2019年上海市徐汇区九年级上册期末学习能力诊断数学试题有答案[精编]
【精选】2019-2020学年上海市徐汇区九年级上册期末学习能力诊断数学试题有答案
2019学年第一学期徐汇区学习能力诊断卷初三数学 试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.已知34x y =,那么下列等式中,不成立的是(A )37x x y =+; (B )14x y y -=; (C )3344x y +=+; (D )4x =3y . 2.在比例尺是1:40000的地图上,若某条道路长约为5cm ,则它的实际长度约为 (A )0.2km ; (B )2km ; (C )20km ; (D )200km .3.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =1,BD =3,那么由下列条件能够判断DE ∥BC 的是(A )13DE BC =; (B )14DE BC =; (C )13AE AC =; (D )14AE AC =. 4.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列等式正确的是 (A )sin b A c =; (B )cos c B a =; (C )tan a A b =; (D )cot b B a=. 5.下列关于向量的说法中,不正确的是(A )3()33a b a b -=-r r r r ; (B )若3a b =r r ,则33或a b a b ==-r r r r ;(C )33a a =r r ; (D )()()m na mn a =r r . 6.对于抛物线2(2)3y x =-++,下列结论中正确结论的个数为 ①抛物线的开口向下; ②对称轴是直线x =-2;③图像不经过第一象限; ④当x >2时,y 随x 的增大而减小. (A )4; (B )3; (C )2; (D )1.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知线段b 是线段a 、c 的比例中项,且a =2,c =8,那么b = ▲ .8.计算:3(24)5()a b a b ---=r r r r▲ .9.若点P 是线段AB 的黄金分割点,AB =10cm ,则较长线段AP 的长是 ▲ cm .10.如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别为AB 、DC 上的点,若CF =4,且EF ∥AD ,AE :BE =2:3,则CD 的长等于 ▲ .11.如图,在梯形ABCD 中,AB ∥DC ,AD =2,BC =6,若△AOB 的面积等于6,则△AOD 的面积等于 ▲ .12.如图,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,若,AB a BC b ==uu u r r uu u r r ,则用、OD a b u u u r r r可表示为 ▲ .13.已知抛物线C 的顶点坐标为(1,3),如果平移后能与抛物线21232y x x =++ 重合,那么抛物线C 的表达式是 ▲ .14.sin60tan 45cos60cot30=⋅-⋅o o o o ▲ .15.如果抛物线22y ax ax c =-+与x 轴的一个交点为(5,0),那么与x 轴的另一个交点的坐标是▲ .16.如图,在△ABC 中,AB=AC ,BE 、AD 分别是边AC 、BC 上的高,CD =2,AC =6,那么CE = ▲ . 17.如图,是将一正方体货物沿坡面AB 装进汽车货厢的平面示意图,已知长方体货厢的高度BC 为2.6米,斜坡AB 的坡比为1:2.4,现把图中的货物继续向前平移,当货物顶点D 与C 重合时,仍可把货物放平装进货厢,则货物的高度BD 不能超过 ▲ 米.18.在△ABC 中,∠C =90°,AC =3,BC =4(如图),将△ACB 绕点A 顺时针方向旋转得△ADE (点C 、B 的对应点分别为D 、E ),点D 恰好落在直线BE 上和直线AC 交于点F ,则线段AF 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 如图,在△ABC 中,∠ACD =∠B ,AD =4,DB =5.(1)求AC 的长;(2)若设,CA a CB b ==uu r r uu r r ,试用、a b r r 的线性组合表示向量CD uu u r. 20.(本题共2小题,第(1)小题5分,第(2)小题5分,满分10分) 已知一个二次函数的图像经过A (0,-6)、B (4,-6)、C (6,0)三点.(1)求这个二次函数的解析式;(2)分别联结AC 、BC ,求tan ∠ACB .21.(本题满分10分)如图所示,巨型广告牌AB背后有一看台CD,台阶每层高0.3米,且AC=17米,现有一只小狗睡在台阶的FG这,层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB在地面上的影长AE=10米,过了一会,当α=45°,问小狗在FG1.73).22.(本题满分10分)如图,在△ABC中,AB=AC,BC=12,sin C=45,点G是△ABC的重心,线段BG的延长线交边AC于点D,求∠CBD的余弦值.23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图在△ABC中,AB=AC,点D、E、F分别在边BC、AB、AC上,且∠ADE=∠B,∠ADF=∠C,线段EF交线段AD于点G.(1)求证:AE=AF;(2)若DF CFDE AE,求证:四边形EBDF是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,在平面直角坐标系xOy 中,直线y =kx (k ≠0)沿着y 轴向上平移3个单位长度后,与x 轴交于点B (3,0),与y 轴交于点C ,抛物线2y x bx c =++过点B 、C 且与x 轴的另一个交点为A . (1)求直线BC 及该抛物线的表达式;(2)设该抛物线的顶点为D ,求△DBC 的面积;(3)如果点F 在y 轴上,且∠CDF =45°,求点F 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题7分,第(3)小题4分)已知,在梯形ABCD 中,AD ∥BC ,∠A =90°,AD =2,AB =4,BC =5,在射线BC 任取一点M ,联结DM ,作∠MDN =∠BDC ,∠MDN 的另一边DN 交直线BC 于点N (点N 在点M 的左侧). (1)当BM 的长为10时,求证:BD ⊥DM ;(2)如图(1),当点N 在线段BC 上时,设BN =x ,BM =y ,求y 关于x 的函数关系式,并写出它的定义域;(3)如果△DMN 是等腰三角形,求BN 的长.参考答案:1、B ;2、B ;3、D ;4、C ;5、B ;6、A ;7、4; 8、7a b -r r ; 9、5; 10、203;11、2; 12、1122b a -r r ; 13、21(1)32y x =-+; 14、0;15、(-3,0); 16、43; 17、125; 18、757。
上海市徐汇区2019年中考一模(即期末)数学试题及答案(word版)
2019学年第一学期徐汇区学习能力诊断卷初三年级数学学科 2019.1(满分150分,考试时间100分钟)考生注意:1. 本试卷含3个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一、 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1. 在比例尺为1:2000的地图上测得A 、B 两地间的图上距离为5cm ,则A 、B 两地间的实际距离为( ) (A) 10m ;(B) 25m ;(C) 100m ;(D) 10000m.2. 在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( )(A)513 (B) 1213 (C) 512(D)1353. 抛物线()21232y x =--的顶点坐标是( )(A) ()2,3 (B) ()2,3-(C) ()2,3-(D) ()2,3--4. 已知抛物线()232y ax x a =++-,a 是常数且a <0,下列选项中可能是它大致图像的是( )5. 下列命题中是假命题的是( )(A) 若,a b b c ==,则a c =.(B) ()222a b a b -=-第9题EDABC第10题FDCABEP CD BA DCBA (C) 若12a b =-,则a b ∥.(D) 若a b =,则a b =6. 已知△ABC 和△DEF 相似,且△ABC 的三边长为3、4、5,如果△DEF 的周长为6,那么下列不可能是△DEF 一边长的是( ) (A) 1.5;(B) 2;(C) 2.5;(D) 3.二、 填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7. 已知34a b =,则2aa b+的值为__________. 8. 计算:()()23m n m n ++-=___________.9. 如图,△ABC 中,点D 、E 分别在边AB 、AC 上,CD 平分∠ACB ,DE ∥BC ,若AC =10,AE =4,则BC =________.10. 如图,在平行四边形ABCD 中,E 为CD 上一点,联结AE 、BD ,且AE 、BD 交于点F ,若:2:3DE EC =,则:DEFABFSS=_________.11. 如图,已知抛物线2y x bx c =++的对称轴为直线x =1,点A ,B 均在抛物线上,且AB 与x 轴平行,若点A 的坐标为30,2⎛⎫⎪⎝⎭,则点B 的坐标为___________.12. 如果抛物线()231y x =++经过点()11,A y 和点()23,B y ,那么1y 与2y 的大小关系是1y ___2y (填写“>”或“<”或“=”).13. 如图,已知梯形ABCD 中,AB ∥CD ,AB ⊥BC ,且AD ⊥BD ,若CD =1,BC =3,那么∠A 的正切值为________.14. 在高位100米的楼顶得得地面上某十字路口的俯角为,那么娄底到这个十字路口的水平距离是____________米(用含的代数式表示).F CBA DE15. △ABC 中,AD 是中线,G 是重心,,AB a AD b ==,那么BG =_______(用a b 、表示). 16. △ABC 中,AB=AC =5,BC =8,那么sin B =__________.17. 将二次函数23y x =的图像向左平移2个单位再向下平移4个单位,所得函数表达式是()2324y x =+-,我们来解释一下其中的原因:不妨设平移前图像上任意一点P 经过平移后得到点P ’,且点P ’的坐标为(),x y ,那么P ’点反之向右平移2个单位,再向上平移4个单位得到点()2,4P x y ++,由于点P 是二次函数23y x =的图像上的点,于是把点P (x +2,y +4)的坐标代入23y x =再进行整理就得到()2324y x =+-.类似的,我们对函数()11y x x =+的图像进行平移:先向右平移1个单位,再向上平移3个单位,所得图像的函数表达式为_____.18. 如图,矩形ABCD 中,AB =8,BC =9,点P 在BC 边上,CP =3,点Q 为线段AP 上的动点,射线BQ 与矩形ABCD 的一边交于点R ,且AP =BR ,则QRBQ=____________. 三、 解答题:(本大题共7分,满分78分) 19. (本题满分10分)计算:2222sin 30+tan60tan30+sin 60cos 45+cot60cos30︒︒⋅︒︒︒︒⋅︒20. (本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,点D 、E 分别在△ABC 的边BA 、CA 的延长线上,且DE ∥BC ,12AE AC =,F 为AC 的中点.(1) 设BF a =,AC b =,试用xa yb +的形式表示AB 、ED ;(x 、y 为实数)(2) 作出BF 在BA 、BC 上的分向量.第13题第18题FEACDB (保留作图痕迹,不写作法,写出结论)21. (本题满分10分)某商场为了方便顾客使用购物车,将滚动电梯由坡角30°的坡面改为坡度为1:2.4的坡面。
2018-2019学年上海市徐汇区初三数学第一学期学习能力诊断卷 参考答案2019-1-12
2018学年第一学期徐汇区学习能力诊断卷参考答案2019.1一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.D ;4.B ;5.C ;6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.25; 8.2; 9.372a b -r r ; 10.<; 11.45; 12.53;13.2003;14.1122a b -+r r;15.4;16.50-17.16925;18.1265.三、解答题:(本大题共7题,满分78分)19.解:原式1332242162-+⎪⎪⎭⎫⎝⎛⨯-⨯=… ……………………………………(4分)1313-+=…………………………………………………………… (4分)()2132+=……………………………………………………………(1分)32+= ………………………………………………………………(1分)20.解:(1)∵,BA a BC b ==uu r r uu u r r∴CA CB BA b a =+=-+uu r uu r uu r r r…………………………………………(2分)∵2AD BC =, ∴13CD CA =∵CD uu u r 与CA uu r同向,∴13CD CA =uu u r uur ………………………………(2分)()111333b a a b =-+=-r r r r…………………………………………(1分) (2)作图正确 ………………………………………………………………………(2分)结论 …………………………………………………………………………(1分)1233BD a b =+uu u r r r…………………………………………………………(2分)21.解:(1)∵抛物线22+bx+c A -33y x =-过点(,0)、C (0,2) ∴得:-6-302b c c +=⎧⎨=⎩解得:432b c ⎧=-⎪⎨⎪=⎩∴抛物线的解析式为:224233y x x =--+ …………………………………………(2分) ∵224233y x x =--+22(211)23x x =-++-+228(1)33x =-++………………(2分)∴顶点8(1,)3D -…………………………………………………………………………(1分)(2)∵点E 是点C 的对称点且对称轴是直线1x =-,∴(2,2)E - ………………(1分)2242033y x x =--+=,解得121,3x x ==-,得(1,0)B ………………………(1分)∵(0,2)(2,2)C E -、,∴CE // x 轴∴∠CEB=∠ E BA ………………………………………………………………………(2分) 过E 作EH x ⊥轴,垂足为H ,得:EH =2,BH =3,∴EH 2R BHE tan EBA==BH 3t ∆∠在中,………………………………………………(1分) ∴2tan CEB=3∠22.解:(1)车轮半径AD 为30cm ,中轴轴心C 到地面的距离CF 为30cm ,所以AC 平行于水平线和地面,即90CAD ∠=o……………………………………………………(1分)设BE 交CA 于H ,则在Rt △BHC 中, sin BHBCA BC∠=………………………(1分)∵71,54BCA BC cm ∠=︒=∴0.9554BH=解得:51.3BH cm =………………………(1分) ∴51.3+30=81.3BE cm =≈81cm …………………………(1分) 答:车座B 到地面的高度约为81cm ………………………(1分)(2)设''B E 交CA 于G, 则在Rt △'B CG 中,''sin B GBCA B C∠= ………………(1分)∵''71,90BCA B E cm ∠=︒=∴'90300.95B C -=解得:120019B C cm =’. ………………………………(2分) ∵54BC cm =,∴12005419BB =-’≈9cm …………………………………(1分) 答:此时车架中立管BC 拉长的长度BB ’应是约为9cm . ……………………(1分)23.证明:(1)∵2.AE EG ED =,即AE EDEG AE=,又AEG AED ∠=∠, ∴AEG V ∽DEA V …………………………………(1分)∴EAG ADE ∠=∠……………………………………………………………(1分) ∵,AF BC E AB ⊥为的中点,∴12EF AB AE ==………………………(1分) ∴EAG EFG ∠=∠……………………………………………………………(1分) ∵EAG ADE ∠=∠(已证),ADE EFG ∠=∠………………………………(1分) ∵在菱形ABCD 中,AD ∥BC, AF ⊥BC ,∴90DAG AFB ∠=∠=︒. ∴90ADE AGD ∠+∠=︒.∵,AGD EGF ADE EFG ∠=∠∠=∠,∴90EFG EGF ∠+∠=︒.∴90GEF ∠=︒,∴DE EF ⊥……………………………………………(1分) (2) 延长FE 、DA 相交于点M , ∵AD ∥BC,E 为AB 的中点,∴1AE MEEB EF==. ∴ME EF = …………………………………(1分) ∵DE EF ⊥,∴DF DM =…………………(1分) ∴MDE FDE ∠=∠∵()()BAF EAG MDE ADE ∠∠=∠∠(已证) ∴BAF FDE ∠=∠ …………………………(1分) ∵90AFB DEF ∠=∠=︒∴AFB V ∽DEF V ……………………………………………………………(1分)∴AB BFDF EF=………………………………………………………………………(1分) ∵12AB 菱形中AB=BC 且EF=,∴212BC DF BF =⋅.∴22.BC DF BF =………………………………………………………………(1分)FCBA其他证明方法,酌情给分。
2019年上海市徐汇区九年级上册期末学习能力诊断数学试题有答案-精华版
第一学期徐汇区学习能力诊断卷初三数学 试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.已知34x y =,那么下列等式中,不成立的是 (A )37x x y =+; (B )14x y y -=; (C )3344x y +=+; (D )4=3y . 2.在比例尺是140000的地图上,若某条道路长约为5cm ,则它的实际长度约为(A )0.2m ; (B )2m ; (C )20m ; (D )200m .3.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =1,BD =3,那么由下列条件能够判断DE ∥BC 的是(A )13DE BC =; (B )14DE BC =; (C )13AE AC =; (D )14AE AC =. 4.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列等式正确的是(A )sin b A c =; (B )cos c B a =; (C )tan a A b =; (D )cot b B a=. 5.下列关于向量的说法中,不正确的是(A )3()33a b a b -=-r r r r ; (B )若3a b =r r ,则33或a b a b ==-r r r r ;(C )33a a =r r ; (D )()()m na mn a =r r .6.对于抛物线2(2)3y x =-++,下列结论中正确结论的个数为①抛物线的开口向下; ②对称轴是直线=-2;③图像不经过第一象限; ④当>2时,y 随的增大而减小.(A )4; (B )3; (C )2; (D )1.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知线段b 是线段a 、c 的比例中项,且a =2,c =8,那么b = ▲ .8.计算:3(24)5()a b a b ---=r r r r ▲ .9.若点P 是线段AB 的黄金分割点,AB =10cm ,则较长线段AP 的长是 ▲ cm .10.如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别为AB 、DC 上的点,若CF =4,且EF ∥AD ,AE :BE =23,则CD的长等于 ▲ .11.如图,在梯形ABCD 中,AB ∥DC ,AD =2,BC =6,若△AOB 的面积等于6,则△AOD 的面积等于 ▲ .12.如图,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,若,AB a BC b ==uu u r r uu u r r ,则用、OD a b uuu r r r 可表示为 ▲ .13.已知抛物线C的顶点坐标为(1,3),如果平移后能与抛物线21232y x x =++ 重合,那么抛物线C 的表达式是 ▲ .14.sin60tan 45cos60cot30=⋅-⋅o o o o ▲ .15.如果抛物线22y ax ax c =-+与轴的一个交点为(5,0),那么与轴的另一个交点的坐标是 ▲ .16.如图,在△ABC 中,AB=AC ,BE 、AD 分别是边AC 、BC 上的高,CD =2,AC =6,那么CE = ▲ .17.如图,是将一正方体货物沿坡面AB 装进汽车货厢的平面示意图,已知长方体货厢的高度BC 为2.6米,斜坡AB 的坡比为12.4,现把图中的货物继续向前平移,当货物顶点D 与C 重合时,仍可把货物放平装进货厢,则货物的高度BD 不能超过 ▲ 米.18.在△ABC 中,∠C =90°,AC =3,BC =4(如图),将△ACB 绕点A 顺时针方向旋转得△ADE (点C 、B 的对应点分别为D 、E ),点D 恰好落在直线BE 上和直线AC 交于点F ,则线段AF 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在△ABC 中,∠ACD =∠B ,AD =4,DB =5.(1)求AC 的长;(2)若设,CA a CB b ==uu r r uu r r ,试用、a b r r 的线性组合表示向量CD uu u r .20.(本题共2小题,第(1)小题5分,第(2)小题5分,满分10分)已知一个二次函数的图像经过A (0,-6)、B (4,-6)、C (6,0)三点.(1)求这个二次函数的解析式;(2)分别联结AC 、BC ,求tan ∠ACB .21.(本题满分10分)如图所示,巨型广告牌AB 背后有一看台CD ,台阶每层高0.3米,且AC =17米,现有一只小狗睡在台阶的FG 这,层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB 在地面上的影长AE =10米,过了一会,当α=45°,问小狗在FG 1.73).22.(本题满分10分)如图,在△ABC 中,AB =AC ,BC =12,sin C =45,点G 是△ABC 的重心,线段BG 的延长线交边AC 于点D ,求∠CBD 的余弦值.23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B ,∠ADF =∠C ,线段EF 交线段AD 于点G .(1)求证:AE =AF ;(2)若DF CF DE AE=,求证:四边形EBDF 是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图,在平面直角坐标系Oy 中,直线y =(≠0)沿着y 轴向上平移3个单位长度后,与轴交于点B (3,0),与y 轴交于点C ,抛物线2y x bx c =++过点B 、C 且与轴的另一个交点为A .(1)求直线BC 及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积;(3)如果点F在y轴上,且∠CDF=45°,求点F的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题7分,第(3)小题4分)已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC于点N(点N在点M的左侧).(1)当BM的长为10时,求证:BD⊥DM;(2)如图(1),当点N在线段BC上时,设BN=,BM=y,求y关于的函数关系式,并写出它的定义域;(3)如果△DMN是等腰三角形,求BN的长.参考答案:1、B ;2、B ;3、D ;4、C ;5、B ;6、A ;7、4; 8、7a b -r r ; 9、5-; 10、203; 11、2; 12、1122b a -r r ; 13、21(1)32y x =-+; 14、0; 15、(-3,0); 16、43; 17、125; 18、757。
徐汇区2019学年初三一模数学试卷含答案
2019学年第一学期徐汇区学习能力诊断卷初三数学 试卷 2020.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.已知二次函数322-+-=x x y ,那么下列关于该函数的判断正确的是(A )该函数图像有最高点)3,0(-; (B )该函数图像有最低点)3,0(-;(C )该函数图像在x 轴的下方; (D )该函数图像在对称轴左侧是下降的.2.如图,EF CD AB ////,2=AC ,5=AE ,5.1=BD ,那么下列结论正确的是 (A )415=DF ; (B )415=EF ; (C )415=CD ; (D )415=BF . 3.已知点P 是线段AB 上的点,且AB BP AP ⋅=2,那么AB AP :的值是(A )215-; (B )253-; (C )215+; (D )253+. 4.在ABC Rt ∆中,︒=∠90B ,3=BC ,5=AC ,那么下列结论正确的是(A )43sin =A ; (B )54cos =A ;(C )45cot =A ; (D )34tan =A . 5.跳伞运动员小李在200米的空中测得地面上的着落点A 的俯角为︒60,那么此时小李离 着落点A 的距离是(A )200米; (B )400米; (C )33200米; (D )33400米. 6.下列命题中,假命题是(A )凡有内角为︒30的直角三角形都相似;(B )凡有内角为︒45的等腰三角形都相似;(C )凡有内角为︒60的直角三角形都相似;(D )凡有内角为︒90的等腰三角形都相似.二、填空题(本大题共12题,每题4分,满分48分)7.计算:=︒⋅︒-︒45tan 30cot 60sin 2__▲___.8.已知线段4=a 厘米、9=c 厘米,那么线段a 、c 的比例中项=b __▲___厘米.9.如果两个相似三角形的对应高比是2:3,那么它们的相似比是__▲___.A B C D E F (第2题图)10.四边形ABCD 和四边形D C B A ''''是相似图形,点A 、B 、C 、D 分别与点A '、B '、C '、D '对应,已知3=BC ,4.2=CD ,2=''C B ,那么D C ''的长是__▲___.11.已知二次函数2)2(2+=x y ,如果2->x ,那么y 随x 的增大而__▲___.12.同一时刻,高为12米的学校旗杆的影长为9米,一座铁塔的影长为21米,那么此铁塔的高是__▲___米.13.一山坡的坡度3:1=i ,小刚从山坡脚下点P 处上坡走了1050米到达点N 处,那么他上升的高度是_▲_米.14.在ABC ∆中,点E D 、分别在边AC AB 、上,6=AB ,4=AC ,5=BC ,2=AD ,3=AE ,那么DE 的长是__▲___.15.如图,在ABC Rt ∆中,︒=∠90C ,2=AC ,1=BC ,正方形DEFG 内接于ABC ∆, 点F G 、分别在边BC AC 、上,点E D 、在斜边AB 上,那么正方形DEFG 的边长是 __▲___.16. 如图,在ABC ∆中,点D 在边BC 上,AC AD ⊥,C BAD ∠=∠,2=BD ,6=CD ,那么C tan 的值是__▲___.17.我们把有两条中线互相垂直的三角形称为“中垂三角形”.如图,ABC ∆是“中垂三角形”,其中ABC ∆的中线CE BD 、互相垂直于点G ,如果9=BD ,12=CE ,那么E D 、两点间的距离是__▲___.18.如图,在矩形ABCD 中,3=AB ,4=AD ,将矩形ABCD 绕着点B 顺时针旋转后得到矩形D C B A ''',点A 的对应点A '在对角线AC 上,点C 、D 分别与点C '、D '对应,D A ''与边BC 交于点E ,那么BE 的长是__▲___.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.(本题满分10分)已知:5:3:2::=c b a . (1)求代数式cb ac b a -++-323的值; (2)如果243=+-c b a ,求a 、b 、c 的值.20.(本题满分10分)已知二次函数)0(2≠++=a c bx ax y 自变量x 的值和它对应的函数值y 如下表所示:(1)请写出该二次函数图像的开口方向、对称轴、顶点坐标和的值;(2)设该二次函数图像与x 轴的左交点为B ,它的顶点为A ,该图像上点C 的横坐标为4,求ABC ∆的面积. (第18题图) A B C D (第16题图) A B C D (第15题图) AB C D E F G (第17题图) A B C D E G21.(本题满分10分)如图,一艘游轮在离开码头A 处后,沿南偏西︒60方向行驶到达B 处,此时从B 处发现灯塔C 在游轮的东北方向,已知灯塔C 在码头A 的正西方向200米处,求此时游轮与灯塔C 的距离(精确到1米). 参考数据:414.12≈,732.13≈,449.26≈.22.(本题满分10分)如图,在ABC ∆中,BE AD 、是ABC ∆的角平分线,CE BE =,2=AB ,3=AC .(1)设AB a =,BC =b ,求向量BE (用向量a 、b 表示);(2)将ABC ∆沿直线AD 翻折后,点B 与边AC 上的点F 重合,联结DF ,求CEB CDF S S ∆∆:的值.23.(本题满分12分)如图,在ACB ∆中,点D 、E 、F 、G 分别在边AB 、AC 、BC 上,AD AB 3=,AE CE 2=,CG FG BF ==,DG 与EF 交于点H . (1)求证: AB HG AC FH ⋅=⋅;(2)联结DF 、EG ,求证:GEF FDG A ∠+∠=∠.24.(本题满分12分)A B C D EF G H (第23题图) AB C D E(第22题图)如图,将抛物线4342+-=x y 平移后,新抛物线经过原抛物线的顶点C ,新抛物线与x 轴正半轴交于点B ,联结BC ,4tan =B ,设新抛物线与x 轴的另一交点是A ,新抛物线的顶点是D .(1)求点D 的坐标;(2)设点E 在新抛物线上,联结AC 、DC ,如果CE 平分DCA ∠,求点E 的坐标;(3)在(2)的条件下,将抛物线4342+-=x y 沿x 轴左右平移,点C 的对应点为F ,当DEF ∆和ABC ∆相似时,请直接写出平移后所得抛物线的表达式.25.(本题满分14分)如图,在ABC ∆中,5==AC AB ,6=BC ,点D 是边AB 上的动点(点D 不与点A 、B 重合),点G 在边AB 的延长线上,A CDE ∠=∠,ABC GBE ∠=∠,DE 与边BC 交于点F .(1)求A cos 的值;(2)当ACD A ∠=∠2时,求AD 的长;(3)点D 在边AB 上运动的过程中,BE AD :的值是否会发生变化?如果不变化,请求BE AD :的值;如果变化,请说明理由.4342+x D B A C G F E (第25题图) B A C (备用图)2019学年第一学期徐汇区初三年级数学学科期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.D ; 3.A ; 4.B ; 5.D ; 6.B .二.填空题:(本大题共12题,满分48分)7.0; 8.6; 9.2:3; 10.58; 11.增大; 12.28; 13.50; 14.25; 15.752; 16.21; 17.5; 18.825. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:(1)由题意,设k c k b k a 5,3,2===.∴1533225323323=-⨯+⨯+-⨯=-++-kk k k k k c b a c b a . (2)由题意和(1),得 245323=+-⨯k k k ;解得 3=k ;∴632=⨯=a ,933=⨯=b ,1535=⨯=c .20.解:(1)该二次函数图像的开口方向向上;对称轴是直线2=x ; 顶点坐标是)1,2(-;m 的值是3.(2)由题意,得)1,2(-A 、)0,1(B 、)3,4(C ;∵20,18,2222===AC BC AB ;∴222AC BC AB =+;∴︒=∠90ABC ; ∴323221=⨯⨯=∆ABC S . 21.解:过点B 作AC BD ⊥,垂足为D .由题意,得︒=∠30DAB ,︒=∠45DBC ;又DBC BCD ∠=︒=︒-︒=∠454590;∴DC DB =;设x DC DB ==,则200+=x DA .在BDA Rt ∆中,︒=∠90BDA ,∴DB DA DAB =∠cot ,即xx 20030cot +=︒; ∴2003+=x x ,解得)13(100+=x ;∴3863.386)414.1449.2(100)26(1002≈=+⨯≈+==x BC . 答:此时游轮与灯塔C 的距离约为386米.22.解:(1)∵CE BE =,∴EBC C ∠=∠;∵BE 平分ABC ∠,∴EBC ABE ∠=∠;∴C ABE ∠=∠;又CAB BAE ∠=∠,∴ABE ∆∽ACB ∆;∴ACAB AB AE =; 即322=AE ;得34=AE ;∴94=AC AE ;∴AC AE 94= ; 又=AC +AB b a BC +=; ∴=BE +BA b a b a a AE 9495)(94+-=++-=. (2)由题意,可得EBC ABC AFD ∠=∠=∠2,2==AB AF ; 又C EBC AEB ∠+∠=∠,EBC ABE C ∠=∠=∠,∴AFD EBC AEB ∠=∠=∠2;∴BE DF //;∴CDF ∆∽CBE ∆;∴259)351()(22===∆∆CE CF S S CBE CDF . 23.证明:(1)∵AD AB 3=,AE CE 2=,CG FG BF ==, ∴31,31,31,31====BC CG BC BF AC AE AB AD ; ∴BCBF AC AE BC CG AB AD ==,; ∴AC DG //,AB EF //;∴C HGF ∠=∠,B HFG ∠=∠;∴HFG ∆∽ABC ∆; ∴ABFH AC HG =;即AB HG AC FH ⋅=⋅. (2)∵AB EF //,AC DG //,∴1==FB GF HD GH ,1==GFCG FH HE ; ∴FHHE HD GH =;∴DF EG //; ∴HGE FDG ∠=∠;又HEG HGE FHG ∠+∠=∠,∴HEG FDG FHG ∠+∠=∠;∵HFG ∆∽ABC ∆,∴A FHG ∠=∠;∴GEF FDG A ∠+∠=∠.24.解:(1)由题意,设新抛物线的表达式为4342++-=bx x y . ∵抛物线4342+-=x y 的顶点为C ,∴)4,0(C ,4=OC ; 在BOC Rt ∆中,︒=∠90BOC ,∴4tan ==OBOC B ,得1=OB ;∴)0,1(B ; 由题意,得0434=++-b ,解得38-=b ; ∴新抛物线的表达式为438342+--=x x y ;∴)316,1(-D . (2)由题意,可得)0,3(-A ;过点D 作OC DM ⊥,垂足为M .∴)316,0(M ; ∴4,3,34,1====CO AO CM DM ;∴43==CO AO CM DM ; 又︒=∠=∠90AOC DMC ,∴DMC ∆∽AOC ∆,∴ACO DCM ∠=∠;∵CE 平分DCA ∠,∴ACE DCE ∠=∠;∴︒=∠+∠180)(2DCE DCM ;∴AOC MCE ∠=︒=∠90;∴AO CE //;∴点E 与点C 关于直线1-=x 对称;∴)4,2(-E .(3)有两种情况满足要求,平移后所得抛物线的表达式为:4)32(342++-=x y 或4)121(342+--=x y . 25.解:(1)过点B A 、分别作BC AH ⊥、AC BG ⊥,垂足分别为G H 、.在AHC Rt ∆中,︒=∠90AHC ,53cos ==∠AC CH ACB ; 在BGC Rt ∆中,︒=∠90BGC ,53cos ==∠BC CG GCB ; 得518=CG ;∴575185=-=AG ; 在ABG Rt ∆中,︒=∠90AGB ,∴257cos ==AB AG A . (2)以点D 为圆心DA 长为半径作弧交AC 于点M ,过点D 作AC DN ⊥于N .∴可设x DA DM ==;∴ACD A AMD ∠=∠=∠2, 又MCD MDC AMD ∠+∠=∠;∴MDC MCD ∠=∠;∴x DM CM ==;则x AM -=5;在AND Rt ∆中,︒=∠90AND ,∵257cos ==AD AN A , 即25725=-x x ;解得 39125=x ;即39125=AD . (3)点D 在边AB 上运动过程中,BE AD :的值不变,65:=BE AD . 联结CE .∵AC AB =,∴ACB ABC ∠=∠;∴︒=∠+∠1802ABC A ; 又︒=∠+∠+∠180GBE ABC CBE ,ABC GBE ∠=∠,∴︒=∠+∠1802ABC CBE ;∴CBE A ∠=∠;∵CDE A CBE ∠=∠=∠,DFC BFE ∠=∠;∴BFE ∆∽DFC ∆; ∴DCF BEF ∠=∠,CFEF DF BF =; 又EFC BFD ∠=∠,∴BFD ∆∽EFC ∆;∴ECF BDF ∠=∠. 又BEF BDF EBG ∠+∠=∠,ECF DCF DCE ∠+∠=∠, ∴ACB ABC GBE DCE ∠=∠=∠=∠;∴DCF ACB DCF DCE ∠-∠=∠-∠;即ACD BCE ∠=∠;∴ACD ∆∽CBE ∆; ∴65==BC AC BE AD .。
