→〉=443=33.∴二面角P -AM -N 的余弦值为33. (3)∵PC ―→是平面AMN 的法向量,∴CD 与平面AMN 所成角即为CD 与PC 所成角的余角. ∵CD ―→·PC ―→=(-2,0,0)·(2,2,-2)=-4, ∴cos 〈CD ―→,PC ―→〉=-42×23=-33.∴直线CD 与PC 所成角的正弦值为63, 即直线CD 与平面AMN 所成角的余弦值为63.(1)求异面直线所成的角:设两异面直线的方向向量分别为n 1,n 2,那么这两条异面直线所成的角为θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,∴cos θ=|cos 〈n 1,n 2〉|. (2)求二面角的大小:如图,设平面α,β的法向量分别为n 1,n 2.因为两平面的法向量所成的角就等于平面α,β所成的锐二面角θ,所以cos θ=|cos 〈n 1,n 2〉|.(3)求斜线与平面所成的角:如图,设平面α的法向量为n 1,斜线OA 的方向向量为n 2,斜线OA 与平面所成的角为θ,则sin θ=|cos 〈n 1,n 2〉|.3.如图所示,在矩形ABCD 中,AB =4,AD =3,沿对角线AC折起,使D 在平面ABC 上的射影E 恰好落在AB 上,求这时二面角B -AC -D 的余弦值.解:如图所示,作DG ⊥AC 于G ,BH ⊥AC 于H .在Rt △ADC 中, AC =AD 2+DC 2=5, cos ∠DAC =AD AC =35.在Rt △AGD 中,AG =AD ·cos ∠DAC =3×35=95,DG =AD 2-AG 2=9-8125=125. 同理,cos ∠BCA =35,CH =95,BH =125.AD ―→·BC ―→=(AE ―→+ED ―→)·BC ―→=AE ―→·BC ―→+ED ―→·BC ―→=0, GD ―→·HB ―→=(GA ―→+AD ―→)·(HC ―→+CB ―→) =GA ―→·HC ―→+GA ―→·CB ―→+AD ―→·HC ―→+AD ―→·CB ―→ =-95×95+95×3×35+3×95×35+0=8125.又|GD ―→|·|HB ―→|=14425,∴cos 〈GD ―→,HB ―→〉=916.因此所求二面角的余弦值为916.4.如图,ABCD -A 1B 1C 1D 1是正四棱柱. (1)求证:BD ⊥平面ACC 1A 1;(2)二面角C 1-BD -C 的大小为60°,求异面直线BC 1与AC 所成角的余弦值.解:(1)证明:建立空间直角坐标系D -xyz ,如图.设AD =a ,DD 1=b ,则有D (0,0,0),A (a ,0,0),B (a ,a,0),C (0,a,0),C 1(0,a ,b ),∴BD ―→=(-a ,-a,0),AC ―→=(-a ,a,0),CC 1―→=(0,0,b ), ∴BD ―→·AC ―→=0,BD ―→·CC 1―→=0. ∴BD ⊥AC ,BD ⊥CC 1.又∵AC ,CC 1⊂平面ACC 1A 1,且AC ∩CC 1=C , ∴BD ⊥平面ACC 1A 1.(2)设BD 与AC 相交于点O ,连接C 1O , 则点O 的坐标为⎝⎛⎭⎫a 2,a 2,0,OC 1―→=⎝⎛⎭⎫-a 2,a 2,b . ∵BD ―→·OC 1―→=0,∴BD ⊥C 1O . 又BD ⊥CO ,∴∠C 1OC 是二面角C 1-BD -C 的平面角, ∴∠C 1OC =60°, ∵tan ∠C 1OC =CC 1OC =b22a =3, ∴b =62a . ∵AC ―→=(-a ,a,0),BC 1―→=(-a,0,b ), ∴cos 〈AC ―→,BC 1―→〉=AC ―→·BC 1―→|AC ―→|·|BC 1―→|=55. ∴异面直线BC 1与AC 所成角的余弦值为55.(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知l ∥π,且l 的方向向量为(2,m,1),平面π的法向量为⎝⎛⎭⎫1,12,2,则m =( ) A .-8 B .-5 C .5D .8解析:∵l ∥π,∴直线l 的方向向量与平面π的法向量垂直. ∴2+m2+2=0,m =-8.答案:A2.在空间四边形ABCD 中,连接AC ,BD ,若△BCD 是正三角形,且E 为其中心,则AB ―→+12BC ―→-32DE ―→-AD ―→的化简结果为( )A .AB ―→B .2BD ―→C .0D .2DE ―→解析:如图,F 是BC 的中点,E 是DF 的三等分点,∴32DE ―→=DF ―→. ∵12BC ―→=BF ―→,则AB ―→+12BC ―→-32DE ―→-AD ―→=AB ―→+BF ―→-DF ―→-AD ―→=AF ―→+FD ―→-AD ―→=AD ―→-AD ―→=0.答案:C3.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=2OA ―→-2OB ―→-OC ―→,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基,则{a +b ,b +c ,c +a }构成空间的另一组基; ⑤ |(a ·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4D .5解析:①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基的定义知正确;⑤由向量的数量积的性质知,不正确.答案:C4.直三棱柱ABC -A 1B 1C 1中,若CA ―→=a ,CB ―→=b ,CC 1―→=c ,则A 1B ―→=( ) A .a +b -c B .a -b +c C .-a +b +cD .-a +b -c解析:A 1B ―→=CB ―→-CA 1―→=CB ―→-(CA ―→+CC 1―→)=b -a -c . 答案:D5.已知四面体ABCD 的各边长都是a ,点E ,F 分别为BC ,AD 的中点,则AE ―→·AF ―→的值是( )A .a 2 B.12a 2 C.14a 2 D.34a 2 解析:由已知得ABCD 为正四面体,因为AE ―→=12(AB ―→+AC ―→),AF ―→=12AD ―→,所以AE ―→·AF―→=12(AB ―→+AC ―→)·12AD ―→=14(AB ―→·AD ―→+AC ―→·AD ―→) =14(a 2cos 60°+a 2cos 60°)=14a 2. 答案:C6.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为( )A.13B.23C.33D.23解析:建立如图所示的空间直角坐标系,设A (1,0,0),则B (0,1,0),D (0,-1,0),AB =2,SD =2,∴SO =1,∴S (0,0,1),∴E ⎝⎛⎭⎫0,12,12,AE ―→=-1,12,12,SD ―→=(0,-1,-1).∴cos 〈AE ―→, SD ―→〉=AE ―→·SD ―→|AE ―→||SD ―→|=-12-1262×2=-33, ∴AE 与SD 所成角的余弦值为33. 答案:C7.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′―→=x AB ―→+2y BC ―→+3zC ′C ―→,则x +y +z 等于( )A .1 B.76 C.56D.23解析:如图,AC ′―→=AB ―→+BC ―→+CC ′―→=AB ―→+BC ―→-C ′C ―→,所以x =1,2y =1,3z =-1,所以x =1,y =12,z =-13,因此x +y +z =1+12-13=76.答案:B8.如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,P 是A 1B 1的中点,则直线P Q 与AM 所成的角为( )A.π6 B.π4 C.π3D.π2解析:以A 为坐标原点,AB ,AC ,AA 1所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,设AA 1=AB =AC =2,则AM ―→=(0,2,1),Q (1,1,0),P (1,0,2),Q P ―→=(0,-1,2),所以Q P ―→·AM ―→=0,所以Q P 与AM 所成角为π2.答案:D9.如图,在长方体ABCD -A1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.255C.155D.105解析:以D 点为坐标原点,以DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1―→=(-2,0,1),AC ―→=(-2,2,0),且AC ―→为平面BB 1D 1D 的一个法向量. ∴cos 〈BC 1―→,AC ―→〉=BC 1―→·AC ―→|BC 1―→|·|AC ―→|=45·8=105.∴BC 1与平面BB 1D 1D 所成角的正弦值为105. 答案:D10.已知OA ―→=(1,2,3),OB ―→=(2,1,2),OP ―→=(1,1,2),点Q 在直线OP 上运动,则当Q A ―→·Q B ―→取得最小值时,点Q 的坐标为( )A.⎝⎛⎭⎫12,34,13B.⎝⎛⎭⎫12,32,34 C.⎝⎛⎭⎫43,43,83D.⎝⎛⎭⎫43,43,73解析:∵Q 在OP 上,∴可设Q (x ,x,2x ),则Q A ―→=(1-x ,2-x,3-2x ), Q B ―→=(2-x,1-x,2-2x ).∴Q A ―→·Q B ―→=6x 2-16x +10,∴x =43时,Q A ―→·Q B ―→取得最小值,这时Q ⎝⎛⎭⎫43,43,83. 答案:C11.如图,在四面体P -ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C 的余弦值为( )A.22 B.33C.77D.57解析:如图,作BD ⊥AP 于点D ,作CE ⊥AP 于点E .设AB =1,则易得CE =22,EP =22,PA =PB =2,可以求得BD =144,ED =24. ∵BC ―→=BD ―→+DE ―→+EC ―→,∴BC ―→2=BD ―→2+DE ―→2+EC ―→2+2BD ―→·DE ―→+2DE ―→·EC ―→+2EC ―→·BD ―→, ∴EC ―→·BD ―→=-14,∴cos 〈BD ―→,EC ―→〉=-77.故二面角B -AP -C 的余弦值为77. 答案:C12.如图,在三棱柱ABC -A1B 1C 1中,底面ABC 为正三角形,且侧棱AA 1⊥底面ABC ,且底面边长与侧棱长都等于2,O ,O 1分别为AC ,A 1C 1的中点,则平面AB 1O 1与平面BC 1O 间的距离为( )A.355B.255C.55D.510解析:如图,连接OO 1,根据题意,OO 1⊥底面ABC ,则以O 为原点,分别以OB ,OC ,OO 1所在的直线为x ,y ,z 轴建立空间直角坐标系.∵AO 1∥OC 1,OB ∥O 1B 1,AO 1∩O 1B 1=O 1,OC 1∩OB =O ,∴平面AB 1O 1∥平面BC 1O .∴平面AB 1O 1与平面BC 1O 间的距离即为O 1到平面BC 1O 的距离.