半导体工艺与制造技术习题答案(第四章 离子注入)

合集下载

半导体工艺与制造技术习题答案(第四章 离子注入)

半导体工艺与制造技术习题答案(第四章 离子注入)

第四章 离子注入与快速热处理1.下图为一个典型的离子注入系统。

(1)给出1-6数字标识部分的名称,简述其作用。

(2)阐述部件2的工作原理。

答:(1)1:离子源,用于产生注入用的离子;2:分析磁块,用于将分选所需的离子;3:加速器,使离子获得所需能量;4:中性束闸与中性束阱,使中性原子束因直线前进不能达到靶室; 5:X & Y 扫描板,使离子在整个靶片上均匀注入;6:法拉第杯,收集束流测量注入剂量。

(2)由离子源引出的离子流含有各种成分,其中大多数是电离的,离子束进入一个低压腔体内,该腔体内的磁场方向垂直于离子束的速度方向,利用磁场对荷质比不同的离子产生的偏转作用大小不同,偏转半径由公式:决定。

最后在特定半径位置采用一个狭缝,可以将所需的离子分离出来。

2.离子在靶内运动时,损失能量可分为核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具体有何关系?答:核阻滞即核碰撞,是注入离子与靶原子核之间的相互碰撞。

因两者质量是同一数量级,一次碰撞可以损失很多能量,且可能发生大角度散射,使靶原子核离开原来的晶格位置,留下空位,形成缺陷。

电子阻滞即电子碰撞,是注入离子与靶内自由电子以及束缚电子之间的相互碰撞。

因离子质量比电子质量大很多,每次碰撞损失的能量很少,且都是小角度散射,且方向随机,故经多次散射,离子运动方向基本不变。

在一级近似下,核阻滞本领与能量无关;电子阻滞本领与能量的平方根成正比。

1 2 3 4 563.什么是离子注入横向效应?同等能量注入时,As和B哪种横向效应更大?为什么?答:离子注入的横向效应是指,注入过程中,除了垂直方向外,离子还向横向掩膜下部分进行移动,导致实际注入区域大于掩膜窗口的效应。

B的横向效应更大,因为在能量一定的情况下,轻离子比重离子的射程要深且标准差更大。

4.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。

硅集成电路工艺基础:第四章 离子注入

硅集成电路工艺基础:第四章 离子注入
因注入离子与靶原子的质量一 般 为同一数量级,每次碰撞之后,注入 离子都可能发生大角度的散射,并失 去一定的能量。
靶原子核也因碰撞而获得能量, 如果获得的能量大于原子束缚能,就 会离开原来所在晶格进入间隙,并留 下一个空位,形成缺陷。
电子碰撞:是注入离子与靶内自由电子以及束缚电子之间的碰撞, 这种碰撞能瞬时地形成电子-空穴对。
第四章 离子注入
离子注入技术是用一定能量的杂质离子束轰击要掺杂的 材料(称为靶,可以是晶体,也可以是非晶体),一部分 杂质离子会进入靶内,实现掺杂的目的。
离子注入是集成电路制造中常用的一种掺杂工艺,尤其 是浅结主要是靠离子注入技术实现掺杂。
离子注入的发展历史
1952年,美国贝尔实验室就开始研究用离子束轰击技术来改善半导体 的特性。
如果注入的是轻离子,或者是小剂量的重 离子,注入离子在靶中产生简单晶格损伤。
对于轻离子,开始时能量损失主要由电子 阻止引起,不产生移位原子。注入离子的能 量随注入深度的增加而减小,当能量减小到 小于交点Ec时,核阻止将起主导作用,几乎 所有的晶格损伤都产生于Ec点以后的运动中。 大多数情况下,每个注入离子只有一小部分 能量对产生间隙-空位缺陷有贡献。
横向效应与注入离子的种类和离子能量有关
(a) 杂质B、P、Sb通过lμ宽掩膜窗口注入到硅靶中的等浓度曲线 (b) 杂质P以不同能量注入硅靶中的等浓度曲线
硼、磷和砷入射到无定形硅靶中时,ΔRp和ΔR┴与入射能量的关系
4.2.3、沟道效应
沟道效应:当离子注入的方向与靶晶体的某个晶面平行时, 将很少受到核碰撞,离子将沿沟道运动,注入深度很深。 由于沟道效应,使注入离子浓度的分布产生很长的拖尾。
核阻止本领与离子能量的关系
如果屏蔽函数为:

半导体制造技术题库答案

半导体制造技术题库答案

精心整理1.分别简述RVD和GILD的原理,它们的优缺点及应用方向。

快速气相掺杂(RVD,RapidVapor-phaseDoping)利用快速热处理过程(RTP)将处在掺杂剂气氛中的硅片快速均匀地加热至所需要的温度,同时掺杂剂发生反应产生杂质原子,杂质原子直接从气态转变为被硅表面吸附的固态,然后进行固相扩散,完成掺杂目的。

同普通扩散炉中的掺杂不同,快速气相掺杂在硅片表面上并未形成含有杂质的玻璃层;同离子注入相比(特别是在浅结的应用上),RVD技术的潜在优势是:它并不受注入所带来的一些效应的影响;对于选择扩散来说,采用快速气相掺杂工艺仍需要掩膜。