∥3套精选试卷∥2019年上海市徐汇区某名校九年级上学期数学期末监测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x =(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32 【答案】D【详解】如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上,∴.故选D. 2.计算:x (1﹣21x )÷221x x x ++的结果是( )A .11x + B .x+1 C .11x x -+D .1x x +【答案】C【分析】直接利用分式的性质化简进而得出答案.【详解】解:原式=()()()2111x x x x x +-⋅+=11x x -+.故选:C .【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.3.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【答案】A 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.如图,有一块三角形余料ABC ,它的面积为362cm ,边12BC =cm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,则加工成的正方形零件的边长为( )cmA .8B .6C .4D .3【答案】C 【分析】先求出△ABC 的高,再根据正方形边的平行关系,得出对应的相似三角形,即△AEF ∽△ABC ,从而根据相似三角形的性质求出正方形的边长.【详解】作AH ⊥BC ,交BC 于H ,交EF 于D.设正方形的边长为xcm ,则EF=DH= xcm ,∵△AB 的面积为362cm ,边12BC =cm ,∴AH=36×2÷12=6.∵EF ∥BC,∴△AEF ∽△ABC, ∴EF AD BC AH=, ∴6126x x -=, ∴x=4.故选C.【点睛】本题考查综合考查相似三角形性质的应用以及正方形的有关性质,解题的关键是根据正方形的性质得到相似三角形.5.在Rt △ABC 中,∠C=900,∠B=2∠A ,则cosB 等于( )A B .12 C D 【答案】B【详解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A ,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=12故选B【点睛】本题考查三角函数值,熟记特殊角三角函数值是解题关键.6.已知三角形两边长为4和7,第三边的长是方程216550x x -+=的一个根,则第三边长是 ( )A .5B .5或11C .6D .11 【答案】A【分析】求出方程的解x 1=11,x 2=1,分为两种情况:①当x=11时,此时不符合三角形的三边关系定理;②当x=1时,此时符合三角形的三边关系定理,即可得出答案.【详解】解:x 2-16x+11=0,(x-11)(x-1)=0,x-11=0,x-1=0,解得:x1=11,x2=1,①当x=11时,∵4+7=11,∴此时不符合三角形的三边关系定理,∴11不是三角形的第三边;②当x=1时,三角形的三边是4、7、1,∵此时符合三角形的三边关系定理,∴第三边长是1.故选:A.【点睛】本题考查了解一元二次方程和三角形的三边关系定理的应用,注意:求出的第三边的长,一定要看看是否符合三角形的三边关系定理,即a+b>c,b+c>a,a+c>b,题型较好,但是一道比较容易出错的题目.7.对于双曲线y=1mx-,当x>0时,y随x的增大而减小,则m的取值范围为( )A.m>0 B.m>1 C.m<0 D.m<1【答案】D【分析】根据反比例函数的单调性结合反比例函数的性质,即可得出反比例函数系数的正负,由此即可得出关于m的一元一次不等式,解不等式即可得出结论.【详解】∵双曲线y=1mx-,当x>2时,y随x的增大而减小,∴1-m>2,解得:m<1.故选:D.【点睛】本题考查了反比例函数的性质,解题的关键是找出1-m>2.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质,找出反比例函数系数k的正负是关键.8.图①是由五个完全相同的小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图都改变【答案】A【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图对两个组合体进行判断,可得答案.【详解】解:①的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形; ②的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;所以将图①中的一个小正方体改变位置后,俯视图和左视图均没有发生改变,只有主视图发生改变, 故选:A .【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.9.用配方法解方程241x x =+,配方后得到的方程是( )A .2(2)5x -=B .2(2)4x -=C .2(2)3x -=D .2(2)14x -=【答案】A【分析】将方程的一次项移到左边,两边加上4变形后,即可得到结果.【详解】解:方程移项得:x 2−4x=1,配方得:x 2−4x+4=1,即(x−2)2=1.故选A .【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟记完全平方公式.10.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60︒,90︒,210︒.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712【答案】B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为901=3604, 即转动圆盘一次,指针停在黄区域的概率是14, 故选B .【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.11.如果α、β是一元二次方程2310x x +-=的两根,则22ααβ+-的值是( )A .3B .4C .5D .6【答案】B【解析】先求得函数的两根,再将两根带入后面的式子即可得出答案.【详解】由韦达定理可得α+β=-3,又22ααβ+-=2α+3 α- α- β=23αααβ+-+()=1+3=4,所以答案选择B 项.【点睛】本题考察了二次方程的求根以及根的意义和根与系数的关系,根据得到的等量关系是解决本题的关键. 12.下列说法中,正确的是( )A .如果k =0,a 是非零向量,那么k a =0B .如果e 是单位向量,那么e =1C .如果|b |=|a |,那么b =a 或b =﹣aD .已知非零向量a ,如果向量b =﹣5a ,那么a ∥b【答案】D【分析】根据平面向量的性质一一判断即可.【详解】解:A 、如果k =0,a 是非零向量,那么k a =0,错误,应该是k a =0.B 、如果e 是单位向量,那么e =1,错误.应该是e =1.C 、如果|b |=|a |,那么b =a 或b =﹣a ,错误.模相等的向量,不一定平行.D 、已知非零向量a ,如果向量b =﹣5a ,那么a ∥b ,正确.故选:D .【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.二、填空题(本题包括8个小题)13.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .【答案】103. 【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴2210=3AD AE DE =+ 考点: 1.相似三角形的判定与性质;2.勾股定理.14.如图,AB 是以点O 为圆心的圆形纸片的直径,弦CD AB ⊥于点E ,AB 10,BE 3==.将阴影部分沿着弦AC 翻折压平,翻折后,弧AC 对应的弧为G ,则点O 与弧G 所在圆的位置关系为____________.【答案】点在圆外【分析】连接OC ,作OF ⊥AC 于F ,交弧AC 于G ,判断OF 与FG 的数量关系即可判断点和圆的位置关系.【详解】解:如图,连接OC ,作OF ⊥AC 于F ,交弧AC 于G ,∵AB 10,BE 3==,∴OA=OB=OC=5,AE=7,OE=2,∵CD AB ⊥,∴222225221CE OC OE =-=-=,∴222221770AC CE AE =+=+=,∵OF ⊥AC ,∴CF=12AC, ∴222211557042OF OC CF =-=-⨯=, ∵2155()22>, ∴52OF >, ∴52FG <, ∴OF FG >,∴点O 与弧G 所在圆的位置关系是点在圆外.故答案是:点在圆外.【点睛】本题考查了点和圆位置关系,利用垂径定理进行有关线段的计算,通过构造直角三角形是解题的关键. 15.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2km ,从A 测得灯塔P 在北偏东60°的方向,从B 测得灯塔P 在北偏东45°的方向,则灯塔P 到海岸线l 的距离为_____km .【答案】13+【分析】作PD ⊥AB ,设PD=x ,根据∠CBP=∠BPD=45°知BD=PD=x 、AD=AB+BD=2+x ,由sin ∠PAD=PD AD列出关于x 的方程,解之可得答案.【详解】如图所示,过点P 作PD ⊥AB ,交AB 延长线于点D ,设PD =x ,∵∠PBD =∠BPD =45°,∴BD =PD =x ,又∵AB =2,∴AD =AB+BD =2+x ,∵∠PAD =30°,且sin ∠PAD =PD AD,∴23x x =+,解得:x =即船P 离海岸线l 的距离为()km ,故答案为【点睛】本题主要考查解直角三角形的应用-方向角问题,解题的关键是根据题意构建合适的直角三角形及三角函数的定义及其应用.16sin45°=____________.【答案】1.【分析】根据sin45°sin45°=2, 故答案为:1.【点睛】本题考查特殊角的三角函数值,熟练记忆是关键.17.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是_____.【答案】21π.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算. 【详解】解:圆锥的侧面积=12×2π×3×7=21π. 故答案为21π.【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.反比例函数1y x=-的图象在第 象限. 【答案】二、四【解析】:∵k=-1<0,∴反比例函数y="-1/x" 中,图象在第二、四象限三、解答题(本题包括8个小题)19.解下列方程:(1)3(2)(2)x x x -=-(2)2430x x ++=【答案】(1)121,23x x ==;(2)121,3x x =-=- 【分析】(1)把方程右边的项作为整体移到左边,利用因式分解的方法解方程即可;(2)利用配方法把方程化为:()221,x +=再利用直接开平方法解方程即可.【详解】解:(1)原方程可化为: ()()3220,x x x ---=∴ ()()3120x x --=解得:121,23x x == (2)∵24311x x +++=()221,x ∴+=∴ 21x +=±解得:1213x x =-=-,.【点睛】本题考查的是一元二次方程的解法,掌握因式分解与配方法解方程是本题的解题关键.20.如图,直线AC 与⊙O 相切于点A ,点B 为⊙O 上一点,且OC ⊥OB 于点O ,连接AB 交OC 于点D .(1)求证:AC =CD ;(2)若AC =3,OB =4,求OD 的长度.【答案】(1)见解析;(1)1【分析】(1)由AC 是⊙O 的切线,得OA ⊥AC ,结合OD ⊥OB ,OA =OB ,得∠CDA =∠DAC ,进而得到结论;(1)利用勾股定理求出OC ,即可解决问题.【详解】(1)∵AC 是⊙O 的切线,∴OA ⊥AC ,∴∠OAC =90°,即:∠OAD+∠DAC =90°,∵OD⊥OB,∴∠DOB=90°,∴∠BDO+∠B=90°,∵OA=OB,∴∠OAD=∠B,∴∠BDO=∠DAC,∵∠BDO=∠CDA,∴∠CDA=∠DAC,∴CD=CA.(1)∵在Rt△ACO中,OC=222243OA AC+=+=5,∵CA=CD=3,∴OD=OC﹣CD=1.【点睛】本题主要考查圆的基本性质,掌握切线的基本性质,是解题的关键.21.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.【答案】(1)y=x2﹣3x﹣4;(2)存在,P(317+,﹣2);(3)当P点坐标为(2,﹣6)时,△PBC的最大面积为1.【详解】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.试题解析:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得16404a b ca b cc-+=⎧⎪=+=⎨⎪=-⎩,解得134abc=⎧⎪=-⎨⎪=-⎩,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PD,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=3172-(小于0,舍去)或x=3172+,∴存在满足条件的P点,其坐标为(317+,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=12PF•OE+12PF•BE=12PF•(OE+BE)=12PF•OB=12(﹣t2+4t)×4=﹣2(t﹣2)2+1,∴当t=2时,S△PBC最大值为1,此时t2﹣3t﹣4=﹣6,∴当P点坐标为(2,﹣6)时,△PBC的最大面积为1.考点:二次函数综合题.22.如图,抛物线21y=x bx c 2-++与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=1. (1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.注:二次函数2y ax bx c =++(a ≠0)的对称轴是直线x =b 2a-.【答案】(2)211y=x x 322-++(2)P (12,54) 【详解】解:(2)∵OA=2,OC=2,∴A (-2,0),C (0,2).将C (0,2)代入21y=x bx c 2-++得c=2. 将A (-2,0)代入21y=x bx 32-++得,()()210=22b 32-⋅-+-+, 解得b=12, ∴抛物线的解析式为211y=x x 322-++; (2)如图:连接AD ,与对称轴相交于P ,由于点A 和点B 关于对称轴对称,则BP+DP=AP+DP ,当A 、P 、D 共线时BP+DP=AP+DP 最小. 设直线AD 的解析式为y=kx+b ,将A (-2,0),D (2,2)分别代入解析式得, 2k b 0?2k b 2-+=⎧⎨+=⎩,解得,1k ?2b 1⎧=⎪⎨⎪=⎩, ∴直线AD 解析式为y=12x+2.∵二次函数的对称轴为112x1222=-=⎛⎫⨯- ⎪⎝⎭,∴当x=12时,y=12×12+2=54.∴P(12,54).23.如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=43,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)求证:FE AEEC DC=;(3)当△EFC为等腰三角形时,求点E的坐标.【答案】(1)AC=20,D(12,0);(2)见解析;(3)(8,0)或(143,0).【分析】(1)在Rt△ABC中,利用三角函数和勾股定理即可求出BC、AC的长度,从而得到A点坐标,由点D与点A关于y轴对称,进而得到D点的坐标;(2)欲证FE AEEC DC=,只需证明△AEF与△DCE相似,只需要证明两个对应角相等即可.在△AEF与△DCE 中,易知∠CAO=∠CDE,再利用三角形的外角性质证得∠AEF=∠DCE,问题即得解决;(3)当△EFC为等腰三角形时,有三种情况,需要分类讨论:①当CE=EF时,此时△AEF与△DCE相似比为1,则有AE=CD,即可求出E点坐标;②当EF=FC时,利用等腰三角形的性质和解直角三角形的知识易求得CE65EF=,再利用(2)题的结论即可求出AE的长,进而可求出E点坐标;③当CE=CF时,可得E点与D点重合,这与已知条件矛盾,故此种情况不存在.【详解】解:(1)∵四边形ABCO为矩形,∴∠B=90°,∵AB=16,tan∠ACB=43,∴4163ABBC BC==,解得:BC=12=AO,∴AC=22AB BC+=20,A点坐标为(﹣12,0),∵点D与点A关于y轴对称,∴D(12,0);(2)∵点D与点A关于y轴对称,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴FE AEEC DC=;(3)当△EFC为等腰三角形时,有以下三种情况:①当CE=EF时,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②当EF=FC时,如图1所示,过点F作FM⊥CE于M,则点M为CE中点,∴CE=2ME=2EF•cos∠CEF=2EF•cos∠ACB=1262205EF EF⨯=.∵△AEF∽△DCE,∴EF AECE CD=,即:6205EF AEEF=,解得:AE=503,∴OE=AE﹣OA=143,∴E(143,0).③当CE=CF时,则有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此时F点与A点重合,E点与D点重合,这与已知条件矛盾.所以此种情况的点E不存在,综上,当△EFC为等腰三角形时,点E的坐标是(8,0)或(143,0).【点睛】本题综合考查了矩形的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质、轴对称的性质、三角形的外角性质以及解直角三角形等知识,熟练掌握相似三角形的判定与性质是解题关键.难点在于第(3)问,当△EFC 为等腰三角形时,有三种情况,需要分类讨论,注意不要漏解.24.解方程:2x 2﹣4x +1=1.【答案】x 1=1+2,x 2=1﹣2 【分析】先把方程两边除以2,变形得到x 2-2x+1=12,然后利用配方法求解. 【详解】x 2-2x+1=12, (x-1)2=12, x-1=±22, 所以x 1=1+22,x 2=1-22. 【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.25.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为()4,1-,点B 的坐标为()1,1-.(1)先将Rt ABC 向右平移5个单位,再向下平移1个单位后得到111Rt A B C △.试在图中画出图形111Rt A B C △,并写出1A 的坐标;(2)将111Rt A B C △绕点1A 顺时针旋转90︒后得到222Rt A B C △,试在图中画出图形222Rt A B C △.并计算在该旋转过程中111Rt A B C △扫过部分的面积.【答案】(1)见解析,1A 的坐标为()1,0; (2)见解析,1334π+ 【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A 1的坐标即可;(2)根据网格结构找出点A 1、B 1、C 1绕点A 1顺时针旋转90°后的对应点A 2、B 2、C 2的位置,然后顺次连接即可,再根据勾股定理求出A 1C 1的长度,然后根据弧长公式列式计算即可得解.【详解】解:(1)如图所示,111A B C △即为所求作的三角形,∴点1A 的坐标为()1,0;(2)如图所示,222A B C △即为所求作的三角形, 根据勾股定理,22112313AC =+=, ∴111Rt A B C △扫过的面积:290(13)11323336024ππ⨯⨯+⨯⨯=+;【点睛】本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算公式,熟练掌握网格结构并准确找出对应点的位置是解题的关键.26.已知在平面直角坐标系中,抛物线212y x bx c =-++与x 轴相交于点A ,B ,与y 轴相交于点C ,直线y=x+4经过A ,C 两点,(1)求抛物线的表达式;(2)如果点P ,Q 在抛物线上(P 点在对称轴左边),且PQ ∥AO ,PQ=2AO ,求P ,Q 的坐标; (3)动点M 在直线y=x+4上,且△ABC 与△COM 相似,求点M 的坐标.【答案】(1)2142y x x =-+(2)P 点坐标(﹣5,﹣72),Q 点坐标(3,﹣72)(3)M 点的坐标为(﹣83,43),(﹣3,1) 【解析】试题分析:(1)根据自变量与函数值的对应关系,可得A 、C 点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x 轴的直线与抛物线的交点关于对称轴对称,可得P 、Q 关于直线x=﹣1对称,根据PQ 的长,可得P 点的横坐标,Q 点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM 的长,根据等腰直角三角形的性质,可得MH 的长,再根据自变量与函数值的对应关系,可得答案.试题解析:(1)当x=0时,y=4,即C (0,4),当y=0时,x+4=0,解得x=﹣4,即A (﹣4,0),将A 、C 点坐标代入函数解析式,得()214440{24b c ⨯--+==,解得1{4b c =-=,抛物线的表达式为2142y x x =-+;(2)PQ=2AO=8,又PQ ∥AO ,即P 、Q 关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=12×(﹣5)2﹣(﹣5)+4=﹣,即P (﹣5,﹣72);﹣1+4=3,即Q (3,﹣72);P 点坐标(﹣5,﹣72),Q 点坐标(3,﹣72);(3)∠MCO=∠CAB=45°,①当△MCO ∽△CAB 时,OCCMBA AM =,即4642=,CM=82.如图1,过M 作MH ⊥y 轴于H ,MH=CH=22CM=83, 当x=﹣83时,y=﹣83+4=43, ∴M (﹣83,43); 当△OCM ∽△CAB 时,OC CM CA AB=,即642CM =,解得CM=32, 如图2,过M 作MH ⊥y 轴于H ,MH=CH=22CM=3, 当x=﹣3时,y=﹣3+4=1,∴M (﹣3,1),综上所述:M 点的坐标为(﹣83,43),(﹣3,1). 考点:二次函数综合题 27.用配方法把二次函数y=﹣2x 2+6x+4化为y=a (x+m )2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【答案】开口向下,对称轴为直线32x =,顶点317,22⎛⎫ ⎪⎝⎭【解析】试题分析:先通过配方法对二次函数的一般式进行配方成顶点式,再根据二次函数图象性质写出开口方向,对称轴,顶点坐标.试题解析:2264y x x =-++,=29923442x x ⎛⎫--+++ ⎪⎝⎭, =22317317222222x x ⎡⎤⎛⎫⎛⎫--+=-+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 开口向下,对称轴为直线32x =,顶点317,22⎛⎫ ⎪⎝⎭.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( ) A .直线x =﹣3 B .直线x =﹣2 C .直线x =﹣1 D .直线x =0【答案】B【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【详解】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣1. 故选B . 【点睛】本题考查二次函数的图象.2.已知点()11,A y ,)2B y ,()34,C y ,在二次函数26y x x c =-+的图象上,则1y ,2y ,3y 的大小关系是( ) A .213y y y << B .123y y y << C .312y y y << D .321y y y <<【答案】D【分析】由抛物线开口向上且对称轴为直线x =3知离对称轴水平距离越远,函数值越大,据此求解可得. 【详解】∵二次函数26y x x c =-+中a =1>0, ∴抛物线开口向上,有最小值. ∵x =−2ba=3, ∴离对称轴水平距离越远,函数值越大,∵由二次函数图象的对称性可知4−3<3−1, ∴321y y y <<. 故选:D . 【点睛】本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.3.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x 米,则( )A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=178【答案】A【分析】设道路的宽度为x米.把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程.【详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,对图形进行适当的平移是解题的关键.4.下列说法正确的是( )A.一组对边相等且有一个角是直角的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等且互相垂直的四边形是正方形D.对角线平分一组对角的平行四边形是菱形【答案】D【分析】根据矩形、正方形、菱形的判定方法一一判断即可;【详解】A、一组对边相等且有一个角是直角的四边形不一定是矩形,故本选项不符合题意;B、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意;C、对角线相等且互相垂直的四边形不一定是正方形,故本选项不符合题意;D、对角线平分一组对角的平行四边形是菱形,正确.故选:D.【点睛】本题考查矩形、正方形、菱形的判定方法,属于中考常考题型.5.如图,在Rt△ABC中,∠C=90°,sinA=45,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm 【答案】C【详解】已知sinA=45BCAB,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案选C.6.如图所示几何体的左视图正确的是()A.B.C.D.【答案】A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图7.下列命题中,是真命题的是A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且相等的四边形是正方形【答案】A【解析】根据特殊四边形的判定方法进行判断.对角线相等的平行四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直的平行四边形是菱形;对角线互相垂直且相等的平行四边形是正方形8.若一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是().A.2:1B.4:1C2D.1:2【答案】C【分析】根据相似图形对应边成比例列出关系式即可求解.【详解】如图,矩形ABCD 对折后所得矩形与原矩形相似,则矩形ABCD ∽矩形BFEA ,设矩形的长边长是a ,短边长是b ,则AB=CD=EF=b ,AD=BC=a ,BF=AE=2a , 根据相似多边形对应边成比例得:BFEF =AB BC,即b 2=b aa∴222=b 1a ∴b=2::1a 故选C. 【点睛】本题考查相似多边形的性质,根据相似多边形对应边成比例建立方程是关键.9.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2cm π B .1.5cmC .cm πD .1cm【答案】D【详解】解:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,12032180r ππ⨯=,解得:r=1. 故选D .10.如图,在⊙O 中,点A 、B 、C 在圆上,∠AOB =100°,则∠C =( )A .45°B .50°C .55°D .60°【答案】B【分析】利用同弧所对的圆周角是圆心角的一半,求得圆周角的度数即可; 【详解】解:∵AB AB =,∴∠C =12∠AOB , ∵∠AOB =100°, ∴∠C =50°; 故选:B . 【点睛】本题主要考查了圆周角定理,掌握圆周角定理是解题的关键.11.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球..的概率为( ) A .12B .310C .15D .710【答案】A【分析】根据概率公式解答即可.【详解】袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率为:51102=. 故选A. 【点睛】本题考查了随机事件概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 12.两直线a 、b 对应的函数关系式分别为y=2x 和y=2x+3,关于这两直线的位置关系下列 说法正确的是A .直线a 向左平移2个单位得到bB .直线b 向上平移3个单位得到aC .直线a 向左平移32个单位得到b D .直线a 无法平移得到直线b【答案】C【分析】根据上加下减、左加右减的变换规律解答即可. 【详解】A. 直线a 向左平移2个单位得到y=2x+4,故A 不正确; B. 直线b 向上平移3个单位得到y=2x+5,故B 不正确;C. 直线a 向左平移32个单位得到3222y x x ⎛⎫==+ ⎪⎝⎭=2x+3,故C 正确,D 不正确.故选C 【点睛】此题考查一次函数与几何变换问题,关键是根据上加下减、左加右减的变换规律分析. 二、填空题(本题包括8个小题)13.抛物线223y x x =--的顶点坐标是___________. 【答案】(1,﹣4).【解析】解:∵原抛物线可化为:y=(x ﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4). 14.如图,在△ABC 中,∠B =45°,AB =4,BC =6,则△ABC 的面积是__________.【答案】62【分析】作辅助线AD ⊥BC 构造直角三角形ABD ,利用锐角∠B 的正弦函数的定义求出三角形ABC 底边BC 上的高AD 的长度,然后根据三角形的面积公式来求△ABC 的面积即可. 【详解】过A 作AD 垂直BC 于D ,在Rt △ABD 中,∵sinB =ADAB, ∴AD =AB•sinB =4•sin45°=4×22=2 ∴S △ABC =12BC•AD =12×6×222 故答案为:62【点睛】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC 底边BC 上的高线AD 构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD 的长度的.15.已知点(,6)P a -与点(5,3)Q b -关于原点对称,则a b +=__________. 【答案】1【分析】直接利用关于原点对称点的性质得出a ,b 的值,即可得出答案. 【详解】解:∵点P (a ,-6)与点Q (-5,3b )关于原点对称, ∴a=5,3b=6, 解得:b=2, 故a+b=1. 故答案为:1. 【点睛】此题考查关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 16.如图,123l l l ,如果2AB =,4BC =,3DE =,那么DF =___________.【答案】1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到AB DE AC DF=,然后把数值代入求出DF.【详解】解:∵l1∥l2∥l3,∴AB DEAC DF=,即2324DF=+,∴DE=1.故答案为:1【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.17.如图,在ABC∆中,2AC=,4BC=,D为BC 边上的一点,且CAD B∠=∠,若ADC∆的面积为3,则ABD∆的面积为__________.【答案】1【分析】首先判定△ADC∽△BAC,然后得到相似比,根据面积比等于相似比的平方可求出△BAC的面积,减去△ADC的面积即为△ABD的面积.【详解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比AC21==BC42则面积比2ADCBACS11==S24∴BAC ADCS=4S=43=12∴ABD BAC ADCS=S S=123=9--故答案为:1.。
★试卷3套精选★上海市徐汇区2019届九年级上学期数学期末检测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下面的函数是反比例函数的是( )A .2y x =B .22y x x =+C .2x y =D .31y x【答案】A【解析】一般地,如果两个变量x 、y 之间的关系可以表示成y=k x 或y=kx -1(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数,据此进行求解即可.【详解】解:A 、是反比例函数,正确;B 、是二次函数,错误;C 、是正比例函数,错误;D 、是一次函数,错误.故选:A .【点睛】 本题考查了反比例函数的识别,容易出现的错误是把2x y =当成反比例函数,要注意对反比例函数形式的认识.2.已知抛物线y =x 2+3向左平移2个单位,那么平移后的抛物线表达式是( )A .y =(x+2)2+3B .y =(x ﹣2)2+3C .y =x 2+1D .y =x 2+5【答案】A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y =x 2+3向左平移2个单位可得y =(x +2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 3.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为( )A .900个B .1080个C .1260个D .1800个 【答案】C【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答. 【详解】估计本周全班同学各家总共丢弃塑料袋的数量为3325282625314512606+++++⨯=(个).【点睛】本题考查了用样本估计总体的问题,掌握算术平均数的公式是解题的关键.4.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE 与CF 交于点G .若4BC =,1DE AF ==,则GF 的长为( )A .135B .125C .195D .165【答案】A【分析】根据正方形的性质以及勾股定理求得5BE CF ==,证明BCE CDF ∆≅∆,根据全等三角形的性质可得CBE DCF ∠=∠,继而根据cos cos BC CG CBE ECG BE CE∠=∠==,可求得CG 的长,进而根据GF CF CG =-即可求得答案.【详解】∵四边形ABCD 是正方形,4BC =,∴4BC CD AD ===,90BCE CDF ∠=∠=︒,∵1AF DE ==,∴3DF CE ==, ∴22345BE CF ==+=,在BCE ∆和CDF ∆中, BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴()BCE CDF SAS ∆≅∆,∴CBE DCF ∠=∠,∵90CBE CEB ECG CEB CGE ∠+∠=∠+∠=︒=∠,cos cos BC CG CBE ECG BE CE ∠=∠==, ∴453CG =,125CG =, ∴1213555GF CF CG =-=-=, 故选A.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,三角函数等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.5.如图,将ABC 绕点C 按逆时针方向旋转75后得到''A B C ,若25ACB ∠=︒,则'BCA ∠的度数为( )A .50B .40C .25D .60【答案】A 【分析】根据旋转的性质即可得到结论.【详解】解:∵将ABC 绕点C 按逆时针方向旋转75后得到''A B C ,∴'75ACA ∠=︒,∴''752550BCA ACA ACB ∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD 的度数是解此题的关键.6.二次函数21y x =-的图象与y 轴的交点坐标是( )A .(0,1)B .(1,0)C .(-1,0)D .(0,-1)【答案】D【详解】当x=0时,y=0-1=-1,∴图象与y 轴的交点坐标是(0,-1).故选D.7.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是( )A .②③B .①③④C .①②④D .①②③④ 【答案】D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即可得答案.【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.8.分式方程2402x x -=+的根是( ) A .2x =B .0x =C .2x =-D .无实根 【答案】A【分析】观察可得分式方程的最简公分母为2x +,去分母,转化为整式方程求解.【详解】方程去分母得:240x -=,解得:2x =,检验:将2x =代入2?2240x +=+=≠,所以2x =是原方程的根.故选:A .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.若反比例函数y=k x 的图象经过点(2,﹣6),则k 的值为( ) A .﹣12B .12C .﹣3D .3 【答案】A【解析】试题分析:∵反比例函数k y x=的图象经过点(2,﹣6),∴2(6)12k =⨯-=-,解得k=﹣1.故选A .考点:反比例函数图象上点的坐标特征.10.下列说法中正确的是( )A .必然事件发生的概率是0B .“任意画一个等边三角形,其内角和是180°”是随机事件C .投一枚图钉,“钉尖朝上”的概率不能用列举法求得D .如果明天降水的概率是50%,那么明天有半天都在下雨【答案】C【分析】根据必然事件、随机事件的概念以及概率的求解方法依次判断即可.【详解】解:A 、必然事件发生的概率为1,故选项错误;B 、“任意画一个等边三角形,其内角和是180°”是必然事件,故选项错误;C 、投一枚图钉,“钉尖朝上”和“钉尖朝下”不是等可能事件,因此概率不能用列举法求得,选项正确;D 、如果明天降水的概率是50%,是表示降水的可能性,与下雨时长没关系,故选项错误.故选:C.【点睛】本题考查了必然事件、随机事件和概率的理解,掌握概率的有关知识是解题的关键.11.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 【答案】C 【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE=∠DOE ,∵OC=OD ,OE=OE ,OM=OM ,∴△COE ≌△DOE ,∴∠CEO=∠DEO ,∵∠COE=∠DOE ,OC=OD ,∴CM=DM ,OM ⊥CD ,∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE +=, 但不能得出OCD ECD ∠=∠,∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C .【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.12.如图,已知12,∠=∠则添加下列一个条件后,仍无法判定ABC ADE ∆∆的是( )A .AB BC AD DE = B .AB AC AD AE = C .B ADE ∠=∠ D .C E ∠=∠【答案】A【分析】先根据∠1=∠2得出∠BAC=∠DAE ,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:∵∠1=∠2,∴∠BAC=∠DAE . A. AB BC ADDE =,∠B 与∠D 的大小无法判定,∴无法判定△ABC ∽△ADE ,故本选项符合题意; B. AB AC AD AE=,∴△ABC ∽△ADE ,故本选项不符合题意; C. B ADE ∠=∠∴△ABC ∽△ADE ,故本选项不符合题意;D. C E ∠=∠∴△ABC ∽△ADE ,故本选项不符合题意;故选:A【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.二、填空题(本题包括8个小题)132sin45°=____________.【答案】1.【分析】根据sin45°2 2sin45°22=1, 故答案为:1.【点睛】本题考查特殊角的三角函数值,熟练记忆是关键.14.如图,在△ABC 中,中线BF 、CE 交于点G ,且CE ⊥BF ,如果5AG =,6BF =,那么线段CE 的长是______.【答案】92 【分析】根据题意得到点G 是△ABC 的重心,根据重心的性质得到DG=12AD ,CG=23CE ,BG=23BF ,D 是BC 的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC 即可解答..【详解】解:延长AG 交BC 于D 点,∵中线BF 、CE 交于点G ,∵△ABC 的两条中线AD 、CE 交于点G ,∴点G 是△ABC 的重心,D 是BC 的中点,∴AG=23AD ,CG=23CE ,BG=23BF , ∵5AG =,6BF =,∴52DG =,4BG =. ∵CE ⊥BF ,即∠BGC=90°,∴BC=2DG=5,在Rt△BGC 中,2222=54BC BG --,∴3922CG CG ==, 故答案为:92. 【点睛】 本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.理解三角形重心的性质是解题的关键.15.如上图,四边形OABF 中,90OAB B ∠=∠=︒,点A 在x 轴上,双曲线k y x =过点F ,交AB 于点E ,连接EF .若23BF OA =,4BEF S ∆=,则k 的值为 ______.【答案】6【分析】如图,过点F 作FG OA ⊥交OA 于点G ,由23BF OA =可得OA 、BF 与OG 的关系,设(,)F m n ,则3,2OA m BF m ==,结合4BEF S ∆=可得点B 的坐标,将点E 、点F 代入k y x=中即可求出k 值. 【详解】解:如图,过点F 作FG OA ⊥交OA 于点G ,则,AG BF GF AB ==23BF OA = 23BF OA ∴= 23OA AG OG BF OG OA OG ∴=+=+=+ 3OA OG ∴=2BF OG ∴=设(,)F m n ,则3,2OA m BF m ==4BEF S ∆=112422BF BE m BE ∴⋅=⋅⋅= 4BE m∴= 4AE n m ∴=-,即4(3,)E m n m- 双曲线k y x=过点F ,点E 4,3k k n n m m m∴=-= 化简得,312k mn k mn ==-,即312mn mn =-解得6mn =,即6k =.故答案为:6.【点睛】本题主要考查了反比例函数的图像,灵活利用坐标表示线段长和三角形面积是解题的关键.16.在Rt △ABC 中,90︒∠=C ,10AB =,8BC =,则cos A 的值等于__. 【答案】35【分析】首先由勾股定理求出另一直角边AC 的长度,再利用锐角三角函数的定义求解.【详解】∵在Rt △ABC 中,∠C=90°,AB=10,BC=8,∴6AC ==, ∴63cos 105AC A AB ===, 故答案为:35. 【点睛】本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.17.一组数据4,3,x ,1,5的众数是5,则x =_________.【答案】5【解析】根据众数的概念求解可得.【详解】∵数据4,3,x ,1,1的众数是1,∴x=1,故答案为1.【点睛】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.18.利用标杆CD 测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E .若标杆CD 的高为1.5米,测得DE =2米,BD =16米,则建筑物的高AB 为_____米.【答案】13.5【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可.【详解】解:∵AB ∥CD ,∴△EBA ∽△ECD , ∴CD ED AB EB =,即1.52216AB =+, ∴AB =13.5(米).故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.三、解答题(本题包括8个小题)19.如图,AB 是⊙O 的直径,C 是⊙O 上一点,且AC=2,∠CAB=30°,求图中阴影部分面积.【答案】3+29π 【分析】根据扇形的面积公式进行计算即可.【详解】解:连接OC 且过点O 作AC 的垂线,垂足为D ,如图所示.∵OA=OC∴AD=1在Rt △AOD 中∵∠DAO=30°∴2222OD AD OA 4OD +==∴OD=33,233OA =∴AOC 1133S AC OD 22233∆=•=⨯⨯= 由OA=OC ;∠DAO=30可得∠COB=60°∴S 扇形BOC =22360323609⎛⎫⨯ ⎪⎝⎭=ππ ∴S 阴影=S △AOC + S 扇形BOC =33+29π 【点睛】本题考查扇形的面积公式,熟记扇形的面积公式是解题的关键.20.有两个构造完全相同(除所标数字外)的转盘A 、B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【答案】选择A 转盘.理由见解析【解析】试题分析:由题意可以画出树状图,然后根据树状图求得到所有等可能的结果,找全满足条件的所有情况,再利用概率公式即可求得答案.试题解析:选择A 转盘.画树状图得:∵共有9种等可能的结果,A 大于B 的有5种情况,A 小于B 的有4种情况,∴P (A 大于B )=,P (A 小于B )=,∴选择A 转盘.考点:列表法与树状图法求概率21.如图所示是某一蓄水池每小时的排水量V (m 3/h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的总蓄水量;(2)写出此函数的解析式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少?【答案】(1)48000 m 3(2)V=4800t(3)8000 m 3 【解析】(1)此题根据函数图象为双曲线的一支,可设V=k t ,再把点(12,4000)代入即可求出答案; (2)此题根据点(12,4000)在此函数图象上,利用待定系数法求出函数的解析式;(3)此题须把t=6代入函数的解析式即可求出每小时的排水量;【详解】(1)设V=k t. ∵点(12,4000)在此函数图象上,∴蓄水量为12×4000=48000m 3;(2)∵点(12,4000)在此函数图象上,∴4000=12k , k=48000,∴此函数的解析式V=4800t ; (3)∵当t=6时,V=48006=8000m 3; ∴每小时的排水量应该是8000m 3.【点睛】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.22.已知菱形的两条对角线长度之和为40厘米,面积S (单位:cm 2)随其中一条对角线的长x (单位:cm )的变化而变化.(1)请直接写出S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x 取何值时,菱形的面积最大,最大面积是多少?【答案】(1)S =﹣12x 2+20x ,0<x <40;(2)当x =20时,菱形的面积最大,最大面积是1. 【分析】(1)直接利用菱形面积公式得出S 与x 之间的关系式;(2)利用配方法求出最值即可.【详解】(1)由题意可得:211(40)2022=-=-+S x x x x , ∵x 为对角线的长,∴x >0,40﹣x >0,即0<x <40;(2)211(40)2022=-=-+S x x x x , =()21402--x x =21(20)4002⎡⎤---⎣⎦x =21(20)2002--+x , 即当x =20时,菱形的面积最大,最大面积是1.【点睛】本题考查二次函数的应用,熟练掌握菱形的性质,建立二次函数模型是解题的关键.23.如图,把Rt △ABC 绕点A .逆时针旋转40°,得到在Rt △ABʹCʹ,点Cʹ恰好落在边AB 上,连接BBʹ,求∠BBʹCʹ的度数.【答案】20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB .∴∠ABBʹ=00180402-=70°. ∴∠BBʹCʹ=90°-70°=20°.【点睛】本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键. 24.已知如图AB ∥EF ∥ CD , 34AE DE =(1)△CFG∽△CBA吗?为什么?(2)求GFAB的值.【答案】(1)△CFG∽△CBA,见解析;(2)47 GFAB=【分析】(1)由题意利用相似三角形的判定定理-平行模型进行分析证明即可;(2)根据题意平行线分线段成比例定理进行分析求值.【详解】解:(1)△CFG∽△CBA,理由如下,∵AB ∥EF,∴FG∥AB,∴△CFG∽△CBA.(2)∵AB∥EF∥CD,∴34 BF AECF DE==,∴47 CFBC=,∵△CFG∽△CBA,∴47 GF CFAB BC==.【点睛】本题考查相似三角形的性质及平行线分线段成比例定理,解题的关键是熟练运用相似三角形的性质以及判定.25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.