∵O (0,0,0),B (3,0,0),C 1(0,1,2),O 1(0,0,2),∴OB ―→=(3,0,0),OC 1―→=(0,1,2),OO 1―→=(0,0,2),设n =(x ,y ,z )为平面BC 1O 的法向量,则n ·OB ―→=0,∴x =0.又n ·OC 1―→=0,∴y +2z =0,∴可取n =(0,2,-1).点O 1到平面BC 1O 的距离记为d ,则d =|n ·OO 1―→||n |=25=255.∴平面AB 1O 1与平面BC 1O间的距离为255.答案:B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q )共线,则p +q =________. 解析:由已知得AB ―→=(1,-1,3),AC ―→=(p -1,-2,q +2),因为AB ―→∥AC ―→,所以p -11=-2-1=q +23,所以p =3,q =4,故p +q =7.答案:714.已知空间四边形OABC ,如图所示,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG ―→=3GN ―→,现用基向量OA ―→,OB ―→,OC ―→表示向量OG ―→,并设OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的和为________.解析:OG ―→=OM ―→+MG ―→=12OA ―→+34MN ―→=12OA ―→+34⎝⎛⎭⎫-12 OA ―→+OC ―→+12 CB ―→=12OA ―→-38OA ―→+34OC ―→+38OB ―→-38OC ―→=18OA ―→+38OB ―→+38OC ―→, ∴x =18,y =38,z =38.∴x +y +z =78.答案:7815.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为______________.解析:由OA ―→=(-1,1,0),且点H 在直线OA 上, 可设H (-λ,λ,0),则BH ―→=(-λ,λ-1,-1).又BH ⊥OA ,∴BH ―→·OA ―→=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12, ∴H ⎝⎛⎭⎫-12,12,0. 答案:⎝⎛⎭⎫-12,12,0 16.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .则A 1B 与平面ABD 所成角的正弦值为________.解析:以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,CC 1所在的直线为z 轴建立空间直角坐标系,如图所示.设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1),∴E ⎝⎛⎭⎫a 2,a 2,1,G ⎝⎛⎭⎫a 3,a 3,13, GE ―→=⎝⎛⎭⎫a 6,a 6,23,BD ―→=(0,-a,1). ∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE ―→⊥平面ABD ,∴GE ―→·BD ―→=0,解得a =2. ∴GE ―→=⎝⎛⎭⎫13,13,23,BA 1―→=(2,-2,2), ∵GE ―→⊥平面ABD ,∴GE ―→为平面ABD 的一个法向量. 又cos 〈GE ―→,BA 1―→〉=GE ―→·BA 1―→|GE ―→||BA 1―→|=4363×23=23, ∴A 1B 与平面ABD 所成角的正弦值为23. 答案:23三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ―→⊥b ?(O 为原点)解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2. (2)OE ―→=OA ―→+AE ―→=OA ―→+t AB ―→ =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ). 若OE ―→⊥b ,则OE ―→·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0, 解得t =95,因此存在点E ,使得OE ―→⊥b , 此时E 点坐标为⎝⎛⎭⎫-65,-145,25.18.(本小题满分12分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠BAD =60°,∠BAA 1=∠DAA 1=45°.(1)求|BD 1―→|;(2)求证:BD ⊥平面ACC 1A 1. 解:(1)∵BD 1―→=BA ―→+BC ―→+BB 1―→∴|BD 1―→|2=(BA ―→+BC ―→+BB 1―→)2=BA ―→2+BC ―→2+BB 1―→2+2(BA ―→·BC ―→+BA ―→·BB 1―→+BC ―→·BB 1―→)=1+1+1+2⎝⎛⎭⎫-12-22+22=2,∴|BD 1―→|= 2.(2)证明:∵BD ―→=AD ―→-AB ―→, ∴AA 1―→·BD ―→=AA 1―→·(AD ―→-AB ―→)=0, ∴BD ⊥AA 1,又BD ⊥AC ,AA 1∩AC =A , 所以BD ⊥平面ACC 1A 1.19.(本小题满分12分)如图,已知点P 在正方体ABCD -A1B 1C 1D 1的对角线BD 1上,∠PDA =60°.(1)求DP 与CC 1所成角的大小; (2)求DP 与平面AA 1D 1D 所成角的大小.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系Dxyz .则DA ―→=(1,0,0),CC 1―→=(0,0,1).连接BD ,B 1D 1.在平面BB 1D 1D 中,延长DP 交B 1D 1于H . 设DH ―→=(m ,m,1)(m >0), 由已知〈DH ―→,DA ―→〉=60°,由DH ―→·DA ―→=|DA ―→||DH ―→|cos 〈DA ―→,DH ―→〉, 可得2m =2m 2+1. 解得m =22,所以DH ―→=⎝⎛⎭⎫22,22,1.(1)因为cos 〈DH ―→,CC 1―→〉=22×0+22×0+1×11×2=22,所以〈DH ―→,CC 1―→〉=45°. 即DP 与CC 1所成的角为45°.(2)平面AA 1D 1D 的一个法向量是DC ―→=(0,1,0). 因为cos 〈DH ―→,DC ―→〉=22×0+22×1+1×01×2=12,所以〈DH ―→,DC ―→〉=60°,可得DP 与平面AA 1D 1D 所成的角为30°.20.(本小题满分12分)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. 解:设正方体ABCD -A 1B 1C 1D 1的棱长为1.如图所示,以AB ―→,AD ―→,AA 1―→为单位正交基底建立空间直角坐标系.(1)依题意,得B (1,0,0),E ⎝⎛⎭⎫0,1,12,A (0,0,0),D (0,1,0),所以BE ―→=⎝⎛⎭⎫-1,1,12,AD ―→=(0,1,0).在正方体ABCD -A 1B 1C 1D 1中, 因为AD ⊥平面ABB 1A 1,所以AD ―→是平面ABB 1A 1的一个法向量, 设直线BE 和平面ABB 1A 1所成的角为θ,则 sin θ=|BE ―→·AD ―→||BE ―→|·|AD ―→|=132×1=23. 即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)依题意,得A 1(0,0,1),BA 1―→=(-1,0,1),BE ―→=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由n ·BA 1―→=0,n ·BE ―→=0, 得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,连接B 1F ,则F (t,1,1)(0≤t ≤1), 又B 1(1,0,1),所以B 1F ―→=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F ―→·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .21.(本小题满分12分)(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.解:(1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC . 又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,所以BO ⊥AC .所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12.故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→=⎝⎛⎭⎫-1,32,12.设n =(x 1,y 1,z 1)是平面DAE 的法向量, 则⎩⎪⎨⎪⎧ n ·AD ―→=0,n ·AE ―→=0,即⎩⎪⎨⎪⎧-x 1+z 1=0,-x 1+32y 1+12z 1=0. 可取n =⎝⎛⎭⎫1,33,1. 设m =(x 2,y 2,z 2)是平面AEC 的法向量, 则⎩⎪⎨⎪⎧ m ·AC ―→=0,m ·AE ―→=0,即⎩⎪⎨⎪⎧-2x 2=0,-x 2+32y 2+12z 2=0, 可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m |n ||m |=-33+3213×2=77.由图知二面角D -AE -C 为锐角, 所以二面角D -AE -C 的余弦值为77.22.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.解:(1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD , 故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6,得DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点, HF ―→的方向为x 轴正方向,建立空间直角坐标系H -xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),故AB ―→=(3,-4,0),AC ―→=(6,0,0),AD ′―→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB ―→=0,m ·AD ′―→=0即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AD ′―→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m||n|=-1450×10=-7525.故sin 〈m ,n 〉=29525. 因此二面角B -D ′A -C 的正弦值是29525.。

