高中数学必修三 第一章 统计 最小二乘估计第一课时教案 [北师大版]

合集下载

北师大版必修3高中数学1.7、8相关性最小二乘估计课件

北师大版必修3高中数学1.7、8相关性最小二乘估计课件

(2)利用最小二乘法估计时,要先作出数据的 散点图.如果散点图呈现一定的规律性,我 最小二乘法 们再根据这个规律进行拟合.如果散点图呈 现出线性关系,我们可以用___________估 计出线性回归方程;如果散点图呈现出其他 的曲线关系,我们就要利用其他的曲线进行 拟合.
1.下列两个变量之间的关系是相关关系的是 ( ) A.正方体的棱长和体积 B.单位圆中角的度数和所对弧长 C.单产为常数时,土地面积和总产量 D.日照时间与水稻的亩产量 [答案] D [解析] 函数关系是一个变量与另一个变量之 间有确定性的关系,选项A、B、C均为函数 关系,日照时间与水稻的产量带有一定的随
最小二乘法 . 如 果 用 x 表 示 求 的 直 线 , 这 种 方 法 称 为 _____________
x1+x2+„+xn y1+y2+„+yn ,用 y 表示 ,则可以求得 b= n n x1- x y1- y +x2- x y2- y +„+xn- x yn- y x1- x 2+x2- x 2+„+xn- x 2
2.最小二乘估计 (1)如果有n个点:(x1,y1),(x2,y2),„, (xn,yn),可以用下面的表达式来刻画这些点 与直线y=a+bx的接近程度: [y1-(a+bx1)]2+[y2-(a+bx2)]2+„+[yn- (a+bxn)]2.
最小值 使得上式达到___________ 的直线 y=a+bx 就是我们所要
2.对于给定的两个变量的统计数据,下列说 法正确的是( ) A.都可以分析两个变量的关系 B.都可以用一条直线近似地表示两者的关 系 C.都可以作出散点图 D.都可以用确定的表达式表示两者之间的 关系 [答案] C [解析] 两个变量可能是无关的,A、D错误; 两者可能不是线性相关的,此时不能用直线

高中数学 第一章 统计 8 最小二乘估计教案 北师大版必修3-北师大版高一必修3数学教案

高中数学 第一章 统计 8 最小二乘估计教案 北师大版必修3-北师大版高一必修3数学教案

§8 最小二乘估计整体设计教学分析教材通过思考交流引入了最小二乘法,进一步提出了线性回归方程.教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使同学们了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性.三维目标经历用不同估算方法描述两个变量线性相关的过程.了解最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.重点难点教学重点:求线性回归方程,以及线性回归分析.教学难点:确定线性回归系数.课时安排1课时教学过程导入新课思路 1.客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说.事实上,数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.为表示这种相关关系,我们接着学习两个变量的线性相关——回归直线及其方程.思路2.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:如果某天的气温是-5 ℃,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?为解决这个问题,我们接着学习两个变量的线性相关——回归直线及其方程.推进新课新知探究提出问题(1)画散点图的步骤是什么?(2)正、负相关的概念?(3)什么是线性相关?(4)观察下面人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?图1(5)什么叫作回归直线?(6)如何求回归直线的方程?什么是最小二乘法?(7)利用计算机如何求线性回归方程?活动:学生回顾,再思考或讨论,教师及时提示指导.讨论结果:(1)建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫作散点图.(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线.如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如图2、3、4:图2图3图4上面这些方法虽然有一定的道理,但总让人感到可靠性不强. 实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式⎪⎪⎩⎪⎪⎨⎧+++=+++=-=-++-++=.,,.,21212222212211n y y y y n x x x x x b y a x n x x x y x n y x y x y x b n n n n n 其中①这样得到的直线方程y=a+bx 称为线性回归方程,a,b 是线性回归方程的系数.推导以上公式的计算比较复杂,这里不作推导.但是,我们可以解释一下得出它的原理.假设我们已经得到两个具有线性相关关系的变量的一组数据 (x 1,y 1),(x 2,y 2),…,(x n ,y n ),且所求回归方程是y=a+bx,其中a 、b 是待定参数.当变量x 取x i (i=1,2,…,n)时可以得到y=a+bx i (i=1,2,…,n),它与实际收集到的y i 之间的偏差是y i -y=y i -(a+bx i )(i=1,2,…,n).图5这样,用这n 个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的.由于(y i -y )可正可负,为了避免相互抵消,可以考虑用∑=-ni i y y 1||来代替,但由于它含有绝对值,运算不太方便,所以改用Q=(y 1-bx 1-a)2+(y 2-bx 2-a)2+…+(y n -bx n -a)2②来刻画n 个点与回归直线在整体上的偏差.这样,问题就归结为:当a,b 取什么值时Q 最小,即总体偏差最小.经过数学上求最小值的运算,a,b 的值由公式①给出.通过求②式的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫作最小二乘法(method of least square ).(7)见课本本节信息技术应用中利用计算机求线性回归方程的具体操作步骤. 应用示例思路1例1 在上一节练习中,从散点图可以看出,某小卖部6天卖出热茶的杯数(y)与当天气温(x)之间是线性相关的.数据如下表:(1)试用最小二乘法求出线性回归方程.(2)如果某天的气温是-3 ℃,请预测这天可能会卖出热茶多少杯. 解:(1)从散点图中可以看出,表中的两个变量是线性相关的.图6先列表求出115,35==y x ,其他数据如下表.进而,可以求得b=335335612863361910⨯⨯-⨯⨯-≈-1.648, a≈57.557.于是,线性回归方程为y=57.557-1.648x.(2)由上面的最小二乘估计得出的线性回归方程知,当某天的气温是-3 ℃时,卖出热茶的杯数估计为57.557-1.648×(-3)=62.501≈63. 变式训练下表为某地近几年机动车辆数与交通事故数的统计资料.(1)请判断机动车辆数与交通事故数之间是否有线性相关关系,如果不具有线性相关关系,请说明理由;(2)如果具有线性相关关系,求出线性回归方程. 解:(1)在直角坐标系中画出数据的散点图,如图7.图7直观判断散点在一条直线附近,故具有线性相关关系. (2)计算得b≈0.077 4,a=-1.024 1,所以,所求线性回归方程为y=-1.024 1+0.077 4x.思路2例1 给出施化肥量对水稻产量影响的试验数据:(1)画出上表的散点图;(2)求出回归直线的方程.解:(1)散点图如图8.图8(2)计算得b≈4.75,a≈257.从而得回归直线方程是y=257+4.75x.变式训练1.一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,测得数据如下:请判断y与x是否具有线性相关关系,如果y与x具有线性相关关系,求线性回归方程.解:在直角坐标系中画出数据的散点图,如图9.图9直观判断散点在一条直线附近,故具有线性相关关系.由测得的数据表可知:b≈0.668,a=y-b x≈54.96.因此,所求线性回归方程为y=bx+a=54.96+0.668x.2.已知10只狗的血球体积及红血球数的测量值如下:(1)画出上表的散点图; (2)求出回归直线的方程. 解:(1)散点图如图10.图10(2)101=x (45+42+46+48+42+35+58+40+39+50)=44.50, 101=y (6.53+6.30+9.52+7.50+6.99+5.90+9.49+6.20+6.55+8.72)=7.37.设回归直线方程为y=a+bx,则b=0.175,a=x b y -=-0.418, 所以所求回归直线的方程为y=-0.418+0.175x.点评:对一组数据进行线性回归分析时,应先画出其散点图,看其是否呈直线形,再依系数a,b 的计算公式,算出a,b.由于计算量较大,所以在计算时应借助技术手段,认真细致,谨防计算中产生错误,求线性回归方程的步骤:计算平均数y x ,;计算x i 与y i 的积,求∑x i y i ;计算∑x i 2;将结果代入公式求b ;用a=x b y -求a ;写出回归直线方程. 知能训练1.下列两个变量之间的关系哪个不是函数关系( )A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高 答案:D2.三点(3,10),(7,20),(11,24)的线性回归方程是( )A.y=5.75-1.75xB.y=1.75+5.75xC.y=1.75-5.75xD.y=5.75+1.75x答案:D3.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:设y对x呈线性相关关系.试求:(1)线性回归方程y=bx+a的回归系数a,b;(2)估计使用年限为10年时,维修费用是多少?答案:(1)b=1.23,a=0.08;(2)12.38.4.我们考虑两个表示变量x与y之间的关系的模型,δ为误差项,模型如下:模型1:y=6+4x;模型2:y=6+4x+e.(1)如果x=3,e=1,分别求两个模型中y的值;(2)分别说明以上两个模型是确定性模型还是随机模型.解:(1)模型1:y=6+4x=6+4×3=18;模型2:y=6+4x+e=6+4×3+1=19.(2)模型1中相同的x值一定得到相同的y值,所以是确定性模型;模型2中相同的x值,因δ的不同,所得y值不一定相同,且δ为误差项是随机的,所以模型2是随机性模型.5.以下是收集到的新房屋销售价格y与房屋大小x的数据:(1)画出数据的散点图;(2)用最小二乘法估计求线性回归方程;(3)计算此时Q(a,b)和Q(2,0.2)的值,并作比较.解:(1)散点图如图11.图11(2)计算得b≈0.196 2,a≈1.816 6,所以,线性回归方程为y=1.816 6+0.196 2x.(3)Q(1.816 6,0.196 2)≈5.171,Q(2,0.2)≈7.0,由此可知,求得的a=1.816 6,b=0.916 2是函数Q(a,b)取最小值的a,b 值. 拓展提升某调查者从调查中获知某公司近年来科研费用支出(X i )与公司所获得利润(Y i )的统计资料如下表:科研费用支出(X i )与利润(Y i )统计表 单位:万元要求估计利润(Y i )对科研费用支出(X i )的线性回归模型. 解:设线性回归模型直线方程为Y i =β0+β1X i ,因为6180,5630=====∑∑n Y Y n X X i i=30,求解参数β0、β1的估计值:β1=2,β0=20.所以利润(Y i )对科研费用支出(X i )的线性回归模型直线方程为Y i=20+2X i.课堂小结1.求线性回归方程.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.作业习题1—8 2、3.设计感想本节课在上节课的基础上,利用实例分析了散点图的分布规律,推导出了线性回归直线的方程的求法,并利用回归直线的方程估计可能的结果,本节课讲得较为详细,实例较多,便于同学们分析比较.思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度,树立时间观,培养勤奋、刻苦的精神.。