【答案】该县投入教育经费的年平均增长率为20%【分析】设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;【详解】解:设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=-2.2(不合题意,舍去),经检验,x=20%符合题意,答:该县投入教育经费的年平均增长率为20%;【点睛】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.26.如图,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A城市150km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,120km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:3≈1.732)【答案】计划修建的这条高速铁路穿越保护区,理由见解析【分析】作PH⊥AC于H,根据等腰三角形的判定定理得到PB=AB=150,根据正弦的定义求出PH,比较大小得到答案.【详解】计划修建的这条高速铁路穿越保护区,理由如下:作PH⊥AC于H,由题意得,∠PBH=60°,∠PAH=30°,∴∠APB=30°,∴∠BAP=∠BPA,∴PB=AB=150,在Rt△PBH中,sin∠PBH=PH PB,∴PH=PB•sin∠PBH=753≈129.9,129.9>120,∴计划修建的这条高速铁路穿越保护区.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键. 27.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.【答案】(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知一次函数y=kx-2 的图象与x 轴、y 轴分别交于A,B 两点,与反比例函数4(0) y xx=>的图象交于点C,且AB=AC,则k 的值为( )A.1 B.2 C.3 D.4【答案】B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=2k,从而表达出点C的坐标,代入反比例函数解析式即可解答.【详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=2k,∴BO=CD=2,OA=AD=2k,∴OD=224 k k k +=∴点C(4k,2),∵点C在反比例函数4(0)y xx=>的图象上,∴424k⨯=,解得k=2,故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C 点的坐标是解题的关键.2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )A .B .C .D .【答案】D【解析】试题分析:根据三视图中,从左边看得到的图形是左视图,因此从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D考点:简单组合体的三视图3.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为x ,则下面所列方程正确的是( )A .()350015300x +=B .()530013500x +=C .()2530013500x +=D .()2350015300x += 【答案】D【分析】由题意设每年的增长率为x ,那么第一年的产值为3500(1+x )万元,第二年的产值3500(1+x )(1+x )万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x ,依题意得3500(1+x )(1+x )=5300,即()2350015300x +=.故选:D .【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x ”的含义以及找到题目中的等量关系.4.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC=2,则OF 的长为 ( )A.12B.34C.1 D.2【答案】C【详解】解:∵OD⊥AC,∴AD=12AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故选C.【点睛】本题考查1.全等三角形的判定与性质;2.垂径定理,掌握相关性质定理正确推理论证是解题关键.5.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1 个B.2 个C.1 个D.4 个【答案】C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.6.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形【答案】D【分析】根据等腰三角形的性质、直角三角形的性质和相似三角形的判定方法即可判定.【详解】解:两个直角三角形不一定相似,因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似,因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似,因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似,因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.【点睛】本题考查了等腰三角形和直角三角形的性质以及相似三角形的判定,属于基础题型,熟练掌握相似三角形的判定方法是关键.7.如图,直线a∥b∥c,直线m、n与这三条平行线分别交于点A、B、C和点D、E、F.若AB=3,BC=5,DF=12,则DE的值为()A.94B.4 C.92D.152【答案】C【分析】由a b c∥∥,利用平行线分线段成比例可得DE与EF之比,再根据DF=12,可得答案.【详解】a b c,AB DEBC EF∴=,35AB BC==∵,,DE3=EF5∴,12DF=,39=82DE DF =∴, 故选C. 【点睛】 本题考查了平行线分线段成比例,牢记平行线分线段成比例定理及推论是解题的关键. 8.如图,123////l l l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F ,若54AB BC =,则EF DE的值为( )A .54B .49C .45D .59【答案】C【分析】直接利用平行线分线段成比例定理即可得出结论.【详解】∵l 1∥l 2∥l 3,∴AB DE BC EF=, ∵54AB BC =, ∴45EF DE =. 故选:C .【点睛】本题考查了平行线分线段成比例定理,得出AB DE BC EF=是解答本题的关键. 9.下列航空公司的标志中,是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形,不合题意; B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意;故选:C .【点睛】本题考查的是轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.在ABC ∆中,90C ∠=︒,4sin 5A =,则cos B 的值为( ) A .43 B .34 C .35 D .45【答案】D【分析】在Rt △ABC 中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt △ABC 中,∠C=90°,∠A+∠B=90°,则cosB=sinA=45. 故选:D .【点睛】 本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等. 11.如图,在△ABC 中,M ,N 分别为AC ,BC 的中点.则△CMN 与△CAB 的面积之比是( )A .1:2B .1:3C .1:4D .1:9【答案】C 【解析】由M 、N 分别为AC 、BC 的中点可得出MN ∥AB ,AB =2MN ,进而可得出△ABC ∽△MNC ,根据相似三角形的性质即可得到结论.【详解】∵M 、N 分别为AC 、BC 的中点,∴MN ∥AB ,且AB =2MN ,∴△ABC ∽△MNC ,∴MNC ABC S S=(MN AB )2=14. 故选C .【点睛】本题考查了相似三角形的判定与性质以及三角形中位线定理,根据三角形中位线定理结合相似三角形的判定定理找出△ABC ∽△MNC 是解题的关键.12.正六边形的半径为4,则该正六边形的边心距是( )A .4B .2C .3D .33【答案】C【分析】分析出正多边形的内切圆的半径就是正六边形的边心距,即为每个边长为4的正三角形的高,从而构造直角三角形即可解.【详解】解:半径为4的正六边形可以分成六个边长为4的正三角形,而正多边形的边心距即为每个边长为4的正三角形的高,∴正六多边形的边心距=2242-=23.故选C.【点睛】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.二、填空题(本题包括8个小题)13.方程x 2﹣2x+1=0的根是_____.【答案】x 1=x 2=1【解析】方程左边利用完全平方公式变形,开方即可求出解.【详解】解:方程变形得:(x ﹣1)2=0,解得:x 1=x 2=1.故答案是:x 1=x 2=1.【点睛】考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.14.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.【答案】1【分析】首先根据二次函数25(0)y ax bx a =-+≠的图象经过点(2,2)得到243b a -=,再整体代值计算即可.【详解】解:∵二次函数25(0)y ax bx a =-+≠的图象经过点(2,2),∴4252a b -+=,∴243b a -=,∴242017b a -+=32017+=1,故答案为1.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单.15.如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是______.【答案】x>1 2【详解】解:把(﹣1,0),(1,﹣2)代入二次函数y=x2+bx+c中,得:1012b cb c-+=⎧⎨++=-⎩,解得:12bc=-⎧⎨=-⎩,那么二次函数的解析式是:2y x x2=--,函数的对称轴是:12x=,因而当y随x的增大而增大时,x的取值范围是:12x>.故答案为12x>.【点睛】本题考查待定系数法求二次函数解析式;二次函数的图象性质,利用数形结合思想解题是关键.16.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .【答案】3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=12BD,CO=12AC,由勾股定理得,2233+322211+2,所以,BO=1222,CO=1322⨯=322,所以,tan∠DBC=COBO3222.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.17.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.【答案】70°【分析】根据CB =CD ,得到30CAB CAD ∠=∠=︒,根据同弧所对的圆周角相等即可得到50ABD ACD ∠=∠=︒,根据三角形的内角和即可求出.【详解】∵CB =CD ,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.故答案为70.︒【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.18.如图,在正方形ABCD 的外侧,作等边△ABE ,则∠BFC =_________°【答案】1【解析】根据正方形的性质及等边三角形的性质求出∠ADE=15°,∠DAC=45°,再求∠DFC ,证,可得∠BFC=∠DFC .【详解】∵四边形ABCD 是正方形,∴AB=AD=CD=BC , =45°又∵△ABE是等边三角形,∴AE=AB=BE,∠BAE=1°∴AD=AE∴∠ADE=∠AED,∠DAE=90°+1°=150°∴∠ADE=(180°-150°)÷2=15°又∵∠DAC=45°∴∠DFC=45°+15°=1°在和中∴∴∠BFC=∠DFC=1°故答案为:1.【点睛】本题主要是考查了正方形的性质和等边三角形的性质,本题的关键是求出∠ADE=15°.三、解答题(本题包括8个小题)19.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【答案】(1)12;(2)13【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:21 42 ;故答案为:1 2 .(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:。
(汇总3份试卷)2019年上海市徐汇区九年级上学期期末复习检测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB切⊙O于点B,C为⊙O上一点,且OC⊥OA,CB与OA交于点D,若∠OCB=15°,AB=23,则⊙O的半径为()A3B.2 C.3 D.4【答案】B【分析】连接OB,由切线的性质可得∠OBA=90°,结合已知条件可求出∠A=30°,因为AB的长已知,所以⊙O的半径可求出.【详解】连接OB,∵AB切⊙O于点B,∴OB⊥AB,∴∠ABO=90°,∵OC⊥OA,∠OCB=15°,∴∠CDO=∠ADO=75°,∵OC=OB,∴∠C=∠OBD=15°,∴∠ABD=75°,∴∠ADB=∠ABD=75°,∴∠A=30°,∴BO=1AO,2∵AB=3∴BO2+AB2=4OB2,∴BO=2,∴⊙O的半径为2,故选:B.【点睛】本题考查了切线的性质、等腰三角形的判定和性质以及勾股定理的运用,求出∠A=30°,是解题的关键.2.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C3 2 D3 3【答案】A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=32DC,EC=cos∠C×DC=12DC,又∵DC+BD=BC=AC=32 DC,∴33 232DCDEAC DC==,∴△DEF与△ABC的面积之比等于:2231:3DEAC⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.3.如图是一个几何体的三视图,这个几何体是().A.三棱锥B.三棱柱C.长方体D.圆柱体【答案】B【解析】试题解析:根据三视图的知识,主视图为三角形,左视图为一个矩形,俯视图为两个矩形,故这个几何体为三棱柱.故选B.4.用一个圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的高为()A35B.42C.33D.5【答案】B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【详解】解:设此圆锥的底面半径为r,由题意得:12062r180ππ⨯=,解得r=2cm,22623242-==故选:B.【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.5.某车库出口安装的栏杆如图所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.B.C.D.【答案】A【分析】延长BA、FE,交于点D,根据AB⊥BC,EF∥BC知∠ADE=90°,由∠AEF=143°知∠AED=37°,根据sin∠AEDADAE=,AE=1.2米求出AD的长,继而可得BD的值,从而得出答案.【详解】如图,延长BA、FE,交于点D.∵AB⊥BC,EF∥BC,∴BD⊥DF,即∠ADE=90°.∵∠AEF=143°,∴∠AED=37°.在Rt△ADE中,∵sin∠AEDADAE=,AE=1.2米,∴AD=AE•sin∠AED=1.2×sin37°≈0.72(米),则BD=AB+AD=1.18+0.72=1.9(米).故选:A.【点睛】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【答案】C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC 绕点C 顺时针旋转90°得到△EDC .∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE ,∴∠ACD=90°-20°=70°,∵点A ,D ,E 在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC 中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C .【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则 ( )A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定 【答案】A【解析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s 2甲=0.002<s 2乙=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.8.己知a 、b 、c 均不为0,且0a b c ++≠,若222b c c a a b k a b c +++===,则k=( ) A .-1B .0C .2D .3【答案】D【解析】分别用含有k 的代数式表示出2b+c ,2c+a ,2a+b ,再相加即可求解. 【详解】∵222b c c a a b k a b c +++===∴2b c ak +=,2c a bk +=,2a b ck +=三式相加得,()2223()k a b c b c c a a b a b c ++=+++++=++∵ 0a b c ++≠∴k=3.故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak ,2c+a=bk ,2a+b=ck.9.由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是( )A .B .C .D .【答案】A【解析】分析:从主视图上可以看出上下层数,从俯视图上可以看出底层有多少小正方体,从左视图上可以看出前后层数,综合三视图可得到答案.解答:解:从主视图上可以看出左面有两层,右面有一层;从左视图上看分前后两层,后面一层上下两层,前面只有一层,从俯视图上看,底面有3个小正方体,因此共有4个小正方体组成,故选A .10.将二次函数2y x 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+ 【答案】B【解析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k ,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B .【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.11.一个高为3 cm 的圆锥的底面周长为8π cm ,则这个圆锥的母线长度为( )A .3 cmB .4 cmC .5 cmD .5π cm【答案】C【分析】由底面圆的周长公式算出底面半径,圆锥的正视图是以母线长为腰,底面圆直径为底的等腰三角形,高、底面半径和母线长三边构成直角三角形,再用勾股定理算出母线长即可.【详解】解:由圆的周长公式 2r=8ππ 得82r ππ= =4 由勾股定理222l h r =+l ==故选:C .【点睛】本题考查了圆锥的周长公式,圆锥的正视图勾股定理等知识点.12.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是( )A .24πB .33πC .56πD .42π 【答案】D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm 2);故选:D .【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.二、填空题(本题包括8个小题)13.如图,O 是ABC ∆的外接圆,D 是AC 的中点,连结,AD BD ,其中BD 与AC 交于点E . 写出图中所有与ADE ∆相似的三角形:________.【答案】BCE ;BDA .【分析】由同弧所对的圆周角相等可得CBE EAD ∠=∠,可利用含对顶角的8字相似模型得到~CBE DAE ∆∆,由等弧所对的圆周角相等可得EAD ABE ∠=∠,在BDA ∆和ADE ∆含公共角ADB ∠,出现母子型相似模型BDA ADE ∆∆.【详解】∵∠ADE=∠BCE ,∠AED=∠CEB ,∴~ADE BCE ;∵D 是AC 的中点,∴AD DC =,∴∠EAD=∠ABD ,∠ADB 公共,∴~ADE BDA .综上:~ADE BCE ;~ADE BDA .故答案为:BCE ;BDA . 【点睛】本题考查的知识点是相似三角形的判定和性质,圆周角定理,同弧或等弧所对的圆周角相等的应用是解题的关键.14.如图,一副含30和45︒角的三角板ABC 和EDF 拼合在一个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为______cm .【答案】24122-【分析】过点D'作D'N ⊥AC 于点N ,作D'M ⊥BC 于点M ,由直角三角形的性质可得3cm ,3,ED=DF=62cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC 时,DD'值最大,则可求点D运动的路径长,【详解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=43cm,AB=83cm,ED=DF=62cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=2ED-CD=(12-62)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12-62)=(24-122)cm【点睛】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,确定点D的运动轨迹是本题的关键.15.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x (时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.已知两车相遇时快车比慢车多行驶60千米.若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_____千米.【答案】1680 17【分析】求出相遇前y与x的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可求解.【详解】设AB 所在直线的解析式为:y =kx+b ,把(1.5,70)与(2,0)代入得:1.57020k b k b +=⎧⎨+=⎩, 解得:140280k b =-⎧⎨=⎩, ∴AB 所在直线的解析式为:y =-140x+280,令x =0,得到y =280,即甲乙两地相距280千米,设两车相遇时,乙行驶了x 千米,则甲行驶了(x+60)千米,根据题意得:x+x+60=280,解得:x =110,即两车相遇时,乙行驶了110千米,甲行驶了170千米,∴甲车的速度为85千米/时,乙车速度为55千米/时,根据题意得:280﹣55×(280÷85)=168017(千米). 则快车到达乙地时,慢车与甲地相距168017千米. 故答案为:168017 【点睛】本题主要考查根据函数图象的信息解决行程问题,根据函数的图象,求出AB 所在直线的解析式是解题的关键.16.以原点O 为位似中心,作△ABC 的位似图形△A ′B ′C ′,△ABC 与△A ′B ′C ′相似比为13,若点C 的坐标为(4,1),点C 的对应点为C ′,则点C ′的坐标为_____.【答案】()12,3或()12,3--【解析】根据位似变换的性质计算即可.【详解】解:∵△ABC 与△A'B'C'相似比为13,若点C 的坐标为(4,1), ∴点C′的坐标为()43,13⨯⨯或()()()43,13⨯-⨯-∴点C′的坐标为()12,3或()12,3--故答案为()12,3或()12,3--【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .17.一元二次方程5x 2﹣1=4x 的一次项系数是______.【答案】-4【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a ≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.【详解】解:∵5x 2﹣1=4x ,方程整理得:5x 2﹣4x ﹣1=0,则一次项系数是﹣4,故答案为:﹣4【点睛】本题考查了一元二次方程的一般形式,解答本题要通过移项,转化为一般形式,注意移项时符号的变化. 18.如图,在△ABC 和△APQ 中,∠PAB=∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.【答案】∠P=∠B (答案不唯一)【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【详解】解:这个条件为:∠B=∠P∵∠PAB=∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC ,故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.三、解答题(本题包括8个小题)19.已知二次函数25y x kx k =-+-.(1)求证:无论k 取何实数,此二次函数的图象与x 轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式.【答案】(1)证明见解析;(2)223y x x =--.【分析】(1)根据二次函数图象与x 轴交点关系求解;(2)根据对称轴公式求解.【详解】(1)证明:令y=0,则250x kx k -+-=,∵△=24(5)k k --=2420k k -+=2(2)16k -+∵2(2)k -≥0,∴2(2)16k -+>0∴无论k 取何实数,此二次函数的图像与x 轴都有两个交点.(2).∵对称轴为x=122k k --==, ∴k=2∴解析式为223y x x =--【点睛】考核知识点:二次函数的性质.20.如图,直线y =﹣x+2与反比例函数y =k x的图象在第二象限内交于点A ,过点A 作AB ⊥x 轴于点B ,OB =1.(1)求该反比例函数的表达式; (2)若点P 是该反比例函数图象上一点,且△PAB 的面积为3,求点P 的坐标.【答案】(1)3y x=-;(2)(﹣3,1)或(1,﹣3). 【分析】(1)先利用一次解析式确定A 点坐标为(﹣1,3),然后把A 点坐标代入y =k x 中求出k 得到反比例函数解析式;(2)设P (t ,﹣3t ),利用三角形面积公式得到12×3×|﹣3t+1|=3,然后解方程求出t ,从而得到P 点坐标.【详解】(1)∵AB ⊥x 轴于点B ,OB =1.∴A 点的横坐标为﹣1,当x =﹣1时,y =﹣x+2=3,则A (﹣1,3),把A (﹣1,3)代入y =k x 得k =﹣1×3=﹣3, ∴反比例函数解析式为3y x=-; (2)设P (t ,﹣3t ), ∵△PAB 的面积为3,∴12×3×|﹣3t+1|=3, 解得t =﹣3或t =1,∴P 点坐标为(﹣3,1)或(1,﹣3).【点睛】此题考查待定系数法求函数解析式,一次函数与反比例函数的图象结合求几何图形的面积.21.如图,在ABC ∆中,AB AC =,D 是BC 上任意一点.(1)过,,A B D 三点作⊙O ,交线段AC 于点E (要求尺规作图,不写作法,但要保留作图痕迹); (2)若弧DE=弧DB ,求证:AB 是⊙O 的直径.【答案】(1)如图1所示见解析;(2)见解析.【解析】(1)作AB 与BD 的垂线,交于点O ,点O 就是△ABD 的外心,⊙O 交线段AC 于点E ;(2)连结DE ,根据圆周角定理,等腰三角形的性质,即可得到AD 是等腰三角形ABC 底边上的高线,从而证明AB 是⊙O 的直径;【详解】(1)如图1所示(2)如图2连结AD ,∵DE DB =弧弧∴BAD EAD ∠=∠∵AB AC=,∴AD BC⊥,∴∠ADB=90°,∴AB是⊙O的直径.【点睛】本题考查作图-复杂作图,线段垂直平分线的作法,等腰三角形的性质,圆周角定理以及方程思想的应用等.22.有一个人患了流感,经过两轮传染后共有81人患了流感.()1每轮传染中平均一个人传染了几个人?()2按照这样的速度传染,第三轮将又有多少人被传染?【答案】(1)8人;(2)648人.【分析】(1)设每轮传染中平均一个人传染了x个人,根据人患了流感,经过两轮传染后共有81人患了流感,列方程求解;(2)根据(1)中所求数据,进而得到第三轮被传染的人数.【详解】解:(1)设每轮传染中平均一个人传染了x个人,依题意有x+1+(x+1)x=81,解得x1=8,x2=﹣10(不符合题意舍去).答:每轮传染中平均一个人传染了8个人.(2)8×81=648(人).答:第三轮将又有648人被传染人.【点睛】本题主要考查一元一次方程的实际应用,注意根据题中已知等量关系列出方程式是关键.23.计算:(1)解不等式组253 1(3)2 3xx-≤⎧⎪⎨-<⎪⎩(2)化简:22131x x x x x ---+- 【答案】(1)34x ;(2)1(1)x x -. 【分析】(1)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集;(2)根据分式的减法法则即可得.【详解】(1)2531(3)23x x -≤⎧⎪⎨-<⎪⎩①②,解不等式①得:4x ≤,解不等式②得:3x >-,则不等式组的解集为34x ;(2)22131x x x x x ---+-, 13(1)(1)(1)x x x x x x --+=-+-, 2(1)(3)(1)(1)(1)(1)x x x x x x x x x ---+=+--, 22213(1)(1)x x x x x x x -+-+-=+, 1(1)(1)x x x x ++-=, 1(1)x x =-. 【点睛】本题考查了解一元一次不等式组、分式的减法运算,熟练掌握不等式组的解法和分式的运算法则是解题关键.24.如图,在平面直角坐标系中,△ABC 的顶点坐标为A (﹣2,3),B (﹣3,2),C (﹣1,1). (1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1; (2)画出△A 1B 1C 1绕原点顺时针旋90°后得到 的△A 2B 2C 2;(3)若△A′B′C′与△ABC 是中心对称图形,则对称中心的坐标为 .【答案】(1)答案见解析;(2)答案见解析;(3)(1,0)【分析】(1)首先将A、B、C三点分别向右平移3个单位,再向上平移1个单位,得A1、B1、C1三点,顺次连接这些点,即可得到所求作的三角形;(2)找出点B、C绕点A顺时针旋转90°的位置,然后顺次连接即可;(3)△A′B′C′与△ABC是中心对称图形,连接对应点即可得出答案.【详解】解:(1)将A,B,C,分别右平移3个单位长度,再向上平移1个单位长度,可得出平移后的△A1B1C1;(2)将△A1B1C1三顶点A1,B1,C1,绕原点旋转90°,即可得出△A2B2C2;(3)∵△A′B′C′与△ABC是中心对称图形,连接AA′,BB′CC′可得出交点:(1,0),故答案为(1,0).【点睛】本题考查作图-旋转变换;作图-平移变换,掌握图形变化特点,数形结合思想解题是关键.25.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.【答案】(1)13;(2)这个游戏不公平,理由见解析.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=59,P(乙胜)=49.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.26.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1;(1)画出△ABC关于原点O对称的△A1B1C1.【答案】(1)详见解析;(1)详见解析.【分析】(1)分别作出A,C的对应点A1,C1即可得到△A1BC1;(1)分别作出A,B,C的对应点A1,B1,C1即可得到△A1B1C1.【详解】(1)如图所示,△A1BC1即为所求.(1)如图所示,△A1B1C1即为所求.【点睛】本题考查作图-旋转变换,熟练掌握位旋转变换的性质是解本题的关键.27.如图,点C 在以AB 为直径的O 上,ACB ∠的平分线交O 于点D ,过点D 作AB 的平行线交CA的延长线于点E .(1)求证:DE 是O 的切线;(2)若6AC =,8BC =,求DE 的长度.【答案】(1)见解析;(2)354【分析】(1)连接OD ,由AB 为O 的直径得到∠ACB=90︒,根据CD 平分∠ACB 及圆周角定理得到∠AOD=90︒,再根据DE ∥AB 推出OD ⊥DE ,即可得到DE 是O 的切线; (2)过点C 作CH ⊥AB 于H ,CD 交AB 于M ,利用勾股定理求出AB ,再利用面积法求出CH ,求出OH ,根据△CHM ∽△DOM 求出HM 得到AM ,再利用平行线证明△CAM ∽△CED ,即可求出DE.【详解】(1)如图,连接OD ,∵AB 为O 的直径,∴∠ACB=90︒,∵CD 平分∠ACB ,∴∠ACD=45︒,∴∠AOD=90︒,即OD ⊥AB ,∵DE ∥AB ,∴OD ⊥DE ,∴DE 是O 的切线;(2)过点C 作CH ⊥AB 于H ,CD 交AB 于M ,∵∠ACB=90︒,6AC =,8BC =,∴AB=22226810AC BC +=+=, ∵S △ABC =1122AC BC AB CH ⋅⋅=⋅⋅, ∴CH=68 4.810⨯=, ∴AH=22226 4.8 3.6AC CH -=-=,∴OH=OA-AH=5-3.6=1.4,∵∠CHM=∠DOM=90︒,∠HMC=∠DMO,∴△CHM ∽△DOM,∴CH HM CM DO OM DM== ∴CM DM = 4.824525HM OM ==,2449CM CD =, ∴HM=2435, ∴AM=AH+HM=307, ∵AB ∥DE, ∴△CAM ∽△CED,∴2449AM CM ED CD ==, ∴DE=354.【点睛】此题考查圆的性质,圆周角定理,切线的判定定理,三角形相似,勾股定理,(2)是本题的难点,利用平行线构建相似三角形求出DE 的长度,根据此思路相应的添加辅助线进行证明.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列立体图形中,主视图是三角形的是().A.B.C.D.【答案】B【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【详解】A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选B.【点睛】本题考查了简单几何体的三视图,圆锥的主视图是三角形.2.下列关系式中,y是x的反比例函数的是()A.y=4x B.yx=3 C.y=﹣1xD.y=x2﹣1【答案】C【分析】根据反比例函数的定义逐一判断即可.【详解】A、y=4x是正比例函数;B、yx=3,可以化为y=3x,是正比例函数;C、y=﹣1x是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点睛】本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.3.已知函数kyx=是的图像过点()2,3-,则k的值为()A.-2 B.3 C.-6 D.6 【答案】C【解析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数kyx=的图象经过点(-2,3),∴k =-2×3=-1.故选:C .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .4.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A .B .C .D .【答案】A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A .【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.5.下列计算错误的是( )A 222()-=-B 2(2)2-C .2(2)2=D 22【答案】A【分析】根据算术平方根依次化简各选项即可判断.【详解】A : 2(2)2-,故A 错误,符合题意; B 2(2)2-=正确,故B 不符合题意;C :2(2)2-=正确,故C 不符合题意;D 22正确,故D 不符合题意.故选:A.【点睛】此题考查算术平方根,依据 2(0)(0)a a a a a a ≥⎧==⎨-<⎩,2a a -=()进行判断. 6.在同一直角坐标系中,一次函数y kx k =-与反比例函数(0)k y k x =≠的图象大致是( ) A . B . C . D .【答案】C【分析】由于本题不确定k 的符号,所以应分k >0和k <0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【详解】(1)当k >0时,一次函数y=kx-k 经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k <0时,一次函数y=kx-k 经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:C .【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.7.如图,AB 是⊙O 的直径,AC ,BC 分别与⊙O 交于点D ,E ,则下列说法一定正确的是( )A .连接BD ,可知BD 是△ABC 的中线B .连接AE ,可知AE 是△ABC 的高线C.连接DE,可知DE CEAB BC=D.连接DE,可知S△CDE:S△ABC=DE:AB【答案】B【分析】根据圆周角定理,相似三角形的判定和性质一一判断即可.【详解】解:A、连接BD.∵AB是直径,∴∠ADB=90°,∴BD是△ABC的高,故本选项不符合题意.B、连接AE.∵AB是直径,∴∠AEB=90°,∴BE是△ABC的高,故本选项符合题意.C、连接DE.可证△CDE∽△CBA,可得DE ECAB AC=,故本选项不符合题意.D、∵△CDE∽△CBA,可得S△CDE:S△ABC=DE2:AB2,故本选项不符合题意,故选:B.【点睛】本题考查了圆周角定理、相似三角形的判定以及性质,辅助线的作图是解本题的关键8.计算24x x⋅的结果是()A.2x B.10x C.8x D.6x【答案】D【分析】根据同底数幂相乘的运算公式进行计算即可.【详解】解:24x x⋅=6x故选:D.【点睛】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D .任意写一个整数,它能被2整除的概率【答案】C【解析】解:A .掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误; B .掷一枚硬币,出现正面朝上的概率为12,故此选项错误; C .从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确; D .任意写出一个整数,能被2整除的概率为12,故此选项错误. 故选C . 10.已知一元二次方程2x x 30--=的较小根为x 1,则下面对x 1的估计正确的是A .12<x <1--B .13<x <2--C .12<x <3D .11<x <0- 【答案】A【解析】试题分析:解2x x 30--=得113x ±=,∴较小根为1113x -=. ∵1411313311331139<13<163<13<44<13<3<<<<12<<<12222-----⇒⇒---⇒⇒--⇒---, ∴12<x <1--.故选A .11.如图,为了测量路灯离地面的高度,身高1.6m 的小明站在距离路灯的底部(点O )12m 的点A 处,测得自己的影子AM 的长为4m ,则路灯CO 的高度是( )A .4.8mB .6.4mC .8mD .9.6m【答案】B 【分析】根据平行得:△ABM ∽△ODM ,列比例式,代入可求得结论.【详解】解:由题意得:AB ∥OC ,∴△ABM ∽△OCM ,∴AB AM OC OM= ∵OA=12,AM=4,AB=1.6,∴OM=OA+AM=12+4=16,∴11.646OC = ∴OC=6.4,则则路灯距离地面6.4米.故选:B.【点睛】本题考查相似三角形的判定和性质,解题关键是利用物高和影长成正比或相似三角形的对应边成比例性质解决此题.12.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×1010【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.二、填空题(本题包括8个小题)13.如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水深为______米.【答案】0.4【详解】解:作出弧AB的中点D,连接OD,交AB于点C.则OD⊥AB.AC=AB=0.8m.在直角△OAC中,OC===0.6m.则水深CD=OD-OC=1-0.6=0.4m.【点睛】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线. 14.如图,A 、B 两点在双曲线y =4x上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影部分=m ,则S 1+S 2=_____.【答案】8﹣2m【分析】根据反比例函数系数k 的几何意义可得S 四边形AEOF =4,S 四边形BDOC =4,根据S 1+S 2=S 四边形AEOF +S四边形BDOC ﹣2×S 阴影,可求S 1+S 2的值.【详解】解:如图,∵A 、B 两点在双曲线y =4x上, ∴S 四边形AEOF =4,S 四边形BDOC =4,∴S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,∴S 1+S 2=8﹣2m故答案为:8﹣2m .【点睛】本题考查了反比例函数系数k 的几何意义,熟练掌握在反比例函数图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.51-。