高二数学选修2-1第三章空间向量与立体几_知识点+习题+答案

高二数学选修2-1第三章空间向量与立体几_知识点+习题+答案

空间向量与立体几何1、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量. 8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB+A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA +OB +O ++=.9、已知两个非零向量a 和b ,在空间任取一点O ,作a O A=,b OB =,则∠A O B 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 10、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.11、已知两个非零向量a 和b ,则c o s ,a b ab 〈〉称为a ,b 的数量积,记作a b ⋅.即c o s ,a b a bab ⋅=〈〉.零向量与任何向量的数量积为0.12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 13、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.14、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.15、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.16、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.17、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.18、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .19、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()82cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =20、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.21、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 22、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 23、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 24、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.25、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.26、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.27、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.28、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.29、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.30、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 31、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.32、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.空间向量与立体几何练习题1一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.--=23B.OC OB OA OM 513121++=C.0=+++D.0=++3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则⋅等于A.41B.41-C.43D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=,)8,2,3(=,)0,1,0(=,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是①正方体 ②圆锥 ③三棱台 ④正四棱锥A.9πB.10πC.11πD.12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为55210.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥,1111ABCD A BC D -是正方体,其中2,AB PA ==,则1B 到平面PAD 的距离为 .三、解答题(共80分)俯视图正(主)视图 侧(左)视图15.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG..17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F,正视图MPD C BA分别是AB BD ,的中点.求证: (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD . 18.(本小题满分14分)如图,已知点P 在正方体''''D C B A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论;D 'C 'B'A'PD C BA俯视图侧视图正视图ED CBA P (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点.(1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD所成最大角的正切值为2,求二面角E AF C --的余弦值.参考答案 一、选择题PBECDFA1.)(21111A B B ++=+==c +21(-a +b )=-21a +21b +c ,故选A.2.1),,(=++∈++=⇔z y x R z y x OC z OB y OA x OM C B A M 且四点共面、、、由于C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在y x y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF 21,21//=∴=∴且, 41120cos 1121,210-=⨯⨯⨯>=<=⋅=⋅∴DC BD DC BD DC EF 故选B.4.B5.B6.D7.D8.D9.D 10.4,cos ==><=AC AB ,5==,故选A二、填空题 11.9 12.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则++=θθcos 6)180,0,0,2530-=-⋅=⋅=⋅===DB AC DB CD CD AC0022222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=θθθθ由于AC DB DB CD CD AC DB CD AC14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系 设平面PAD 的法向量是(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面PAD 的距离15B A m d m⋅==三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于23)]110(2211[41)](2[41)(412222222=+-+++=⋅+⋅-⋅-+++=++-=c b c a b a c b a c b a2626的长为,BM ∴=. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=. (3)证明:在长方体ABCD A B C D ''''-中,连结AD ',则AD BC ''∥. 因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥, 从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴EF ∥AD ,∵AD ⊂面ACD ,EF ⊄面ACD ,∴直线EF ∥面ACD ;(2)∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵BD ⊂面BCD ,∴面EFC ⊥面BCD .18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -. 则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''.A C D E F GA 'B 'C 'D '在平面BB D D ''中,延长DP 交B D ''于H . 设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<>,,可得2m = 解得2m=,所以21DH ⎛⎫= ⎪⎪⎝⎭.(1)因为0011cos DH CC ++⨯'<>==, 所以45DH CC '<>=,,即DP 与CC '所成的角为45.(2)平面AA D D ''的一个法向量是(010)DC =,,.因为01101cos 2DH DC +⨯<>==,, 所以60DH DC <>=,,可得DP 与平面AA D D ''所成的角为30.19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=⋅=(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又ACPC C =∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ⊂平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EB ∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE ,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ⋅==BG在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGB∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===- 设平面ADE 和平面ABE 的法向量分别为(,,),(',',')m a b c n a b c ==由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+= 令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PAAD A =,所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角.在Rt EAH △中,AE = 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大.此时tan AE EHA AH ∠===因此AH =2AD =,所以45ADH ∠=,所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E 作EO AC ⊥于O ,则EO ⊥平面PAC ,过O 作OS AF ⊥于S ,连接ES ,则ESO ∠为二面角E AF C --的平面角,在Rt AOE△中,3sin302EO AE==3cos302AO AE==,又F是PC 的中点,在Rt ASO△中,3sin454 SO AO==,又SE==Rt ESO△中,cos SOESOSE∠===即所求二面角的余弦值为5.解法二:由(1)知AE AD AP,,两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又EF,分别为BC PC,的中点,所以(000)10)(020)A B C D-,,,,,,,,,,1(002)0)12P E F⎫⎪⎪⎝⎭,,,,,,,,所以31(300)12AE AF⎛⎫== ⎪⎪⎝⎭,,,,,.设平面AEF的一法向量为111()x y z=,,m,则AEAF⎧=⎪⎨=⎪⎩,,mm因此1111122x y z=++=⎪⎩,.取11z=-,则(021)=-,,m,因为BD AC⊥,BD PA⊥,PAAC A=,所以BD⊥平面AFC,故BD为平面AFC的一法向量.又(0)BD=,,所以cos55BDBDBD<>===,mmm.因为二面角E AF C--为锐角,所以所求二面角的余弦值为5.空间向量与立体几何2B一、选择题(每小题5分,共60分) 1.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g 2.已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A .)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D .)4,1,3(--3.若向量)2,1,2(),2,,1(-==b aλ,且a 与b 的夹角余弦为98,则λ等于( )A .2B .2-C .2-或552D .2或552-4.若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( )A .不等边锐角三角形B .直角三角形C .钝角三角形D .等边三角形5.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( ) A .19 B .78-C .78D .14196.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是( )A .21B .22 C .-21 D .07.设n m 、表示直线,βα、表示平面,则下列命题中不正确...的是( ). A .βα⊥⊥m ,m ,则α//β B .m//n ,=βαα ,则m//n C .α⊥m ,β//m , 则βα⊥ D .n //m ,α⊥m , 则 α⊥n8.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( ). A .3 B .362 C .2 D .22 9、如图,将无盖正方体纸盒展开,直线AB,CD 在原正方体中的位置关系是( ) A .平行 B .相交且垂直ABC DDCABC . 异面D .相交成60°10、点P 在平面ABC 外,若PA=PB=PC ,则点P 在平面ABC 上的射影 是△ABC 的 ( )A .外心 B.重心 C.内心 D.垂心11、如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )(A)2(B)12 (C)22+ (D)112、已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( ) (A )2对 (B )3对 (C )4对 (D )5对二、填空题(每小题4分,共24分)13.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)a b a b -+=__________________。