新课标北师大版高中数学教材目录及课时安排

新课标北师大版高中数学教材目录及课时安排

新课标北师大版高中数学教材目录及课时安排必修1(36节)第一章集合(5)§1 集合的含义与表示 1 §2 集合的基本关系1§3 集合的基本运算 2 阅读材料康托与集合论小结与复习1第二章函数(9)§1 生活中的变量关系1 §2 对函数的进一步认识3§3 函数的单调性 1 §4 二次函数性质的再研究2§5 简单的幂函数 1 阅读材料函数概念的发展小结与复习1第三章指数函数和对数函数(14)§1 正整数指数函数 1 §2 指数概念的扩充3§3 指数函数 3 §4 对数 2§5 对数函数3§6 指数函数、幂函数、对数函数增长的比较1第四章函数应用7§1 函数与方程 2 §2 实际问题的函数建模4小结与复习1必修2(36)第一章立体几何初步(18节)§1 简单几何体 1 §2 直观图 1§3 三视图 3 §4 空间图形的基本关系与公理 2§5 平行关系 3 §6 垂直关系 4§7 简单几何体的面积和体积2第二章解析几何初步(18节)§1 直线与直线的方程8 §2 圆与圆的方程 5§3 空间直角坐标系3必修3全书目录第一章统计(16)§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法第二章算法初步(12)§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句第三章概率(8)§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用必修4第一章三角函数(16)§1 周期现象与周期函数§2 角的概念的推广§3 弧度制§4 正弦函数§5 余弦函数§6 正切函数§7 函数的图像§8 同角三角函数的基本关系阅读材料数学与音乐第二章平面向量(12)§1 从位移、速度、力到向量§2 从位移的合成到向量的加法§3 从速度的倍数到数乘向量§4 平面向量的坐标§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例阅读材料向量与中学数学第三章三角恒等变形(8)§1 两角和与差的三角函数§2 二倍角的正弦、余弦和正切§3 半角的三角函数§4 三角函数的和差化积与积化和差§5 三角函数的简单应用必修5第一章数列(12)§1数列1.1数列的概念 1.2数列的函数特性§2等差数列2.1等差数列 2.2等差数列的前n项和§3等比数列3.1等比数列 3.2等比数列的前n项和§4书雷在日常经济生活中的应用第二章解三角形(8)§1正弦定理与余弦定理1.1正弦定理 1.2余弦定理§2三角形中的几何计算§3解三角形的实际应用举例第三章不等式(16)§1不等关系——2 1.1不等关系 1.2比较大小§2一元二次不等式——52.1一元二次不等式的解法 2.2一元二次不等式的应用§3基本不等式——— 33.1基本不等式 3.2基本不等式与最大(小)值§4简单线性规划——54.1二元一次不等式(组)与平面区域4.2简单线性规划 4.3简单线性规划的应用。