{3套试卷汇总}2019年上海市徐汇区九年级上学期数学期末学业水平测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )A .B .C .D .【答案】D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3, 则符合题意的是D ; 故选D .考点:1.由三视图判断几何体;2.作图-三视图.2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示( ) A .44410⨯ B .84.410⨯C .94.410⨯D .104.410⨯【答案】C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将4400000000用科学记数法表示为4.4×109. 故选C. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( ) A .有最大值﹣1,有最小值﹣2 B .有最大值0,有最小值﹣1 C .有最大值7,有最小值﹣1 D .有最大值7,有最小值﹣2【答案】D【分析】把函数解析式整理成顶点式的形式,然后根据二次函数的最值问题解答.【详解】解:∵y =x 2−4x +2=(x−2)2−2,∴在−1≤x≤3的取值范围内,当x =2时,有最小值−2, 当x =−1时,有最大值为y =9−2=1. 故选D . 【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式是解题的关键. 4.如图,在△ABC 中,DE ∥BC ,13AD AB =,BC =12,则DE 的长是( )A .3B .4C .5D .6【答案】B【解析】试题解析:在△ABC 中,DE ∥BC ,.ADE ABC ∴∽1.3DE AD BC AB ∴== 12.BC = 4.DE ∴=故选B.5.在平面直角坐标系xOy 中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是( ) A .相交 B .相切C .相离D .以上三者都有可能【答案】A【解析】试题分析:本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A 和圆的位置关系是解题关键.设直线经过的点为A ,若点A 在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA 的长和半径2比较大小再做选择.设直线经过的点为A ,∵点A 的坐标为(sin45°,cos30°), ∴2223()()22+5, ∵圆的半径为2,∴OA <2, ∴点A 在圆内, ∴直线和圆一定相交. 故选A .考点:1.直线与圆的位置关系;2.坐标与图形性质;3.特殊角的三角函数值. 6.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1 B .()1,1-C .()1,1--D .()1,1-【答案】A【分析】已知抛物线顶点式y=a (x ﹣h )2+k ,顶点坐标是(h ,k ). 【详解】∵抛物线y=3(x ﹣1)2+1是顶点式,∴顶点坐标是(1,1). 故选A . 【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.7.已知x 1,x 2是一元二次方程x 2-2x -1=0的两根,则x 1+x 2-x 1·x 2的值是( ) A .1 B .3C .-1D .-3【答案】B【分析】直接根据根与系数的关系求解. 【详解】由题意知:122x x +=,12-1x x ⋅=, ∴原式=2-(-1)=3 故选B . 【点睛】本题考查了一元二次方程ax2+bx +c =0(a≠0)的根与系数的关系:若方程的两根为x 1,x 2,则12bx x a+=-,12c x x a⋅=. 8.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >【答案】D【解析】显然当y 1>y 2时,正比例函数的图象在反比例函数图象的上方,结合图形可直接得出结论. 【详解】∵正比例函数y 1=k 1x 的图象与反比例函数22k y x=的图象交于A (-1,-2),B (1,2)点, ∴当y 1>y 2时,自变量x 的取值范围是-1<x <0或x >1. 故选:D . 【点睛】本题考查了反比例函数与一次函数的交点问题,数形结合的思想是解题的关键.9.如图,活动课小明利用一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE 为9m ,AB 为1.5m (即小明的眼睛距地面的距离),那么这棵树高是( )A .3B .3mC .3332⎛⎫ ⎪⎝⎭m D .332⎛⎫ ⎪⎝⎭m 【答案】C【分析】先根据题意得出AD 的长,在Rt ACD 中利用锐角三角函数的定义求出CD 的长,由CE =CD+DE 即可得出结论.【详解】∵AB ⊥BE ,DE ⊥BE ,AD ∥BE , ∴四边形ABED 是矩形, ∵BE =9m ,AB =1.5m , ∴AD =BE =9m ,DE =AB =1.5m , 在Rt ACD 中, ∵∠CAD =30°,AD =9m , ∴330933CD AD tan =︒==,∴33 1.5CE CD DE =+=(m ) . 故选:C . 【点睛】本题考查的是解直角三角形在实际生活中的应用,熟知锐角三角函数的定义是解答此题的关键. 10.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE EF ⊥,则下列结论正确的有( )①30BAE ∠= ②2CE AB CF = ③13CF CD =④ABE ∆∽AEF ∆A .1个B .2个C .3个D .4个【答案】B【分析】由题中条件可得△CEF ∽△BAE ,进而得出对应线段成比例,进而又可得出△ABE ∽△AEF ,即可得出题中结论.【详解】∵四边形ABCD 是正方形, ∴∠B=∠C=90°,AB=BC=CD , ∵AE ⊥EF , ∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°, ∴∠BAE=∠CEF , ∴△BAE ∽△CEF , ∴CE CF AB BE∵E 是BC 的中点, ∴BE=CE∴CE 2=AB•CF ,∴②正确;∵BE=CE=12BC , ∴CF=12BE=14CD ,故③错误;∵1tan 2BE BAE AB ∠== ∴∠BAE≠30°,故①错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a , ∴5,5,AF=5a , ∴2525255AE a BE AF EF a====∴AE BEAF EF= ∴△ABE ∽△AEF ,故④正确.∴②与④正确.∴正确结论的个数有2个. 故选:B . 【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用. 11.如图,抛物线22y x x =+与直线112y x =+交于A ,B 两点,与直线2x =交于点D ,将抛物线沿着射线AB 方向平移25个单位.在整个平移过程中,点D 经过的路程为( )A .12116B .738C .152D .6【答案】B【分析】根据题意抛物线沿着射线AB 方向平移25A 向右平移4个单位,向上平移2个单位,可得平移后的顶点坐标.设向右平移a 个单位,则向上平移12a 个单位,抛物线的解析式为y=(x+1-a) ²-1+12a ,令x=2,y=(a-114)²+716,由0≤a≤4,推出y 的最大值和最小值,根据点D 的纵坐标的变化情形,即可解决问题.【详解】解:由题意,抛物线沿着射线AB 方向平移5A 向右平移4个单位,向上平移2个单位,∵抛物线22y x x =+=(x+1) ²-1的顶点坐标为(-1,-1),设抛物线向右平移a 个单位,则向上平移12a 个单位, 抛物线的解析式为y=(x+1-a) ²-1+12a 令x=2,y=(3-a) ²-1+12a, ∴y=(a-114)²+716, ∵0≤a≤4∴y 的最大值为8,最小值为716, ∵a=4时,y=2,∴8-2+2(2-716)=738故选:B 【点睛】本题考查的是抛物线上的点在抛物线平移时经过的路程问题,解决问题的关键是在平移过程中点D 的移动规律.12.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x ,根据题意列方程为( ) A .()212000115000x+=B .()120001215000x +=C .()2150********x -= D .()212000115000x +=【答案】D【分析】根据“每年的人均收入=上一年的人均收入⨯(1+年增长率)”即可得. 【详解】由题意得:2018年的人均收入为12000(1)x +元 2019年的人均收入为212000(1)(1)12000(1)x x x ++=+元 则212000(1)15000x += 故选:D . 【点睛】本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键. 二、填空题(本题包括8个小题)13.从一副扑克牌中取出两张红桃和两张黑桃,将这四张扑克牌洗匀后背面朝上,从中随机摸出两张牌,那么摸到两张都是红牌的概率是__________. 【答案】16【分析】根据题意列出所有等可能的结果数,然后根据概率公式求解. 【详解】所有情况数:红桃1,红桃2 红桃1,黑桃1 红桃1,黑桃2 红桃2,黑桃1 红桃2,黑桃2 黑桃1,黑桃2共有6种等可能的情况,其中符合的有1种,所以概率为16【点睛】本题主要考查概率的求法.14.如图,利用我们现在已经学过的圆和锐角三角函数的知识可知,半径 r 和圆心角θ及其所对的弦长 l 之间的关系为2sin2l r θ=,从而sin2θ=2lr,综合上述材料当1sin 23θ=时,sin θ=______.【答案】429【分析】如图所示,∠AOB=θ,OA=r ,AB=l ,∠AOC=∠BOC=2θ,根据1sin 223l r θ==,设AB=l=2a ,OA =r=3a ,根据等量代换得出∠BOC=∠BAE=2θ,求出BE ,利用勾股定理求出AE ,即可表达出sin sin AEAOE OAθ=∠=,代入计算即可. 【详解】解:如图所示,∠AOB=θ,OA=r ,AB=l ,∠AOC=∠BOC=2θ, ∵AO=BO , ∴OC ⊥AB , ∴1sin223l r θ==, ∴设AB=l=2a ,OA =r=3a , 过点A 作AE ⊥OB 于点E ,∵∠B+∠BOC=90°,∠B+∠BAE=90°,∴∠BOC=∠BAE=2θ, ∴1sin 23BE AB θ==,即123BE a =,解得:23BE a =, 由勾股定理得:2223AE AB BE a =-=, ∴42423sin sin 3a AE AOE OA a θ=∠===,故答案为:429.【点睛】本题考查了垂径定理以及锐角三角函数的定义,解题的关键是熟练掌握垂径定理的内容,作出辅助线,求出AE 的值.15.2x =是方程230ax bx +-=的解,则21a b +-的值__________. 【答案】12【分析】先根据2x =是方程230ax bx +-=的解求出322a b +=的值,再进行计算即可得到答案. 【详解】解:∵2x =是方程230ax bx +-=的解, ∴4230a b +-=, ∴2(2)3a b +=,∴322a b +=, ∴3121122a b +-=-=,故答案为:12. 【点睛】本题主要考查了一元二次方程的解,解题时,逆用一元二次方程的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.16.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE 、CF 交于点G ,半径BE 、CD 交于点H ,且点C 是弧AB 的中点,若扇形的半径为2,则图中阴影部分的面积等于_____.【答案】π﹣1【分析】根据扇形的面积公式求出面积,再过点C 作CM ⊥AE ,作CN ⊥BE ,垂足分别为M 、N ,然后证明△CMG 与△CNH 全等,从而得到中间空白区域的面积等于以1为对角线的正方形的面积,从而得出阴影部分的面积.【详解】两扇形的面积和为:()22902360ππ⨯=,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,如图,则四边形EMCN是矩形,∵点C是AB的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,90MCG NCHCM CNCMG CNH∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为:12212⨯⨯=,∴图中阴影部分的面积=两个扇形面积和﹣1个空白区域面积的和2π=﹣.故答案为:π﹣1.【点睛】本题主要考查了扇形的面积求法,三角形的面积的计算,全等三角形的判定和性质,得出四边形EMCN的面积是解决问题的关键.17.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.【答案】1【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵△ABC 绕点A 逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB ,AC′=AC ,∵∠BAC'=80°,∴∠C′AB′=∠CAB =12∠C′AB =40°, ∴∠ACC′=70°,∴∠B =∠ACC′﹣∠CAB =1°,故答案为:1.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键. 18.钟表的轴心到分钟针端的长为5,cm 那么经过40分钟,分针针端转过的弧长是_________________cm .【答案】203π 【分析】钟表的分针经过40分钟转过的角度是240︒,即圆心角是240︒,半径是5cm ,弧长公式是180n r l π=,代入就可以求出弧长. 【详解】解:圆心角的度数是:4036024060︒⨯=︒, 弧长是2405201803cm ππ⋅=. 【点睛】本题考查了求弧长,正确记忆弧长公式,掌握钟面角是解题的关键.三、解答题(本题包括8个小题)19.在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,BD :DC =2:1,BC =7.8cm ,求点D 到AB 的距离.【答案】2.6cm【分析】先要过D 作出垂线段DE ,根据角平分线的性质求出CD =DE ,再根据已知即可求得D 到AB 的距离的大小.【详解】解:过点D 作DE ⊥AB 于E .∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.【点睛】本题考查了角平分线的性质定理,属于简单题,正确作出辅助线是解题关键.20.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【答案】(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【详解】(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.21.某校组织学生参加“安全知识竞赛”(满分为30分),测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图12所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有名男生,名女生;(2)张老师抽取的这部分学生中,女生成绩....的众数是;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少. 【答案】(1)40,40(2)27;(3)396(人)【解析】(1)根据条形统计图将男生人数和女生人数分别加起来即可(2)众数:一组数据中出现次数最多的数值,叫众数(3)先计算所抽取的80中优秀的人数有14+13+5+7+2+1+1+1=44人,故七年级720名学生中成绩为优秀的学生人数大约是27123244 7207203968080+++⨯=⨯=(人)【详解】解:(1)男生人数:1+2+2+4+9+14+5+2+1=40(人)女生人数:1+1+2+3+11+13+7+1+1=40(人)(2)根据条形统计图,分数为27时女生人数达到最大,故众数为27(3)271232447207203968080+++⨯=⨯=(人) 【点睛】 本题考查了条形统计图,数据的分析,用样本估计总体,解题的关键是读懂统计图表,获取每项的准确数值.22.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=1有两根α,β(1)求m 的取值范围;(2)若α+β+αβ=1.求m 的值.【答案】 (1)m ≥﹣;(2)m 的值为2.【解析】(1)根据方程有两个相等的实数根可知△>1,求出m 的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m 2≥1,解得:m ≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m 2,∵α+β+αβ=1,∴﹣(2m+2)+m 2=1,解得:m 1=﹣1,m 1=2,由(1)知m ≥﹣,所以m 1=﹣1应舍去,m 的值为2.【点睛】本题考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx+c =1(a ≠1)的两根时,x 1+x 2=﹣,x 1x 2=是解答此题的关键.23.如图,正方形ABCD 、等腰Rt BPQ ∆的顶点P 在对角线AC 上(点P 与A 、C 不重合),QP 与BC 交于E ,QP 延长线与AD 交于点F ,连接CQ .(1)求证:AP CQ =.(2)求证:2PA AF AD =⋅(3)若:1:3AP PC =,求tan CBQ ∠的值.【答案】 (1)证明见解析;(2)证明见解析;(3)1tan 3CBQ ∠=. 【分析】(1)证出∠ABP=∠CBQ ,由SAS 证明△ABP ≌△CBQ 可得结论;(2)根据正方形的性质和全等三角形的性质得到45CAB PAF ∠=∠=︒,∠APF=∠ABP ,可证明△APF ∽△ABP ,再根据相似三角形的性质即可求解;(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到1tan 3QC AP CPQ PC PC ∠===,由(2)可得APF ABP ∠=∠,等量代换可得∠CBQ=∠CPQ 即可求解. 【详解】(1)∵ABCD 是正方形,∴AB CB =,90ABC ∠=︒,∵Rt BPQ ∆是等腰三角形,∴PB QB =,90PBQ ∠=︒,∴90ABP CBQ PBC ∠=∠=︒-∠,∴ABP CBQ ∆≅∆,∴AP CQ =;(2)∵ABCD 是正方形,∴45CAB PAF ∠=∠=︒,AD AB BC CD ===,∵Rt BPQ ∆是等腰三角形,∴45QPB ∠=︒,∵180********FPA QPB APB APB APB ∠=︒-∠-∠=︒-︒-∠=︒-∠,∵180ABP PAB APB ∠+∠+∠=︒,∴18018045ABP PAB APB APB ∠=︒-∠-∠=︒-︒-∠,∴ABP FPA ∠=∠,∴AFP APB ∆∆,∴::AF AP AP AB =,∴2AP AF AB =⋅,2AP AF AD =⋅;(3)由(1)得CQ AP =,ABP CBQ ∠=∠,45PAB BCQ ∠=∠=︒,∴90QCP ∠=︒,由(2)APF ABP ∠=∠,∴APF CBQ ∠=∠,∵APF CPQ ∠=∠,∴CPQ CBQ ∠=∠,在Rt PCQ ∆中, 1tan 3QC AP CPQ PC PC ∠===, ∴1tan 3CBQ ∠= 【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;本题综合性强,有一定难度.24.小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A 、B 、C 三个班,他俩希望编班时分在不同班.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人不在同班的概率. 【答案】(1)9种结果,见解析;(2)P=23【分析】(1)小明有3种分班情况,小林有3种分班情况,共有9种结果;(2)根据(1)即可列式求出两人不在同班的概率.【详解】(1)树状图如下:所有可能的结果共有9种.(2)两人不在同班的有6种,∴P (两人不在同班)=69=23. 【点睛】此题考查求事件的概率,熟记概率的公式,正确代入求值即可.25.全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题: (1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【答案】(1)12;(2)34【解析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=12;故答案为12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=3 4 .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.26.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高售价减少销售量的办法增加利润,如果这种商品每件的售价每提高0.5元,其销售量就减少10件,问:①应将每件售价定为多少元,才能使每天的利润为640元?②店主想要每天获得最大利润,请你帮助店主确定商品售价并指出每天的最大利润W为多少元?【答案】①应将每件售价定为12元或1元时,能使每天利润为640元;②当售价定为14元时,获得最大利润;最大利润为720元.【分析】①根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式.②根据①中的函数关系式求得利润最大值.【详解】①设每件售价定为x元时,才能使每天利润为640元,(x﹣8)[200﹣20(x﹣10)]=640,解得:x1=12,x2=1.答:应将每件售价定为12元或1元时,能使每天利润为640元.②设利润为y:则y=(x﹣8)[200﹣20(x﹣10)]=﹣20x2+560x﹣3200=﹣20(x﹣14)2+720,∴当售价定为14元时,获得最大利润;最大利润为720元.【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.27.如图,已知矩形ABCD.在线段AD 上作一点P,使∠DPC =∠BPC .(要求:用尺规作图,保留作图痕迹,不写作法和证明)【答案】详见解析【分析】以C为圆心,CD为半径画弧,以BC为直径画弧,两弧交于点M,连接BM并延长交AD于∠=∠.点P,利用全等三角形和角平分线的判定和性质可得DPC BPC【详解】解:如图,即为所作图形:∠DPC =∠BPC.【点睛】本题是作图—复杂作图,作线段垂直平分线,涉及到角平分线的判定和性质,全等三角形的判定和性质,难度中等.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,A ,B ,C 是⊙O 上的三个点,如果∠AOB =140°,那么∠ACB 的度数为( )A .55︒B .70︒C .110︒D .140︒【答案】C 【分析】在弧AB 上取一点D ,连接AD,BD ,利用圆周角定理可知12ADB AOB ∠=∠,再利用圆内接四边形的性质即可求出∠ACB 的度数. 【详解】如图,在弧AB 上取一点D ,连接AD,BD ,则111407022ADB AOB ∠=∠=⨯︒=︒ ∴180********ACB ADB ∠=︒-∠=︒-︒=︒故选C【点睛】本题主要考查圆周角定理及圆内接四边形的性质,掌握圆周角定理及圆内接四边形的性质是解题的关键. 2.下列说法正确的是( )A .袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B .天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C .某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D .连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【答案】D【解析】试题分析:选项A ,袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,本选项错误;选项B ,天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,本选项错误;选项C ,某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,也可能不中奖,本选项错误;选项D 、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,本选项正确.故答案选D .考点:概率的意义3.⊙O 的半径为3,点P 到圆心O 的距离为5,点P 与⊙O 的位置关系是( )A .无法确定B .点P 在⊙O 外C .点P 在⊙O 上D .点P 在⊙O 内【答案】B【分析】根据点在圆上,则d=r ;点在圆外,d >r ;点在圆内,d <r (d 即点到圆心的距离,r 即圆的半径).【详解】解:∵OP=5>3,∴点P 与⊙O 的位置关系是点在圆外.故选:B .【点睛】本题主要考查了点与圆的位置关系,理解并掌握点和圆的位置关系与数量之间的等价关系是解题的关键. 4.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B .5.在Rt ABC ,90C ∠=,3sin 5B =,则sin A 的值是( ) A .3 5B .4 5C .5 3D .5 4 【答案】B【分析】根据互余两角三角函数的关系:sin 2A+sin 2B=1解答.【详解】∵在Rt △ABC 中,∠C=90︒,∴∠A+∠B=90︒,∴sin 2A+sin 2B=1,sinA>0,∵sinB=35, ∴2315-()45.故选B.【点睛】本题考查互余两角三角函数的关系.6.已知反比例函数7y x =-图像上三个点的坐标分别是()()()1232,1,2,A y B y C y -、、,能正确反映123y y y ,,的大小关系的是( )A .123y y y >>B .132y y y >>C .213y y y >>D .231y y y >> 【答案】B【分析】根据反比例函数关系式,把-2、1、2代入分别求出123、、y y y ,然后比较大小即可.【详解】将A 、B 、C 三点横坐标带入函数解析式可得12377722y y y ==-=-,,, ∵77722>->-, ∴132y y y >>.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.7.如图,在平面直角坐标系内,四边形ABCD 为菱形,点A ,B 的坐标分别为(﹣2,0),(0,﹣1),点C ,D 分别在坐标轴上,则菱形ABCD 的周长等于( )A 5B .3C .5D .20【答案】C 【分析】根据题意和勾股定理可得AB 长,再根据菱形的四条边都相等,即可求出菱形的周长.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,﹣1),∴OA =2,OB =1,∴2222215AB OA OB +=+=∴菱形ABCD 的周长等于4AB =5故选:C .【点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.8.在△ABC中,∠C=90°,sinA=45,则tanB等于( )A.43B.34C.35D.45【答案】B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin1B B+=,∴sinB=35,∵tanB=sincosBB=34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba故选B9.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11 或1 D.12或1【答案】A【分析】首先从方程x2﹣6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.【详解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为:4+3+6=1.故选:A.【点睛】考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.10.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D【详解】连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中点,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中点,∴EF是△DHB的中位线.∴EF=1BH.2∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故选D.11.数据1,3,3,4,5的众数和中位数分别为()A.3和3 B.3和3.5 C.4和4 D.5和3.5【答案】A【分析】根据众数和中位数的定义:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数;把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;即可得解.【详解】由已知,得该组数据中,众数为3,中位数为3,故答案为A.【点睛】此题主要考查对众数、中位数概念的理解,熟练掌握,即可解题.12.△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线B.三条中线C.三条角平分线D.三条高【答案】A【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.二、填空题(本题包括8个小题)13.如图,在等腰直角三角形ABC中,90∠=,点A在x轴上,点B的坐标为(0,3),若点C恰BAC好在反比例函数10y x=第一象限的图象上,过点C 作CD x ⊥轴于点D ,那么点C 的坐标为__________.【答案】(5,2)【分析】由∠BAC=90°,可得△ABO ≌△CAD ,利用全等三角形的性质即可求出点C 坐标.【详解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD ,又∵CD x ⊥轴,∴∠CDA=90°在△ABO 与△CAD 中,∠ABO=∠CAD ,∠AOB=∠CDA ,AB=CA ,∴△ABO ≌△CAD (AAS )∴OB=AD ,设OA=a (0a >)∵B (0,3)∴AD=3,∴点C (a+3,a ),∵点C 在反比例函数图象上,∴103a a =+, 解得:2a =或5a =-(舍去)∴点C (5,2),故答案为(5,2)【点睛】本题考查了反比例函数与等腰直角三角形相结合的题型,灵活运用几何知识及反比例函数的图象与性质是解题的关键.142sin45°=____________.【答案】1.。
《试卷3份集锦》上海市徐汇区2019-2020年九年级上学期期末教学质量检测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形【答案】A【分析】利用矩形的判定、菱形的判定、正方形的判定及平行四边形的判定定理分别进行判定后即可确定正确的选项.【详解】A. 对角线相等的菱形是正方形,原选项错误,符合题意;B. 对角线垂直平分的平行四边形是菱形,正确,不符合题意;C. 正方形的对角线平分且相等,正确,不符合题意;D. 顺次连结菱形各边中点所得的四边形是平行四边形,正确,不符合题意;故选A.【点睛】本题考查正方形、矩形、平行四边形、菱形的性质定义,根据其性质对选项进行判断是解题关键.2.关于x的一元二次方程x2﹣(k+3)x+2k+2=0的根的情况,下面判断正确的是()A.有两个相等的实数根B.有两个不相等的实数根C.有两个实数根D.无实数根【答案】C【分析】判断一元二次方程根的判别式的大小即可得解.【详解】由题意可可知:△=(﹣k﹣3)2﹣4(2k+2)=k2﹣2k+1=(k﹣1)2≥0,故选:C.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.3.下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.【答案】C【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.4.如图所示几何体的左视图正确的是()A.B.C.D.【答案】A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图5.如果两个相似三角形的周长比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.12D2 1【答案】B【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:1.故选:B.【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.6.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=43.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A .B .C .D .【答案】D【解析】设AB =x ,根据折叠,可证明∠AFB=90°,由tan ∠BCE=43,分别表示EB 、BC 、CE ,进而证明△AFB ∽△EBC ,根据相似三角形面积之比等于相似比平方,表示△ABF 的面积.【详解】设AB =x ,则AE =EB =12x ,由折叠,FE =EB =12x ,则∠AFB =90°,由tan ∠BCE =43,∴BC =23x ,EC =56x ,∵F 、B 关于EC 对称,∴∠FBA =∠BCE ,∴△AFB ∽△EBC ,∴2()EBCy AB S EC =,∴y =221366×62525x x =,故选D. 【点睛】本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF 和△EBC 的面积比是解题关键.7.下列选项中,y 是x 的反比例函数的是( )A .23y x =B .45x y =C .1y 2x -=-D .k y x= 【答案】C【解析】根据反比例函数的定义“一般的,如果两个变量x ,y 之间的关系可以表示成k y x =,其中k 为常数,0,0k x ≠≠,我们就叫y 是x 的反比例函数”判定即可.【详解】A 、x 的指数是2-,不符定义B 、x 的指数是1,y 与x 是成正比例的,不符定义C 、1y 2x -=-可改写成2y x=-,符合定义D 、k y x=当0k =是,函数为0y =,是常数函数,不符定义 故选:C.【点睛】本题考查了反比例函数的定义,熟记定义是解题关键.8.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax 3+bx 2+cx+d =0(a ,b ,c ,d 为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是( )A .转化思想B .分类讨论思想C .数形结合思想D .公理化思想【答案】A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A .【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.9.已知关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,并且关于m 的分式方程2119233km m m+-+=--有整数解,则同时满足两个条件的整数k 值个数有( ). A .2个B .3个C .4个D .5个【答案】B【解析】关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,确定出k 的范围,根据分式方程整数解,确定出k 的值,即可求解.【详解】关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,则()()()210234120,k k k k ->⎧⎪⎨=---+<⎪⎩ 解得:17.16k > 分式方程去分母得:()212319km m ++-=,解得:121m k ,=+ 当2k =时,4m =;当3k =时,3m =(舍去);当5k =时,2m =;当11k =时,1m =;同时满足两个条件的整数k 值个数有3个.故选:B.【点睛】考查分式方程的解,二次函数的图象与性质,熟练掌握分式方程以及二次函数的性质是解题的关键. 10.如图,已知一次函数y =ax+b 与反比例函数y =k x 图象交于M 、N 两点,则不等式ax+b >k x解集为( )A .x >2或﹣1<x <0B .﹣1<x <0C .﹣1<x <0或0<x <2D .x >2 【答案】A【解析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x 的取值范围即可.【详解】解:由图可知,x >2或﹣1<x <0时,ax+b >x k.故选A .【点睛】本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键.11.一元二次方程x 2﹣3x+5=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .只有一个实数根D .有两个不相等的实数根【答案】A【解析】Δ=b 2-4ac=(-3)2-4×1×5=9-20=-11<0,所以原方程没有实数根,故选 A.12.抛物线()21515y x =-++,下列说法正确的是( )A .开口向下,顶点坐标()5,1B .开口向上,顶点坐标()5,1C .开口向下,顶点坐标()5,1-D .开口向上,顶点坐标()5,1-【答案】C【分析】直接根据顶点式即可得出顶点坐标,根据a 的正负即可判断开口方向. 【详解】∵15a =-, ∴抛物线开口向下,由顶点式的表达式可知抛物线的顶点坐标为(5,1)-,∴抛物线开口向下,顶点坐标(5,1)-故选:C .【点睛】本题主要考查顶点式的抛物线的表达式,掌握a 对开口方向的影响和顶点坐标的确定方法是解题的关键.二、填空题(本题包括8个小题)13.已知x a =是方程2270x x --=的根,则代数式2241a a -+的值为__________.【答案】1【分析】把x a =代入已知方程,并求得227a a -=,然后将其整体代入所求的代数式进行求值即可.【详解】解:把x a =代入2270x x --=,得2270a a --=,解得227a a -=,所以222412(2)127115a a a a -+=-+=⨯+=.故答案是:1.【点睛】本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.14.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.【答案】13【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,故两人一起做同样手势的概率是的概率为3193=. 故答案为:13. 【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.15.如果3tan3α=,那么锐角α=_________°.【答案】30【分析】根据特殊角的三角函数值即可得出答案.【详解】∵3 tan303︒=∴30α=︒故答案为30【点睛】本题主要考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.16.某车间生产的零件不合格的概率为.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说,天会查出1个次品.【答案】1.【解析】试题分析:根据题意首先得出抽取10个零件需要1天,进而得出答案.解:∵某车间生产的零件不合格的概率为,每天从他们生产的零件中任取10个做试验,∴抽取10个零件需要1天,则1天会查出1个次品.故答案为1.考点:概率的意义.17.点P(3,﹣4)关于原点对称的点的坐标是_____.【答案】(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【详解】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果3那么BC=____________.【答案】23【分析】根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.【详解】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,∴AN=CN,AM=BM,∴BC=2MN,∵MN=3,∴BC=23,故答案为:23.【点睛】本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.三、解答题(本题包括8个小题)19.如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P 到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.【答案】(1)1;(2)①y=﹣34x23x(0<x<12);②x=6时,y有最大值为3(3)S=22393(03)3(6(36)t t t t ⎧+≤<⎪⎨⎪-<≤⎪⎩) 【分析】(1)由EF ∥BC,可得EF AE BC AB=,由此即可解决问题; (2)①先根据点E 为AB 上一点得出自变量x 的取值范围,根据30度的直角三角形的性质求出EF 和AF 的长,在在Rt △ACB 中,根据三角函数求出AC 的长,计算FC 的长,利用矩形的面积公式可求得S 的函数关系式; ②把二次函数的关系式配方可以得结论;(3)分两种情形分别求解即可解决问题.【详解】解:(1)在Rt △ABC 中,∵AB=12,∠A=30°,∴BC=AB=6,AC=BC=6,∵四边形EFPQ 是矩形,∴EF ∥BC ,∴=, ∴=,∴EF=1.(2)①∵AB=12,AE=x ,点E 与点A 、点B 均不重合,∴0<x <12,∵四边形CDEF 是矩形,∴EF ∥BC ,∠CFE=90°,∴∠AFE=90°,在Rt △AFE 中,∠A=30°,∴EF=x ,AF=cos30°•AE=x ,在Rt △ACB 中,AB=12,∴cos30°=, ∴AC=12×=6,∴FC=AC ﹣AF=6﹣x , ∴y=FC•EF=x (6﹣x )=﹣x 2+3x (0<x <12); ②y=x (12﹣x )=﹣(x ﹣6)2+9,当x=6时,S 有最大值为9;(3)①当0≤t <3时,如图1中,重叠部分是五边形MFPQN ,S=S 矩形EFPQ ﹣S △EMN =9﹣t 2=﹣t 2+9.②当3≤t≤6时,重叠部分是△PBN ,S=(6﹣t )2,综上所述,S=22393(03)236(36)2t t t ()+≤<⎪⎪⎨⎪-<≤⎪⎩ 【点睛】本题考查二次函数与三角形综合的知识,难度较大,需综合运用所学知识求解. 20.如图,AB 是⊙O 的直径,弦CD AB ⊥,垂足为H ,连接AC .过BD 上一点E 作//EG AC 交CD 的延长线于点G ,连接AE 交CD 于点F ,且EG FG =.(1)求证:EG 是⊙O 的切线;(2)延长AB 交GE 的延长线于点M ,若2AH =,22CH =OM 的长.【答案】(1)见解析(2)362OM = 【分析】(1)连接OE ,由GE GF =,推GEF AFH ∠=∠,证OEA OAF ∠=∠,得90GEO ︒∠=,根据切线判定定理可得;(2)连接OC ,设⊙O 的半径为r ,则OC r =,2OH r =-,在Rt OCH ∆中,求得3r =,在Rt ACH ∆中,求得22(22)223AC =+=由//AC GE ,证Rt ~Rt OEM CHA ∆∆,得OM OE AC CH=2322=OM. 【详解】(1)证明:连接OE ,如图,∵GE GF =,∴GEF GFE ∠=∠,而GFE AFH ∠=∠,∴GEF AFH ∠=∠,∵AB CD ⊥,∴90OAF AFH ︒∠+∠=,∴90GEA OAF ︒∠+∠=,∵OA OE =,∴OEA OAF ∠=∠,∴90GEA OEA ︒∠+∠=,即90GEO ︒∠=,∴OE GE ⊥,∴EG 是⊙O 的切线;(2)解:连接OC ,如图,设⊙O 的半径为r ,则OC r =,2OH r =-,在Rt OCH ∆中,()(222222r r -+=,解得3r =,在Rt ACH ∆中,22(22)223AC =+=,∵//AC GE ,∴M CAH ∠=∠,∴Rt ~Rt OEM CHA ∆∆, ∴OM OE AC CH =,即32322OM =, ∴362OM =.【点睛】考核知识点:切线判定,相似三角形判定和性质.