人教版高中数学选修2-1《空间向量与立体几何小结与复习》

人教版高中数学选修2-1《空间向量与立体几何小结与复习》
空间向量与立体几何 小结与复习
空间向量运 算的几何意 义(如平行 四边形法则)
空间向量的 定义及其运 算
用空间向量表示 点、直线、平面 等元素 建立空间图 形与空间向 量的联系
利用空间 向量的运 算解决立 体几何中 的问题
空间向量运 算的坐标表 示(加、减、 数乘、数量 积)
归纳整理 (一)基本概念 1. 空间向量:空间中具有大小和方向的量 叫做向量.
长沙市第一中学高二数学备课组
2. 空间向量也用有向线段表示,并且同向且 等长的有向线段表示同一向量或相等的向量.
3. 向量的模:向量的大小叫向量的长度或 模.即表示向量的有向线段的长度. 4. 单位向量:模是 1 的向量.
5. 零向量:模是 0 的向量.零向量的方向 是任意的.有向线段的起点与终点重合.
解答
知识点二
用坐标法解决立体几何问题
步骤如下:
(1)建立适当的空间直角坐标系;
(2)写出相关点的坐标及向量的坐标;
(3)进行相关坐标的运算;
(4)写出几何意义下的结论.
关键点如下: (1) 选择恰当的坐标系 . 坐标系的选取很重要,恰当的坐标系可以使得点 的坐标、向量的坐标易求且简单,简化运算过程. (2) 点的坐标、向量的坐标的确定 . 将几何问题转化为向量的问题,必须 确定点的坐标、直线的方向向量、平面的法向量,这是最核心的问题. (3) 几何问题与向量问题的转化 . 平行、垂直、夹角问题都可以通过向量 计算来解决,如何转化也是这类问题解决的关键.
归纳整理
(一)基本概念
长沙市第一中学高二数学备课组
7. 相反向量:模相等且方向相反的向量叫 做相反向量.
6. 相等向量:模相等且方向相同的向量叫 做相等向量.

苏教版高中数学选修(2-1)-3.1知识归纳:空间向量及其运算

苏教版高中数学选修(2-1)-3.1知识归纳:空间向量及其运算

空间向量及其运算一.空间向量及其加减运算二.空间向量的数乘运算1.空间向量的概念:(1) 在空间,我们把具有大小又有方向的量叫做空间向量,向量的大小叫做向量的长度或模。

(2) 向量的表示:几何表示法:用有向线段表示;字母表示法:用小写字母表示,或者用表示向量的有向线段的起点和终点字母表示。

2.空间向量的加减运算:加法运算:平行四边形法则和三角形法则;减法运算:三角形法则。

3. 共面向量的定义:一般地,平行于同一平面的向量,叫做共面向量。

4.共面向量的判定;平面向量中,向量与非零向量共线的充要条件是λ=,类比到空间向量,即有共面向量定理 如果两个向量,不共线,那么向量与向量,共面的充要条件是存在有序实数组),(y x ,使得y x +=α.这就是说,向量可以由不共线的两个向量b a ,线性表示。

5.空间任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量。

6.若b a ,为不共线且同在平面α内,则p 与b a ,共面的意义是p 在α内或//p 。

三.空间向量的数量积运算1.夹角的定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则A O B ∠叫做向量与向量的夹角,记作><,.规定:π>≤≤<,0。

2.数量积:已知两个非零向量,是空间两个非零向量,我们把数量><,cos ||||叫作向量,的数量积,记作⋅,即⋅=><,cos ||||。

特别的,,<=⋅。

3.空间向量的数量积的运算律:)()(⋅=⋅λλ;⋅=⋅(交换律); ⋅+⋅=+⋅)((分配律)。

4.如果0,>=<,那么与同向;如果π>=<,,那么与反向; 如果090,>=<,那么与垂直,记作⊥。

5.空间向量数量积的性质:(1)0a b a b ⊥⇔=(用于判定垂直问题);(2)2a a =(用于求模运算问题);(3)cos ,||||a b a b a b ⋅<>=⋅(用于求角运算问题)。