“一元线性回归模型”教学设计

“一元线性回归模型”教学设计

一、内容和内容解析1.内容结合具体实例,了解一元线性回归模型的含义,了解模型参数的统计意义,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法,会使用相关的统计软件.2.内容解析“一元线性回归模型”是北师大版《普通高中课程标准实验教科书·数学3(必修)》(以下统称“教材”)第一章“统计”第8节的内容,是统计思想方法在实际生活中的典型应用案例.在此之前学生学习了数据的统计特征,在实际中经常要研究变量之间的相关关系,以最基本的一元线性回归为载体,通过画散点图描述两个变量之间关系的统计特征,用样本的情况去估计总体的情况,启发学生理解拟合思想,尝试构造函数模型去近似刻画变量之间的相关关系,有利于进一步发展学生的统计观念,培养学生的统计应用意识和能力,也为后面进一步学习独立性检验奠定基础.本节课的教学重点为经历一次完整的统计应用活动,会画散点图直观表示两个变量之间的相关关系,理解直线拟合的思想,理解最小二乘原理,会利用计算器和Excel 软件进行数据处理,会根据最小二乘法建立一元线性回归模型解决实际问题.教材从身高与右手一拃长的相关关系研究出发,通过画散点图,观察发现所有点都在一条直线附近波动,进而判断两个变量之间线性相关,从而可以用一条直线近似刻画两个变量之间的相关关系.引入直线拟合的概念,然后思考如何确定这条直线能更合理地近似刻画这种关系.采取小组讨论的方式,引导学生从定性到定量,建立一种数学上的“理想”的拟合方式,即考虑如何使得所有样本点到一条直线的“整体距离”最小,从而引入最小二乘法,建立一元线性回归模型.会利用信息技术求出两个变量之间的线性回归方程,从而对实际问题进行预判和决策.为了创设有利于学习的实际问题情境,本节课选取中央电视台社会与法频道《见证》栏目《神眼追踪》中足迹鉴定专家神奇破案的真实案例片断导入课题,通过思考怎样根据足迹推断犯罪嫌疑人的身高引出身高与鞋码有相关关系,引导学生经历一个完整的统计活动过程,探究身高与鞋码之间的相关关系.通过从学生中现场收集数据、整理数据,利用散点图描述数据、分析数据(直线拟合,探索回归直线方程的求法),运用最小二乘法刻画数据特征求得回归直线方收稿日期:2021-01-15作者简介:黄润华(1982—),男,中学一级教师,主要从事高中数学教育教学研究.“一元线性回归模型”教学设计黄润华摘要:本节课是统计思想方法在实际生活中的典型应用案例.结合两个变量之间线性相关的具体实例,经历统计活动,理解最小二乘原理,利用计算器和Excel 软件进行数据处理,建立一元线性回归模型,从而进行实际预测,解决实际问题.了解利用回归直线刻画两个变量之间相关关系的代表性,理解回归直线必过样本点的中心,并能对统计活动结果进行反思.关键词:线性回归;统计应用;数学建模;数据处理··9程,对实际问题进行预测,对统计结果分析与反思等环节,理解统计应用的思路与过程.在由散点图得到两个变量之间线性相关的基础上,着力探讨如何确定一条直线来更好地近似刻画这种关系,进行直线拟合.通过小组讨论与交流,引导学生从定性分析到定量计算,建立一种数学上的“理想”的拟合方式,即考虑如何使得所有样本点到一条直线的“整体距离”最小,从而引入最小二乘法建立一元线性回归模型.引导学生理解任一样本点()x i ,y i 与直线上横坐标为x i 的点之间的距离是刻画点到直线的远近的一种新的形式,其平方同样可以近似刻画点到直线的远近,从便于运算的角度我们选择平方,最小二乘法的基本思想即使所有样本点到直线的“距离”的平方和最小.从而,如果能判断两个变量之间具有线性相关关系,就能利用最小二乘法求出两个变量之间的线性回归方程,从而进行预判决策.本节课旨在建立一种统计模型来近似刻画实际问题中两个变量之间的关系,在问题解决的过程中发展学生的统计观念,理解数据分析的新思路和新方法,理解方法中蕴涵的数学思想,理解方法的目的和本质,体会统计模型的必要性和合理性.引导学生陷入机械、烦琐的公式计算中,从数据处理的角度思考如何避免繁杂的运算,认识到根据最小二乘法的思想和公式研发程序是源于生产生活实际需要,有其必然性,把握数据处理的思路,注重与信息技术的融合,对于提高学生的信息素养、进一步发展学生的统计观念、培养学生数据分析和数学建模等核心素养都起着非常重要的作用.二、目标和目标解析1.目标以发展学生的统计观念为核心,践行“四基”、发展“四能”,在问题解决中着重培养学生数据分析和数学建模等素养,根据《普通高中数学课程标准(2017年版)》(以下简称《标准》)中“一元线性回归模型”的内容及要求,确定本节课的教学目标如下.(1)经历完整的统计活动过程,进一步体会应用统计的思想和方法解决实际问题.(2)会画散点图判断两个变量之间是否线性相关,理解数据分析的思路和方法.(3)掌握用最小二乘法建立一元线性回归模型刻画两个变量之间的线性相关关系的方法.(4)会用计算器和Excel 软件求线性回归方程,并能根据一元线性回归模型进行预测.(5)理解一元线性回归模型参数的含义和统计结果的意义,会进行反思.2.目标解析目标(1)解析:本节课是统计应用案例,通过对实际问题中两个变量之间相关关系的研究,经历对两个变量间呈现一个大致的整体集中趋势的近似刻画的过程,开拓统计应用的新天地,进一步培养学生的统计应用意识.目标(2)解析:通过画散点图,类比函数图象可以看出两个变量之间的大致关系,并判断它们之间是否线性相关,探索发现数据处理的新思路和新方法.目标(3)解析:通过分组讨论和思考交流,了解直线拟合的思想,理解最小二乘法是一种方便可行、直观美妙的方法,从而建立一元线性回归模型.目标(4)解析:理解运用信息技术进行数据处理的必要性,并学会利用计算器和Excel 软件求线性回归方程,理解程序背后的数学思想与方法.能根据一元线性回归模型完成计算预测,从而解决实际问题.目标(5)解析:数学源于生活,又服务于生活.结合实际理解一元线性回归模型的含义和统计结果的意义.通过对统计活动各环节的反思,逐渐理解问卷的设计、样本的选取、分析方法的运用都会对统计结果产生影响,引导学生理解对统计结果保持批判性态度的必要性和重要性.三、教学问题诊断在义务教育阶段,学生初步建立了统计观念,了解了统计活动的全过程,学习了数据收集、整理、描述和分析的基本方法.在高中阶段,学生通过统计的学习进一步发展了统计观念,能较好地把握数据分析的基本思路,对统计的基本思想与应用有了更加深刻的体会.学生不知道应该怎样刻画两个变量之间的相关关··10系.尽管经过初中的学习,学生已经具备了比较丰富的函数知识,知道了函数可以刻画两个变量之间的一种确定性关系,但是对不满足函数关系的两个变量要怎么处理会感到困难.要引导学生理解相关关系的本质是一个变量可能受到其他多个变量的影响,故它的值会呈现一定的随机性或者波动性,这种波动在大量数据中往往会呈现一定的规律性,这就是回归分析要解决的问题.对两个变量之间相关关系的刻画,本质上是利用函数模型进行近似刻画,蕴涵着转化与化归思想.在画出散点图后,引导学生观察、刻画两个变量之间关系的统计特征.在给出线性相关的基础上,到底用哪条直线近似刻画更好,学生感到很茫然.故而采取分组讨论的方式,先让学生自主尝试,彼此交流想法,体会回归的含义,画出直线,然后通过小组间的交流再去归纳共性,建立一定的“理想”标准——所有样本点和直线整体上最接近.怎么刻画所有样本点和直线整体上最接近呢?这是一个很关键的问题,要引导学生理解在横坐标一定的情况下,样本点可以理解为在平均水平上下波动,从而建立一种新的标准来刻画点到直线的远近,即用任意一点()x i ,y i 与这条直线上横坐标为x i 的点之间的距离来刻画,而不是用数学上的距离来刻画.不仅如此,绝对值还面临一个计算上的困难,而统计上在方差里已经用了平方和表示,这里的本质其实是一样的.教学中采用对话教学法,启发学生进行知识迁移.学生对系数计算公式的理解存在较大的困难.根据最小二乘法推导出来的系数计算公式比较复杂,还包括两种不同形式的表达,直接运用公式计算需要分若干步,比较麻烦.教学时引导学生逐步认识公式,分析公式结构的特点,帮助学生更好地了解公式,并逐步渗透研发程序计算的必要性,建立自然合理的教学逻辑,了解程序背后的思想方法.利用计算器和Excel 软件求线性回归方程属于新的技能,需要教师以适当的方式传授.虽然学生具备了一定的计算机操作与计算器使用技能,但涉及利用最小二乘原理求系数的值,这需要学会使用计算器有关的统计功能.为了使计算器操作程序直观化、效果有引领性,教师在课前录制“利用计算器求线性回归方程”的微课,课上播放微课传授新技能.而对于利用Excel 软件求线性回归方程,则根据其操作简单易学的特点,采取教师随堂操作演示的方式传授技能,并录制微视频供学生课后上机操作时使用,以调动学生的学习热情,辅助学生学习.本节课的教学难点是理解直线拟合的必要性与合理性,掌握建立一元线性回归模型的一般原理.为突破难点,设计了求线性回归方程的小组讨论活动和帮助小卖部决策等问题,在探究和交流中领会思想,提升统计应用的能力.四、教学媒体设计本节课思想性、整体性、应用性强,决定采用情境—启发式探究教学模式,创设有利于学生学习的环境,通过小组讨论与实践应用,引导学生理解拟合思想,培养学生的自主探究能力与合作交流能力,发展学生的统计观念,提高学生的数学应用意识.为创设情境,更好地突出重点,突破难点,本节课主要进行了如下设计.1.导入使用真实案例为了创设真实的问题情境,选取了中央电视台社会与法频道《见证》栏目的真实神探破案视频导入课题,围绕神探怎样由足迹推断出犯罪嫌疑人的身高这一核心问题,根据足迹提供的有关信息,导入身高与鞋码这两个变量之间的相关关系的研究.2.设计了画散点图的课堂活页为了让学生亲自体会描点画图描述身高与鞋码之间的相关关系的过程,专门设计了一份课堂活页,内容为平面直角坐标系,横轴表示鞋码,纵轴表示身高,标示了相应的数值,便于学生描点.展示学生作图成果,并在后面的小组讨论中继续使用,在黑板上张贴画回归直线的成果,表述作法,有效揭示了学生的思维过程.3.Excel 表格一表多用,无缝衔接在现场收集数据时,由学生负责将样本数据逐一输入Excel 表格中,运用信息技术将表格数据同步到描述数据环节和学生利用计算器根据现场数据计算线性回归方程、教师操作演示利用Excel 软件求线性回归方程等环节,实现了数据的同步无缝应用,体现了信息··11技术的实用性.4.