理解切线判定和相似三角形判定是关键.21.如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM ∥AN ).(1)求灯杆CD 的高度;(2)求AB 的长度(结果精确到0.1米).(参考数据:3=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【答案】(1)10米;(2)11.4米【解析】(1)延长DC 交AN 于H .只要证明BC=CD 即可;(2)在Rt △BCH 中,求出BH 、CH ,在 Rt △ADH 中求出AH 即可解决问题.【详解】(1)如图,延长DC 交AN 于H ,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt △BCH 中,CH=12BC=5,BH=53≈8.65, ∴DH=15,在Rt △ADH 中,AH=tan 37DH ︒≈150.75=20, ∴AB=AH ﹣BH=20﹣8.65=11.4(米). 【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.如图,在ABCD 中,BF 平分ABC ∠交AD 于点F ,AE BF ⊥于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)连接CF ,若60ABC ∠=︒,4AB =,2AF DF =,求CF 的长.【答案】(1)证明见解析;(2)3CF =【分析】(1)由四边形ABCD 是平行四边形,得到//AD BC ,证明AF 与BE 平行且相等,可得四边形ABEF 是平行四边形,再说明AB AF =,于是得出结论;(2)过点A 作AG BC ⊥于点G ,由菱形的性质和等边三角形的性质解答即可.【详解】(1)证明:BF 平分ABC ∠,ABF CBF ∴∠=∠,四边形ABCD 是平行四边形,//AD BC ∴,AFB CBF ∴∠=∠,ABF AFB ∴=∠,AB AF ∴=,AE BF ⊥,BAO FAE ∴∠=∠,FAE BEO ∠=∠,BAO BEO ∴∠=∠,AB BE ∴=,AF BE ∴=,∴四边形ABEF 是平行四边形,∴平行四边形ABEF 是菱形.(2)解:AD BC =,AF BE =,DF CE ∴=,2AF DF =,2BE CE ∴=,4AB BE ==,2CE =∴.过点A 作AG BC ⊥于点G ,60ABC ∠=︒,AB BE =,ABE ∴∆是等边三角形,2BG GE ∴==,4AF CG ∴==,∴四边形AGCF 是平行四边形,∴平行四边形AGCF 是矩形,AG CF ∴=,在ABG ∆中,60ABC ∠=︒,4AB =, 23AG ∴=,23CF ∴=.【点睛】本题主要考查了菱形的判定和性质、勾股定理、平行四边形和矩形的性质和判定,熟练掌握菱形的判定是关键.23.如图,在△ABC 中,CD ⊥AB ,DE ⊥AC ,DF ⊥BC ,垂足分别为D ,E ,F .(1)求证:CE •CA =CF •CB ;(2)EF 交CD 于点O ,求证:△COE ∽△FOD ;【答案】(1)证明见解析;(2)证明见解析【分析】(1)本题首先根据垂直性质以及公共角分别求证△CED∽△CDA,△CDF∽△CBD,继而以2CD为中间变量进行等量替换证明本题.(2)本题以第一问结论为前提证明△CEF∽△CBA,继而根据垂直性质证明∠OFD =∠ECO,最后利用“角角”判定证明相似.【详解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴CE CDCD CA=,即CD2=CE•CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴CF CDCD CB=,即CD2=CB•CF,则CA•CE=CB•CF;(2)∵CA•CE=CB•CF,∴CE CF CB CA=,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD =∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.【点睛】本题考查相似的判定与性质综合,相似判定难点首先在于确定哪两个三角形相似,其次是判定定理的选择,相似判定常用“角角”定理,另外需注意相似图形其潜在信息点是边的比例关系以及角等.24.如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB 的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,3≈1.73)【答案】台灯的高约为45cm.【分析】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,可得四边形DGFH是矩形,可得DG=FH,根据∠A的余弦可求出AC的长,进而可得AD的长,根据∠A的正弦即可求出DG的长,由∠ADE=135°可得∠EDH=15°,根据∠DEH的正弦可得EH的长,根据EF=EH+FH求出EF的长即可得答案. 【详解】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,∴四边形DGFH是矩形,∴DG=FH,∵∠A=60°,AB=16,∴AC=AB·cos60°=16×12=8,∴AD=AC+CD=8+40=48,∴DG=AD·sin60°=243,∵DH⊥EF,AF⊥EF,∴DH//AF,∴∠ADH=180°-∠A=120°,∵∠ADE=135°,∴∠EDH=∠ADE-∠ADH=15°,∵DE=15,∴EH=DE·sin15°≈3.9,∴EF=EH+FH=EH+DG=243+3.9≈45,答:台灯的高约为45cm.【点睛】本题主要考查解直角三角形的应用,正确应用锐角三角函数的关系是解题关键.25.如图,点P在直线y=x-1上,设过点P的直线交抛物线y=x2于A(a,a2),B(b,b2)两点,当满足PA=PB 时,称点P为“优点”.(1)当a+b=0时,求“优点”P 的横坐标;(2)若“优点”P 的横坐标为3,求式子18a-9b 的值;(3)小安演算发现:直线y=x-1上的所有点都是“优点”,请判断小安发现是否正确?如果正确,说明理由;如果不正确,举出反例.【答案】 (1)点P 横坐标为;(2)27;(3)正确,理由见解析. 【分析】(1)先判断点A 与点B 关于y 轴对称得到PA ∥x 轴,所以P 点的纵坐标为a 2,P 点的横坐标为a 2+1,则利用PA=AB 得到a 2+1-a=a-(-a ),然后求出a 得到优点”P 的横坐标;(2)由于A 点为PB 的中点,根据线段的中点坐标公式得到a=b 32+,即2a-b=3,然后利用整体代入的方法计算代数式的值;(3)设P (x ,x-1),利用A 点为PB 的中点得到a=b x 2+,a 2=212b x +-,消去a 得到方程x 2+2(b-1)x+1-b 2=0,然后通过证明此方程一定有解判断直线y=x-1上的所有点都是“优点”.【详解】(1)∵a b 0+=,∴点A 、B 关于x 0=对称,∴AB//x 轴,∵PA AB 2a ==,∴点P 的横坐标为3a ,∴点P 的坐标为()3a,3a 1-,点A 的坐标为()2a,a, ∵AP //x 轴,∴2a 3a 1=-,解得a =∴点P ; (2)∵点P 在直线y x 1=-上,∴点P 坐标为()3,2,∵PA AB =,∴3a a b -=-,∴2a b 3-=,∴()18a 9b 92a b 27-=-=;(3)设点P 坐标为()x,x 1-,结合点A 的坐标()2a,a ,当PA AB =时,分析出点B 的坐标为()22a x,2a x 1--+,把点B 坐标代入抛物线解析式2y x =中, ()222a x 12a x -+=-,整理,得()22x 4a 1x 2a 10--+-=, ∵()()2221Δ4a 142a 18a 302⎛⎫=---=-+> ⎪⎝⎭, ∴对于任意a ,总有x 使得PA=AB ,∴直线y x 1=-上的点均为优点.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;记住线段的中点坐标公式;理解判别式的意义.26.有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,(1)随机从A 组抽取一张,求抽到数字为2的概率;(2)随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【答案】(1)P (抽到数字为2)=13;(2)不公平,理由见解析. 【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P= 13; (2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=4263=, 乙获胜的情况有2种,P=2163=, 所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.27.小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的1个扇形区域,且分别标有数字1,2,3,1.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.【答案】(1)12;(2)该游戏公平.【分析】(1)根据概率公式直接计算即可;(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【详解】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率= 21 =42;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为1,所以小王胜的概率=41= 164;两次的数字都是偶数的结果数为1,所以小张胜的概率=41= 164,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.【点睛】本题考查的知识点是游戏公平性,概率公式,树状图法,解题关键是熟练运用树状图法.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知如图,ABC 中,90ABC ∠=︒,8AB =,10AC =,边AC 的垂直平分线交AC 于点D ,交BC 于点E ,则AE 的长是( ).A .74B .254C .4D .6【答案】B【分析】根据勾股定理求出BC,根据线段垂直平分线性质和勾股定理可求AE.【详解】因为ABC 中,90ABC ∠=︒,8AB =,10AC =,所以22221086AC AB +=+=因为AC 的垂直平分线交AC 于点D ,所以AE=EC设AE=x,则BE=8-x,EC=x在Rt △BCE 中,由BE 2+BC 2=EC 2可得x 2+(8-x )2=62解得x=254.即AE=254故选:B【点睛】考核知识点:勾股定理,线段垂直平分线.根据勾股定理求出相应线段是关键.2.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ) A .1B .2C .3D .4【答案】A【分析】分类讨论x 与y 的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x 、y 的正负分4种情况讨论: ①当x >0,y >0时,方程组变形得:2824x y x y +=⎧⎨+=⎩,无解; ②当x >0,y <0时,方程组变形得:2824x y x y +=⎧⎨-=⎩,解得x =3,y =2>0,则方程组无解;③当x <0,y >0时,方程组变形得:2824x y x y -+=⎧⎨+=⎩, 此时方程组的解为16x y =-⎧⎨=⎩; ④当x <0,y <0时,方程组变形得:2824x y x y -+=⎧⎨-=⎩,无解, 综上所述,方程组的解个数是1.故选:A .【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.3.将抛物线24y x =-向左平移3个单位长度,再向上平移5个单位长度,得到的抛物线的表达式为( )A .()2435y x =-++B .()2435y x =--- C .()2435y x =--+D .()2435y x =-+- 【答案】A 【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】原抛物线的顶点为(0,0),向左平移3个单位,再向上平移1个单位,那么新抛物线的顶点为(−3,1);可设新抛物线的解析式为y =−4(x−h )2+k ,代入得:y =−4(x +3)2+1.故选:A .【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.4.对于反比例函数8y x=,下列说法不正确的是( ) A .图像分布在第一、三象限 B .当0x >时,y 随x 的增大而减小C .图像经过点(4,2)--D .若点()()1122,,,A x y B x y 都在图像上,且12x x <,则12y y <【答案】D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A 、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B 、k=8>0,当x >0时,y 随x 的增大而减小,故本选项正确,不符合题意;C 、∵824=--,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意; D 、点A (x 1,y 1)、B (x 2、y 2)都在反比例函数8y x=的图象上,若x 1<x 2<0,则y 1>y 2,故本选项错误,符合题意.故选D.【点睛】 本题考查了反比例函数的性质,对于反比例函数()0k y k x=≠,(1)k >0,反比例函数图象在一、三象限,在每一个象限内,y 随x 的增大而减小;(2)k <0,反比例函数图象在第二、四象限内,在每一个象限内,y 随x 的增大而增大.5.如图,AB 是⊙O 的直径,OC 是⊙O 的半径,点D 是半圆AB 上一动点(不与A 、B 重合),连结DC 交直径AB 与点E,若∠AOC=60°,则∠AED 的范围为( )A .0°< ∠AED <180°B .30°< ∠AED <120°C .60°< ∠AED <120°D .60°< ∠AED <150°【答案】D 【分析】连接BD ,根据圆周角定理得出∠ADC=30°, ∠ADB=90°,再根据三角形的外角性质可得到结论.【详解】如图,连接BD ,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故选D【点睛】本题考查了圆周角定理和三角形的外角性质.正确应用圆周角定理找出∠ADC=30°, ∠ADB=90°是解题的关键.6.如图,已知⊙O 的直径为4,∠ACB =45°,则AB 的长为( )A .4B .2C .42D .22【答案】D 【分析】连接OA 、OB ,根据同弧所对的圆周角是圆心角的一半,即可求出∠AOB =90°,再根据等腰直角三角形的性质即可求出AB 的长.【详解】连接OA 、OB ,如图,∵∠AOB =2∠ACB =2×45°=90°,∴△AOB 为等腰直角三角形,∴AB =2OA =22.故选:D .【点睛】此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.7.在Rt ABC ∆中,90C ∠=︒,已知a 和A ,则下列关系式中正确的是( )A .sin c a A =⋅B .sin a c A =C .cos c a A =⋅D .cos a c A= 【答案】B【分析】根据三角函数的定义即可作出判断.【详解】∵在Rt △ABC 中,∠C =90°,∠C 的对边为c ,∠A 的对边为a ,∴sinA =a c , ∴a =c •sinA ,sin a c A=. 故选:B .【点睛】 考查了锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.8.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来谷米1534石,验得其中夹有谷粒.现从中抽取谷米一把,共数得254粒,其中夹有谷粒28粒,则这批谷米内夹有谷粒约是( ) A .134石B .169石C .338石D .1365石 【答案】B【解析】根据254粒内夹谷28粒,可得比例,再乘以1534石,即可得出答案.【详解】解:根据题意得: 1534×28254≈169(石), 答:这批谷米内夹有谷粒约169石;故选B .【点睛】本题考查了用样本估计总体,用样本估计总体是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.9.如图所示的是太原市某公园“水上滑梯”的侧面图,其中BC 段可看成是双曲线的一部分,其中,矩形AOEB 中有一个向上攀爬的梯子,5OA =米,入口//AB OD ,且2AB =米,出口C 点距水面的距离CD 为1米,则点B C 、之间的水平距离DE 的长度为( )A .5米B .6米C .10米D .8米【答案】D 【分析】根据题意B 、C 所在的双曲线为反比例函数,B 点的坐标已知为B (2,5),代入即可求出反比例函数的解析式:y=10x ,C (x ,1)代入y=10x中,求出C 点横坐标为10,可以得出DE=OD-OE 即可求出答案.【详解】解:设B 、C 所在的反比例函数为y=k x B (x B,y B ) ∴ x B =OE=AB=2 y B =EB=OA=5 代入反比例函数式中5=2k 得到 k=10 ∴y=10x ∵ C(x C, y C ) y C =CD=1 代入y=10x 中 ∴ 1= x C =10∴ DE=OD-OE= x C - x B =10-2=8故选D【点睛】此题主要考查了反比例函数的定义,根据已知参数求出反比例函数解析式是解题的关键.10.在Rt △ABC 中,∠C =90°,tanA =12,则sinA 的值为( )A 5B 5C 5D 25 【答案】B 【分析】由题意直接根据三角函数的定义进行分析即可求解.【详解】解:∵在Rt △ABC 中,∠C =90°,tanA =12, ∴可以假设BC =k ,AC =2k ,∴AB 5,∴sinA 5k 5. 故选:B .【点睛】本题考查同角三角函数的计算,解题本题的关键是明确sinA 等于对边与斜边的比.11.下列方程属于一元二次方程的是( )A .20x =B .()()23121x y -=-C .2310ax x -+=D .2110x x++= 【答案】A【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是。
《试卷3份集锦》上海市徐汇区2018-2019年九年级上学期数学期末学业水平测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列抛物线中,其顶点在反比例函数y=12x的图象上的是()A.y=(x﹣4)2+3 B.y=(x﹣4)2﹣3 C.y=(x+2)2+1 D.y=(x+2)2﹣1 【答案】A【分析】根据y=12x得k=xy=12,所以只要点的横坐标与纵坐标的积等于12,就在函数图象上.【详解】解:∵y=12x,∴k=xy=12,A、y=(x﹣4)2+3的顶点为(4,3),4×3=12,故y=(x﹣4)2+3的顶点在反比例函数y=12x的图象上,B、y=(x﹣4)2﹣3的顶点为(4,﹣3),4×(﹣3)=﹣12≠12,故y=(x﹣4)2﹣3的顶点不在反比例函数y=12x的图象上,C、y=(x+2)2+1的顶点为(﹣2,1),﹣2×1=﹣2≠12,故y=(x+2)2+1的顶点不在反比例函数y=12 x的图象上,D、y=(x+2)2﹣1的顶点为(﹣2,﹣1),﹣2×(﹣1)=2≠12,故y=(x+2)2﹣1的顶点不在反比例函数y=12x的图象上,故选:A.【点睛】本题考查的知识点是抛物线的顶点坐标以及反比例函数图象上点的坐标,根据抛物线的解析式确定抛物线的顶点坐标是解此题的关键.2.已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点B的坐标为(1,0)其图象如图所示,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的两个根是﹣3和1;④当y>0时,﹣3<x<1;⑤当x>0时,y随x的增大而增大:⑥若点E(﹣4,y1),F(﹣2,y2),M(3,y3)是函数图象上的三点,则y1>y2>y3,其中正确的有()个A .5B .4C .3D .2【答案】C 【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性逐个进行判断,得出答案.【详解】由抛物线的开口向上,可得a >0,对称轴是x =﹣1,可得a 、b 同号,即b >0,抛物线与y 轴交在y 轴的负半轴,c <0,因此abc <0,故①不符合题意;对称轴是x =﹣1,即﹣2b a=﹣1,即2a ﹣b =0,因此②符合题意; 抛物线的对称轴为x =﹣1,与x 轴的一个交点B 的坐标为(1,0),可知与x 轴的另一个交点为(﹣3,0),因此一元二次方程ax 2+bx+c =0的两个根是﹣3和1,故③符合题意;由图象可知y >0时,相应的x 的取值范围为x <﹣3或x >1,因此④不符合题意;在对称轴的右侧,y 随x 的增大而增大,因此当x >0时,y 随x 的增大而增大是正确的,因此⑤符合题意; 由抛物线的对称性,在对称轴的左侧y 随x 的增大而减小,∵﹣4<﹣2,∴y 1>y 2,(3,y 3)l 离对称轴远因此y 3>y 1,因此y 3>y 1>y 2,因此⑥不符合题意;综上所述,正确的结论有3个,故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.3.由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是( )A .B .C .D .【答案】A 【解析】根据题意,由题目的结构特点,依据题目的已知条件,正视图是有两行,第一行两个,第二行三个且右对齐,从而得出答案.即可得到题目的结论.【详解】从正面看到的平面图形是:,故选A.【点睛】此题主要考查的是简单的组合体的三视图等有关知识,题目比较简单,通过考查,了解学生对简单的组合体的三视图等知识的掌握程度.熟练掌握简单的组合体的三视图是解决本题的关键.4.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A.9 B.12 C.-14 D.10【答案】B【解析】y=x2-2x+3=(x-1)2+2,将其向上平移2个单位得:y= (x-1)2+2+2= (x-1)2+4,再向左平移3个单位得:y= (x-1+3)2+4= (x-1+3 )2+4= (x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故选B.5.如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.【答案】C【解析】根据题意,分P在OC、CD、DO之间3个阶段,分别分析变化的趋势,又由点P作匀速运动,故图像都是线段,分析选项可得答案.【详解】根据题意,分3个阶段;①P在OC之间,∠APB逐渐减小,到C点时,∠APB为45°,所以图像是下降的线段,②P在弧CD之间,∠APB保持45°,大小不变,所以图像是水平的线段,③P在DO之间,∠APB逐渐增大,到O点时,∠APB为90°,所以图像是上升的线段,分析可得:C符合3个阶段的描述;故选C.【点睛】本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.6.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.15【答案】D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为=210=15.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.7.下列事件是随机事件的是()A.三角形内角和为360度B.测量某天的最低气温,结果为200C-C.买一张彩票,中奖D.太阳从东方升起【答案】C【分析】一定发生或是不发生的事件是确定事件,可能发生也可能不发生的事件是随机事件,根据定义判断即可.【详解】A.该事件不可能发生,是确定事件;B. 该事件不可能发生,是确定事件;C.该事件可能发生,是随机事件;D.该事件一定发生,是确定事件.故选:C.【点睛】此题考查事件的分类,正确理解确定事件和随机事件的区别并熟练解题是关键.8.《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是()A .5寸B .8寸C .10寸D .12寸【答案】C 【分析】设⊙O 的半径为r,在Rt △AEO 中,AE=4,OE=r-2,OA=r,则有r 2=42+(r-2)2,解方程即可.【详解】设⊙O 的半径为r ,在Rt △AEO 中,AE =4,OE =r ﹣2,OA =r ,则有r 2=42+(r ﹣2)2,解得r =5,∴⊙O 的直径为10寸,故选C .【点睛】本题主要考查垂径定理、勾股定理等知识,解决本题的关键是学会利用利用勾股定理构造方程进行求解. 9.下列计算错误的是( )A 222()-=-B 2(2)2-C .2(2)2=D 22【答案】A【分析】根据算术平方根依次化简各选项即可判断.【详解】A : 2(2)2-,故A 错误,符合题意; B 2(2)2-=正确,故B 不符合题意;C :2(2)2-=正确,故C 不符合题意;D 22正确,故D 不符合题意.故选:A.【点睛】此题考查算术平方根,依据 2(0)(0)a a a a a a ≥⎧==⎨-<⎩,2a a -=()进行判断. 10.已知二次函数()()22y x m x m =+--+,点A ()11,x y ,B ()22,x y ()12x x <是其图像上的两点,( )A .若122x x +>,则12y y > B .若122x x +<,则12y y > C .若122x x +->,则12y y > D .若122x x +-<,则12y y < 【答案】B【分析】利用作差法求出121212()(2)y y x x x x -=-+-,再结合选项中的条件,根据二次函数的性质求解.【详解】解:由(2)()+2y x m x m =+--得22222y x x m m =--++,∴22111222y x x m m =--++,22222222y x x m m =--++,121212()(2)y y x x x x -=-+-,∵12x x <,∴120x x -<,选项A,当122x x +>时,1220x x +->,12y y <,A 错误. 选项B,当122x x +<时,1220x x +-<,12y y >,B 正确.选项C,D 无法确定122x x +-的正负,所以不能确定当12x x <时,函数值的y 1与y 2的大小关系,故C,D 错误.∴选B.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是利用作差法,结合二次函数的性质解答.11.在小孔成像问题中,如图所示,若为O 到AB 的距离是18 cm ,O 到CD 的距离是6 cm ,则像CD 的长是物体AB 长的( )A .13B .12C .2倍D .3倍【答案】A【分析】作OE ⊥AB 于E ,OF ⊥CD 于F ,根据题意得到△AOB ∽△COD ,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE ⊥AB 于E ,OF ⊥CD 于F ,由题意得,AB ∥CD ,∴△AOB ∽△COD ,∴CDAB =OFOE=13,∴像CD的长是物体AB长的13.故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.12.关于反比例函数2yx=,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)【答案】C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【详解】A.k=2>0,则双曲线2yx=的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入2yx=得y=2,则点(1,2)在2yx=的图象上,所以D选项的说法正确.故选C.【点睛】本题考查了反比例函数的性质:反比例函数kyx=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.二、填空题(本题包括8个小题)13.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______. 【答案】y=2(x+2)2﹣1【解析】直接根据“上加下减、左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2−1,由“上加下减”的原则可知,将二次函数y=2x2−1的图象向左平移2个单位可得到函数y=2(x+2)2−1,故答案是:y=2(x+2)2−1.【点睛】本题考查的是二次函数图象与几何变换,熟练掌握规律是解题的关键.14.已知,一个小球由地面沿着坡度1:2i =的坡面向上前进10cm,则此时小球距离地面的高度为______cm .【答案】25. 【分析】利用勾股定理及坡度的定义即可得到所求的线段长. 【详解】如图,由题意得,10AB cm =,1tan 2BC A AC == 设,2BC x AC x ==由勾股定理得,222AB AC BC =+,即220041x x +=,解得25x =则25()BC cm =故答案为:25.【点睛】本题考查了勾股定理及坡度的定义,掌握理解坡度的定义是解题关键.15.写出一个过原点的二次函数表达式,可以为____________.【答案】y=1x 1【分析】抛物线过原点,因此常数项为0,可据此写出符合条件的二次函数的表达式.【详解】解:设抛物线的解析式为y=ax 1+bx+c (a≠0);∵抛物线过原点(0,0),∴c=0;当a=1,b=0时,y=1x 1.故答案是:y=1x 1.(答案不唯一)【点睛】主要考查了二次函数图象上的点与二次函数解析式的关系.要求掌握二次函数的性质,并会利用性质得出系数之间的数量关系.16.如果抛物线22y ax ax c =++与x 轴的一个交点的坐标是()1,0,那么与x 轴的另一个交点的坐标是___________.【答案】()3,0-【分析】根据抛物线y=ax 2+2ax+c ,可以得到该抛物线的对称轴,然后根据二次函数图象具有对称性和抛物线y=ax 2+2ax+c 与x 轴的一个交点的坐标是(1,0),可以得到该抛物线与x 轴的另一个交点坐标.【详解】∵抛物线y=ax 2+2ax+c=a (x+1)2-a+c ,∴该抛物线的对称轴是直线x=-1,∵抛物线y=ax 2+2ax+c 与x 轴的一个交点的坐标是(1,0),∴该抛物线与x 轴的另一个交点的坐标是(-3,0),故答案为:(-3,0).【点睛】此题考查二次函数的图形及其性质,解题的关键是明确题意,利用二次函数的性质解答.17.河堤横截面如图所示,堤高BC 为4米,迎水坡AB 的坡比为1:3(坡比=:BC AC ),那么AB 的长度为____________米.【答案】8【分析】在Rt △ABC 中,根据坡面AB 的坡比以及BC 的值,求出AC 的值,再通过解直角三角形即可求出斜面AB 的长. 【详解】∵Rt △ABC 中,BC=6米,迎水坡AB 的坡比为13∴BC :AC=13∴33, ∴2222(43)48AB AC BC =+=+=(米)【点睛】本题考查了解直角三角形的应用----坡度坡角问题,熟练运用勾股定理是解答本题的关键.18.圆锥的母线长为4cm ,底面半径为3cm ,那么它的侧面展开图的圆心角是______度.【答案】1【分析】易得圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.【详解】∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n °, 46180n ππ⨯︒=,解得n=1.故答案为1.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.三、解答题(本题包括8个小题)19.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D ,BE⊥AB,垂足为B,BE=CD连接CE,DE. (1)求证:四边形CDBE是矩形(2)若AC=2 ,∠ABC=30°,求DE的长【答案】(1)见详解,(2)3,【解析】(1)利用有一组对边平行且相等的四边形是平行四边形,有一个角是90°的平行四边形是矩形即可证明,(2)利用30°角所对直角边是斜边的一半和勾股定理即可解题.【详解】解:(1)∵CD⊥AB,BE⊥AB,∴CD∥BE,∵BE=CD,∴四边形CDBE是矩形,(2)在Rt△ABC中,∵∠ABC=30°,AC=2 ,∴AB=4,(30°角所对直角边是斜边的一半)∴3,(勾股定理)【点睛】本题考查了矩形的证明和特殊直角三角形的性质,属于简单题,熟悉判定方法是解题关键.20.如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t (s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【答案】(1)t为3秒时,△BDE的面积为7.3cm3;(3)存在时间t为5013或8013秒时,使得△BDE与△ABC相似.【分析】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(3)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【详解】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,DFAG=BDAB∵AB=AC=10,BC=11∴BG=8,∴AG=1.∵AD=BE=t,∴BD=10﹣t,∴DF6=1010t-解得DF=35(10﹣t)∵S△BDE=12BE•DF=7.3∴35(10﹣t)•t=13解得t=3.答:t为3秒时,△BDE的面积为7.3cm3.(3)存在.理由如下:①当BE=DE时,△BDE与△BCA,∴BEAB=BDBC即10t=1016t-,解得t=50 13,②当BD=DE时,△BDE与△BAC,BE BC =BDAB即16t=1010t-,解得t =8013. 答:存在时间t 为5013或8013秒时,使得△BDE 与△ABC 相似. 【点睛】此题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.21.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【答案】(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.22.计算:2212cos 60sin 45--︒-︒+)0tan 30︒【答案】1【分析】先计算特殊的三角函数值和去绝对值,再从左至右计算即可.【详解】解:原式=221212122⎛⎫⎛⎫-⋅-+ ⎪ ⎪ ⎪⎝⎭⎝⎭ 112221=--=【点睛】本题考查的是实数与特殊角的三角函数值的混合运算,能够熟知特殊角的三角函数值是解题的关键. 23.如图,在平面直角坐标系中,已知Rt △AOB 的两直角边OA 、OB 分别在x 轴、y 轴的正半轴上(OA <OB ).且OA 、OB 的长分别是一元二次方程x 2﹣14x+48=0的两个根,线段AB 的垂直平分线CD 交AB 于点C ,交x 轴于点D ,点P 是直线AB 上一个动点,点Q 是直线CD 上一个动点.(1)求线段AB 的长度:(2)过动点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,点P 在移动过程中,线段EF 的长度也在改变,请求出线段EF 的最小值:(3)在坐标平面内是否存在一点M ,使以点C 、P 、Q 、M 为顶点的四边形是正方形,且该正方形的边长为12AB 长?若存在,请直接写出点M 的坐标:若不存在,请说明理由.【答案】(1)1;(2)245;(3)存在,所求点M 的坐标为M 1(4,11),M 2(﹣4,5),M 3(2,﹣3),M 4(1,3). 【分析】(1)利用因式分解法解方程x 2﹣14x+48=0,求出x 的值,可得到A 、B 两点的坐标,在Rt △AOB 中利用勾股定理求出AB 即可.(2)证明四边形PEOF 是矩形,推出EF =OP ,根据垂线段最短解决问题即可.(3)分两种情况进行讨论:①当点P 与点B 重合时,先求出BM 的解析式为y =34x+8,设M (x ,34x+8),再根据BM =5列出方程(34x+8﹣8)2+x 2=52,解方程即可求出M 的坐标;②当点P 与点A 重合时,先求出AM 的解析式为y =34x ﹣92,设M (x ,34x ﹣92),再根据AM =5列出方程(34x ﹣92)2+(x ﹣6)2=52,解方程即可求出M的坐标.【详解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB=22OA OB+=2268+=1.(2)如图,连接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四边形PEOF是矩形,∴EF=OP,根据垂线段最短可知当OP⊥AB时,OP的值最小,此时OP=OB OAAB⋅=245,∴EF的最小值为245.(3)在坐标平面内存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为12 AB长.∵AC=BC=12AB=5,∴以点C、P、Q、M为顶点的正方形的边长为5,且点P与点B或点A重合.分两种情况:①当点P与点B重合时,易求BM的解析式为y=34x+8,设M(x,34x+8),∵B(0,8),BM=5,∴(34x+8﹣8)2+x2=52,化简整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②当点P与点A重合时,易求AM的解析式为y=34x﹣92,设M(x,34x﹣92),∵A(6,0),AM=5,∴(34x﹣92)2+(x﹣6)2=52,化简整理,得x2﹣12x+20=0,解得x1=2,x2=1,∴M3(2,﹣3),M4(1,3);综上所述,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【点睛】本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,正方形的性质,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.24.为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)【答案】(1)开通隧道前,汽车从A地到B地要走2)千米;(2)汽车从A地到B地比原来少走的路程为23)]千米.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×12=40(千米),AC=CD402sin45︒=(千米),AC+BC=80+402(千米),答:开通隧道前,汽车从A地到B地要走(80+402)千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×3=4032(千米),∵tan45°=CDAD,CD=40(千米),∴AD=CD40tan45︒=(千米),∴AB=AD+BD=40+403(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+402﹣40﹣403=40+40(23)-(千米).答:汽车从A地到B地比原来少走的路程为[40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.25.如图,一次函数y=kx+b的图象与反比例函数y=mx(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.【答案】(1)y=24x+1;y=8x(2)证明见解析;(3)存在,D(8,1).【分析】(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P 的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=8x-的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.【详解】解:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m=8,∴反比例函数的解析式:y=8 x把A(-4,0),P(4,2)代入y=kx+b得:04{24k bk b=-+=+,解得:1{41kb==,所以一次函数的解析式:y=24x+1;(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=12AP PC=,∴BC和PC是菱形的两条边由y=14x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=8x-的图象于点D,分别连结PD、BD,∴点D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.26.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).【答案】(1)36IR=;(2)3.6A.【分析】(1)利用待定系数法即可得出答案;(2)把R=10代入函数解析式即可求出电流I的值.【详解】解:(1)由电流I(A)是电阻R(Ω)的反比例函数,设kIR=(k≠0),把(4,9)代入得:k=4×9=36,∴36IR =.(2)当R=10Ω时,3610I==3.6A.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,设出函数解析式,然后代入点的坐标是解决此题的关键.27.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?【答案】(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10x件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x件;(2)设每件商品降价x元时,利润为w元根据题意得:w=(30-x)(100+10x)= -10x2+200x+3000=-10(x-10)2+4000∵-10<0,∴w有最大值,当x=10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w关于x的二次函数解析式是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在Rt ABC ∆中,90BAC ∠=,AD BC ⊥于点D ,3AD =,3tan 4B =,则BC 的值为( )A .4B .254C .94D .7【答案】B 【分析】利用90BAC ∠=和AD BC ⊥可知CAD B ∠=∠,然后分别在Rt ABD △和Rt ACD 中利用3tan 4B =求出BD 和CD 的长度,最后利用BC=BD+CD 即可得出答案. 【详解】∵AD BC ⊥∴90ADB ∠=︒∵90,90BAC BAD CAD ADB BAD B ∠=∠+∠=∠=∠+∠=∴B CAD ∠=∠在Rt ABD △中∵3AD =,3tan 4AD B BD == ∴4tan AD BD B== 在Rt ACD 中 ∵3AD =,3tan tan 4CD CAD B AD ∠=== ∴39tan 344CD AD CAD =∠== ∴925444BC BD CD =+=+= 故选B【点睛】本题主要考查解直角三角形,掌握锐角三角函数的意义是解题的关键.2.已知关于x 的方程(1)210ax x ++=(2)252x x +=(3)(1)(25)0x x +-=(4)20x =,其中一元二次方程的个数为( )个.A .1B .2C .3D .4【答案】C【分析】根据一元二次方程的定义逐项判断即可.【详解】解:(1)ax 2+x+1=0中a 可能为0,故不是一元二次方程;(2)252x x +=符合一元二次方程的定义,故是一元二次方程;(3)(1)(25)0x x +-=,去括号合并后为22x 3x =0--5,是一元二次方程;(4)x 2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,故选:C .【点睛】本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以.3.若⊙O 的弦AB 等于半径,则AB 所对的圆心角的度数是( )A .30°B .60°C .90°D .120°【答案】B【解析】试题分析:∵OA=OB=AB ,∴△OAB 是等边三角形,∴∠AOB=60°.故选B .【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.4.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .()9121x -=B .()2911x -=C .()9121x +=D .()2911x += 【答案】B【分析】等量关系为:2016年贫困人口()212018⨯-=下降率年贫困人口,把相关数值代入计算即可.【详解】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得:()2911x -=,故选B .【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键. 5.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?()A.R≥3ΩB.R≤3ΩC.R≥12ΩD.R≥24Ω【答案】A【分析】直接利用图象上点的坐标得出函数解析式,进而利用限制电流不能超过12A,得出电器的可变电阻R应控制范围.【详解】解:设I=UR,把(9,4)代入得:U=36,故I=36R,∵限制电流不能超过12A,∴用电器的可变电阻R≥3,故选:A.【点睛】本题考查了反比例的实际应用,数形结合,利用图像解不等式是解题的关键6.下列四个三角形,与左图中的三角形相似的是().A.B.C.D.【答案】B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为12,2210.A、三角形三边分别是210,2,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,25B选项正确;C、三角形三边2,313C选项错误;D5134,与给出的三角形的各边不成正比例,故D选项错误.故选:B.。