选修2-1-第三章-空间向量及其运算知识点.docx

选修2-1-第三章-空间向量及其运算知识点.docx

3.1 空间向量及其运算知识点1. 空间向量的有关概念⑴空间向量:在空间中,具有大小和方向的量叫做空间向量.⑵单位向量:模为1的向量称为单位向量⑶相等向量:方向相同且模相等的向量.⑷共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.⑸共面向量:平行于同一个平面的向量.2. 空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量UUU UuU UUIrJ UUllU UUUIrJOA I=OA+AIA2+ A2A3+…+ A n-1A n-运算律:①加法交换律:a+ b= b+ a ②加法结合律:(a+ b) + C= a+ (b + C)③数乘分配律:λ (+ b)= λ a λ b.3. 共线向量、共面向量定理和空间向量基本定理(1) 共线向量定理对空间任意两个向量a, b(b≠ 0), a// b的充要条件是存在实数λ使得a= λb推论:I点P在直线AB上的充要条件I是:UJlI UUI存在实数λ使得AP = AAB ①UIU UUr UUJ或对空间任意一点0,有OP=OA AB ②UIU UUr UUr或对空间任意一点0,有OP=XOA yOB其中X + y= 1③UUJ UUr UlU IUr UIU UlU UUr UIU【推论③推导过程:OP =OA ∙AB =OA ■ (AO OB)=(I- ∙)OA ■ OB】(2) 共面向量定理如果两个向量a, b不共线,那么P与a, b共面的充要条件是存在唯一有序实数对(x,y)使P= xa+ yb推论:空间一点P位于平面ABC内的充要条件是UUJ UUJ UUU存在唯一有序实数对(x,y)使AP=XAB yAC ,UiU UUr UUJ UUU或对空间任意一点0,有OP=OA ∙XAB yACUlU UUr UlU UlU或对空间任意一点0,有OP=XOA yOB ■ ZOC ,其中X + y+ Z= 1UUJ UUr UIU UUU UIr UUJ Uui【推论③推导过程:OP=OA XAB yAC = (1 - x - y)OA XOB yOC 】(3) 空间向量基本定理如果三个向量a, b, C不共面,那么对空间任一向量p,存在有序实数组{X, y, z},使得P= x a+ y b+ Z C基底:把{a, b, c}叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4. 空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量a, b,在空间任取一点0,作OA= a, OB = b,则∠AQB叫做向量a与b的夹角,记作〈a, b>,其范围是0≤< a, b>≤∏若〈a , b>= ∏,则称a与b互相垂直,记作a⊥b.②两向量的数量积:已知空间两个非零向量a, b,向量a, b的数量积记作a b,且a b= ∣a∣∣b∣cos < a, b>.⑵空间向量数量积的运算律:①结合律:(λι)b = λa b);②交换律:a b= b a;③分配律:a (b+ C)= a b + a c.→ →5.空间向量的坐标表示及应用 设 a = (a ι, a 2, a 3), b = (b i , b 2, b 3) (1)数量积的坐标运算:a b = a 1b 1 + a 2b 2+ a 3b 3. (2)共线与垂直的坐标表示:a /b ? a = λ? a i = λ 1, a ? = λ b a 3= λ 3 (λ∈ R ), a ⊥b ? a b = 0? a i b i + a 2b 2+ a 3b 3= 0(a , b 均为非零向量). (3)模、夹角和距离公式: ∣a ∣= '∙.F a a = ■:J a i + a 2+ a 3, a b a i b i + a ?b 2 + a 3b 3C0S 〈a ,b 〉 IaIlbl a 2+ a 2+ a 2 ∙ b 2+ b 2+ b 3 .设 A(a i , b i , C i ), B(a 2, b 2, C 2),贝U d AB =l →B ∣= . a 2— a i 2+ b 2 — g 2+ c ?— C i 2.6.用空间向量解决几何问题的一般步骤: (1) 适当的选取基底{ a , b , c }; (2) 用a , b , C 表示相关向量; (3) 通过运算完成证明或计算问题. 题型一 空间向量的线性运算 用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量 的和与差的形式,进而寻找这些向量与基向量的关系. M , N 分别是OA , BC 的中点,G 是厶ABC 的重心,用基向量(DA , OB , OC 表示MG , → → → i → 2 → i → 2 → → i → 2 i → → → i → i → i → 解析:MG = MA + AG = ^OA + 3AN = ?OA + §(ON — OA) = ?0A + ^(OB + OC) — OA] = — §0A + §0B + §0C. → → → 1 → 1 → 1 → 1 → 1 → 1 → 1 → OG = OM + MG = ^OA — 6OA + §0B + 3OC = ^OA + -OB + §OC. → I → → → UiU UUD UUIU UUIU例 2:如图所示,ABCD — A 1B i C i D i 中,ABCD 是平行四边形.若AE = -EC , A →F = 2FD ,且 EF=XAB+y AD+zAA 1 , 试求X 、y 、Z 的值. J3∣ -→ -→ -→ -→ i -→ i -→ -→ •解 连接 AF , EF = EA + AF. ∙.∙ EA =— 3AC = — ^ (AB + AD ) →→→→→→ i → → i → → 2 UUU AF = AD + DF = AD — FD = AD — ^A i D = AD 一(( A i A + AD ) = — AD 3 33 i UUr → → → i UUIU i UUU i UUir A i A EF = EA + AF = AD AA i AB 3 3 3 3 题型二共线定理应用 向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与b 共线. a 与b ,化简得出a = ■ b ,从而得出a // b ,即 点共线问题:证明点共线问题可转化为证明向量共线问题,如证明 → → A 、B 、C 三点共线,即证明 AB 与AC 共线.M , N 分别是 AC , BF 的中点,判断 CE 与MNUUr UIr UUr CE=CB BE τ UUU UUU UIrUUIU ι UUIU UIr 1 UIrUUr 1 UIlU UurUIr 1 UUr 1 UIr 1 UUr MN=MC CB BN AC CB (BA BE) (AC BA) CB BECB BE2 2 2 2 2 2→ →→ →→ →∙∙∙ CE = 2MN ,∙∙∙ CE // MN ,即 CE 与MN 共线.→ → →2E 在 A i D i 上,且 A i E = 2ED ι,F 在对角线 A i C 上,且 A i F =^FC. 3→ →• EF = 2EB.所以E , F , B 三点共线.题型三共面定理应用→ → 点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明 P 、A 、B 、C 四点共面,只要能证明 PA = XPB →→→→→→ → →O ,有 OP = OA + XPB + yPC 或OP = XOA + yOB + ZOC(X + y + Z = 1)即可→ → → →2 i 2例5:已知 A 、B 、C 三点不共线,对于平面 ABC 外一点0,若OP = - OA + -OB + ;0C ,则点P 是否与 A 、B 、C 5 5 5 一定共面?试说明理由.U 2 Ulr IUIU 2 UUU 2 UUl UIr 1 UU U Ulr 2 UU UUr UIU 2 UIr 1 Ulr 2 UU U解析:∙∙∙ OP =— OA+—OB +-OC =—(OP + PA)+-(OP+PB)+-(OP+PC)=OP + -PA+- PB+— PC 5 5 3 5 53 5 5 3例4:如图所示,在正方体 ABCD — A I B I C I D I 中,5_________________ β E7f{C l → 设 AB = a , → → 证明: → 2 2 • ∙ A I E = 2ED 1=3AD = 3 → → -→ 2 •EF = A 1 F — A 1E = ;a — 5→AD = b , → A 1F = T FC = T A I C=I(AC →AA 1 = c . → → →2 2 _ 2 _ 3~ 5''~ 54 2 2 二 15b — 5c =5 a — 3b —→ → → → 2 2 2 2 -AA I )= 5 (AB + AD - AA I ) = 5a + - b — 5c → → → → 2 2 2 3二 C , EB = EA 1 + A 1A + AB = — ~b — c + a = a —3b — c ,→+ yPC ,或对空间任一点求证:E , F , B 三点共线.→ →→ → →1 2∙∙∙ AP=EAB +7AC ,故 A 、B 、C P 四点共面∙5 5例6:如图所示,已知 P 是平行四边形 ABCD 所在平面外一点,连结 PA 、PB 、PC 、PD ,点E 、F 、G 、H 分别为 △ PAB 、△ PBC 、△ PCD 、△ PDA 的重心,应用向量共面定理证明: E 、F 、G 、H 四点共面.