自主录制微课,传授技能经过反复研究,为了便于学生学习如何利用计算器求线性回归方程,采取了自主录制微课的形式;为了辅助学生课后上机利用Excel软件求线性回归方程,也录制了一个微课,供学生自主学习使用,课堂上不播放.5.课件简洁优美整节课共六个环节,仅使用10张幻灯片,节奏明快,界面简洁优美,既呈现了主要思路和内容,又做到了不同环节之间必要的无缝对接,信息技术融合应用恰当.6.板书简洁有条理板书呈现了统计活动的主要过程和一元线性回归模型的基本原理,通过学生活动和小组活动成果的展示,能够引导学生更好地理解直线拟合的背景和一元线性回归模型的含义,便于学生从整体上把握整节课的学习.五、教学过程设计1.创设情境,提出问题(1)俗话说,三百六十行,行行出状元.各行各业都有许多楷模.他们是公安楷模,是人民的守护神.下面我们来看一段公安神探破案的视频.播放《见证》栏目《神眼追踪》中神探足迹鉴定专家神奇破案的真实案例片断.(2)思考:神探根据足迹推断出了犯罪嫌疑人的身高,足迹能给我们提供什么信息呢?(3)提出问题:它们之间的相关关系具体是怎样的?神探又是怎样推断的呢?(4)导入课题:一元线性回归模型.【设计意图】以真实案件视频片断导入课题,关注社会、设置悬念,从研究身高与鞋码之间的相关关系入手,也为后面反思身高与足迹之间的相关关系埋下伏笔.2.统计分析,探究交流要研究两个变量之间的相关关系,根据统计学知识,我们首先应该做什么呢?收集数据:现场收集8对鞋码与身高的数据,用Excel软件同步导入如表1所示的电子表格中.表1鞋码身高通过观察表中数据,大体上可以发现,随着鞋码的增加,身高也在增加.【设计意图】从在座学生中现场随机收集鞋码与身高的数据,使样本数据源自学生,让学生体验样本的随机性,理解样本的代表性.描述数据:观察表中数据,大体上看,随着鞋码的增加,身高也在增加.你会怎样来直观表示身高与鞋码之间的这种关系呢?类比函数图象,描点画图.不妨设鞋码为x,身高为y,得到8个数对()x1,y1,()x2,y2,…,()x8,y8,将它们对应的点描出来,所得到的图称为散点图.学生在活页上的平面直角坐标系中画出散点图.教师展示学生作图成果,张贴到黑板上,随即分析图形特点.【设计意图】引导学生类比函数去认识身高与鞋码两个变量之间的相关关系,并亲自画散点图直观表示它们之间的相关关系,为数据分析作准备,了解拟合的背景.分析数据:观察散点图,你有什么发现呢?所有点看上去都在一条直线附近波动.线性相关:如果散点图中所有点看上去都在一条直线附近波动,称变量间线性相关.此时,可以用一条直线来近似刻画它们之间的关系,这样近似的过程称为直线拟合.探究:怎样确定这条直线呢?你是怎么想的?在小组内交流,并画出这条直线.教师展示小组讨论成果,汇报各自想法,分析不同想法的共同点.【设计意图】设计确定回归直线的小组讨论活动,自主探究、交流讨论,加深对回归含义的感知,并尝试得出确定这条直线的方法.3.建立模型,理解原理各小组做法虽然不同,但其实想法是一致的,都是希望所有点和这条直线尽可能接近,也就是整体距离最小,如何用数学的方法刻画呢?··12建立模型:假设我们已经得到两个具有线性相关关系的变量的一组数据()x 1,y 1,()x 2,y 2,…,()x n ,y n ,所求回归直线方程为y =bx +a ,那么如何刻画这些点和直线y =bx +a 整体上最接近呢?思考交流:不妨先刻画任意一点P i ()x i ,y i 和直线y =bx +a 的远近,说说你的想法!①用点到直线的距离来刻画.②用点()x i ,y i 与这条直线上横坐标为x i 的点之间的距离来刻画点()x i ,y i 到直线y =bx +a 的远近,即用||y i -()bx i +a ()i =1,2,3,…,n 来刻画点()x i ,y i 到直线y =bx +a 的远近.哪一种想法更合适呢?【设计意图】设置问题串启发学生分析如何刻画一个点到回归直线的远近,从实际意义的角度创造性地定义新的标准来刻画点到直线的远近,进一步理解波动和回归的意义,渗透创新思维的培养,理解数学的应用价值.所有点()x i ,y i 到直线y =bx +a 的“整体距离”表示为Q =||y 1-()bx 1+a +||y 2-()bx 2+a +…+||y n -()bx n +a =∑i =1n||y i-()bx i+a .要求回归方程,就是要确定a ,b 的值,使Q 的值最小.绝对值方便计算吗?【设计意图】通过对绝对值运算的分析,理解图中点与直线位置关系的不确定性,即点的波动性与直线的待定性.类比方差的知识,用∑i =1n[]y i -()bx i +a 2表示所有点到直线的“整体距离”,发挥知识的正迁移作用.理解原理:由于绝对值计算不方便,在实际应用中,我们常使用Q =[]y 1-()bx 1+a 2+[]y 2-()bx 2+a 2+…+[]y n-()bxn+a 2=∑i =1n[]y i -()bx i +a 2进行计算.线性回归方程:经过推导,确定回归方程y =bx +a 中b ,a 的计算公式如下.ìíîïïïïb =∑i =1n ()x i -xˉ()y i -y ˉ∑i =1n()x i -x ˉ2=∑i =1nx i y i -nx ˉy ˉ∑i =1n x i 2-nx ˉ2,a =yˉ-bx ˉ.意义分析:第一个表达式是x i 减x ˉ乘以对应的y i减y ˉ求和,去除以x i 减x ˉ的平方和;第二个表达式是x i 乘以对应的y i 求和减x ˉyˉ积的n 倍,去除以x i 的平方和减x ˉ的平方的n 倍.公式看似复杂,但是结构优美,都是分式形式.先看第一个公式,分子分母结构相同,如果把分子中的y i 变成x i ,y ˉ变成x ˉ,则分子与分母就完全一样了;第二个公式也具有一样的结构.公式的具体推导过程大家可以在课后进行思考.使∑i =1n[]y i -()bx i +a 2最小从而求得线性回归方程的方法叫做最小二乘法.思考:由a =y ˉ-bx ˉ,得y ˉ=bx ˉ+a.你发现了什么?回归直线y =bx +a 经过点()x ˉ,y ˉ,即样本点的中心.【设计意图】根据《标准》的要求和课程安排,着重把握方法背后的数学思想方法,引导学生课后探讨使Q 最小的系数b ,a 公式的推导过程,课堂上对公式进行详实分析,充分认识公式的结构,引导学生欣赏数学美.同时,还分析得到回归直线过样本点的中心,了解回归直线的代表性.4.运行程序,计算预测设置递进式问题串:(1)有了公式,下面是否可以动手计算系数b ,a 呢?(2)是否可以用计算器?(3)用计算器肯定可以轻松很多,但是如果有成千上万个数据呢?随着信息技术的发展,根据最小二乘法的思想和公式研发程序进行数据处理成为必然.【设计意图】从公式的理解到引导学生认识运用公式计算系数b ,a 的困难,感受使用计算器的必要性,再考虑到统计往往面对的是大量的数据处理工作,用计算器替代公式计算也是非常繁杂且易出错的,从而认识到研发程序的必要性,培养学生优化运算的思维.利用计算器求回归方程(播放微课),先开启计算器,然后分如下三个步骤.①选择模式:按MODE 键,进入模式选择,按3,选择Reg 回归,再按1,选择Lin 线性.②输入数据:按SHIFT 键+CLR +1=,清空统计存储器,再逐一输入收集的数据.··13③计算统计变量,按SHIFT键,按数字键2,就切换到了S-VAR功能,按两次方向键,选择1,计算a,同样操作,选择2,计算b.具体参考操作步骤如下图所示.学生两人一组,根据刚才的数据计算a,b的值.学生报告操作结果.【设计意图】为了便于传授利用计算器求值的技能,经过反复研究,确定由教师录制微课;为了突出程序思维,将利用计算器求值的技能分为三个步骤,易懂易学、方便操作.利用Excel软件求回归方程.如果有很多数据,怎么导入呢?需要一个个输入吗?教师操作演示,顺便验证大家刚才的操作结果.具体步骤如下.①在Excel表格中选定表示鞋码与身高关系的散点图,在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的方程.计算结果为什么是一样的呢?用计算器和用Excel软件求回归方程本质上没有区别,都是根据最小二乘法的思想和公式计算.不仅如此,标准统计软件SAS和SPSS也是根据最小二乘法的思想和公式求线性回归方程.课后,教师让学生参考视频教程在计算机上操作实践.有了回归方程,我们就知道了身高与鞋码的具体相关关系,并且可以根据鞋码预测身高.例如,根据42码的鞋印预测身高大概是多少?即当x=42时,y≈175.5.【设计意图】从计算器到Excel软件,从微课传授技能到当堂操作演示,都是以教与学的需要为出发点和落脚点,引导学生分析计算器和计算机软件求线性回归方程的区别与联系,并介绍了标准的统计软件.加强信息技术与统计内容的融合,启发学生思考如何从机械、烦琐的数据处理中解脱出来,培养程序化思维,发展学生的统计观念和信息素养.配套使用Excel 软件求回归方程的微视频教程,供学生上机操作时参考.分析不同软件求回归方程的本质,渗透程序思想.5.分析反思,实际预测下面我们利用全国统计数据预测一下鞋码为42码的人对应的身高.比较两个预测的样本与结果,你有什么发现呢?反思1:预测结果差异大吗?哪个结果会相对可靠呢?为什么?反思2:事实上,视频中足迹专家的推断与实际非常吻合,他怎么能推断得这么准呢?如果只根据鞋码推断可靠吗?鞋码是一元的,足迹是多元的,专家一般都是研究多元变量的影响进行推断的.怎么进行多元回归分析呢?教师让感兴趣的学生课后思考.【设计意图】统计是根据样本的情况估计总体情况,回归分析是通过函数模型近似刻画相关变量关系的统计方法.设计分析反思活动,引导学生对统计结果的合理性进行必要的批判与质疑,从数学问题的结论再回归到生活实际,呼应本节课引入的真实问题情境,身高与鞋码之间是一元线性相关,而身高与足迹之间却是多元回归分析问题,将相关关系的思考延伸到课外,重视培养学生的统计思维和应用意识.实际预测:线性回归能够帮助我们进行实际的预判决策.学校旁边有个小卖部卖奶茶,根据表2中收集的数据,你能帮小卖部进行决策吗?看看气温是6℃时大概要准备多少杯奶茶.表2气温x/°C奶茶杯数y/杯150413271281511619104238931763654(下转第21页)··14。