┃精选3套试卷┃2019届上海市徐汇区九年级上学期数学期末质量跟踪监视试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1m ,则旗杆PA 的高度为( )A .11sin α-mB .11sin α+mC .11cos α- mD .11cos α+ m 【答案】A【解析】设PA=PB=PB′=x ,在RT △PCB′中,根据sinα=PC PB ',列出方程即可解决问题. 【详解】设PA=PB=PB′=x ,在RT △PCB′中,sinα=PC PB ', ∴1x x-=sinα, ∴x-1=xsinα,∴(1-sinα)x=1,∴x=11sin α-. 故选A .【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型. 2.如图是小玲设计用手电来测家附近“新华大厦”高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,已知,AB BD CD BD ⊥⊥,且测得 1.2AB =米,1.8BP =米,24PD =米,那么该大厦的高度约为( )A .8米B .16米C .24米D .36米【答案】B 【分析】根据光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,可知APB CPD ∠=∠,再由,AB BD CD BD ⊥⊥,可得∆ABP ∽CDP ,从而可以得到AB BP CD PD =,即可求出CD 的长. 【详解】∵光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处∴APB CPD ∠=∠∵,AB BD CD BD ⊥⊥∴90ABP CDP ︒∠=∠=∴∆ABP ∽CDP∴AB BP CD PD= ∵ 1.2AB =米, 1.8BP =米,24PD =米 ∴1.2 1.824CD = ∴CD=16(米)【点睛】本题考查的知识点是相似三角形的性质与判定,通过判定三角形相似得到对应线段成比例,构成比例是关键.3.如图,△ABC 的三边的中线AD ,BE ,CF 的公共点为G ,且AG :GD =2:1,若S △ABC =12,则图中阴影部分的面积是( )A .3B .4C .5D .6【答案】B 【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC 的面积即为阴影部分的面积的3倍.【详解】∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =13S △ACF ,S △BGF =S △BGD =13S △BCF , ∵S △ACF =S △BCF =12S △ABC =12×12=6, ∴S △CGE =13S △ACF =13×6=2,S △BGF =13S △BCF =13×6=2, ∴S 阴影=S △CGE +S △BGF =1.故选:B .【点睛】此题主要考查根据三角形中线性质求解面积,熟练掌握,即可解题.4.如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A .43B .34C .35D .45【答案】D【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,∴AC =222234=+=+AC AD CD 1.∴4sin 5CD BAC AC ∠==. 故选D .【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.5.若关于x 的一元二次方程2x 2x m 0-+=有实数根,则实数m 的取值范围是( )A .1m <B .1mC .1mD .m 1≥ 【答案】B【分析】因为一元二次方程有实数根,所以2=40b ac ∆-≥ ,即可解得.【详解】∵一元二次方程2x 2x m 0-+=有实数根∴2=4=4-40b ac m ∆-≥解得1m故选B【点睛】本题考查一元二次方程根的判别式,掌握方程根的个数与根的判别式之间关系是解题关键.6.如图,四边形ABCD 是⊙O 的内接四边形,若⊙O 的半径为4,且∠B =2∠D ,连接AC ,则线段AC 的长为()A.42B.43C.6 D.8【答案】B【分析】连接OA,OC,利用内接四边形的性质得出∠D=60°,进而得出∠AOC=120°,利用含30°的直角三角形的性质解答即可.【详解】连接OA,OC,过O作OE⊥AC,∵四边形ABCD是⊙O的内接四边形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=23,∴AC=43,故选:B.【点睛】此题考查内接四边形的性质,关键是利用内接四边形的性质得出∠D=60°.7.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得()个馒头A.25 B.72 C.75 D.90【答案】C【分析】设有x个大和尚,则有(100-x)个小和尚,根据馒头数=3×大和尚人数+13×小和尚人数结合共分100个馒头,即可得出关于x的一元一次方程,解之即可得出结论;【详解】解:设有x个大和尚,则有(100−x)个小和尚,依题意,得:3x+13(100−x)=100,解得:x=25,∴3x=75;故选:C.【点睛】本题主要考查了一元一次方程的应用,掌握一元一次方程的应用是解题的关键.8.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M 重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A.B.C.D.【答案】A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=12CM•CE=212x;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=12CD•(DE+CM)=12(2)2x x⨯⨯-+=2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S 梯形EMCD ﹣S △FDG =1()2CD DE CM +﹣212DG =12×2×(x ﹣2+x )﹣21(4)2x -=﹣212x +10x ﹣18, 故选项A 正确;故选:A . 点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.9.在Rt ABC ∆中,90C ∠=︒,1BC =,4AB =,则sin B 的值是( )A .5B .14C .13D .4【答案】D【分析】首先根据勾股定理求得AC 的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,∴AC ==∴4AC sinB AB == 故选:D .【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.10.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为( )A .65πB .60πC .75πD .70π【答案】A【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】∵圆锥的高为12,底面圆的半径为5,13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A .【点睛】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键.11.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:合格频数 42 88 141 176 445 724 901 若出售1500件衬衣,则其中次品最接近( )件.A .100B .150C .200D .240 【答案】B【分析】根据频数表计算出每次的合格频率,然后估计出任抽一件衬衣的合格频率,从而可得任抽一件衬衣的次品频率,再乘以1500即可得.【详解】由=合格频数合格频率抽取件数依次算得各个频率为:0.84,0.88,0.94,0.88,0.89,0.905,0.901 则任抽一件衬衣的合格频率约为0.9因此任抽一件衬衣的次品频率为10.90.1-=所求的次品大概有15000.1150⨯=(件)故选:B.【点睛】本题考查了概率估计的方法,理解频数和频率的定义是解题关键.12.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是( )A .B .C .D .【答案】D【解析】根据主视图是从物体正面看所得到的图形判断即可.【详解】A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形.故选:D .【点睛】本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.二、填空题(本题包括8个小题)13.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(4,0)-,对称轴为直线1x =-,下列结论:①0abc >;②20a b -=;③一元二次方程20ax bx c ++=的解是14x =-,21x =;④当0y >时,42x -<<,其中正确的结论有__________.【答案】①②④【分析】①由抛物线的开口向下知a <0,与y 轴的交点在y 轴的正半轴上得到c >0,由对称轴为12b x a=-=-,得到b <0,可以①进行分析判断; ②由对称轴为12b x a =-=-,得到2a=b ,b-2a=0,可以②进行分析判断; ③对称轴为x=-1,图象过点(-4,0),得到图象与x 轴另一个交点(2,0),可对③进行分析判断; ④抛物线开口向下,图象与x 轴的交点为(-4,0),(2,0),即可对④进行判断.【详解】解:①∵抛物线的开口向下,∴a <0,∵与y 轴的交点在y 轴的正半轴上,∴c >0, ∵对称轴为12b x a =-=-<0 ∴b <0,∴abc >0,故①正确; ②∵对称轴为12b x a=-=-, ∴2a=b ,∴2a-b=0,故②正确;③∵对称轴为x=-1,图象过点A (-4,0),∴图象与x 轴另一个交点(2,0),∴关于x 的一元二次方程ax 2+bx+c=0的解为x=-4或x=2,故③错误;④∵抛物线开口向下,图象与x 轴的交点为(-4,0),(2,0),∴当y >0时,-4<x <2,故④正确;∴其中正确的结论有:①②④;故答案为:①②④.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,解题时要注意数形结合思想的运用.14.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣2x的图象上,则y1与y2的大小关系是_____.【答案】y1<y1【分析】由k=-1可知,反比例函数y=﹣2x的图象在每个象限内,y随x的增大而增大,则问题可解.【详解】解:∵反比例函数y=﹣2x中,k=﹣1<0,∴此函数在每个象限内,y随x的增大而增大,∵点A(1,y1),B(1,y1)在反比例函数y=﹣2x的图象上,1>1,∴y1<y1,故答案为y1<y1.【点睛】本题考查了反比例函数的增减性,解答关键是注意根据比例系数k的符号确定,在各个象限内函数的增减性解决问题.15.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.【答案】1.【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=12或x=4,当x=12时,12+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=1.故答案为:1.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键.16.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.【答案】3【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【详解】∵四边形ABCD 是菱形,OB=4,∴OA=OC ,BD=2OB=8;∵S 菱形ABCD =24,∴AC=6;∵AH ⊥BC ,OA=OC ,∴OH=12AC=3. 故答案为3.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.17.如图所示,已知ABC 中,12BC =,BC 边上的高6h =,D 为BC 上一点,EF BC ∥,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x .则DEF 的面积y 关于x 的函数图象大致为__________.【答案】抛物线y =-x 2+6x .(0<x <6)的部分.【分析】可过点A 向BC 作AH ⊥BC 于点H ,所以根据相似三角形的性质可求出EF ,进而求出函数关系式,由此即可求出答案.【详解】解:过点A 向BC 作AH ⊥BC 于点H ,∵EF BC ∥∴△AEF ∽△ABC∴EF h x BC h -=即6126y x -=, ∴y=12×2(6-x )x=-x 2+6x .(0<x <6) ∴该函数图象是抛物线y =-x 2+6x .(0<x <6)的部分.故答案为:抛物线y =-x 2+6x .(0<x <6)的部分.【点睛】此题考查相似三角形的判定和性质,根据几何图形的性质确定函数的图象能力.要能根据函数解析式及其自变量的取值范围分析得出所对应的函数图像的类型和所需要的条件,结合实际意义分析得解.18.关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,则m 满足的条件是_____.【答案】2m ≠【分析】根据一元二次方程的定义ax 2+bx+c=0(a ≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m ≠2.故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.三、解答题(本题包括8个小题)19.解方程:x (x ﹣3)+6=2x .【答案】x 1=2,x 2=1.【分析】先去掉括号,再把2x 移到等号的左边,再根据因式分解法即可求解.【详解】解:x (x ﹣1)+6=2x ,x 2﹣1x+6﹣2x =0,x 2﹣5x+6=0,(x ﹣2)(x ﹣1)=0,x ﹣2=0或x ﹣1=0,x 1=2,x 2=1.【点睛】本题考查了解一元二次方程-因式分解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.20.如图,已知Rt ABC ∆中,90,30ACB B ︒︒∠=∠=,D 是AB 的中点,//,//AE CD AC ED . 求证:四边形ACDE 是菱形.【答案】详见解析.【分析】根据直角三角形斜边上的中线的性质和等边三角形的判定定理推知△ACD 为等边三角形,则可证平行四边形ACDE 是菱形.【详解】证明:∵AE ∥CD ,AC ∥ED ,∴四边形ACDE 是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=12AB=AD.∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∴△ACD为等边三角形,∴AC=CD,∴平行四边形ACDE是菱形.【点睛】本题考查了菱形的判定、平行四边形的判定、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质,证明四边形ACDE是平行四边形是解决问题的关键.21.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=6 x(x>0)和y=kx(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.【答案】(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=6x得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到12|k|+12×|6|=9,然后解方程得到满足条件的k的值.【详解】(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=6x得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴12|k|+12×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【点睛】本题主要考查了反比例函数的图象与性质,掌握反比例函数k的几何意义是解题的关键.22.解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=12【答案】(1)x=7或x=﹣1(2)x=﹣5或x=3【分析】(1)方程两边同时加16,根据完全平方公式求解方程即可.(2)开括号,再移项合并同类项,根据十字相乘法求解方程即可.【详解】(1)∵x2﹣6x﹣7=0,∴x2﹣6x+9=16,∴(x﹣3)2=16,∴x﹣3=±4,∴x=7或x=﹣1;(2)原方程化为:x2+2x﹣15=0,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【点睛】本题考查了解一元二次方程的问题,掌握解一元二次方程的方法是解题的关键.23.我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长).直线MN垂直于地面,垂足为点P,在地面A处测得点M的仰角为60°,点N的仰角为45°,在B处测得点M的仰角为30°,AB =5米.且A、B、P三点在一直线上,请根据以上数据求广告牌的宽MN的长.(结果保留根号)【答案】5352米【分析】设AP=NP=x,在Rt△APM中可以求出3,在Rt△BPM中,∠MBP=30°,求得x,利用MN =MP-NP即可求得答案.【详解】解:∵在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=MP AP,设PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=3x,在Rt△BPM中,tan∠MBP=MP BP,∵∠MBP=30°,AB=5,∴33=3x5x+,∴x=52,∴MN=MP-NP=3x-x=535-.答:广告牌的宽MN的长为535-米.【点睛】本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.24.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=94;②P(2,﹣3)或(2,2﹣2.【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3;(2)设BC 的解析式为y=kx+b ,将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94, 当n=32时,PM 最大=94; ②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=2,n 2﹣2n ﹣3=-3,P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=(不符合题意,舍),n 3n 2﹣2n ﹣,P (,;综上所述:P (2,﹣3)或(,2﹣.【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.25.为深化课程改革,提高学生的综合素质,我校开设了形式多样的校本课程.为了解校本课程在学生中最受欢迎的程度,学校随机抽取了部分学生进行调查,从A :天文地理;B :科学探究;C :文史天地;D :趣味数学;四门课程中选你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为 人,扇形统计图中A 部分的圆心角是 度;(2)请补全条形统计图;(3)根据本次调查,该校400名学生中,估计最喜欢“科学探究”的学生人数为多少?(4)为激发学生的学习热情,学校决定举办学生综合素质大赛,采取“双人同行,合作共进”小组赛形式,比赛题目从上面四个类型的校本课程中产生,并且规定:同一小组的两名同学的题目类型不能相同,且每人只能抽取一次,小琳和小金组成了一组,求他们抽到“天文地理”和“趣味数学”类题目的概率是多少?(请用画树状图或列表的方法求)【答案】(1)60,36;(2)见解析;(3)80;(4)16,见解析 【分析】(1)根据该项所占的百分比=100⨯该项人数%总人数,圆心角=该项的百分比×360°,两图给了D 的数据,代入即可算出总人数,然后再算A 的圆心角即可;(2)根据条形图中数据和调查总人数,先计算喜欢“科学探究”的人数,再补全条形图即可;(3)根据喜欢某项人数=总人数×该项所占的百分比,计算即可;(4)画树状图得,共12种结果,满足条件有两种,根据概率公式求解即可;【详解】解:(1)由条形图、扇形图知:喜欢趣味数学的有24人,占调查总人数的40%,所以调查总人数:24÷40%=60,图中A 部分的圆心角为:636060⨯︒=36°; 故答案为:60、36;(2)B 课程的人数为60﹣(6+18+24)=12(人),补全图形如下:(3)估计最喜欢“科学探究”的学生人数为400×1260=80(人); (4)画树状图如图所示,共有12种等可能的结果数,其中抽到“天文地理”和“趣味数学”类题目的结果数为2,∴他们抽到“天文地理”和“趣味数学”类题目的概率是212=16;【点睛】本题主要考查了用样本估计总体,扇形统计图,条形统计图,概率公式,掌握用样本估计总体,扇形统计图,条形统计图,概率公式是解题的关键.26.解一元二次方程:x2﹣2x﹣3=1.【答案】x1=﹣1,x2=2.【分析】先把方程左边分解,原方程转化为x+1=1或x﹣2=1,然后解一次方程即可.【详解】解:∵x2﹣2x﹣2=1,∴(x+1)(x﹣2)=1,∴x+1=1或x﹣2=1,∴x1=﹣1,x2=2.【点睛】本题考查了一元二次方程的解法:配方法、公式法和因式分解法.三种方法均可解出方程的根,这里选用的是因式分解法.27.如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.【答案】(2)y=﹣x2﹣x+2;(2)(0,2)或(﹣2,2117-+,﹣2117--,﹣2);(3)2.【解析】(2)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设M点坐标为(m,n),根据S△AOM=2S△BOC列出关于m的方程,解方程求出m的值,进而得到点P 的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+2,再设N点坐标为(x,x+2),则D点坐标为(x,-x2-x+2),然后用含x的代数式表示ND,根据二次函数的性质即可求出线段ND长度的最大值.解:(2)A(﹣2,0),C(0,2)代入抛物线的解析式y=﹣x2+mx+n,得4202m nn--+=⎧⎨=⎩,解得12mn=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2﹣x+2.(2)由(2)知,该抛物线的解析式为y=﹣x2﹣x+2,则易得B(2,0),设M(m,n)然后依据S△AOM=2S△BOC 列方程可得:1 2•AO×|n|=2×12×OB×OC,∴12×2×|﹣m2﹣m+2|=2,∴m2+m=0或m2+m﹣4=0,解得m=0或﹣2117-±,∴符合条件的点M的坐标为:(0,2)或(﹣2,2)或(1172-+,﹣2)或(1172--,﹣2).(3)设直线AC的解析式为y=kx+b,将A(﹣2,0),C(0,2)代入得到202k bb-+=⎧⎨=⎩,解得12kb=⎧⎨=⎩,∴直线AC的解析式为y=x+2,设N(x,x+2)(﹣2≤x≤0),则D(x,﹣x2﹣x+2),ND=(﹣x2﹣x+2)﹣(x+2)=﹣x2﹣2x=﹣(x+2)2+2,∵﹣2<0,∴x=﹣2时,ND有最大值2.∴ND的最大值为2.点睛:本题考查二次函数的图象和性质.根据二次函数的性质并结合已知条件及图象进行分析是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知10AB =,E 是AB 的中点,且矩形ABDC 与矩形ACFE 相似,则AC 长为( )A .5B .52C .42D .6【答案】B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC 与矩形ACFE 相似, ∴AEACAC AB =,∵10AB =,E 是AB 的中点,∴AE=5 ∴510ACAC =,解得,2,故选B .【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.2.已知反比例函数ky x =的图象经过点(3,2),小良说了四句话,其中正确的是() A .当0x <时,0y > B .函数的图象只在第一象限C .y 随x 的增大而增大D .点(3,2)-不在此函数的图象上【答案】D【分析】利用待定系数法求出k ,即可根据反比例函数的性质进行判断. 【详解】解:∵反比例函数ky x =的图象经过点(3,2),∴k=2×3=6, ∴6y x =,∴图象在一、三象限,在每个象限y 随x 的增大而减小,故A ,B ,C 错误,∴点(3,2)-不在此函数的图象上,选项D 正确;故选:D .【点睛】本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型.3.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A.16B.115C.18D.112【答案】B【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种,则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是21 3015;故选:B.【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率 所求情况数与总情况数之比.4.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度【答案】C【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y =2(x -1)2+3的顶点坐标为(1,3),y=2x 2的顶点坐标为(0,0),∴将抛物线y=2x 2向右平移1个单位,再向上平移3个单位,可得到抛物线y =2(x -1)2+3故选:C .【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标. 5.如图,四边形OABC 的顶点坐标分别为(0,0),(2,0),(4,4),(2,2)-.如果四边形''''O A B C 与四边形OABC 位似,位似中心是原点,它的面积等于四边形OABC 面积的94倍,那么点',','A B C 的坐标可以是( )A .'(0,3),'(6,6),'(3,3)ABC -B .'(3,0),'(6,6),'(3,3)A BC - C .'(0,3),'(6,6),'(3,3)A B C -D .'(3,0),'(6,6),'(3,3)A B C - 【答案】B 【分析】根据位似图形的面积比得出相似比,然后根据各点的坐标确定其对应点的坐标即可.【详解】解:∵四边形OABC 与四边形O ′A ′B ′C ′关于点O 位似,且四边形的面积等于四边形OABC 面积的94,∴四边形OABC 与四边形O ′A ′B ′C ′的相似比为2:3, ∵点A ,B ,C 分别的坐标(2,0),(4,4),(2,2)-),∴点A ′,B ′,C ′的坐标分别是(3,0),(6,6),(-3,3)或(-3,0),(-6,-6),(3,-3).故选:B .【点睛】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况.6.如图,在平面直角坐标系中,菱形ABCD 的顶点A(3,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上,若抛物线y=-x 2-5x+c 经过点B 、C ,则菱形ABCD 的面积为( )A.15 B.20 C.25 D.30【答案】B【分析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.【详解】解:抛物线的对称轴为5 ==22bxa--,∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,∴点C的横坐标为-1.∵四边形ABCD为菱形,∴AB=BC=AD=1,∴点D的坐标为(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴22AB OA-,∴S菱形ABCD=AD•OB=1×4=3.故选:B.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.7.关于x的一元二次方程2310kx x+-=有实数根,则k的取值范围是()A.94k≤-B.94k≥-且0k≠C.94k≥-D.94k>-且0k≠【答案】B【分析】判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2+3x-1=1有实数根,则△=b2-4ac≥1.【详解】解:∵a=k,b=3,c=-1,∴△=b2-4ac=32+4×k×1=9+4k≥1,94k≥-,∵k是二次项系数不能为1,k≠1,即94k ≥-且k≠1. 故选:B . 【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.已知正六边形的边心距是26,则正六边形的边长是( )A .42B .46C .62D .82【答案】A【分析】如图所示:正六边形ABCDEF 中,OM 为边心距,OM=26,连接OA 、OB ,然后求出正六边形的中心角,证出△OAB 为等边三角形,然后利用等边三角形的性质和锐角三角函数即可求出结论.【详解】解:如图所示:正六边形ABCDEF 中,OM 为边心距,OM=26,连接OA 、OB正六边形的中心角∠AOB=360°÷6=60°∴△OAB 为等边三角形∴∠AOM=12∠AOB=30°,OA=AB 在Rt △OAM 中,OA=42cos OM AOM =∠ 即正六边形的边长是42.故选A .【点睛】此题考查的是根据正六边形的边心距求边长,掌握中心角的定义、等边三角形的判定及性质和锐角三角函数是解决此题的关键.9.如图,在平面直角坐标系xoy 中,直线112y x =+与x 轴、y 轴分别交于点A 、B ,点C 是y 轴正半轴上的一点,当2CAO BAO ∠=∠时,则点C 的纵坐标是( )。
(汇总3份试卷)2019年上海市徐汇区某名校九年级上学期数学期末综合测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交O 于点E ,连结EC .若8AB =,2CD =,则EC 的长为( )A .5B .25C .213D .310【答案】C 【分析】连接BE ,设⊙O 的半径为r ,然后由垂径定理和勾股定理列方程求出半径r ,最后由勾股定理依次求BE 和EC 的长即可.【详解】解:如图:连接BE设⊙O 的半径为r ,则OA=OD=r ,OC=r-2∵OD ⊥AB ,∴∠ACO=90°∴AC=BC=12AB=4, 在Rt △ACO 中,由勾股定理得:r 2-42=(r-2)2,解得:r=5∴AE=2r=10,∵AE 为⊙O 的直径∴∠ABE=90°由勾股定理得:2222108-=-AE AB =6在Rt △ECB 中,222264213BE BC +=+=.故答案为C .【点睛】本题主要考查了垂径定理和勾股定理,根据题意正确作出辅助线、构造出直角三角形并利用勾股定理求解是解答本题的关键.2.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A.x2+1=0B.x2+2x+1=0C.x2+2x+3=0D.x2+2x-3=0【答案】D【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,观察两枚骰子向上一面的点数情况.则下列事件为随机事件的是()A.点数之和等于1 B.点数之和等于9C.点数之和大于1 D.点数之和大于12【答案】B【分析】根据随机事件的定义逐项判断即可.【详解】A、点数之和等于1,是不可能事件,不合题意;B、点数之和等于9,是随机事件,符合题意;C、点数之和大于1,是必然事件,不合题意;D、点数之和大于12,是不可能事件,不合题意;故选:B【点睛】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D .抛出一枚硬币,落地后正面向上【答案】C【解析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【详解】解:A 、明天太阳从西边升起,是不可能事件,故不符合题意;B 、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C 、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D 、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C .5.从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )A .15B .25C .35D .45【答案】C【解析】∵在2?0? 3.14?6π、、、、 这5个数中只有0、3.14和6为有理数,∴从2?0? 3.14?6π、、、、这5个数中随机抽取一个数,抽到有理数的概率是35. 故选C .6.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是( )A .2B .12C .18D .24 【答案】C【分析】根据用频率估计概率可知: 摸到白球的概率为0.25,根据概率公式即可求出小球的总数,从而求出红球的个数.【详解】解:小球的总数约为:6÷0.25=24(个)则红球的个数为:24-6=18(个)故选C.【点睛】此题考查的是用频率估计概率和根据概率求小球的总数,掌握概率公式是解决此题的关键.7.如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCB 的面积比为( )A .13B .14C .15D .16【答案】D【分析】根据平行四边形的性质得出AB=CD ,AB ∥CD ,根据相似三角形的判定得出△BEF ∽△DCF ,根据相似三角形的性质和三角形面积公式求出即可.【详解】解:∵四边形ABCD 是平行四边形,E 为AB 的中点,∴AB=DC=2BE ,AB ∥CD ,∴△BEF ∽△DCF , ∴BE DC =BF DF =12, ∴DF=2BF ,BEF DCF S S=(12)2=14, ∴DCFDCB SS =23, ∴S △BEF =14S △DCF ,S △DCB =32S △DCF , ∴BEF DCB S S =1432DCF DCF S S =16,故选D. 【点睛】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键. 8.圆锥的底面半径是3cm ,母线为5cm ,则它的侧面积是( )A .215cm πB .212cm πC .29cm πD .26cm π 【答案】A【分析】根据圆锥的侧面积=12底面周长×母线长计算. 【详解】圆锥的侧面面积=12×6π×5=15πcm 1. 故选:A .【点睛】本题考查圆锥的侧面积=12底面周长×母线长,解题的关键是熟知公式的运用. 9.袋中有5个白球,x 个红球,从中随机摸出一个球,恰为红球的概率为,则x 为 A .25B .20C .15D .10【答案】B【解析】考点:概率公式. 分析:根据概率的求法,除去红球的概率,就是白球的概率.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从中任意取一个,恰为红球的概率为4/5,,那从中任意取一个,恰为白球的概率就为1/5,据题意得5/(5+x)=1/5,解得x=1.∴袋中有红球1个.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)= m/n10.关于二次函数y=2x2+4,下列说法错误的是( )A.它的开口方向向上B.当x=0时,y有最大值4C.它的对称轴是y轴D.顶点坐标为(0,4)【答案】B【分析】根据二次函数的图象及性质与各项系数的关系,逐一判断即可.【详解】解:A. 因为2>0,所以它的开口方向向上,故不选A;B. 因为2>0,二次函数有最小值,当x=0时,y有最小值4,故选B;C. 该二次函数的对称轴是y轴,故不选C;D. 由二次函数的解析式可知:它的顶点坐标为(0,4),故不选D.故选:B.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键. 11.已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是()A.3:5 B.9:25 C.5:3 D.25:9【答案】C【分析】相似三角形的周长比等于对应的中线的比.【详解】∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:1.故选C.【点睛】本题考查相似三角形的性质,解题的关键是记住相似三角形的性质,灵活运用所学知识解决问题.12.设计一个摸球游戏,先在一个不透明的盒子中放入2个白球,如果希望从中任意摸出1个球是白球的概率为13,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)()A.4B.5C.6D.7【答案】A【分析】利用概率公式,根据白球个数和摸出1个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出1个球是白球的概率为13, ∴盒子中球的总数=1263÷=, ∴其他颜色的球的个数为6−2=4,故选:A .【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.二、填空题(本题包括8个小题)13.已知扇形的半径为6,面积是12π,则这个扇形所对的弧长是_____.【答案】4π.【分析】根据扇形的弧长公式解答即可得解.【详解】设扇形弧长为l ,面积为s ,半径为r . ∵1161222S lr l π==⨯⨯=, ∴l=4π.故答案为:4π.【点睛】本题考查了扇形面积的计算,弧长的计算,熟悉扇形的弧长公式是解题的关键,属于基础题. 14.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 【答案】43【解析】试题分析:1204=2180r ππ⨯,解得r=43. 考点:弧长的计算.15.若53a b =,则332a b a b--的值为__________. 【答案】43【分析】直接利用已知得出53b a =,代入332a b a b--进而得出答案. 【详解】∵53a b = ∴53b a = ∴332a b a b --=552b b b b --=43故填:43. 【点睛】此题主要考查了比例的性质,正确运用已知变形是解题关键.16.点A (﹣3,m )和点B (n ,2)关于原点对称,则m+n =_____.【答案】1 【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】∵点A (-3,m )与点A′(n ,2)关于原点中心对称,∴n=3,m=-2,∴m+n=1,故答案为1.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.17.从实数2,,603sin π中,任取两个数,正好都是无理数的概率为________. 【答案】13【分析】画树状图展示所有等可能的结果数,再找出两次选到的数都是无理数的结果数,然后根据概率公式求解.【详解】画树状图为:则共有6种等可能的结果,其中两次选到的数都是无理数有(,60sin π)和(60,sin π)2种,所以两次选到的数都是无理数的概率2163==. 故答案为:13. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.将抛物线22y x =-向上平移一个单位后,又沿x 轴折叠,得新的抛物线,那么新的抛物线的表达式是_____.【答案】21y x =-+【分析】先确定抛物线y =x 2﹣2的二次项系数a= 1,顶点坐标为(0,﹣2),向上平移一个单位后(0,﹣1),翻折后二次项系数a= -1,顶点坐标变为(0,1),然后根据顶点式写出新抛物线的解析式.【详解】抛物线y =x 2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于x 轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y =﹣x 2+1.故答案为:y =﹣x 2+1.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,翻折口开口方向改变,但是大小没变,因此二次项系数改变的只是符号,正确掌握平移的规律并运用解题是关键.三、解答题(本题包括8个小题)19.如图,在四边形ABCD 中,AD ∥BC ,AD=2BC, E 为AD 的中点,连接BD,BE ,∠ABD=90°(1)求证:四边形BCDE 为菱形.(2)连接AC,若AC ⊥BE, BC=2,求BD 的长.