→ → → → → → → →2 2 2 2 顺次连结M 、N 、Q 、R ,所得四边形为平行四边形,且有 PE = -PM , PF = §PN , PG = -PQ , PH = ~PR.→→→→→→ →→ →→ →→ →→ →→2222 2 2 23 3 23 3.∙. EG = PG - PE = 3PQ -3PM = 3MQ = 3(MN + MR) = 3(PN -PM) + §(PR — PM) = 3(?PF -^PE) + ^(-PH —2PE)→ →=EF + EH. ∙由共面向量定理得 E 、F 、G 、H 四点共面.→ → →例7:正方体 ABCD - A I B I C I D I 中,E , F 分别是BB i 和A i D i 的中点,求证向量 A i B , B i C , EF 是共面向量.→→→ → → →→→→→-→1 —→ 11 1证明:女口图所示,EF = EB + BA j + A J F = ^B 1B - "B + ^A J D J = -(B 1B + BC) - A 1B = ^B j C - A j B.→ → →由向量共面的充要条件知 A j B , B j C , EF 是共面向量.题型四空间向量数量积的应用 ABCD — A i B i C i D i 中,以顶点A 为端点的三条棱长都为 i ,且两两夹角为 60°⑴求AC i 的长;(2)求BD i 与AC 夹角的余弦值.解析:(J)记AB = a , AD = b , AA J = c ,则 I a l = I b l = I C l = J ,〈a , b 〉=〈 b , c > = < c , a > = 60° 」」 J ∙ ab = b C = ca =;2'∣AC J f = (a + b + c )? = a + b + C + 2(a b + b c + C a ) = J + J + J + 2 × ? + ? + ? = 6, ∙ |AC j I=V 6,即AC J 的长为::::;;6.(2)BD J = b + C -a , AC = a + b , ∙∙ IB D J I = 2, ∣Aθ∣=.3, B D J AC = (b + C - a ) (a + b ) = b 2-a 2+ a c + b C = J. ∙ cos <B D j , AC > = BDJ AC例8:①如图所示,平行六面体证明:分别延长 PE PR PG PH 交对边于 M N QR.∙∙∙ E 、F 、G H 分别是所在三角形的重心,∙∙∙ M 、N 、Q 、R 为所在边的中点=二6.∙AC 与BD J 夹角的余弦值为二6→ → 6 6IBD J IIACI→ →②已知空间四边形 ABCD 的每条边和对角线的长都等于 a ,点E 、F 分别是BC 、AD 的中点,则AE AF 的值为()A . a 2B.;a 2 C ;a 2 D^a 2→ → →解析:设AB = a , AC = b , A D = c ,则I a l =I b l =I C l = a ,且a , b , C 三向量两两夹角为 60°→ → → →1 1 1 1 1 12 2 1 2 AE = 2(a + b ), AF =尹二 AE AF = 2(a + b ) ^c = 4(a C + b C ) = 4(a cos60 ° a cos60 ) = 4a .题型五 空间向量坐标运算DC , DP 所在直线分别为X , y , Z 轴建立空间直角坐标系,则点 E 的坐标为()A . (1,1,1)B∙Q , 1, 1)C.(1, 1 , 3) D . (1,1,2)例 10:已知 a = (2,— 1,3), b = (— 1,4 , - 2) , C = (7,5 , λ∙若 a , b , C 三向量共面,则实数例 11:已知△ ABC 的顶点 A(1,1,1), B(2,2,2),→ → → → → →AB = (1,1,1) , AC = (2,1,3) , |AB|= 3 , |AC|= 14 , AB AC = 2+ 1 + 3= 6 , ∙ cos A = 8S 〈AB , AC >= 36l 4= ζ.∙ SinA =I -;;='| |AC| ∙nA = 1×.3× 帀×* =于.例9:如图所示,PD 垂直于正方形 ABCD 所在平面,AB = 2, E 为PB 的中点,COS 〈 DP ,AE 〉=于,若以DA,设 PD = a (a>0),则 A(2,0,0), B(2,2,0), P(0,0, a), E 1, 1, 1, 2 , cos 〈 DP , AE >=于,∙∙∙ a = 2.∙∙∙ E 的坐标为(1,1,1).t =337 = 2t — μ解析:由题意得 C = t a + (Jo= (2t — μ, — t + 4 μ, 3t — 2 μ , ∙ =— t + 4μ,λ= — μ7' 17 μ= 7 , 65l λ= 65.C(3,2,4),试求△ ABC 的面积DP = (0,0, a), A E =2.a_ '2品∙3,.∙ S ∆ABC =例12:已知a= ( λ÷ 1,0,2), b= (6,2 μ—1,2 λ,若a// b,贝U λ与μ的值可以是()A. 2 ,12B.—1 13,2C.—3,2D. 2,2λ+ 12 f λ= 2 ,'λ=—3 ,解析由题意知:6=2λ,解得1或1 2—1= 0 ,μ= 2尸例13:已知空间中三点A( —2,0,2), B( —1,1,2), C( —3,0,4),设a= →, b= AC.,若ka+ b 与ka—2b 互相垂直,求实数k的值.方法一一k a+ b= (k—1, k,2). k a —2b= (k+ 2, k, —4),且k a + b 与k a —2b 互相垂直,•••(k—1, k,2) (k+ 2, k,—4) = (k—1)(k+ 2)+ k2—8= 0, ∕∙ k= 2 或一5, 方法二由⑵知|a∣=^2, ∣b∣=承,a b=—1, • (k a + b) (k a —2b)= k2a2—k a b—2b2= 2k2+ k—10= 0,得k= 2 或一∣.例14:已知空间三点A(0,2,3), B( —2,1,6), C(1, —1,5).(1)求以AB, →C为边的平行四边形的面积;⑵若I a I= ,3,且a分别与AB, AC垂直,求向量a的坐标.解(1)cos〈AB, AC〉= == 3筲=-7-= 1∙.∙. Sin〈AB,心=写,∣→∣Ac∣14 2 2•以AB, AC为边的平行四边形的面积为S= 2× 1∣A→| |A CISin〈A B, AC>= 14×^3= 7,3.X2+ y2+ z2= 3 X= 1 x=—1(2)设a= (x, y, Z),由题意得2x—y+ 3z= 0 ,解得f y= 1 或f y=— 1 ,以—3y+ 2z= 0 L= 1 [z=—12 1例15:如图所示,在正方体ABCD —A1B1C1D1中,E、F分别在A Q、AC上,且A p E= 3A1D, AF = -AC ,贝U ( ) A. EF至多与A1D、AC之一垂直 B . EF与A1D、AC都垂直C . EF与BD p相交 D . EF与BD j异面解析:设AB = 1,以D为原点,DA所在直线为X轴,DC所在直线为y轴,DD 1所在直线为Z轴建立空间直角坐标(1 1 伦 1 ∖→系,贝y A1(1,0,1), D(0,0,0), A(1,0,0), C(0,1,0), E 3, 0,3,F 3, 3 0, B(1,1,0), D1(0,0,1) , A1D = (—1,0 , —1), AC= (—1,1,0) ,EF = 1, 3 —1,B→1= (—1 , —1, 1) ,EF = —3B→1, A→D EF = AC EF = 0,从而EF // BD1,EF 丄AQ, EF 丄AC.→ →例16:已知0(0,0,0), A(1,2,3), B(2,1,2), P(1,1,2),点Q在直线OP上运动,当QA QB取最小值时,点Q的坐标是.→ → → →解析:设OQ = QP = (λ, λ 2λ,贝U QA = (1 —人2—λ 3— 2 λ, QB= (2 —λ 1 —λ 2 — 2 λ .∙∙∙ QAQB = (I - ^2-λ÷(2-如-λ+(3-叩-2 λ= 6 λ- 16λ÷ 10 = 6( λ-$— 2→ → →二当λ=4时,QAQB 取最小值为-此时,OQ =(4,3,3),综合练习、选择题1、下列命题:其中不正确.的所有命题的序号为 _____________ • ①若A 、B 、C 、D 是空间任意四点,则有 AB ÷ BC + CD ÷ DA = 0; ②I a H b = |a ÷ b ∣是a 、b 共线的充要条件;③ 若a 、b 共线,则a 与b 所在直线平行;④ 对空间任意一点 O 与不共线的三点 A 、B 、C ,若OP = XOA ÷ yOB ÷ ZOC (x 、y 、z ∈ R ),贝U P 、A 、B 、C 四点共面.⑤ 设命题P : a , b , C 是三个非零向量;命题 q : {a , b , c }为空间的一个基底,则命题 P 是命题q 的充要条件解析:选②③④⑤,①中四点恰好围成一封闭图形,正确;②中当 a 、b 同向时,应有| a | ÷ | b | = | a ÷ b | ;③中a 、 b 所在直线可能重合;④中需满足 x ÷ y ÷ Z = 1,才有P A 、B C 四点共面;⑤只有不共面的三个非零向量才能作 为空间的一个基底,应改为必要不充分条件2、有下列命题:其中真命题的个数是 ()①若P = X a ÷ y b,贝U P 与a , b 共面;③若 MIP = XMjA ÷ yM →B ,贝y P , M , A 、B 共面; A . 1 B . 2C . 