北师大版数学必修3教案 第一章 §8 最小二乘估计

北师大版数学必修3教案   第一章  §8  最小二乘估计

最小二乘估计预习课本P54~59,思考并完成以下问题(1)最小二乘法的概念是什么?(2)线性回归方程的概念是什么?(3)如何计算线性回归方程的系数a和b?[新知初探]1.最小二乘法(1)定义:如果有n个点(x1,y1),(x2,y2),…,(x n,y n),可以用下面的表达式来刻画这些点与直线y=a+bx的接近程度:[y1-(a+bx1)]2+[y2-(a+bx2)]2+…+[y n-(a+bx n)]2.使得上式达到最小值的直线y=a+bx就是我们所要求的直线,这种方法称为最小二乘法.(2)应用:利用最小二乘法估计时,要先作出数据的散点图.如果散点图呈现出线性关系,可以用最小二乘法估计出线性回归方程;如果散点图呈现出其他的曲线关系,我们就要利用其他的工具进行拟合.2.线性回归方程用x表示x1+x2+…+x nn,用y表示y1+y2+…+y nn,由最小二乘法可以求得b=x1y1+x2y2+…+x n y n-n x yx21+x22+…+x2n-n x2,a=y-b x,这样得到的直线方程y=a+bx称为线性回归方程,a,b是线性回归方程的系数.[点睛]由a=y-b x可知,回归直线一定经过点(x,y),因此点(x,y)通常称为样本点的中心.[小试身手]1.判断正误.(正确的打“√”,错误的打“×”)(1)用最小二乘法求出的回归系数b可能是正的,也可能是负的.()(2)用最小二乘法求出的系数可以使回归直线更贴近实际情况.()(3)若回归系数b是负的,则y的值随x的增大而减小.()(4)根据最小二乘法求出回归系数,从而可以表示出线性回归方程,这个方程可以准确表示每一个数据.()答案:(1)√(2)√(3)√(4)×2.在最小二乘法中,用来刻画各样本点到直线y=a+bx“距离”的量是()A.|y i-y|B.(y i-y)2C.|y i-(a+bx i)| D.[y i-(a+bx i)]2解析:选D最小二乘法的定义明确给出,用[y i-(a+bx i)]2来刻画各个样本点与这条直线之间的“距离”(即二者之间的接近程度),用它们的和表示这些点与这条直线的接近程度.3.线性回归方程y=a+bx表示的直线必定过()A.(0,0)点B.(x,0)点C.(0,y)点D.(x,y)点解析:选D回归系数a,b有公式a=y-b x,即y=a+b x,所以直线y=a+bx 必定过(x,y)点.4.在一次实验中,测得(x,y)的四组值为(1,2),(2,3),(3,4),(4,5),则y与x之间的线性回归方程为()A.y=x+1 B.y=x+2C.y=2x+1 D.y=x-1解析:选A法一:易知在直角坐标系中这四个点都在直线y=x+1上.法二:因为x=1+2+3+44=2.5,y=3.5,而回归直线必过点(x,y),所以把点(2.5,3.5)代入各个选项检验可知选A.求线性回归方程[典例]10次试验,测得数据如下:零件数/个102030405060708090100 加工时间/分626875818995102108115122[解]在直角坐标系中画出数据的散点图,如图所示.观察判断出散点在一条直线附近,故具有线性相关关系.由测得的数据列表如下:i x i y i x2ix i y i11062100620 22068400 1 360 33075900 2 250 44081 1 600 3 240 55089 2 500 4 450 66095 3 600 5 700 770102 4 9007 140 880108 6 4008 640 9901158 10010 350 1010012210 00012 200 合计55091738 50055 950 平均5591.7 3 850 5 595b=∑i=1nx i y i-n x y∑i=1nx2i-n x2=55 950-10×55×91.738 500-10×552≈0.668,a≈y-b x=91.7-0.668×55=54.96.所以线性回归方程为y=54.96+0.668x.求线性回归方程的技巧和注意点(1)求解线性回归方程时,需要进行复杂的计算,采用列表法会使计算进行得更有条理.表格可以参考如下方法设计:i x i y i x2i x i y i123… n 合计 平均(2)若已知变量x ,y 成线性相关关系,无需检验相关性即可求解线性回归方程,否则需要根据散点图判断变量x ,y 之间是否存在线性相关关系,再求解线性回归方程.[活学活用]某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量之间的相关关系.现取了8对观测值,计算得∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =18x i y i =1849,则y 对x的线性回归方程是( )A .y =11.47+2.62xB .y =-11.47+2.62xC .y =2.62+11.47xD .y =11.47-2.62x解析:选A 利用题目中的已知条件可以求出x =6.5,y =28.5,然后利用线性回归方程的计算公式得b =∑i =18x i y i -8x y∑i =18x 2i -8x2=1 849-8×6.5×28.5478-8×6.52≈2.62,a ≈y -b x =11.47,因此线性回归方程为y =11.47+2.62x .线性回归方程的应用[典例] x (单位:吨)与相应的生产能耗y (单位:吨标准煤)的几组对照数据.x 3 4 5 6 y2.5344.5(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =a +bx ; (3)已知该厂技术改进前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测该厂技术改进后生产100吨甲产品的生产能耗比技术改进前降低多少吨标准煤?[解] (1)散点图如图所示,显然y 与x 是线性相关的.(2)计算可得x=4.5,y=3.5,3×2.5+4×3+5×4+6×4.5=66.5,32+42+52+62=86.代入公式得b=66.5-4×4.5×3.586-4×4.52=0.7,a=3.5-0.7×4.5=0.35,所以线性回归方程为y=0.35+0.7x.(3)当x=100时,y=0.35+0.7x=70.35,90-70.35=19.65,所以预测该厂技术改进后生产100吨甲产品的生产能耗比技术改进前降低19.65吨标准煤.应用线性回归方程解题的常见思路(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据.(2)利用回归方程中系数b的意义,分析实际问题.(3)利用回归直线进行预测时需关注两点:①所得的值只是一个估计值,不是精确值;②变量x与y成线性相关关系时,线性回归方程才有意义,否则即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.[活学活用]1.根据如下样本数据得到的回归方程为y=bx+a,则()x 345678y 4.0 2.5-0.50.5-2.0-3.0A.a>0,b>0 B.a>0,b<0C.a<0,b>0 D.a<0,b<0解析:选B画出散点图,如图所示.观察图像可知,回归直线y=bx+a的斜率b<0,截距a>0.故a>0,b<0.2.某产品的广告费用x与销售额y的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y =bx +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元解析:选B 样本点的中心是(3.5,42),则a =y -b x =42-9.4×3.5=9.1,所以线性回归方程是y =9.4x +9.1,把x =6代入得y =65.5.[层级一 学业水平达标]1.已知x 与y 之间的一组数据:x 0 1 2 3 y1357则y 与x 的线性回归方程y =bx +a 必过点( ) A .(2,2) B .(1.5,0) C .(1,2)D .(1.5,4) 解析:选D 线性回归方程y =bx +a 必过样本中心(x ,y ),x =1+2+34=1.5,y=1+3+5+74=4.2.有人收集了春节期间平均气温x (单位:℃)与某取暖商品的销售额y (单位:万元)的有关数据如下表:平均气温x (℃) -2 -3 -5 -6 销售额y (万元)20232730y =a +bx 的系数b =-2.4.则预测平均气温为-8 ℃时,该商品的销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元解析:选A 由已知得x =-2-3-5-64=-4,y =20+23+27+304=25,所以a=y -b x =25+2.4×(-4)=15.4,即线性回归方程为y =15.4-2.4x ,当x =-8时,y =34.6.3.一位母亲记录了儿子3~9岁的身高,由此确立的身高y (单位:cm)关于年龄x (单位:岁)的线性回归方程为y =7.19x +73.93,则这个孩子10岁时,下列叙述正确的是( )A .身高在145.83 cm 左右B .身高在145.83 cm 以上C .身高在145.83 cm 以下D .身高一定是145.83 cm解析:选A 当x =10时,y =145.83,利用线性回归方程预测时,估计值会存在偏差. 4.下列说法正确的是________(把正确说法的序号全填上).①已知线性回归方程为y =0.5x +2,则当x =2时,变量y 的值一定为3; ②已知一个线性回归方程为y =1.5x +45(x i =1,5,7,13,19,则y =58.5; ③任给两组变量,我们都可以通过线性回归方程进行预测;④散点图中的绝大多数点都表现出两变量线性相关,个别特殊点不影响线性回归. 解析:将x 值代入线性回归方程所得的值是预测值,不一定是真实值,故①错;x =15(1+5+7+13+19)=9,代入线性回归方程,得y =58.5,故②正确;只有当两个变量具有线性相关关系时,求回归直线方程才有意义,因此当两个变量之间不具有线性相关关系时,我们不能通过线性回归方程进行预测,故③错;④显然正确.答案:②④[层级二 应试能力达标]1.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程y =bx +a ,那么下面说法不.正确的是( ) A .直线y =bx +a 必经过点(x ,y )B .直线y =bx +a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线y =bx +a 的斜率为∑i =1nx i y i -n x y∑i =1nx 2i -n x2D .直线y =bx +a 与各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的接近程度∑i =1n[y i -(bx i +a )]2是该坐标平面上所有直线与这些点的最接近的直线解析:选B 直线y =bx +a 一定过点(x ,y ),但不一定要过样本点. 2.设一个线性回归方程为y =2+1.2x ,则变量x 增加1个单位时( ) A .y 平均增加1.2个单位 B .y 平均减少1.2个单位 C .y 平均增加2个单位D.y平均减少2个单位解析:选A根据系数b的意义可得b=1.2>0,因此变量x增加1个单位时,y平均增加1.2个单位.3.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,线性回归方程为y=0.66x+1.562,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为() A.83%B.72%C.67% D.66%解析:选A将y=7.675代入回归方程,可计算得x≈9.26,所以该城市人均消费额占人均工资收入的百分比约为7.675÷9.26≈0.83,即约为83%.4.已知x与y之间的几组数据如下表:x 123456y 02133 4据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是() A.b>b′,a>a′B.b>b′,a<a′C.b<b′,a>a′D.b<b′,a<a′解析:选C法一:由两组数据(1,0)和(2,2)可求得直线方程为y=2x-2,故b′=2,a′=-2.而利用线性回归方程回归系数b,a的计算公式与已知表格中的数据,可求得b=∑i=16x i y i-6x·y∑i=16x2i-6x2=58-6×72×13691-6×⎝⎛⎭⎫722=57,a=y-b x=136-57×72=-13,所以b<b′,a>a′.法二:根据所给数据画出散点图(如图所示)直接判断,斜率b′>b,截距a>a′.5.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y =0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:由线性回归方程中b 的意义可知年饮食支出平均增加0.254万元. 答案:0.2546.某地区近10年居民的年收入x 与支出y 之间的关系大致符合y =0.8x +0.1(单位:亿元),预计今年该地区居民收入为15亿元,则年支出估计是________亿元.解析:由题意知,y =0.8×15+0.1=12.1(亿元),即年支出估计是12.1亿元. 答案:12.17.已知x ,y 之间的一组数据如下表:x 2 3 4 56 y34689对于表中数据,现给出如下拟合直线:①y =x +1;②y =2x -1;③y =85x -25;④y =32x .则根据最小二乘法的思想求得拟合程度最好的直线是________(填序号).解析:由题意知x =4,y =6,∴b =∑i =15x i y i -5x y∑i =15x 2i -5x2=85, ∴a =y -b x =-25,∴y =85x -25,故填③.答案:③8.随着网络的普及,网上购物的方式已经受到越来越多年轻人的青睐,某家网络店铺商品的成交量x (件)与店铺的浏览量y (次)之间的对应数据如下表所示:x /件 2 4 5 6 8 y /次3040506070(1)(2)根据表中的数据,求出y 关于x 的线性回归方程;(3)要使这种商品的成交量突破100件(含100件),则这家店铺的浏览量至少为多少? 解:(1)散点图如图所示.(2)根据散点图,变量x 与y 之间具有线性相关关系.数据列成下表:i x i y i x2i x iy i 1230460 244016160 355025250 466036360 587064560 合计25250145 1 390由上表计算出x=255=5,y=2505=50,代入公式得b=∑i=15x i y i-5x y∑i=15x2i-5x2=1 390-5×5×50145-5×52=7,a=y-b x=50-7×5=15,故所求的线性回归方程是y=15+7x.(3)根据上面求出的线性回归方程,当成交量突破100件(含100件),即x=y-157≥100时,y≥715,所以店铺的浏览量至少为715次.9.李军为了研究某种细菌个数y(个)随温度x(℃)变化的关系,收集有关数据,如下表所示:x/℃1416182022y/个121075 3(1)(2)求细菌个数y关于温度x的线性回归方程;(3)当细菌的个数为9时,预测温度是多少(精确到0.1).解:(1)散点图如图所示.(2)由图可知,y与x之间具有线性相关关系.x=14+16+18+20+225=18,y=12+10+7+5+35=7.4,。