【答案】(1)见解析;(2)3【分析】(1)由DE=BC ,DE ∥BC ,推出四边形BCDE 是平行四边形,再证明BE=DE 即可解决问题; (2)连接AC ,可证AB=BC ,由勾股定理可求出BD=23【详解】(1)证明:∵∠ABD=90°,E 是AD 的中点,∴BE=DE=AE ,∵AD=2BC ,∴BC=DE ,∵AD ∥BC ,∴四边形BCDE 为平行四边形,∵BE=DE ,∴四边形BCDE 为菱形;(2)连接AC ,如图,∵由(1)得BC=BE ,AD ∥BC ,∴四边形ABCE 为平行四边形,∵ AC ⊥BE ,∴四边形ABCE 为菱形,∴BC=AB=2,AD=2BC=4,∵∠ABD=90°,∴BD=22AD -AB =224-2=23.【点睛】本题考查菱形的判定和性质、直角三角形斜边中线的性质、等腰三角形的判定,勾股定理等知识,解题的关键是熟练掌握菱形的判定方法20.为测量观光塔高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°.已知楼房高AB 约是45m ,请根据以上观测数据求观光塔的高.【答案】135【分析】根据“爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°”可以求出AD 的长,然后根据“在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°”求出CD 的长即可.【详解】∵爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°, ∴∠ADB=30°,在Rt △ABD 中,AD= 30AB tan,∴AD=45 3, ∵在一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,∴在Rt △ACD 中,CD=AD•tan60°=45 33m.故观光塔高度为135m .【点睛】本题主要考查了三角函数的应用,熟练掌握相关概念是解题关键.21.阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则222OI R Rr =-.如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切分于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O (三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI =d ,则有d 2=R 2﹣2Rr .下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN.∵∠D=∠N ,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI ∽△ANI , ∴IM ID IA IN=, ∴IA ID IM IN ⋅=⋅①,如图2,在图1(隐去MD ,AN)的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF ,∵DE 是⊙O 的直径,∴∠DBE=90°,∵⊙I 与AB 相切于点F ,∴∠AFI=90°,∴∠DBE=∠IFA ,∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF ∽△EDB , ∴IA IF DE BD=,∴IA BD DE IF ⋅=⋅②, 任务:(1)观察发现:IM R d =+,IN = (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm.【答案】 (1)R-d ;(2)BD=ID ,理由见解析;(3)见解析;5【解析】(1)直接观察可得;(2)由三角形内心的性质可得∠BAD=∠CAD ,∠CBI=∠ABI ,由圆周角定理可得∠DBC=∠CAD ,再根据三角形外角的性质即可求得∠BID=∠DBI ,继而可证得BD=ID ;(3)应用(1)(2)结论即可;(4)直接代入结论进行计算即可.【详解】(1)∵O 、I 、N 三点共线,∴OI+IN =ON ,∴IN =ON ﹣OI =R ﹣d ,故答案为:R ﹣d ;(2)BD=ID ,理由如下:∵点I 是△ABC 的内心,∴∠BAD=∠CAD ,∠CBI=∠ABI ,∵∠DBC=∠CAD ,∠BID=∠BAD+∠ABI ,∠DBI=∠DBC+∠CBI ,∴∠BID=∠DBI ,∴BD=ID ;(3)由(2)知:BD=ID ,又IA ID IM IN ⋅=⋅,IA BD DE IF ⋅=⋅,∴DE·IF=IM·IN , ∴2()()Rr R d R d =+-,∴222R d Rr -=∴222d R Rr =-;(4)由(3)知:222d R Rr =-,把R=5,r=2代入得:2252525d =-⨯⨯=,∵d>0, ∴5d =,故答案为:5. 【点睛】 本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等,综合性较强,熟练掌握相关知识是解题的关键.22.如图,已知点D 是ABC 的边AC 上的一点,连接BD.ABD C ∠∠=,AB 6=,4AD =. ()1求证:ABD ∽ACB ;()2求线段CD 的长.【答案】(1)参见解析;(2)1.【分析】(1)利用两角法证得两个三角形相似;(2)利用相似三角形的对应线段成比例求得CD 长.【详解】(1)∵∠ABD =∠C ,∠A =∠A (公共角),∴△ABD ∽△ACB ;(2)由(1)知:△ABD ∽△ACB ,∵相似三角形的对应线段成比例 ,∴AD AB =AB AC,即46=64cD +, 解得:CD =1.23.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)【答案】AE 的长为(123)+【分析】在Rt ACF 中求AF 的长, 在Rt CEF 中求EF 的长,即可求解.【详解】过点C 作CF AB ⊥于点F由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AF ACF CF ∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒tan EF ECF CF∴∠=312EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为()1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.24.如图,在某建筑物AC 上,挂着一宣传条幅BC ,站在点F 处,测得条幅顶端B 的仰角为30°,往条幅方向前行20米到达点E 处,测得条幅顶端B 的仰角为60°,求宣传条幅BC 的长.(3 1.732≈,结果精确到0.1米)【答案】宣传条幅BC 的长为17.3米.【解析】试题分析:先由∠F=30°,∠BEC=60°解得∠EBF=30°=∠F ,从而可得BE=FE=20米,再在Rt △BEC 中由sin ∠BEC=32BC BE =即可解得BC 的值.试题解析:∵∠BEC=∠F+∠EBF ,∠F=30°,∠BEC=60°,∴∠EBF=60°-30°=30°=∠F ,∴BE=FE=20(米).∵在Rt △BEC 中,sin ∠BEC=32BC BE , ∴BC=BE×3≈10×1.732=17.32≈17.3(米). 25.解方程:(x+3)(x ﹣6)=﹣1.【答案】x =5或x =﹣2.【分析】先把方程化为一元二次方程的一般形式,然后再运用因式分解法解方程即可解答.【详解】将方程整理为一般式,得:x 2﹣3x ﹣10=0,则(x ﹣5)(x+2)=0,∴x ﹣5=0或x+2=0,解得x =5或x =﹣2.【点睛】本题考查一元二次方程的解法,属于基础题,解题的关键是熟练掌握一元二次方程的四种解法. 26.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是AC 上一动点,AG ,DC 的延长线交于点F ,连接AC ,AD ,GC ,GD .(1)求证:∠FGC =∠AGD ;(2)若AD =1.①当AC ⊥DG ,CG =2时,求sin ∠ADG ;②当四边形ADCG 面积最大时,求CF 的长.【答案】(1)证明见解析;(2)①sin ∠ADG =45;②CF =1. 【分析】(1)由垂径定理可得CE =DE ,CD ⊥AB ,由等腰三角形的性质和圆内接四边形的性质可得∠FGC =∠ADC =∠ACD =∠AGD ;(2)①如图,设AC 与GD 交于点M ,证△GMC ∽△AMD ,设CM =x ,则DM =3x ,在Rt △AMD 中,通过勾股定理求出x 的值,即可求出AM 的长,可求出sin ∠ADG 的值;②S 四边形ADCG =S △ADC +S △ACG ,因为点G 是AC 上一动点,所以当点G 在AC 的中点时,△ACG 的的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,分别证∠GAC=∠GCA,∠F=∠GCA,推出∠F=∠GAC,即可得出FC=AC=1.【详解】证明:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,CD⊥AB,∴AC=AD,∴∠ADC=∠ACD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∵∠AGD=∠ACD,∴∠FGC=∠ADC=∠ACD=∠AGD,∴∠FGC=∠AGD;(2)①如图,设AC与GD交于点M,∵AG AG,∴∠GCM=∠ADM,又∵∠GMC=∠AMD,∴△GMC∽△AMD,∴GCAD=CMDM=26=13,设CM=x,则DM=3x,由(1)知,AC=AD,∴AC=1,AM=1﹣x,在Rt△AMD中,AM2+DM2=AD2,∴(1﹣x)2+(3x)2=12,解得,x1=0(舍去),x2=65,∴AM=1﹣65=245,∴sin∠ADG=AMAD=2456=45;②S四边形ADCG=S△ADC+S△ACG,∵点G是AC上一动点,∴当点G在AC的中点时,△ACG的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,∴GA=GC,∴∠GAC =∠GCA ,∵∠GCD =∠F+∠FGC ,由(1)知,∠FGC =∠ACD ,且∠GCD =∠ACD+∠GCA ,∴∠F =∠GCA ,∴∠F =∠GAC ,∴FC =AC =1.【点睛】本题考查的是圆的有关性质、垂径定理、解直角三角形等,熟练掌握圆的有关性质并灵活运用是解题的关键.27.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()2,2A ,()4,0B , ()4,4C -.(1)以点O 为位似中心,将ABC ∆缩小为原来的12得到111A B C ∆,请在y 轴右侧画出111A B C ∆; (2) 111AC B ∠的正弦值为 .【答案】(1)见解析;(210 【分析】(1)连接OA 、OC ,分别取OA 、OB 、OC 的中点即可画出△111A B C ,(2)利用正弦函数的定义可知.由111sin sin AC B ACB ∠=∠AD AC=,即可解决问题. 【详解】解:(1)连接OA 、OC ,分别取OA 、OB 、OC 的中点1A 、1B 、1C ,顺次连接1A 、1B 、1C ,△111A B C 即为所求,如图所示,(2)(2,2)A ,(4,4)C -,(4,0)B , ∴22210AC CD AD +=90ADC ∠=︒,10sin 210A AD ACB C ∴∠===. 111AC B ACB ∠=∠,11110sin sin AC B ACB ∴∠=∠. 【点睛】本题考查位似变换、平移变换等知识,锐角三角函数等知识,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.注意:记住锐角三角函数的定义,属于中考常考题型.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B.12C.34D.1【答案】B【分析】利用概率的意义直接得出答案.【详解】连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:12.故选:B.【点睛】本题主要考查了概率的意义,正确把握概率的定义是解题关键.2.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的长为() A.5sinA B.5cosA C.D.【答案】C【解析】根据三角函数即可解答.【详解】解:已知在Rt△ABC中,∠C=90°,BC=5,故=sinA ,故AB=,选C.【点睛】本题考查正弦函数,掌握公式是解题关键.3.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a ->1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C .【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.4.如图,方格纸中4个小正方形的边长均为2,则图中阴影部分三个小扇形的面积和为( )A .12πB .πC .14πD .32π 【答案】D【分析】根据直角三角形的两锐角互余求出∠1+∠2=90°,再根据正方形的对角线平分一组对角求出∠3=45°,然后根据扇形面积公式列式计算即可得解.【详解】解:由图可知,∠1+∠2=90°,∠3=45°,∵正方形的边长均为2,∴阴影部分的面积=2135233602ππ⋅⋅=.故选:D . 【点睛】本题考查了中心对称,观察图形,根据正方形的性质与直角三角形的性质求出阴影部分的圆心角是解题的关键.5.抛物线y=(x+1)2+2的顶点( )A .(﹣1,2)B .(2,1)C .(1,2)D .(﹣1,﹣2) 【答案】A【解析】由抛物线顶点坐标公式[]y=a (x ﹣h )2+k 中顶点坐标为(h ,k )]进行求解. 【详解】解:∵y=(x+1)2+2, ∴抛物线顶点坐标为(﹣1,2), 故选:A . 【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x ﹣h )2+k 中,顶点坐标为(h ,k ),对称轴为直线x=h .6.二次函数与288y kx x =-+的图象与x 轴有交点,则k 的取值范围是( ) A .2k < B .2k <且0k ≠C .2k ≤D .2k ≤且0k ≠【答案】D【解析】利用△=b 2-4ac≥1,且二次项系数不等于1求出k 的取值范围. 【详解】∵二次函数与y =kx 2-8x +8的图象与x 轴有交点, ∴△=b 2-4ac=64-32k≥1,k≠1, 解得:k≤2且k≠1. 故选D . 【点睛】此题主要考查了抛物线与x 轴的交点,熟练掌握一元二次方程根的判别式与根的关系是解题关键. 7.在平面直角坐标系中,函数()()35y x x =+-的图象经过变换后得到()()53y x x =+-的图象,则这个变换可以是( ) A .向左平移2个单位 B .向右平移2个单位 C .向上平移2个单位 D .向下平移2个单位【答案】A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】()()()2235215116y x x x x x =+-=--=--,顶点坐标为1,16,()()()2253215116y x x x x x =+-=+-=+-,顶点坐标为1,16,所以函数()()35y x x =+-的图象向左平移2个单位后得到()()53y x x =+-的图象. 故选:A 【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键. 8.如图,△ABC 内接于⊙O ,OD ⊥AB 于D ,OE ⊥AC 于E ,连结DE .且DE =322,则弦BC 的长为( )A 2B .2C .2D 6【答案】C【分析】由垂径定理可得AD =BD ,AE =CE ,由三角形中位线定理可求解. 【详解】解:∵OD ⊥AB ,OE ⊥AC , ∴AD =BD ,AE =CE , ∴BC =2DE =2×322=2 故选:C . 【点睛】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识,灵活运用这些性质进行推理是本题的关键.9.计算(24827(73)(73)(231)3-的结果为( ) A .8﹣3 B .﹣8﹣3C .﹣3D .3【答案】B【分析】先按照平方差公式与完全平方公式计算2(73)(73)(231)-,同时按照二次根式的,再合并即可得到答案.【详解】解:21)-+()73121=--++41343=---8=--故选B . 【点睛】本题考查的是二次根式的混合运算,掌握二次根式的乘法与二次根式的除法运算是解本题的关键. 10.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是( ) A .朝上一面的数字恰好是6 B .朝上一面的数字是2的整数倍 C .朝上一面的数字是3的整数倍 D .朝上一面的数字不小于2【答案】D【解析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可. 【详解】解:A . 朝上一面的数字恰好是6的概率为:1÷6=16; B . 朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=12; C . 朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=13; D . 朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=56∵16<13<12<56∴D 选项事件发生的概率最大 故选D . 【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.11.关于二次函数y=﹣(x +1)2+2的图象,下列判断正确的是( ) A .图象开口向上 B .图象的对称轴是直线x=1 C .图象有最低点 D .图象的顶点坐标为(﹣1,2) 【答案】D【解析】二次函数的顶点式是:y=a (x ﹣h )2+k (a≠0,且a ,h ,k 是常数),它的对称轴是x=h ,顶点坐标是(h ,k ),据此进行判断即可. 【详解】∵﹣1<0,∴函数的开口向下,图象有最高点, 这个函数的顶点是(﹣1,2), 对称轴是x=﹣1,∴选项A 、B 、C 错误,选项D 正确, 故选D . 【点睛】本题考查了二次函数的性质,熟练掌握抛物线的开口方向,对称轴,顶点坐标是解题的关键. 12.若关于x 的一元二次方程2740x x ++=的两根是12x x 、,则1211+x x 的值为( )A .74-B .74C .7332-+ D .7332-- 【答案】A【分析】利用一元二次方程的根与系数的关系即可求解. 【详解】由题意可得:121274x x x x +=-⎧⎨⋅=⎩则2112121174x x x x x x =+⋅+=- 故选:A. 【点睛】本题考查了一元二次方程的根与系数的关系,对于一般形式20(a 0)++=≠ax bx c ,设其两个实数根分别为12,x x ,则方程的根与系数的关系为:1212,b cx x x x a a+=-⋅=. 二、填空题(本题包括8个小题)13.如图,将ABC ∆绕点A 逆时针旋转140,得到ADE ∆,这时点,,B C D 恰好在同一直线上,则B 的度数为______.【答案】20°【解析】先判断出∠BAD=140°,AD=AB ,再判断出△BAD 是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC 绕点A 逆时针旋转140°,得到△ADE , ∴∠BAD=140°,AD=AB ,∵点B ,C ,D 恰好在同一直线上, ∴△BAD 是顶角为140°的等腰三角形, ∴∠B=∠BDA , ∴∠B=12(180°−∠BAD)=20°, 故答案为:20° 【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD 是等腰三角形14.如图,AB 为⊙O 的直径,CD 是弦,且CD ⊥AB 于点P ,若AB =4,OP =1,则弦CD 所对的圆周角等于_____度.【答案】60或1.【分析】先确定弦CD 所对的圆周角∠CBD 和∠CAD 两个,再利用圆的相关性质及菱形的判定证四边形ODBC 是菱形,推出2CBD CAD =∠∠,根据圆内接四边形对角互补即可分别求出CBD ∠和CAD ∠的度数. 【详解】如图,连接OC ,OD ,BC ,BD ,AC ,AD , ∵AB 为⊙O 的直径,AB =4, ∴OB =2, 又∵OP =1, ∴BP =1, ∵CD ⊥AB , ∴CD 垂直平分OB , ∴CO =CB ,DO =DB , 又OC =OD ,∴OC =CB =DB =OD , ∴四边形ODBC 是菱形, ∴∠COD =∠CBD , ∵∠COD =2∠CAD , ∴∠CBD =2∠CAD ,又∵四边形ADBC 是圆内接四边形, ∴∠CAD+∠CBD =180°,∴∠CAD =60°,∠CBD =1°,∵弦CD 所对的圆周角有∠CAD 和∠CBD 两个, 故答案为:60或1.【点睛】本题考查了圆周角的度数问题,掌握圆的有关性质、菱形的性质以及判定定理是解题的关键.15.若34a b b -=,则ab =_____. 【答案】74【解析】根据两内项之积等于两外项之积列式整理即可得解. 【详解】∵34a b b -= , ∴4(a-b)=3b, ∴4a=7b, ∴74a b =, 故答案为:74. 【点睛】本题考查了比例的性质,熟记两内项之积等于两外项之积是解题的关键.16.如图,一次函数2y x =--与y kx b =+的图象交于点(),4P n -,则关于x 的不等式2kx b x +<--的解集为______.【答案】2x <【分析】先把(),4P n -代入2y x =--求出n 的值,然后根据图像解答即可. 【详解】把(),4P n -代入2y x =--,得 -n-2=-4, ∴n=2,。
{3套试卷汇总}2019年上海市徐汇区某名校九年级上学期数学期末考前验收试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ). A .中国女排一定会夺冠 B .中国女排一定不会夺冠 C .中国女排夺冠的可能性比较大 D .中国女排夺冠的可能性比较小【答案】C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】∵中国女排夺冠的概率是80%, ∴中国女排夺冠的可能性比较大 故选C. 【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义. 2.若sinA cosB =,下列结论正确的是( ) A .A B ∠=∠ B .90A B ∠+∠=C . 180A B ∠+∠=D .以上结论均不正确 【答案】B【分析】利用互余两角的三角函数关系()90sinA cos A =︒-,得出90A B ∠∠=︒-. 【详解】∵()90sinA cos A sinA cosB =︒-=,, ∴90A B ∠∠︒-=, ∴90A B ∠∠+=︒, 故选:B . 【点睛】本题考查了锐角三角函数的定义,掌握互为余角的正余弦关系:一个角的正弦值等于另一个锐角的余角的余弦值则这两个锐角互余.3.在比例尺为1:10000000的地图上,测得江华火车站到永州高铁站的距离是2cm ,那么江华火车站到永州高铁站的实际距离为( )km A .20000000 B .200000C .2000D .200【答案】D【分析】由题意根据图上的距离与实际距离的比就是比例尺,列出比例式求解即可. 【详解】解:设江华火车站到永州高铁站的实际距离为xcm ,根据题意得: 2:x=1:10000000, 解得:x=20000000,20000000cm=200km .故江华火车站到永州高铁站的实际距离为200km . 故选:D . 【点睛】本题主要考查比例线段,解题的关键是熟悉比例尺的含义进行分析.4.如图,ABC ∆中,点D 、E 分别在AB 、AC 上,//DE BC ,:1:2AD DB =,则ADE ∆与四边形DBCE 的面积的比为( )A .1:3B .1:4C .1:8D .1:9【答案】C【分析】因为DE ∥BC ,所以可得△ADE ∽△ABC ,根据相似三角形的面积比等于相似比的平方解答即可. 【详解】解:∵DE ∥BC , ∴△ADE ∽△ABC , ∴2()ADE ABCS AD SAB=, ∵AD :DB=1:2, ∴AD :AB=1:3,∴21()=9ADE ABCS AD SAB =, ∴△ADE 的面积与四边形DBCE 的面积之比=1:8, 故选:C . 【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形面积的比等于相似比的平方是解题的关键. 5.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( ) A .59B .49C .56D .13【答案】B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.6.在ABC ∆中,90C ∠=︒,点D ,E 分别是边AC ,BC 的中点,点F 在ABC ∆内,连接DE ,EF ,FD .以下图形符合上述描述的是( )A .B .C .D .【答案】C【解析】依次在各图形上查看三点的位置来判断;或用排除法来排除错的,选择正确也可以.【详解】根据点F 在ABC ∆内,则A 、B 都不符合描述,排除A 、B ;又因为点D ,E 分别是边AC ,BC 的中点,选项D 中点D 在BC 上不符合描述,排除D 选项,只有选项C 符合描述. 故选:C 【点睛】本题考查了根据数学语言描述来判断图形.7.下列四个交通标志图案中,中心对称图形共有( )A .1B .2C .3D .4【答案】B【分析】根据中心对称的概念和各图形的特点即可求解.【详解】∵中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合,∴第一个和第二个都不符合;第三个和第四个图形是中心对称图形, ∴中心对称图形共有2个. 故选:B. 【点睛】本题主要考查中心对称图形的概念,掌握中心对称图形的概念和特点,是解题的关键.8.若二次函数y =-x 2+px+q 的图像经过A (1m +,n )、B (0,y 1)、C (3m -,n )、D (225m m -+,y 2)、E (225m m --,y 3),则y 1、y 2、y 3的大小关系是( ) A .y 3<y 2<y 1 B .y 3<y 1<y 2C .y 1<y 2<y 3D .y 2<y 3<y 1【答案】A【分析】利用A 点与C 点为抛物线上的对称点得到对称轴为直线x=2,然后根据点B 、D 、E 离对称轴的远近求解.【详解】∵二次函数y =-x 2+px+q 的图像经过A (1m +,n )、C (3m -,n ), ∴抛物线开口向下,对称轴为直线2x =, ∵点D (225m m -+,y 2)的横坐标:()2225144m m m -+=-+≥,离对称轴距离为422≥-,点E (225m m --,y 3)的横坐标:()2225144m m m -+-=---≤-,离对称轴距离为()246--≥,∴B (0,y 1)离对称轴最近,点E 离对称轴最远, ∴y 3<y 2<y 1. 故选:A . 【点睛】本题考查了二次函数函数的性质,二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式,根据抛物线上的对称点坐标得到对称轴是解题的关键.9.在同一时刻,两根长度不等的竿子置于阳光之下,而它们的影长相等,那么这两根竿子的相对位置是( )A .两根都垂直于地面B .两根平行斜插在地上C .两根不平行D .两根平行倒在地上 【答案】C【分析】在不同时刻,同一物体的影子方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在变,依此进行分析.【详解】在同一时刻,两根竿子置于阳光下,但看到他们的影长相等,那么这两根竿子的顶部到地面的垂直距离相等,而竿子长度不等,故两根竿子不平行,故答案选择C. 【点睛】本题考查投影的相关知识,解决此题的关键是掌握平行投影的特点. 10.已知反比例函数的表达式为2k y x+=,它的图象在各自象限内具有 y 随x 的增大而增大的特点,则k 的取值范围是( ). A .k>-2 B .2k ≥-C .2k <-D .2k ≤-【答案】C【分析】先根据反比例数2k y x+=的图象在每一象限内y 随x 的增大而增大得出关于k 的不等式,求出k 的取值范围即可.【详解】解:∵反比例数2k y x+=的图象在每一象限内y 随x 的增大而增大, ∴2k +<0,解得k <-1. 故选:C . 【点睛】本题考查的是反比例函数的性质,熟知反比例函数ky x=(k≠0)中,当k <0时,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大是解答此题的关键11.如图,菱形OABC 在第一象限内,60AOC ∠=︒,反比例函数(0)ky x x=>的图象经过点A ,交BC边于点D ,若AOD ∆的面积为23,则k 的值为( )A .43B .33C .23D .4【答案】C【分析】过A 作AE ⊥x 轴于E ,设OE=a ,则3a ,OA=2a ,即菱形边长为2a ,再根据△AOD 的面积等于菱形面积的一半建立方程可求出2a ,利用点A 的横纵坐标之积等于k 即可求解. 【详解】如图,过A 作AE ⊥x 轴于E ,设OE=a ,在Rt △AOE 中,∠AOE=60° ∴AE=OE tan 60=3⋅︒a ,OA=OE=2cos 60︒a∴A ()3a a ,菱形边长为2a 由图可知S 菱形AOCB =2S △AOD∴OC AE=223⋅⨯23=43a a ∴2=2a∴23323===k a a a 故选C. 【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A 点坐标是解决本题的关键.12.抛物线29y x =-与x 轴交于A 、B 两点,则A 、B 两点的距离是( ) A .3 B .6C .9D .18【答案】B【分析】令y=0,求出抛物线与x 轴交点的横坐标,再把横坐标作差即可. 【详解】解:令0y =,即290x ,解得13x =,23x =-,∴A 、B 两点的距离为1. 故选:B . 【点睛】本题考查了抛物线与x 轴交点坐标的求法,两点之间距离的表示方法. 二、填空题(本题包括8个小题)13.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.【答案】14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点A关于CM的对称点'A,点B关于DM的对称点'B.120CMD∠=,60AMC DMB∴∠+∠=,∴''60CMA DMB∠+∠=,''60A MB∴∠=,''MA MB=,''A MB∴∆为等边三角形''''14CD CA A B B D CA AM BD≤++=++=,CD∴的最大值为14,故答案为14.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题14.若反比例函数y=1mx-的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.【答案】m>1【解析】∵反比例函数m1yx-=的图象在其每个象限内,y随x的增大而减小,∴m1->0,解得:m>1,故答案为m>1.15.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____. 【答案】49【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得. 【详解】解:列表如下: 黄 红 红 红 (黄,红) (红,红) (红,红) 红 (黄,红) (红,红) (红,红) 白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果, 所以摸出的两个球颜色相同的概率为49, 故答案为49. 【点睛】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.16.如图,PA 与⊙O 相切于点A ,AB 是⊙O 的直径,在⊙O 上存在一点C 满足PA =PC ,连结PB 、AC 相交于点F ,且∠APB =3∠BPC ,则PFBF=_____.171-. 【分析】连接OP ,OC ,证明△OAP ≌△OCP ,可得PC 与⊙O 相切于点C ,证明BC=CP ,设OM =x ,则BC =CP =AP =2x ,PM =y,证得△AMP ∽△OAP ,可得:117x y +=,证明△PMF ∽△BCF ,由PF PMBF AP=可得出答案.【详解】解:连接OP ,OC .∵PA与⊙O相切于点A,PA=PC,∴∠OAP=90°,∵OA=OC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=90°,∴PC与⊙O相切于点C,∵∠APB=3∠BPC,∠APO=∠CPO,∴∠CPB=∠OPB,∵AB是⊙O的直径,∴∠BCA=90°,∵OP⊥AC,∴OP∥BC,∴∠CBP=∠CPB,∴BC=CP=AP.∵OA=OB,∴OM=1122BC AP=.设OM=x,则BC=CP=AP=2x,PM=y,∵∠OAP=∠AMP=90°,∠MPA=∠APO,∴△AMP∽△OAP,∴AP OP PM AP=.∴AP2=PM•OP,∴(2x)2=y(y+x),解得:117x y+=,117x y-=(舍去).∵PM∥BC,∴△PMF∽△BCF,∴PF PM PMBF BC AP===17124yx-=.故答案为:171 4-.【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,相似三角形的判定与性质,圆周角定理. 正确作出辅助线,熟练掌握相似三角形的判定与性质是解题的关键.17.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.【答案】(1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用18.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.【答案】1.【分析】根据圆周角定理进行分析可得到答案.【详解】解:∵∠BAC=12∠BOC ,∠ACB=12∠AOB , ∵∠BOC=2∠AOB , ∴∠ACB=12∠BAC=1°. 故答案为1.考点:圆周角定理.三、解答题(本题包括8个小题)19.已知菱形的两条对角线长度之和为40厘米,面积S (单位:cm 2)随其中一条对角线的长x (单位:cm )的变化而变化.(1)请直接写出S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x 取何值时,菱形的面积最大,最大面积是多少?【答案】(1)S =﹣12x 2+20x ,0<x <40;(2)当x =20时,菱形的面积最大,最大面积是1. 【分析】(1)直接利用菱形面积公式得出S 与x 之间的关系式;(2)利用配方法求出最值即可.【详解】(1)由题意可得:211(40)2022=-=-+S x x x x , ∵x 为对角线的长,∴x >0,40﹣x >0,即0<x <40;(2)211(40)2022=-=-+S x x x x , =()21402--x x =21(20)4002⎡⎤---⎣⎦x =21(20)2002--+x , 即当x =20时,菱形的面积最大,最大面积是1.【点睛】本题考查二次函数的应用,熟练掌握菱形的性质,建立二次函数模型是解题的关键.20.如图,在ABC 中,90ACB ∠=︒,CD 是AB 边上的中线,过点A 作AE CD ⊥,垂足为M ,交BC 于点E ,2AM CM =.(1)求sin B 的值:(2)若5CD =BC 的长.【答案】(15;(2)4 【分析】(1)根据∠ACB=90°,CD 是斜边AB 上的中线,可得出CD=BD ,则∠B=∠BCD ,再由AE ⊥CD ,可证明∠B=∠CAM ,由AM=2CM ,可得出CM :AC=15sinB 的值;(2)根据sinB 的值,可得出AC :AB=15AB=25AC=2,根据勾股定理即可得出结论.【详解】(1)∵90ACB ∠=︒,CD 是斜边AB 的中线,∴CD BD =,∴B DCB ∠=∠,∵AE CD ⊥,∴90ACD CAM ∠+∠=︒.∵90DCB ACD ∠+∠=︒,∴DCB CAM ∠=∠.∴B CAM ∠=∠.在Rt ACM 中,∵2AM CM =, ∴()222225AC AM CM CM CM CM =+=+=. ∴5sin sin 555CM B CAM AC CM =∠====. (2)∵5CD =∴225AB CD ==.由(1)知5sin 5B =, ∴5sin 525AC AB B =⨯==. ∴()22222524BC AB AC =-=-=. 【点睛】 本题主要考查了勾股定理和锐角三角比,熟练掌握根据锐角三角比解直角三角形是解题的关键. 21.如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b .(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b 的图象经过一、二、四象限的概率.【答案】(1)答案见解析;(2)13. 【分析】(1)k 可能的取值为-1、-2、-3,b 可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b 经过一、二、四象限时k 、b 的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b 经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种,则P=412= 13. 22.计算题:(12sin45°+cos 230°•tan60°﹣tan45°;(2)已知是锐角,()2sin 152a -︒=cos tan 23a a -. 【答案】(133(2)13 【分析】(1)代入特殊锐角的三角函数值进行实数的运算便可;(2)由已知求出α的度数,再代入计算便可.【详解】解:原式223231⎛⎫=⨯+⨯-⎪⎝⎭31314=+-334=(2)∵()2sin152a-︒=∴()2sin15a-︒=,∴1545a-︒=︒∴60a=︒,原式cos60303tan=-︒-︒3132233=--13122313=-+=-【点睛】本题考查的是利用特殊角的三角函数值进行运算,熟记特殊角的三角函数值是解题关键.23.已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?【答案】(1)BP=2或BP=12;(2)当BP的值为2,12或5.1时,两三角形相似.【解析】试题分析:分△ABP∽△PCD和△ABP∽△DCP两种情况,根据相似三角形的性质列出比例式,计算即可.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.1.综合以上可知,当BP的值为2,12或5.1时,两三角形相似.考点:相似三角形的性质.24.用恰当的方法解下列方程.(1)2x2﹣3x﹣1=0(2)x2+2=2【答案】(1)x=3174±;(2)122x x==【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】解:(1)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x 317±;(2)∵x2﹣2=0,∴(x22=0,则122x x==.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.25.为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)满足如图所示的一次函数关系.(1)求月销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?【答案】(1)y 与x 的函数关系式为5200y x =-+;(2)该设备的销售单价应是27 万元.【分析】(1)根据图像上点坐标()()28,60,32,40,代入y kx b =+,用待定系数法求出即可.(2)根据总利润=单个利润⨯销售量列出方程即可.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,依题意,得6028,4032.k b k b =+⎧⎨=+⎩解得5,200.k b =-⎧⎨=⎩ 所以y 与x 的函数关系式为5200y x =-+.(2)依题知()()255200130x x --+=.整理方程,得26510260x x -+=.解得122738x x ==,.∵此设备的销售单价不得高于35万元,∴238x =(舍),所以27x =.答:该设备的销售单价应是27 万元.【点睛】本题考查了一次函数以及一元二次方程的应用.26.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.【答案】(1)证明见解析;(2)2AC π=【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°,∵OC ∥BD ,∴∠AEO=∠ADB=90°,即OC ⊥AD ,∴AE=ED ;(2)∵OC ⊥AD ,∴AC BD = ,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC =7252180ππ⨯=. 点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.27.先化简,再求值:22133(2)22x x x x x -++÷-++,其中x =1.【答案】1﹣x .【分析】先利用分式的加减乘除运算对分式进行化简,然后把x 的值代入即可. 【详解】原式=2(1)2(2)33()222x x x x x x -++÷-+++ 2(1)1=22x x x x --÷++ 2(1)2=21x x x x-+⨯+- =1x -当x =1时,∴原式=1﹣(1;【点睛】本题主要考查分式的化简求值,掌握分式混合运算的顺序和法则是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数2y ax bx =+的图象如图,若一元二次方程2ax bx k 0++=有实数解,则k 的最小值为( )A .4-B .6-C .8-D .0【答案】A 【解析】∵一元二次方程ax 2+bx+k=0有实数解,∴可以理解为y=ax 2+bx 和y=−k 有交点,由图可得,−k≤4,∴k≥−4,∴k 的最小值为−4.故选A.2.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )A .-2B .2C .-1D .1【答案】D【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx-6=0得4+2b-6=0,解得b=1.故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 3.如图,△ABC 中,∠ACB =90°,∠A =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°)得到△DEC ,设CD 交AB 于点F ,连接AD ,当旋转角α度数为________,△ADF 是等腰三角形.A.20°B.40°C.10°D.20°或40°【答案】D【分析】根据旋转的性质可得AC=CD,根据等腰三角形的两底角相等求出∠ADF=∠DAC,再表示出∠DAF,根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三种情况讨论求解.【详解】∵△ABC绕C点逆时针方向旋转得到△DEC,∴AC=CD,∴∠ADF=∠DAC=12(180°-α),∴∠DAF=∠DAC-∠BAC=12(180°-α)-30°,根据三角形的外角性质,∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三种情况讨论,①∠ADF=∠DAF时,1 2(180°-α)=12(180°-α)-30°,无解,②∠ADF=∠AFD时,12(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD时,12(180°-α)-30°=30°+α,解得α=20°,综上所述,旋转角α度数为20°或40°.