3②若P 与a , b 共面,则P = X a ÷ y b ; ④若 P , M , A , B 共面,则 MjP = XMlA ÷ yM →B. D . 4贝U ≠÷ ;3、已知 A(1,0,0), B(0,- 1,1),BjC .OA ÷ QB 与OB 的夹角为120°贝U λ的值为( —普 D . ±6 → →解析:OA ÷ λOB = (1 ,- λ λ,cos120° =λ÷ λ.'1÷ 2λ • 22,得λ= ±66.经检验入=¥不合题意,舍去,λ=-4、 如图所示,已知 FA 丄平面 ABC , ∠ ABC = 120 ° PA = AB = BC = 6,贝U PC 等于 ()C . 12D . 144=(PA ÷ AB ÷ BC) =PA 2÷ AB 2÷ BC 2÷ 2AB BC = 36÷ 36 ÷ 36÷ 2 × 36cos 60 O = 144 ∕∙ |PC|= 12 证明设AB = a , AC = b , AD = c ,则 BG = BA ÷ AG = BA ÷ 3AM = — a ÷ 1(a ÷ b ÷ c )= — 3a ÷ 1b ÷~.c ,4 4' ,4 4 4 BN = B A ÷ AN = BA ÷ 3(AC ÷ AD)=— a ÷ f b ÷ f c =IBG.∕∙ BN ^ BG ,即 B 、G 、N 三点共线.5、正方体ABCD — A 1B 1C 1D 1的棱长为a ,点M 在A®上且AM = IM C 1, N 为B 1B 的中点,贝U IMNI 为()2解析 以D 为原点建立如图所示的空间直角坐标系 DXyZ ,则A (a,0,0),C*0,a , a ),N a .T 点 M 在 AC 1 上且 AM = 2MC 1, ∙ (x — a , y , Z) = *( — x , a — y , a — Z) A 寻IZB∙far . 15 DpaA L设 M(x , 2∙∙X = 3a ,y = 3Z=3. ∙M 伶 3 3) ∙ IMN =∖/ (I —3a )÷l 2a -!2÷ a -32=甲已知空间四边形 OABC , OB = OC ,且∠ AOB = ∠ AOC = ∏,贝U CoS 〈C)A , C 乎腭BC 〉的值为( 设OA = a , OB = b , OC = c ,由已知条件〈a , b 〉=〈 a , c >= ∏3-→ -→ 1 1 -→ -→OA BC = a (c — b ) = a C — a b = 2I a||c — 2I a ∣∣b = 0, ∙ CoS且 I b l =I C =0.7、如图所示,在平行六面体 ABCD — A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB = a , AD = b, AA i = c , 则下列1 1D.^a — ?b + Cc +如-a ) = — 2 a + 2 b + c .ABCD — A 1B 1C 1D 1 中,向量 A B , AD , AA 1 两两的夹角均为 60°,且 IABI = 1, ∣AD ∣= 2, IA A I I = 3,则IAC i 等于()[A . 5B . 6C . 4D . 8|[ 设AB = a , AD = b , AA 1 = c ,则 AC 1= a ÷ b ÷ c , AC 12= a 2÷ b 2÷ c 2÷ 2a b ÷ 2b c ÷ 2C a = 25, IAC 1I = 5」9、 在下列条件中,使 M 与A 、B 、C 一定共面的是()- - - - - - - - - - - - - - -1 1A.OM = 3OA — 2OB — OC B . OM ÷ OA ÷ OB ÷ OC = 0 C . MA ÷ MB ÷ MC = 0 D . OM = 4OB — OA ÷^OC— — —解析: C 中MA = — MB — MC.故M 、A 、B 、C 四点共面. 二、填空题10、 同时垂直于 a = (2,2,1)和b = (4,5,3)的单位向量是 ______________________ .6、如图所示, A . 01 2向量中与BM 相等的向量是 (-→ 1 -→ -→ =AA 1+ 2(AD — AB) =C . — I a — 2b + C88、平行六面体解析 设与a = (2,2,1)和b = (4,5,3)同时垂直b 单位向量是C = (P , q , r),则11. 若向量a = (1, λ 2), b = (2, — 1,2)且 a 与b 的夹角的余弦值为 鲁,则λ=12.在空间直角坐标系中,以点 A(4,1,9)∖ B(10 , — 1,6)、C(x,4,3)为顶点的厶ABC 是以BC 为斜边的等腰直角三角 形,则实数X 的值为 _________解析 由题意知AB AC = O , IAiBl =ACI ,可解得X = 2.13. 已知 a + 3b 与 7a — 5b 垂直,且 a — 4b 与 7a — 2b 垂直,则〈a , b>= ________ I解析 由条件知(a + 3b ) (7a — 5b ) = 7|a |2+ 16a b — 15|b |2= 0 ,及(a —4b ) (7a — 2b ) = 7|a |2+ 8|b |2— 30a b = 0. 两式相减,得 46a b = 23|b |2,二 a b = 2|b |2.14. 如图所示,已知二面…l —e 的平面角为θθ∈ 0,Π, AB ⊥BC , BC ⊥CD , AB 在平面β内,BC 在I 上,CD 在平面 α内,若 AB = BC = CD = 1,贝U AD 的长为 __________ —→ 2 —→ —→ —→ 2= —→ 2 —→ 2—→ 2—→ —→ —→ —→ —→ —→ 解析:AD 2= (AB + BC + CD) AB 2 + BC 2+ CD 2+ 2AB CD + 2AB BC + 2BC CD = 1+ 1+ 1 + 2cos( — θ)= 3— 2cos θ 15. ____________________________________________________________ 已知 a = (1 —1,1 — t , t), b = (2, t , t),则 |b — a |的最小值为 ____________________________________________________ .解析 b — a = (1 + t,2t - 1,0), •• |b — a |=^ (1 + tf+( 2t — 1 Y = ^^ 5 [^t — 5 / + 5 ,•当 t = 5 时,|b — a 取得最小值 .三、解答题16、如图所示,在各个面都是平行四边形的四棱柱 ABCD — A 1B 1C 1D 1中,P 是CA 1的中点,M 是CD 1的中点,N 是 C 1 D 1的中点,点 Q 在CA 1上,且CQ : QA 1 = 4 : 1,设AB = a , AD = b , A A I = C 用基底{a , b , c }表示以下向量: 1 →→ 1 → → 1 2(AC + AA 1)= 2(A B + AD + A A 〔)= 2(a + b + C ).p 2+ q 2+ r 2= 1, 2p + 2q + r = 0, 4p + 5q + 3r = 0,1 P = 3,— 2 解得q =— £,I 2 r = 3, 1 P = — 3, 或q = |, 所求向量为3,— 3, 3或—3,3,— 3 . 8 解析由已知得8=a b 2— λ+ 4 Iailb = √5+λ2∙9,「8√5+λ = 3(6- λ,解得—2 或 λ=盒. 代入上面两个式子中的任意一个,即可得到 |a |= |b |. ••• CoS 〈 a , b > 1 2 a b 1|b | 1— 2 = .. IaIIb I |b | 2 a , b >= 60°2 (1)AP =-→ 1 -→ -→ 1 -→ -→ -→ 1 (2)AM = 2(AC + AD 1)= 2(AB + 2AD + AA” = ?(a + 2b + C ). 17、如图,已知 M 、N 分别为四面体 ABCD 的面BCD 与面ACD 的重心,且 G 为AM 上一点,且 GM : GA = 1 : 3. =Ca = 0. ⑴证明:设 CA = a , CB = b , CC ' = c ,根据题意,|a I =I b I =I C l 且 a b = b C ∙∙∙ CE = b + ∣C , A →D = — C +1 b - 2a .ΛCE ∙ A →D = — ∣c 2 +1b 2= 0,∙'∙ CE 丄At),即 CE 丄AD. b + 2 C = 2 C 2=∙2∣a ∣2,⑵A →' =— a + c,∙∙∙ |A C' I = 2|a |, 品=^^∣A →' ∙ CE = (— a + C ) 1∣ f ∙ CoS 〈 A C' , CE > = 一匕了一 = 穹•即异面直线CE 与AC 所成角的余弦值为 密. 2 ∙ 25I a I 2-- 1 -- -- 1 -- -- -- -- -- 1 -- -- -- 1 1 (3) AN = 2(AC 1 + AD 1) = 2[(AB + AD + AA” + (AD + AAj = 2( AB + 2AD + 2AA” = q(a + 2b + 2 C ) = q a + b + C . ⑷ AQ = AC + CQ = AC + 4(AA 1- AC) = I AC + 5A --1 = 1A B + 如 + 彳品=* a + ⅛ + IC求证:B 、G 、N 三点共线. 18. (13分)直三棱柱 ABC — A B ' C '中,AC = BC = AA ' , ∠ ACB =90° (2)求异面直线CE 与AC '所成角的余弦值. D 、E 分别为AB 、BB '的中点.(1)求证:CE ⊥ A ' D ;。