2021年高中数学第一章统计最小二乘估计第二课时教案北师大版必修3

2021年高中数学第一章统计最小二乘估计第二课时教案北师大版必修3

2021年高中数学第一章统计最小二乘估计第二课时教案北师大版必修3一、教学目标:经历用不同估算方法描述两个变量线性相关的过程。

知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

二、教学重难点:重点:了解最小二乘法的思想并利用此思想借助电子表格求出回归方程。

教学内容的难点:对最小二乘法的数学思想和回归方程的理解教学实施过程中的难点:根据给出的线性回归方程的系数公式建立线性回归方程。

三、教学方法:动手操作,合作交流。

四、教学过程:(一)、利用最小二乘法推导回归系数公式。

回顾上节课:师:我们现在来求距离和。

怎么求?生:利用点到直线的距离公式师生共同:只要求出使距离和最小的、b即可。

但是,我们知道点到直线的距离公式计算复杂。

怎么办呢?以样本数据点A为例,可以看出:按照一对一的关系,直角边AC越小,斜边AB越小,当AC无限小时,AB跟AC可近似看作相等。

求麻烦,不妨求生: 师:它表示自变量x 取值一定时,纵坐标的偏差。

假设我们已经得到两个具有线性相关关系的变量的一组数据:……。

当自变量取(=1,2,……,n )时,可以得到(=1,2,……,n ),它与实际收集到的之间的偏差是(=1,2,……,n )这样用n 个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的。

总的偏差为,偏差有正有负,易抵消,所以采用绝对值,由于带绝对值计算不方便所以换成平方,222221122331ˆ()()()()()ni i n n i Q y yy bx a y bx a y bx a y bx a ==-=--+--+--+⋅⋅⋅+--∑现在的问题就归结为:当,b 取什么值时Q 最小。

将上式展开、再合并,就可以得到可以求出Q 取最小值时1122211()()()nnii ii i i nn iii i xx y y xy n x yb xx xn xa yb x====---==--=-∑∑∑∑(其中,)推导过程用到偏差的平方,由于平方又叫二乘方,所以这种使“偏差的和”最小的方法叫“最小二乘法”。

北师大版高中数学必修三第1章统计1.8最小二乘估计课件

北师大版高中数学必修三第1章统计1.8最小二乘估计课件
2
,
������ = ������-������������ .
a,b是线性回归方程
目标导航
知识梳理 知识梳理
典型透析
随堂演练
【做一做1】 在最小二乘法中,用来刻画各样本点到直线 y=a+bx“距离”的量是( ) A.|yi−������| B. (������������ − ������)2 C.|yi-(a+bxi)| D.[yi-(a+bxi)]2 解析:最小二乘法的定义明确给出,用[yi-(a+bxi)]2来刻画各个样本 点与这条直线之间的“距离”(即二者之间的接近程度),用它们的和 表示这些点与这条直线的接近程度. 答案:D
-4-
§8 最小二乘估计
目标导航
知识梳理 知识梳理
典型透析
随堂演练
2.线性回归方程 (1)线性回归方程的概念
设 n 个样本点(x1,y1),(x2,y2),…,(xn,yn),则������ =
������1 +������2 +…+������������ ,则 ������
b=
������1 +������2+…+������������ , ������ ������ (������1 -������)(������1 -������)+(������2 -������)(������2 -������)+…+(������������ -������)(������������ -������) (������1 -������) +(������2 -������) +…+(������������ -������)
-6-

高中数学 第一章 统计 1.8 最小二乘法教案 北师大版必修3

高中数学 第一章 统计 1.8 最小二乘法教案 北师大版必修3

1.8最小二乘估计本节教材分析一、三维目标1、知识与技能(1) 掌握最小二乘法的思想;(2) 能根据给出的线性回归方程系数公式建立线性回归方程.2、过程与方法本节的学习,应该让学生通过实际问题去理解回归分析的必要性,明确回归分析的基本思想,从散点图中点的分布上我们发现直接求回归直线方程存在明显的不足,从中引导学生去发现解决问题的新思路—进行回归分析,进而介绍残差分析的方法和利用R的平方来表示解释变量对于预报变量变化的贡献率,从中选择较为合理的回归方程,最后是建立回归模型基本步骤.3、情感态度与价值观通过本节课的学习,首先让显示了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,培养我们利用整体的观点和互相联系的观点,来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心.加强与现实生活的联系,以科学的态度评价两个变量的相关系.教学中适当地增加学生合作与交流的机会,多从实际生活中找出例子,使学生在学习的同时.体会与他人合作的重要性,理解处理问题的方法与结论的联系,形成实事求是的严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识,解决实际问题的能力.二、教学重点:最小二乘法的思想及线性回归方程系数公式的应用三、教学难点:线性回归方程系数公式的应用四、教学建议最小二乘法的思想在理论上和实际应用中都是非常重要的.本节一开始从上一节课讨论的问题切入,提出用什么样的线性关系刻画会得到更好的问题,引发学生进行思考.教学时,学生可能会想到用点到直线的距离来进行刻画,教师可进行引导,这样做从想法上是非常直观与直接的,但是最主要的问题是处理上远远没有用最小二乘法的思想来得简单.进而,教科书介绍了最小二乘法估计的思想.教学时,教师要讲清楚最小二乘法所考察的距离与点到直线的距离的区别,以免产生误解与错误.新课导入设计导入一某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的如果某天的气温是-5 ℃,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?为解决这个问题我们接着学习两个变量的线性相关——回归直线及其方程.导入二我们知道函数能很好的表示两个变量之间的关系,那么两个线性相关的变量之间的关系,我们可不可以用函数来刻画呢?教学过程一、问题情境1.情境:客观事物是相互联系的过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度所以说,函数关系存在着一种确定性关系但还存在着另一种非确定性关系——相关关系 2.问题:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的气温/0C26 18 13 10 4 1- 杯数2024 34 38 50 64如果某天的气温是5-C ,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?二、学生活动为了了解热茶销量与气温的大致关系,我们以横坐标x 表示气温,纵坐标y 表示热茶销量,建立直角坐标系,将表中数据构成的6个数对所表示的点在坐标系内标出,得到下图,今后我们称这样的图为散点图(scatterplot).从右图可以看出.这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系.选择怎样的直线近似地表示热茶销量与气温之间的关系? 我们有多种思考方案:(1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线; (2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同; (3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距; 怎样的直线最好呢? 三、建构数学 1.最小二乘法:用方程为ˆybx a =+的直线拟合散点图中的点,应使得该直线与散点图中的点最接近。