故选:D.【点睛】本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论.4.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.18πB.27πC.36πD.54π【答案】B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:120180rπ=6π,∴r=9,∴S扇形=21209360π⨯=27π,故选B.【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.5.已知三角形的周长为12,面积为6,则该三角形内切圆的半径为()A.4 B.3 C.2 D.1【答案】D【分析】设内切圆的半径为r,根据公式:12rC S三角形三角形,列出方程即可求出该三角形内切圆的半径.【详解】解:设内切圆的半径为r 11262r解得:r=1故选D.【点睛】此题考查的是根据三角形的周长和面积,求内切圆的半径,掌握公式:12rC S三角形三角形是解决此题的关键.6.一元二次方程x(3x+2)=6(3x+2)的解是()A.x=6 B.x=﹣23C.x1=6,x2=﹣23D.x1=﹣6,x2=23【答案】C【分析】根据因式分解法解一元二次方程即可求出答案.【详解】解:∵x(3x+2)=6(3x+2),∴(x﹣6)(3x+2)=0,∴x=6或x=23 -,【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.7.若点()1,3P 在反比例函数1k y x +=的图象上,则关于x 的二次方程220x x k +-=的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定 【答案】A【分析】将点P 的坐标代入反比例函数的表达式中求出k 的值,进而得出一元二次方程,根据根的判别式进行判断即可.【详解】∵点()1,3P 在反比例函数1k y x+=的图象上, ∴13k +=,即2k =,∴关于x 的二次方程为2220x x +-=,∵2448120b ac ∆=-=+=>,∴方程有两个不相等的实数根,故选A .【点睛】本题考查利用待定系数法求解反比例函数的表达式,根的判别式,熟练掌握根的判别式是解题的关键. 8.定义:如果一个一元二次方程的两个实数根的比值与另一个一元二次方程的两个实数根的比值相等,我们称这两个方程为“相似方程”,例如,(3)(6)0x x --=的实数根是3或6,2320x x -+=的实数根是1或2,3:61:2=,则一元二次方程(3)(6)0x x --=与2320x x -+=为相似方程.下列各组方程不是相似方程的是( )A .2160x -=与225x =B .2(6)0x -=与2440x x ++=C .270x x -=与260x x +-=D .(2)(8)0x x ++=与2540x x -+= 【答案】C【分析】根据“相似方程”的定义逐项分析即可.【详解】A. ∵2160x -=,∴2=16x .∴x 1=4,x 2=-4,∵225x =,∵4:(-4)=5:(5),∴2160x -=与225x =是相似方程,故不符合题意;B. ∵2(6)0x -=,∴x 1=x 2=6.∵2440x x ++=,∴(x+2)2=0,∴x 1=x 2=-2.∵6:6=(-2):(-2),∴2(6)0x -=与2440x x ++=是相似方程,故不符合题意;C. ∵270x x -=,∴()70x x -=,∴x 1=0,x 2=7.∵260x x +-=,∴260x x +-=,∴(x-2)(x+3)=0,∴x 1=2,x 2=-3.∵0:7≠2:(-3),∴270x x -=与260x x +-=不是相似方程,符合题意;D. ∵(2)(8)0x x ++=,∴x 1=-2,x 2=-8.∵2540x x -+=,∴(x-1)(x-4)=0,∴x 1=1,x 2=4.∵(-2):(-8)=1:4,∴(2)(8)0x x ++=与2540x x -+=是相似方程,故不符合题意;故选C.【点睛】本题考查了新定义运算,以及一元二次方程的解法,正确理解“相似方程”的定义是解答本题的关键.9.如图,二次函数()20y ax bx c a =++≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C,对称轴为直线2x =,且OA=OC,则下列结论:①0abc >;②930a b c ++<;③1c ->;④关于x 的方程()200++=≠ax bx c a 有一个根为4c +,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C 【解析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x =3时,y >0,可判断②;由OA =OC ,且OA <1,可判断③;由OA =OC ,得到方程有一个根为-c ,设另一根为x ,则2x c -=2,解方程可得x=4+c 即可判断④;从而可得出答案. 【详解】由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,所以2b a->0,所以b >0,∴abc >0,故①正确; 由图象可知当x =3时,y >0,∴9a+3b+c >0,故②错误;由图象可知OA <1.∵OA =OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;∵OA =OC ,∴方程有一个根为-c ,设另一根为x .∵对称轴为直线x=2,∴2x c -=2,解得:x=4+c .故④正确; 综上可知正确的结论有三个.故选C .【点睛】本题考查了二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA =OC ,是解题的关键.10.如图,抛物线的图像交x 轴于点(20)A -,和点B ,交y 轴负半轴于点C ,且OB OC =,下列结论错误的是( )A .02b a -<B .0a b c +>C .420a b c -+=D .1ac b =-【答案】B【分析】A 根据对称轴的位置即可判断A 正确;图象开口方向,与y 轴的交点位置及对称轴位置可得0a >,0c <,0b >即可判断B 错误;把点A 坐标代入抛物线的解析式即可判断C ;把B 点坐标(),0c -代入抛物线的解析式即可判断D ; 【详解】解:观察图象可知对称性02b x a=-<,故结论A 正确, 由图象可知0a >,0c <,0b >, ∴0a b c+<,故结论B 错误; 抛物线经过(2,0)A -,420a b c ∴-+=,故结论C 正确,OB OC =,OB c ∴=-,∴点B 坐标为(,0)c -,20ac bc c ∴-+=,10ac b ∴-+=,1ac b ∴=-,故结论D 正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小:当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0)ab >,对称轴在y 轴左; 当a 与b 异号时(即0)ab <,对称轴在y 轴右.(简称:左同右异);常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,)c ;抛物线与x 轴交点个数由△决定:△240b ac =->时,抛物线与x 轴有2个交点;△240b ac =-=时,抛物线与x 轴有1个交点;△240b ac =-<时,抛物线与x 轴没有交点.11.二次函数y =x 2+4x+3,当0≤x≤12时,y 的最大值为( )A.3 B.7 C.194D.214【答案】D【解析】利用配方法把二次函数解析式化为顶点式,根据二次函数的性质解答.【详解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,则当x>﹣2时,y随x的增大而增大,∴当x=12时,y的最大值为(12)2+4×12+3=214,故选:D.【点睛】本题考查配方法把二次函数解析式化为顶点式根据二次函数性质解答的运用12.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C3 2 D3 3【答案】A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=3DC,EC=cos∠C×DC=12DC,又∵DC+BD=BC=AC=32DC,∴332332DCDEAC DC==,∴△DEF与△ABC的面积之比等于:2231:3DEAC⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.二、填空题(本题包括8个小题)13.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.【答案】3【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【详解】∵四边形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=12AC=3.故答案为3.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.14.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.【答案】720(1+x )2=1.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019年全年收入1万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x ,则2018的全年收入为:720×(1+x )2019的全年收入为:720×(1+x )2.那么可得方程:720(1+x )2=1.故答案为:720(1+x )2=1.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).15.分解因式:25a a -=__________.【答案】()5a a -【分析】提取公因式a 进行分解即可.【详解】解:a 2−5a =a (a−5).故答案是:a (a−5).【点睛】本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.16.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.【答案】25%【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x , 280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x )2=后量,即可解答此。
【精选3份合集】2019-2020年上海市徐汇区九年级上学期期末学业水平测试数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.双曲线y=1kx-在第一、三象限内,则k的取值范围是()A .k>0 B.k<0 C.k>1 D.k<1【答案】C【分析】根据反比例函数的性质,由于图象在第一三象限,所以k-1>0,解不等式求解即可.【详解】解:∵函数图象在第一、三象限,∴k﹣1>0,解得k>1.故选:C.【点睛】本题考查了反比例函数的性质,对于反比例函数y=kx(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.2.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )A.B.C.D.【答案】A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.3.若整数a使关于x的分式方程122axx-+=2有整数解,且使关于x的不等式组125262x xx a++⎧≤⎪⎨⎪->⎩至少有4个整数解,则满足条件的所有整数a的和是()A.﹣14 B.﹣17 C.﹣20 D.﹣23【答案】A【解析】根据不等式组求出a的范围,然后再根据分式方程求出a的范围,从而确定a满足条件的所有整数值,求和即可.【详解】不等式组整理得:22xx a≤⎧⎨>+⎩,由不等式组至少有4个整数解,得到a+2<﹣1, 解得:a <﹣3,分式方程去分母得:12﹣ax =2x+4, 解得:x =82a +, ∵分式方程有整数解且a 是整数 ∴a+2=±1、±2、±4、±8,即a =﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10, 又∵x =82a +≠﹣2, ∴a≠﹣6,由a <﹣3得:a =﹣10或﹣4, ∴所有满足条件的a 的和是﹣14, 故选:A . 【点睛】本题主要考查含参数的分式方程和一元一次不等式组的综合,熟练掌握分式方程和一元一次不等式组的解法,是解题的关键,特别注意,要检验分式方程的增根.4.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是( )A .4月份的利润为50万元B .污改造完成后每月利润比前一个月增加30万元C .治污改造完成前后共有4个月的利润低于100万元D .9月份该厂利润达到200万元 【答案】C【分析】首先设反比例函数和一次函数的解析式,根据图像信息,即可得出解析式,然后即可判断正误.【详解】设反比例函数解析式为()0ky x x=≠ 根据题意,图像过点(1,200),则可得出()2000y x x=≠当4x =时,50y =,即4月份的利润为50万元,A 选项正确;设一次函数解析式为y kx b =+根据题意,图像过点(4,50)和(6,110)则有4506110k b k b +=⎧⎨+=⎩解得3070k b =⎧⎨=-⎩∴一次函数解析式为3070y x =-,其斜率为30,即污改造完成后每月利润比前一个月增加30万元,B 选项正确;治污改造完成前后,1-6月份的利润分别为200万元、100万元、2003万元、50万元、110万元,共有3个月的利润低于100万元,C 选项错误;9月份的利润为30970200⨯-=万元,D 选项正确; 故答案为C . 【点睛】此题主要考查一次函数和反比例函数的实际应用,熟练掌握,即可解题.5.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <. 图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( ) A .0a > B .240b ac -≥C .102x x x <<D .()()01020a x x x x --<【答案】D【分析】根据抛物线与x 轴有两个不同的交点,根的判别式△>0,再分a >0和a <0两种情况对C 、D 选项讨论即可得解.【详解】A 、二次函数y=ax 2+bx+c (a≠0)的图象与x 轴有两个交点无法确定a 的正负情况,故本选项错误; B 、∵x 1<x 2,∴△=b 2-4ac >0,故本选项错误; C 、若a >0,则x 1<x 0<x 2,若a <0,则x 0<x 1<x 2或x 1<x 2<x 0,故本选项错误; D 、若a >0,则x 0-x 1>0,x 0-x 2<0, 所以,(x 0-x 1)(x 0-x 2)<0, ∴a (x 0-x 1)(x 0-x 2)<0,若a <0,则(x 0-x 1)与(x 0-x 2)同号, ∴a (x 0-x 1)(x 0-x 2)<0,综上所述,a (x 0-x 1)(x 0-x 2)<0正确,故本选项正确.6.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DC CE AB AE=,即1.50.52 AB=,解得:AB=6,故选D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.7.如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()A.B.C.D.【答案】B【分析】求出2142tan DBC ∠== ,12112428xDH CD CH x AD A D n D A ta H --=∠==-=,y =EF−EM−NF =2−BFtan ∠DBC−AEtan ∠DAH ,即可求解. 【详解】解:2142tan DBC ∠==, 12112428xDH CD CH x AD A D n D A ta H --=∠==-= y =EF ﹣EM ﹣NF =2﹣BFtan ∠DBC ﹣AEtan ∠DAH =2﹣x×12﹣x (1128x -)=18x 2﹣x+2,故选:B . 【点睛】本题考查的是动点图象问题,涉及到二次函数,此类问题关键是确定函数的表达式,进而求解. 8.若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( ) A .()223y x =++ B .()223y x =-+ C .()223y x =+- D .()223y x =-- 【答案】B【解析】试题分析:∵函数y=x 2的图象的顶点坐标为()0,?0,将函数y=x 2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是()()02,?032,?3++⇒. ∴所得抛物线的表达式为()223y x =-+.故选B.考点:二次函数图象与平移变换.9.若将抛物线23y x =的函数图象先向右平移1个单位,再向下平移2个单位后,可得到一个新的抛物线的图象,则所得到的新的抛物线的解析式为( ) A .23(1)2y x =-+ B .23(1)2y x =+- C .23(1)2=--y x D .23(1)2y x =-+【答案】C【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将抛物线23y x =先向右平移1个单位可得到抛物线()231y x =-;由“上加下减”的原则可知,将抛物线()231y x =-先向下平移2个单位可得到抛物线23(1)2=--y x .故选:C . 【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .247【答案】C【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB =∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可. 【详解】解:∵△ABC 是等边三角形, ∴∠A =∠B =∠C =60°,AB =BC =AC =5, ∵沿DE 折叠A 落在BC 边上的点F 上, ∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF , 设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y , ∵BF =2,BC =5, ∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC+∠FEC =120°,∠DFB+∠EFC =120°, ∴∠DFB =∠FEC , ∵∠C =∠B , ∴△DBF ∽△FCE , ∴BD BF DFFC CE EF==, 即2535x x y y-==-, 解得:x =218,即BD =218, 故选:C . 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理. 11.如图,以点A 为中心,把△ABC 逆时针旋转m°,得到△AB′C′(点B 、C 的对应点分别为点B′、C′),连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .1902m -B .3902m - C .30m -D .1302m + 【答案】B【分析】根据旋转的性质可得BAB CAC m ''∠=∠=︒、AB AB '=,利用等腰三角形的性质可求得1902AB B m '∠=︒-︒,再根据平行线的性质得出1902C AB m ''∠=︒-︒,最后由角的和差得出结论.【详解】解:∵以点A 为中心,把ABC 逆时针旋转m ︒,得到AB C ''△∴BAB CAC m ''∠=∠=︒,AB AB '= ∴()()11118018090222AB B BAB m m ''∠=︒-∠=︒-︒=︒-︒ ∵//AC BB ''∴1902C AB AB B m '''∠=∠=︒-︒ ∴13909022CAB CAC C AB m m m ⎛⎫''''∠=∠-∠=︒-︒-︒=︒-︒ ⎪⎝⎭ 故选:B 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等;也考查了等腰三角形的性质,三角形的内角和定理,平行线的性质及角的和差. 12.将抛物线22y x =-通过一次平移可得到抛物线2(3)2y x =--.对这一平移过程描述正确的是( )A .沿x 轴向右平移3个单位长度B .沿x 轴向左平移3个单位长度C .沿y 轴向上平移3个单位长度D .沿y 轴向下平移3个单位长度【答案】A【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解. 【详解】解:抛物线22y x =-的顶点坐标为(0,−2),抛物线2(3)2y x =--的顶点坐标为(3,-2),所以,向右平移3个单位,可以由抛物线22y x =-平移得到抛物线2(3)2y x =--. 故选:A . 【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键. 二、填空题(本题包括8个小题)13.计算:2sin 45︒=______.【答案】【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解.【详解】解:2sin 4522︒=⨯--故答案为: 【点睛】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键. 14.抛物线y=(x-1)2-7的对称轴为直线_________. 【答案】x=1【分析】根据抛物线y=a (x-h )2+k 的对称轴是x=h 即可确定所以抛物线y=(x-1)2-7的对称轴. 【详解】解:∵y=(x-1)2-7 ∴对称轴是x=1 故填空答案:x=1. 【点睛】本题主要考查了二次函数的性质,熟记二次函数的对称轴,顶点坐标是解答此题的关键.15.某品牌手机六月份销售400万部,七月份、八月份销售量连续增长,八月份销售量达到576万部,则该品牌手机这两个月销售量的月平均增长率为_________. 【答案】20%【分析】根据增长(降低)率公式()21a x b ±=可列出式子. 【详解】设月平均增长率为x. 根据题意可得:()24001+576x =.解得:0.2x =. 所以增长率为20%. 故答案为:20%.【点睛】本题主要考查了一元二次方程的应用,记住增长率公式很重要.16.在平面直角坐标系中,已知()A 6,3、()B 6,0两点,以坐标原点O 为位似中心,相似比为13,把线段AB 缩小后得到线段A'B',则A'B'的长度等于________. 【答案】1【分析】已知A (6,2)、B (6,0)两点则AB=2,以坐标原点O 为位似中心,相似比为13,则A′B′:AB=2:2.即可得出A′B′的长度等于2.【详解】∵A (6,2)、B (6,0),∴AB=2. 又∵相似比为13,∴A′B′:AB=2:2,∴A′B′=2. 【点睛】本题主要考查位似的性质,位似比就是相似比. 17.计算:()324cos 60-︒=________.【答案】-1【分析】根据零指数幂及特殊角的三角函数值计算即可. 【详解】解:原式=1-4×12=-1, 故答案为:-1. 【点睛】本题考查了实数的运算、零指数幂、特殊角的三角函数值,属于基础题,解答本题的关键是熟练每部分的运算法则.18.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.【答案】(32,2). 【详解】解:如图,当点B 与点D 重合时,△BEF 面积最大,设BE=DE=x ,则AE=4-x , 在RT △ABE 中,∵EA 2+AB 2=BE 2, ∴(4-x )2+22=x 2, ∴x=52, ∴BE=ED=52,AE=AD-ED=32,∴点E 坐标(32,2). 故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键. 三、解答题(本题包括8个小题)19.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同. (1)求该快递公司投递的快递件数的月平均增长率;(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?【答案】(1)该快递公司投递的快递件数的月平均增长率为8%;(2)按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务,见解析【分析】(1)设该快递公司投递的快递件数的月平均增长率为x ,根据“5月份快递件数×(1+增长率)2=7月份快递件数”列出关于x 的方程,解之可得答案;(2)分别计算出9月份的快递件数和8名快递小哥可投递的总件数,据此可得答案. 【详解】(1)设该快递公司投递的快递件数的月平均增长率为x , 根据题意,得:25(1) 5.832x +=, 解得:1x =0.08=8%,2x =﹣2.08(舍),答:该快递公司投递的快递件数的月平均增长率为8%;(2)9月份的快递件数为25.832(10.08)6.8⨯+≈(万件),而0.8×8=6.4<6.8,所以按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务.【点睛】本题主要了考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.20.为了测量竖直旗杆AB 的高度,某数学兴趣小组在地面上的D 点处竖直放了一根标杆CD ,并在地面上放置一块平面镜E ,已知旗杆底端B 点、E 点、D 点在同一条直线上.该兴趣小组在标杆顶端C 点恰好通过平面镜E 观测到旗杆顶点A ,在C 点观测旗杆顶点A 的仰角为30.观测点E 的俯角为45︒,已知标杆CD 的长度为1米,问旗杆AB 的高度为多少米?(结果保留根号)【答案】23+ 【分析】作//CF BD 交AB 于点F ,则30ACF ∠=︒,45ECF CED ∠=∠=︒,易得1CD DE ==,根据光的反射规律易得45AEB CED ∠=∠=︒,可得△CDE 和三角形ABE 均为等腰直角三角形,设AB x =,则BE x =,1BD CF x ==+,1AF x =-,在Rt ∆ACF 中有tan AF ACF CF∠=,代入求解即可. 【详解】解:如图作//CF BD 交AB 于点F ,则30ACF ∠=︒,45ECF CED ∠=∠=︒在Rt ∆CDE 中,易求得1CD DE ==由光的反射规律易得45AEB CED ∠=∠=︒,在Rt ∆ABE 中,易求得AB BE =设AB x =,则BE x =,1BD CF x ==+,1AF x =-在Rt ∆ACF 中,tan AF ACF CF ∠=,即311x x -=+, 解得:23x =+即旗杆AB 的高度为23+.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及光的反射规律,本题属于中等题型21.如图,已知AB 为⊙O 的直径,点E 在⊙O 上,∠EAB 的平分线交⊙O 于点C ,过点C 作AE 的垂线,垂足为D ,直线DC 与AB 的延长线交于点P .(1)判断直线PC 与⊙O 的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE 的长. 【答案】(1)PC 是⊙O 的切线;(2)92【解析】试题分析:(1)结论:PC 是⊙O 的切线.只要证明OC ∥AD ,推出∠OCP=∠D=90°,即可. (2)由OC ∥AD ,推出OC OP AD AP =,即10610r r -=,解得r=154,由BE ∥PD ,AE=AB•sin ∠ABE=AB•sin ∠P ,由此计算即可.试题解析:解:(1)结论:PC 是⊙O 的切线.理由如下:连接OC .∵AC 平分∠EAB ,∴∠EAC=∠CAB .又∵∠CAB=∠ACO ,∴∠EAC=∠OCA ,∴OC ∥AD .∵AD ⊥PD ,∴∠OCP=∠D=90°,∴PC 是⊙O 的切线.(2)连接BE .在Rt △ADP 中,∠ADP=90°,AD=6,tan ∠P=34,∴PD=8,AP=10,设半径为r .∵OC ∥AD ,∴OC OP AD AP =,即10610r r -=,解得r=154.∵AB 是直径,∴∠AEB=∠D=90°,∴BE ∥PD ,∴AE=AB•sin ∠ABE=AB•sin ∠P=152×35=92.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.22.如图,△ABC .(1)尺规作图:①作出底边的中线AD ;②在AB上取点E,使BE=BD;(2)在(1)的基础上,若AB=AC,∠BAC=120°,求∠ADE的度数.【答案】(1)①详见解析;②详见解析;(2)15°.【分析】(1)①作线段BC的垂直平分线可得BC的中点D,连接AD即可;②以B为圆心,BD为半径画弧交AB于E,点E即为所求.(2)根据题意利用等腰三角形的性质,三角形的内角和定理求解即可.【详解】解:(1)如图,线段AD,点E即为所求.(2)如图,连接DE.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BD=BE,∴∠BDE=∠BED=1(180°﹣30°)=75°,2∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADB=90°,∴∠ADE=90°﹣∠ADE=90°﹣75°=15°.【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握相关的基本知识.23.如图,AB是O的直径,点C,D在O上,且BD平分∠ABC.过点D作BC的垂线,与BC的延长线相交于点E,与BA的延长线相交于点F.(1)求证:EF 与O 相切:(2)若AB=3,BD=22,求CE 的长.【答案】(1)证明见解析;(2)13CE =. 【分析】(1)连接OD ,由角平分线和等边对等角,得到EBD BDO ∠=∠,则BC OD ∥,即可得到结论成立;(2)连接AD ,CD ,CO ,由勾股定理求出AD ,然后证明EDB DAB △∽△,求出DE 的长度,然后即可求出CE 的长度.【详解】(1)证明,如图,连接OD .BD 平分ABC ∠,EBD ABD ∴∠=∠.∵OB OD =,BDO ABD ∴∠=∠.EBD BDO ∴∠=∠.BC OD ∴∥.FDO E ∴∠=∠.∵EF BE ⊥,90E ∴∠=︒.90FDO ∴∠=︒.即EF OD ⊥.EF ∴与O 相切.(2)如图,连接AD ,CD ,CO .AB 是O 的直径,90ADB E ∴∠=︒=∠.在Rt ABD △中,22223(22)1AD AB BD =-=-=.∵ADB E ∠=∠,EBD ABD ∠=∠,EDB DAB ∴△∽△.DE DB AD AB ∴=, 即2213DE =. 223DE ∴=. ∵12EBD COD ∠=∠,12ABD AOD ∠=∠,EBD ABD ∠=∠, COD AOD ∴∠=∠.1CD AD ∴==.在Rt CDE △中,2222221133CE CD DE ⎛⎫=-=-= ⎪ ⎪⎝⎭. 【点睛】本题考查了相似三角形的性质和判定,勾股定理,切线的判定,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,两小题题型都很好,都具有一定的代表性.24.如图,已知E 是四边形ABCD 的对角线BD 上一点,且AB AC AE AD=,12∠=∠. 求证:ABC AED ∠=∠.【答案】证明见解析【分析】根据两边对应成比例且其夹角相等的两三角形相似得到△ABC ∽△AED ,根据相似三角形的对应角相等即可证得结论.【详解】证明:∵12∠=∠∴12EAC EAC ∠+∠=∠+∠,即BAC EAD ∠=∠. 又∵AB AC AE AD=, ∴AB AE AC AD= ∴ABC AED ∽△△.∴ABC AED ∠=∠.【点睛】此题考查相似三角形的判定与性质,解题关键在于判定△ABE ∽△ACD.25.瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x (元),每日销售量y (件)每日的利润w (元).在试销过程中,每日销售量y (件)、每日的利润w (元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示:(1)根据表中数据的规律,分别写出毎日销售量y (件),每日的利润w (元)关于销售单价x (元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?(3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?【答案】(1)y =﹣2x +100,w =﹣2x 2+136x ﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】(1)观察表中数据,发现y 与x 之间存在一次函数关系,设y =kx +b .列方程组得到y 关于x 的函数表达式y =﹣2x +100,根据题意得到w =﹣2x 2+136x ﹣1800;(2)把w =﹣2x 2+136x ﹣1800配方得到w =﹣2(x ﹣34)2+1.根据二次函数的性质即可得到结论; (3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y 与x 之间存在一次函数关系,设y =kx +b .则62196020k b k b =+⎧⎨=+⎩,解得k 2b 100=-⎧⎨=⎩, ∴y =﹣2x +100,∴y 关于x 的函数表达式y =﹣2x +100,∴w =(x ﹣18)•y =(x ﹣18)(﹣2x +100)∴w =﹣2x 2+136x ﹣1800;(2)∵w =﹣2x 2+136x ﹣1800=﹣2(x ﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w =350时,350=﹣2x 2+136x ﹣1800,解得x =25或43,由题意可得25≤x ≤32,则当x =32时,18(﹣2x +100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.26.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【答案】该段运河的河宽为303m .【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==33401603x x ++=, 解得:303x =303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.27.解下列一元二次方程.(1)x 2+x -6=1;(2)2(x -1)2-8=1.【答案】(1)123;2x x =-=;(2)123;1x x ==-【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x 2+x -6=1;(3)(2)0x x +-=∴123;2x x =-=(2)2(x -1)2-8=1.22(1)8x -=2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(-3,2)【答案】B【解析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y )”解答.【详解】根据中心对称的性质,得点P (2,-3)关于原点对称的点的坐标是(-2,3).故选B .【点睛】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆. 2.如图在O 中,弦,⊥⊥AB AC OD AB 于点D OE AC ⊥,于点E ,若86AB cm AC cm ==,,则O 的半径OA 的长为( )A .7cmB .6cmC .5cmD .4cm【答案】C 【分析】根据垂径定理求得OD ,AD 的长,并且在直角△AOD 中运用勾股定理即可求解. 【详解】解:弦AB AC ⊥,⊥OD AB 于点D ,OE AC ⊥于点E ,∴四边形OEAD 是矩形,142AD AB cm ==,132AE AC cm ==,3OD AE cm ∴==,2222345()OA OD AD cm ∴=+=+; 故选:C .【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD ,AE 的长是解决问题的关键. 3.圆锥形纸帽的底面直径是18cm ,母线长为27cm ,则它的侧面展开图的圆心角为( ) A .60°B .90°C .120°D .150° 【答案】C【分析】根据圆锥侧面展开图的面积公式以及展开图是扇形,扇形半径等于圆锥母线长度,再利用扇形面积求出圆心角.【详解】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期徐汇区学习能力诊断卷
初三数学 试卷
(考试时间100分钟,满分150分)
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】
1.已知
34x y =,那么下列等式中,不成立的是 (A )37x x y =+; (B )14x y y -=; (C )3344
x y +=+; (D )4=3y . 2.在比例尺是140000的地图上,若某条道路长约为5cm ,则它的实际长度约为
(A )0.2m ; (B )2m ; (C )20m ; (D )200m .
3.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =1,BD =3,那么由下列条件能够判断DE ∥BC 的是
(A )13DE BC =; (B )14DE BC =; (C )13AE AC =; (D )14
AE AC =. 4.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列等式正确的是
(A )sin b A c =; (B )cos c B a =; (C )tan a A b =; (D )cot b B a
=. 5.下列关于向量的说法中,不正确的是
(A )3()33a b a b -=-r r r r ; (B )若3a b =r r ,则33或a b a b ==-r r r r ;
(C )33a a =r r ; (D )()()m na mn a =r r .
6.对于抛物线2(2)3y x =-++,下列结论中正确结论的个数为
①抛物线的开口向下; ②对称轴是直线=-2;
③图像不经过第一象限; ④当>2时,y 随的增大而减小.
(A )4; (B )3; (C )2; (D )1.
二、填空题:(本大题共12题,每题4分,满分48分)
【请将结果直接填入答题纸的相应位置上】
7.已知线段b 是线段a 、c 的比例中项,且a =2,c =8,那么b = ▲ .
8.计算:3(24)5()a b a b ---=r r r r ▲ .
9.若点P 是线段AB 的黄金分割点,AB =10cm ,则较长线段AP 的长是 ▲ cm .
10.如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别为AB 、DC 上的点,若CF =4,且EF ∥AD ,AE :BE =23,则CD 的长等于 ▲ .
11.如图,在梯形ABCD 中,AB ∥DC ,AD =2,BC =6,若△AOB 的面积等于6,则△AOD 的面积等于 ▲ .
12.如图,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,若,AB a BC b ==uu u r r uu u r r ,则用、OD a b uuu r r r 可表示
为 ▲ .
13.已知抛物线C
的顶点坐标为(1,3),如果平移后能与抛物线21232
y x x =
++ 重合,那么抛物线C 的表达式是 ▲ .
14.sin60tan 45cos60cot30=⋅-⋅o o o o ▲ .
15.如果抛物线22y ax ax c =-+与轴的一个交点为(5,0),那么与轴的另一个交点的坐标是 ▲ .
16.如图,在△ABC 中,AB=AC ,BE 、AD 分别是边AC 、BC 上的高,CD =2,AC =6,那么CE = ▲ .
17.如图,是将一正方体货物沿坡面AB 装进汽车货厢的平面示意图,已知长方体货厢的高度BC 为2.6米,
斜坡AB 的坡比为12.4,现把图中的货物继续向前平移,当货物顶点D 与C 重合时,仍可把货物放平装进货厢,则货物的高度BD 不能超过 ▲ 米.
18.在△ABC 中,∠C =90°,AC =3,BC =4(如图),将△ACB 绕点A 顺时针方向旋转得△ADE (点C 、B 的
对应点分别为D 、E ),点D 恰好落在直线BE 上和直线AC 交于点F ,则线段AF 的长为 ▲ .
三、解答题:(本大题共7题,满分78分)
19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)
如图,在△ABC 中,∠ACD =∠B ,AD =4,DB =5.
(1)求AC 的长;
(2)若设,CA a CB b ==uu r r uu r r ,试用、a b r r 的线性组合表示向量CD uu u r .
20.(本题共2小题,第(1)小题5分,第(2)小题5分,满分10分)
已知一个二次函数的图像经过A(0,-6)、B(4,-6)、C(6,0)三点.
(1)求这个二次函数的解析式;
(2)分别联结AC、BC,求tan∠ACB.
21.(本题满分10分)
如图所示,巨型广告牌AB背后有一看台CD,台阶每层高0.3米,且AC=17米,现有一只小狗睡在台阶的FG这,层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB在地面上的影长AE=10
米,过了一会,当α=45°,问小狗在FG 1.73).
22.(本题满分10分)
如图,在△ABC中,AB=AC,BC=12,sin C=4
5
,点G是△ABC的重心,线段BG的延长线交边AC于点D,
求∠CBD的余弦值.
23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)
如图在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B ,
∠ADF =∠C ,线段EF 交线段AD 于点G .
(1)求证:AE =AF ;
(2)若DF CF DE AE
=,求证:四边形EBDF 是平行四边形.
24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)
如图,在平面直角坐标系Oy 中,直线y =(≠0)沿着y 轴向上平移3个单位长度后,与轴交于点B (3,0),与y 轴交于点C ,抛物线2y x bx c =++过点B 、C 且与轴的另一个交点为A .
(1)求直线BC 及该抛物线的表达式;
(2)设该抛物线的顶点为D ,求△DBC 的面积;
(3)如果点F 在y 轴上,且∠CDF =45°,求点F 的坐标.
25.(本题满分14分,第(1)小题3分,第(2)小题7分,第(3)小题4分)
已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC于点N(点N在点M的左侧).
(1)当BM的长为10时,求证:BD⊥DM;
(2)如图(1),当点N在线段BC上时,设BN=,BM=y,求y关于的函数关系式,并写出它的定义域;(3)如果△DMN是等腰三角形,求BN的长.
参考答案:
1、B ;
2、B ;
3、D ;
4、C ;
5、B ;
6、A ;
7
、4; 8、7a b -r r ; 9、5; 10、203
; 11、2; 12、1122b a -r r ; 13、21(1)32
y x =-+; 14、0; 15、(-3,0); 16、43; 17、125; 18、757。