选修2-1第三章空间向量知识点及例题

选修2-1第三章空间向量知识点及例题

空间向量及应用1、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.2、三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底. 3、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++. ()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()821cos ,x a b a b a bx ⋅〈〉==+()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =4、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.5、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量。

6、平面的法向量:(1)定义:直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. (2)求法:①设出平面的法向量为),,(z y x n =②找出(求出)平面内的两个不共线的向量的坐标),,(321a a a a =,),,(321b b b b =③根据法向量的定义建立关于z y x ,,的方程组⎪⎩⎪⎨⎧=⋅=⋅00b n a n ④解方程组,取其中的一个解作为法向量,由于一个平面的法向量有无数多个,故可在方程组解中取一个最简单的作为平面的法向量。

选修2-1空间向量考点(全)

选修2-1空间向量考点(全)

空间向量考点1、空间向量的坐标及基本运算空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标).a =(a 1,a 2,a 3),),,(321b b b b =,),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,向量平行:a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 。

向量垂直:0332211=++⇔⊥b a b a b a b a 。

向量的模:222321a a a a a a ++=∙=特例:向量模与向量之间的转化:a a a a a a ∙=⇒∙=2空间两个向量的夹角公式:232221232221332211||||,cos bb b a a a b a b a b a b a ba b a ++⋅++++=⋅∙>=<空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=. 2、法向量若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量. 3、向量的应用①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α的距离为||||n n AB ∙.②.利用向量求异面直线间的距离nn CD d ∙=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③.利用向量求直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).④.利用法向量求二面角的平面角定理 21,n n 分别是二面设角βα--l 中平面βα,的法21,n n 所成的角就向量,则是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).⑤.证直线和平面平行定理已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交). 4、向量的基本概念(1) 共线向量共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立] ④若a 为非零向量,则00=a .(√)[这里用到)0(≠b b λ之积仍为向量](2) 共线向量定理α▲nBCAαβ▲n 2n 1αCED AB对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=. (3) 共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α.(4) 证明四点共面的常用方法.①共面向量定理:如果两个向量b a ,不共线,则向量P 与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC四点共面的充要条件.(证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)4、向量的基本定理如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++, 则四点P 、A 、B 、C 是共面⇔1x y z ++=OABCD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 空间向量与立体几何1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)空间的两个向量可用同一平面内的两条有向线段来表示。

2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。

当我们说向量a 、b 共线(或a //b )时,表示a、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a//b 存在实数λ,使a=λb 。

4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。

6.空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作,(两个向量的起点一定要相同),则叫做向量与的夹角,记作,且。

7. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O xyz-中,对空间任一点A,存在唯一的有序实数组x y z叫作向量A在空间直角坐标系(,,)x y z,使zk=,有序实数组(,,)+yiOA+xiA x y z,x叫横坐标,y叫纵坐标,z叫竖坐标。

O xyz-中的坐标,记作(,,)(2) 右手直角坐标系:右手握住z轴,当右手的四指从正向x轴以90°角度转向正向y轴时,大拇指的指向就是z轴的正向;(3)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k表示。

(4)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ⋅=++,112233//,,()a b a b a b a b R λλλλ⇔===∈或λ===332211b a b a b a 1122330a b a b a b a b ⊥⇔++=。

②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(5)模长公式:若123(,,)a a a a =,123(,,)b b b b =,则222123||a a a a a a =⋅=++,222123||b b b b b b =⋅=++ (6)夹角公式:112233222222123123cos ||||a b a b a b a ba b a b a a a b b b ++⋅⋅==⋅++++。

(7)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2222212121||()()()AB AB x x y y z z ==-+-+-, 或222,212121()()()A B d x x y y z z =-+-+-(8)空间线段),,(),,,(22221111z y x P z y x P 的中点),,(z y x M 的坐标:⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x(9)球面方程:2222R z y x =++8. 空间向量的数量积。

(1)空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥。

(2)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a 。

(3)向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。

(4)空间向量数量积的性质:①||cos ,a e a a e ⋅=<>。

②0a b a b ⊥⇔⋅=。

③2||a a a =⋅=2)(a ,2)(a a = (5)空间向量数量积运算律: ①()()()a b a b a b λλλ⋅=⋅=⋅。

②a b b a ⋅=⋅(交换律)。

③()a b c a b a c ⋅+=⋅+⋅(分配律)。

9、空间向量在立体几何证明中的应用:),,(),,,(321321b b b CD a a a AB ==(1)证明//AB CD ,即证明//AB CD ,也就是证明332211,,b a b a b a λλλ===或λ===332211b a b a b a (2)证明AB CD ⊥,即证明0AB CD ⋅=,也就是证明0332211=++b a b a b a (3)证明//AB α(平面)(或在面内),即证明AB 垂直于平面的法向量或证明AB 与平面内的基底共面;(4)证明AB α⊥,即证明AB 平行于平面的法向量或证明AB 垂直于平面内的两条相交的直线所对应的向量;(5)证明两平面//αβ(或两面重合),即证明两平面的法向量平行或一个面的法向量垂直于另一个平面;(6)证明两平面αβ⊥,即证明两平面的法向量垂直或一个面的法向量在另一个面内。

10. 运用向量的坐标运算解题的步骤: (1)建坐标系,求相关点的坐标 (2)求相关向量的坐标 (3)运用向量运算解题11. 用向量方法来解决立体几何中的空间角的问题: (1) 两条直线的夹角:设直线,l m 的方向向量分别为,a b , 两直线l ,m 所成的角为θ(02πθ≤≤),cos a b a bθ⋅==b a ,cos(2) 直线与平面的夹角:设直线l 的方向向量分别为a ,平面α的法向量分别为u, 直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a uθ⋅==u a ,cos ;(3) 二面角: πθ≤≤0 ① 方向向量法:② 法向量法:法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角12. 利用“方向向量”与“法向量”来解决距离问题. (1)点与直线的距离:),cos (sin ><=a AP AP d 先求θ(2)点到平面的距离:d =||||PA n n ⋅.如图A ,α∈空间一点P 到平面α的距离为d ,已知平面α的一个法向量为n ,且AP 与n 不共线,分析:过P 作P O ⊥α于O,连结OA. 则d =|PO |=||cos .PA APO ⋅∠ ∵PO ⊥α,,n α⊥∴PO ∥n . ∴cos ∠APO=|cos ,PA n 〈〉|. ∴d =|PA ||cos ,PA n 〈〉|=||||PAn n ⋅.(3)异面直线间的距离: nAB n CD d ⋅==已知a,b 是异面直线,CD 为a,b 的公垂线,的方向向量,是直线CD n A ,B 分别在直线a,b 上nAB n CD d ⋅==(4)其它距离问题:① 平行线的距离(转化为点到直线的距离)② 直线与平面的距离(转化为点到平面的距离) ③ 平面与平面的距离(转化为点到平面的距离)13.补充:(1) 三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ, AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. (2)三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立). (3)点Q 到直线l 距离221(||||)()||h a b a b a =-⋅(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ).(4)异面直线上两点距离公式2222cos d h m n mn θ=++.222'2cos ,d h m n mn EA AF =++-.2222cos d h m n mn ϕ=++-('E AAF ϕ=--). (两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). (5)三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅ 2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a=+++⋅+⋅+⋅ (6)长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). (7)面积射影定理'cos S S θ=. (平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).(8)斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则 ①1S c l=斜棱柱侧.②1V S l =斜棱柱.(9)欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).① E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:nF E 21=② 若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:.mV E 21=(10) 球的组合体① 球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. ② 球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. ③ 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为a 126,外接球的半径为a 46.。

相关文档
最新文档