高中数学必修三北师大版 最小二乘估计 课件(38张)

高中数学必修三北师大版 最小二乘估计 课件(38张)
2
2 x i nx
,a y bx;
第四步,写出回归方程y=bx+a.
【知识拓展】样本中心点的含义
点( x, y )是在用最小二乘法计算回归直线方程时出现的一个特
殊点,我们又称为样本中心点.可以验证样本中心点一定在回归 直线上,这一性质在解决回归直线问题时要灵活应用,巧妙代入, 从而简化计算.
x y x
i 1 i 1 n i 2 i
n
i
nxy
2
,a y bx
n x
1.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的
身高数据如下:
父亲身高x(cm) 儿子身高y(cm)
174 175 )
176 175
176 176
176 177
178 177
则y对x的线性回归方程为( (A)y=x-1 (B)y=x+1
y bx 这样得到的直线方程y=bx+a称为线性回归方程, a=______,
系数 a,b是线性回归方程的_____.
【轻松判断】
(1)求线性回归方程的方法是最小二乘法.(
)
)
(2)最小二乘法适用的前提条件是具有线性相关关系.(
(3)数据进行拟合,拟合的效果与数据的多少无关.(
提示:(1)正确.由线性回归方程的求法可知.
最小值 的直线y=a+bx就是我们所要求的直线,这种方法称为 _______
最小二乘法.
(2)应用:利用最小二乘法估计时,要先作出数据的散点图.如 线性回 果散点图呈现出线性相关关系,可以用最小二乘法求出______ 归方程 ;如果散点图呈现出其他的曲线关系,我们就要利用 _______ 其他的工具进行拟合.

新课标北师大版高中数学教材目录及课时安排

新课标北师大版高中数学教材目录及课时安排

新课标北师大版高中数学教材目录及课时安排必修1(36节)第一章集合(5)§1 集合的含义与表示 1 §2 集合的基本关系1 §3 集合的基本运算第二章函数(9)§1 生活中的变量关系1 §2 对函数的进一步认识3 §3 函数的单调性 1§4 二次函数性质的再研究2 §5 简单的幂函数 1 阅读材料函数概念的发展第三章指数函数和对数函数(14)§1 正整数指数函数 1 §2 指数概念的扩充3 §3 指数函数 3§4 对数 2 §5 对数函数 3 §6 指数函数、幂函数、对数函数增长的比较 1第四章函数应用 (7)§1 函数与方程 2 §2 实际问题的函数建模 4必修2(36)第一章立体几何初步(18节)§1 简单几何体 1 §2 直观图 1 §3 三视图 3§4 空间图形的基本关系与公理 2 §5 平行关系 3 §6 垂直关系 4§7 简单几何体的面积和体积 2第二章解析几何初步(18节)§1 直线与直线的方程 8 §2 圆与圆的方程 5 §3 空间直角坐标系 3必修3全书目录第一章统计(16)§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法第二章算法初步(12)§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句第三章概率(8)§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用必修4第一章三角函数(16)§1 周期现象与周期函数§2 角的概念的推广§3 弧度制§4 正弦函数§5 余弦函数§6 正切函数§7 函数的图像§8 同角三角函数的基本关系阅读材料数学与音乐第二章平面向量(12)§1 从位移、速度、力到向量§2 从位移的合成到向量的加法§3 从速度的倍数到数乘向量§4 平面向量的坐标§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例阅读材料向量与中学数学第三章三角恒等变形(8)§1 两角和与差的三角函数§2 二倍角的正弦、余弦和正切§3 半角的三角函数§4 三角函数的和差化积与积化和差§5 三角函数的简单应用必修5第一章数列(12)§1 数列 1.1 数列的概念 1.2 数列的函数特性§2 等差数列 2.1 等差数列 2.2 等差数列的前n项和§3 等比数列 3.1 等比数列 3.2 等比数列的前n项和第二章解三角形(8)§1 正弦定理与余弦定理 1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式(16)§1 不等关系——2 1.1 不等关系 1.2 比较大小§2 一元二次不等式——5 2.1 一元二次不等式的解法 2.2 一元二次不等式的应用§3 基本不等式——— 3 3.1 基本不等式 3.2 基本不等式与最大(小)值§4 简单线性规划——54.1 二元一次不等式(组)与平面区域4.2 简单线性规划 4.3 简单线性规划的应用。

高中数学-1.8-最小二乘估计课件-北师大必修3

高中数学-1.8-最小二乘估计课件-北师大必修3

2.做一做(请把正确的答案写在横线上) (1)对于线性回归方程y=2.75x+9,当x=4时,y的估计值是 __________. (2)散点图中n个点的中心是__________.
【解析】(1)将x=4代入y=2.75x+9得y的估计值为20.
答案:20
(2)因为 x x1 x2 xn ,
如表
i
xi
yi
x
2 i
xiyi
1
3
2
9
6
2
5
3
25
15
3
6
3
36
18
4
7
4
49
28
5
9
5
81
45
合计
30
17
200
112
进而可求得b=112 5 6 3.4 10 1 .
200 5 6 6 20 2
a=3.4- 1 ×6=0.4,
2
所以利润额y对销售额x的线性回归方程为:y=0.5x+0.4.
估计它们之间的联,
n
用 y 表示 y1 y2 yn ,
n
由最小二乘法可以求得
x1y1 x2y2 xn yn n x y
b=_____x_12 __x_22_____x__2n __n_x_2_____,a=__y__b__x__,这样得到的直线 方程y=a+bx称为线性回归方程,a,b是线性回归方程的_系__数__.
(2)当销售额为4千万元时,利润额为:
y=0.5×4+0.4=2.4(百万元).
【误区警示】求线性回归方程的关键是计算直线的斜率和截距 的估计值,往往因计算不准导致错误.

高中数学必修课件最小二乘估计

高中数学必修课件最小二乘估计

03
非线性回归模型与最小二乘估计
非线性回归模型概述
1 2
非线性回归模型定义
描述因变量与自变量之间非线性关系的回归模型 。
常见非线性回归模型
指数回归、对数回归、幂回归等。Βιβλιοθήκη 3非线性回归模型特点
模型参数估计复杂,但拟合效果可能更优于线性 回归。
最小二乘估计在非线性回归中应用
01
02
03
最小二乘法原理
参数估计性质与评价标准
参数估计性质
最小二乘估计具有线性性、无偏性、有效性等优良性质,是 实际应用中最常用的参数估计方法之一。
评价标准
评价最小二乘估计效果的标准包括残差图、均方误差、决定 系数等。其中,残差图用于直观判断模型拟合效果,均方误 差用于量化模型预测误差大小,决定系数用于衡量自变量对 因变量的解释程度。
通过介绍非线性回归模型的案例,如指数增长、周期性变化等,引 导学生理解最小二乘法在非线性回归中的推广和应用。
多重共线性问题
通过实际案例,让学生理解多重共线性对最小二乘估计的影响,以 及如何处理多重共线性问题。
实验设计与数据收集
实验设计
指导学生设计实验方案,明确实验目的、实验对象和实验 方法,确保数据的有效性和可靠性。
拓展应用
将最小二乘法应用于金融、生物、医学等领域的实际问题中,如股票价格预测、基因表达数据分析等。同时,可 以探索最小二乘法与其他数据分析方法的结合,如主成分分析、聚类分析等,以提高数据分析的准确性和效率。
THANKS
感谢观看
数据收集
教授学生如何收集和整理实验数据,包括直接观测、问卷 调查、实验测量等方法,强调数据的真实性和完整性。
预处理与探索性分析
引导学生对收集到的数据进行预处理,如数据清洗、缺失 值处理、异常值检测等,并进行探索性分析,初步了解数 据的分布和特征。

新北师大高中数学必修3第一章 §8 最小二乘估计

新北师大高中数学必修3第一章  §8  最小二乘估计

售额 y(单位:万元)的有关数据如下表:
平均气温x(℃) 销售额y(万元)
-2 -3 -5 -6 20 23 27 30
根据以上数据,用线性回归的方法,求得销售额 y 与平均气
温 x 之间的线性回归方程 y=a+bx 的系数 b=-2.4.则预测
平均气温为-8 ℃时,该商品的销售额为
()
A.34.6 万元
(2)应用:利用最小二乘法估计时,要先作出数据的 散点 图.如 果 散点图呈现出线性关系,可以用最小二乘法估计出线性回归方程; 如果 散点图 呈现出其他的曲线关系,我们就要利用其他的工具进行
拟合.
2.线性回归方程 用 x 表示x1+x2+n …+xn,用 y 表示y1+y2+n…+yn, 由最小二乘法可以求得 b=x1y1x+21+x2xy222++……++xxn2n-yn-n nxx2 y ,a=__y_-__b__x__,这样得 到的直线方程 y=a+bx 称为线性回归方程,a,b 是线性回归方 程的系数 . [点睛] 由 a= y -b x 可知,回归直线一定经过点( x , y ), 因此点( x , y )通常称为样本点的中心.
程,这个方程可以准确表示每一个数据.
( ×)
2.在最小二乘法中,用来刻画各样本点到直线 y=a+bx“距
离”的量是
()
A.|yi- y | C.|yi-(a+bxi)|
B.(yi- y )2 D.[yi-(a+bxi)]2
解析:选 D 最小二乘法的定义明确给出,用[yi-(a+ bxi)]2 来刻画各个样本点与这条直线之间的“距离”(即 二者之间的接近程度),用它们的和表示这些点与这条直
(1)求总分年级排名关于数学总分的线性回归方程y=bx+a(必

【高中教育】高中数学 第一章 统计 最小二乘估计第一课时教案 北师大版必修3.doc

【高中教育】高中数学 第一章 统计 最小二乘估计第一课时教案 北师大版必修3.doc

最小二乘估计教学目标:1、掌握最小二乘法的思想2、能根据给出的线性回归方程系数公式建立线性回归方程 教学重点:最小二乘法的思想教学难点:线性回归方程系数公式的应用 教学过程回顾:上节课我们讨论了人的身高与右手一拃长之间的线性关系,用了很多种方法来刻画这种线性关系,但是这些方法都缺少数学思想依据。

问题1、用什么样的线性关系刻画会更好一些?想法:保证这条直线与所有点都近(也就是距离最小)。

最小二乘法就是基于这种想法。

问题2、用什么样的方法刻画点与直线的距离会方便有效?设直线方程为y=a+bx ,样本点A (x i ,y i ) 方法一、点到直线的距离公式 12++-=b ay bx d i i方法二、()[]2iibx a y +-显然方法二能有效地表示点A 与直线y=a+bx 的距离,而且比方法一更方便计算,所以我们用它来表示二者之间的接近程度。

问题3、怎样刻画多个点与直线的接近程度?例如有5个样本点,其坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),(x 4,y 4),(x 5,y 5)与直线y=a+bx 的接近程度:()[]()[]()[]()[]()[]255244233222211bx a y bx a y bx a y bx a y bx a y +-++-++-++-++- 从而我们可以推广到n 个样本点:(x 1,y 1),(x 2,y 2),…(x n ,y n )与直线y=a+bx 的接近程度:()[]()[]()[]2222211n n bx a y bx a y bx a y +-+++-++-使得上式达到最小值的直线y=a+bx 就是我们所要求的直线,这种方法称为最小二乘法问题4、怎样使()[]()[]()[]2222211n n bx a y bx a y bx a y +-+++-++- 达到最小值?先来讨论3个样本点的情况设有3个点(x 1,y 1),(x 2,y 2),(x 3,y 3),则由最小二乘法可知直线y=a+bx 与这3个点的接近程度由下面表达式刻画:()[]()[]()[]233222211bx a y bx a y bx a y +-++-++-…………………①整理成为关于a 的一元二次函数)a (f ,如下所示:()()()[]()()()233222211332211223bx y bx y bx y bx y bx y bx y a a )a (f -+-+-+-+-+--=()[]()()()233222211223bx y bx y bx y x b y a a -+-+-+--=利用配方法可得()[]()()()()2233222211233x b y bx y bx y bx yxb y a )a (f ---+-+-+--=从而当x b y a -=时,使得函数)a (f 达到最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘估计
教学目标:1、掌握最小二乘法的思想
2、能根据给出的线性回归方程系数公式建立线性回归方程 教学重点:最小二乘法的思想
教学难点:线性回归方程系数公式的应用 教学过程
回顾:上节课我们讨论了人的身高与右手一拃长之间的线性关系,用了很多种方法来刻画这种线性关系,但是这些方法都缺少数学思想依据。

问题1、用什么样的线性关系刻画会更好一些?
想法:保证这条直线与所有点都近(也就是距离最小)。

最小二乘法就是基于这种想法。

问题2、用什么样的方法刻画点与直线的距离会方便有效?
设直线方程为y=a+bx ,样本点A (x i ,y i ) 方法一、点到直线的距离公式 1
2++-=
b a
y bx d i i
方法二、()[]2
i
i
bx a y +-
显然方法二能有效地表示点A 与直线y=a+bx 的距离,而且比方法一更方便计算,所以我们用它来表示二者之间的接近程度。

问题3、怎样刻画多个点与直线的接近程度?
例如有5个样本点,其坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),(x 4,y 4),(x 5,y 5)与直线y=a+bx 的接近程度:
()[]()[]()[]()[]()[]
2
5
5
2
4
4
2
3
3
2
2
2
2
1
1
bx a y bx a y bx a y bx a y bx a y +-++-++-++-++- 从而我们可以推广到n 个样本点:(x 1,y 1),(x 2,y 2),…(x n ,y n )与直线y=a+bx 的接近程度:
()[]()[]
()[]
2
2
2
2
2
1
1
n n bx a y bx a y bx a y +-+++-++-
使得上式达到最小值的直线y=a+bx 就是我们所要求的直线,这种方法称为最小二乘法 问题4、怎样使()[]()[]
()[]
2
2
2
2
2
1
1
n n bx a y bx a y bx a y +-+++-++- 达到最
小值?
先来讨论3个样本点的情况
设有3个点(x 1,y 1),(x 2,y 2),(x 3,y 3),则由最小二乘法可知直线y=a+bx 与这3个点的接近程度由下面表达式刻画:
()[]()[]()[]2
3
3
2
2
2
2
1
1
bx a y bx a y bx a y +-++-++-…………………①
整理成为关于a 的一元二次函数)a (f ,如下所示:
()()()[]()()()2
332
222
11332211223bx y bx y bx y bx y bx y bx y a a )a (f -+-+-+-+-+--=
()[]
()()()
2
332
222
11223bx y bx y bx y x b y a a -+-+-+--=
利用配方法可得
()[]()()()()
2
2
332
222
11
2
33x b y bx y bx y bx y
x
b y a )a (f ---+-+-+--=
从而当x b y a -=时,使得函数)a (f 达到最小值。

将x b y a
-=代入①式,整理成为关于b 的一元二次函数()b g ,
(
)()()[]--+-+-=22
32
22
1b x x x x x x )b (g
()()()()()()[]
+--+--+--y y x x y y x x y y x x b 33
21
2
1
1
2
()()()[]2
3
2221y y y y y y -+-+-
同样使用配方法可以得到,当
()()()()()()()()()
2
3
2
2
2
1
3
3
2
2
1
1
x x x x x x y
y x x y y x x y y x x b -+-+---+--+--=
2
2
32
22
133221133x
x x x xy y x y x y x -++-++=
时,使得函数()b g
达到最小值。

从而得到直线y=a+bx 的系数a ,b ,且称直线y=a+bx 为这3个样本点的线性回归方程。

用同样的方法我们可以推导出n 个点的线性回归方程的系数:
2
2
2
22
12211x
n x x x xy n y x y x y x b n n n -+++-+++=
∑∑==--=
n
i i
n
i i
i
x
n x xy
n y x 1
2
2
1
x b y a -=
其中n
y y y y ,n x x x x n
n +++=
+++= 2121 由x b y a
-=我们知道线性回归直线y=a+bx 一定过()y
,x 。

例题与练习
例1 在上一节练习中,从散点图可以看出,某小卖部6天卖出热茶的杯数(y )与当天气温(x )之间是线性相关的。

数据如下表
(1)试用最小二乘法求出线性回归方程。

(2)如果某天的气温是-3 o
C ,请预测可能会卖出热茶多少杯。

解:(1)先画出其散点图
可以求得 557576481.a ,.b
≈-≈
则线性回归方程为
y =57.557-1.648x
(2)当某天的气温是-3 o
C 时,卖出热茶的杯数估计为:
()63501623648155757≈=-⨯-...
练习1 已知x ,y 之间的一组数据如下表,则y 与x 的线性回归方程y=a+bx 必经过点
( D )
(A )(2,2) (B )(1.5,0) (C )(1,2) (D )(1.5,4)
练习2 某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
(1) 画出销售额和利润额的散点图;
(2) 若销售额和利润额具有相关关系,计算利润额y 对销售额x 的回归直线方程。

解:(1)
2
2
22
1x
n x x x n -+++ ∑=-i i
x
n x 1
2
2
x b y a -=
作业:P60 习题1-8 第1题。

相关文档
最新文档