另外,快速气相掺杂仍然要在较高的温度下完成。

杂质分布是非理想的指数形式,类似固态扩散,其峰值处于表面处。

气体浸没激光掺杂(GILD:GasImmersionLaserDoping)用准分子激光器(308nm)产生高能量密度(0.5—2.0J/cm2)的短脉冲(20-100ns)激光,照射处于气态源中的硅表面;硅表面因吸收能量而变为液体层;同时层内。

不会发生2.(1).(2).(3).(4).操作上要十分小心。

3.化阻滞扩散的机理。

①交换式:两相邻原子由于有足够高的能量,互相交换位置。

②空位式:由于有晶格空位,相邻原子能移动过来。

③填隙式:在空隙中的原子挤开晶格原子后占据其位,被挤出的原子再去挤出其他原子。

④在空隙中的原子在晶体的原子间隙中快速移动一段距离后,最终或占据空位,或挤出晶格上原子占据其位以上几种形式主要分成两大类:①替位式扩散;②填隙式扩散。

替位式扩散如果替位杂质的近邻没有空位.则替位杂质要运动到近邻晶格位置上,就必须通过互相换位才能实现。

这种换位会引起周围晶格发生很大的畸变,需要相当大的能量,因此只有当替位杂质的近邻晶格上出现空位,替位式扩散才比较容易发生。

填隙型扩散?挤出机制:杂质在运动过程中“踢出”晶格位置上的硅原子进入晶格位置,成为替位杂质,被“踢出”硅原子变为间隙原子;Frank-Turnbull机制:也可能被“踢出”的杂质以间隙方式进行扩散运动。

半导体工艺 离子注入 沉积

半导体工艺 离子注入 沉积

半导体工艺离子注入沉积半导体工艺是一种制造半导体器件的过程,它包括多个步骤,其中离子注入和沉积是两个重要的工艺步骤。

离子注入是一种将离子束注入到半导体材料中的过程。

它是通过加速器将离子加速到高速,并在一个非常小的区域内注入到半导体材料中。

这些注入的离子会改变半导体材料的电学性质,从而实现器件的功能。

离子注入可以用于掺杂半导体材料,改变其导电性能,或者形成浅层或深层的掺杂区域。

离子注入通常在高真空条件下进行,以确保离子束的稳定性和精度。

沉积是一种在半导体表面上沉积材料的过程。

沉积可以用于制备各种薄膜材料,如金属、氧化物、多晶硅等。

这些薄膜材料可以用于制造晶体管、电容器、电阻器等器件。

沉积过程可以通过化学气相沉积(CVD)或物理气相沉积(PVD)来实现。

CVD是一种通过化学反应在半导体表面上沉积材料的方法,而PVD是一种通过物理过程将材料沉积在半导体表面上的方法。

沉积过程中的温度、压力和气体流量等参数都对沉积薄膜的性质有重要影响。

离子注入和沉积是半导体工艺中不可或缺的步骤。

离子注入可以用于形成掺杂区域,改变半导体材料的导电性能。

而沉积可以制备各种薄膜材料,用于制造半导体器件的不同部分。

这两个工艺步骤的精确控制和优化可以提高器件的性能和可靠性。

在离子注入和沉积过程中,需要考虑多个因素来实现最佳的工艺结果。

首先,离子注入过程中需要选择合适的离子种类和能量,以达到所需的掺杂浓度和深度。

其次,沉积过程中需要选择合适的沉积条件,如温度、压力和气体流量,以获得均匀且致密的薄膜。

同时,需要注意控制沉积速率和薄膜厚度,以满足器件的要求。

离子注入和沉积是半导体工艺中的两个重要步骤,它们在制造半导体器件中起着关键的作用。

离子注入可以改变半导体材料的电学性质,而沉积可以制备各种薄膜材料。

通过优化这两个工艺步骤,可以提高器件的性能和可靠性,推动半导体技术的发展。

半导体制造技术题库答案

半导体制造技术题库答案

1.分别简述RVD和GILD的原理,它们的优缺点及应用方向。

快速气相掺杂(RVD, Rapid Vapor-phase Doping) 利用快速热处理过程(RTP)将处在掺杂剂气氛中的硅片快速均匀地加热至所需要的温度,同时掺杂剂发生反应产生杂质原子,杂质原子直接从气态转变为被硅表面吸附的固态,然后进行固相扩散,完成掺杂目的。

同普通扩散炉中的掺杂不同,快速气相掺杂在硅片表面上并未形成含有杂质的玻璃层;同离子注入相比(特别是在浅结的应用上),RVD技术的潜在优势是:它并不受注入所带来的一些效应的影响;对于选择扩散来说,采用快速气相掺杂工艺仍需要掩膜。

另外,快速气相掺杂仍然要在较高的温度下完成。

杂质分布是非理想的指数形式,类似固态扩散,其峰值处于表面处。

气体浸没激光掺杂(GILD: Gas Immersion Laser Doping) 用准分子激光器(308nm) 产生高能量密度(0.5—2.0J/cm2)的短脉冲(20-100ns)激光,照射处于气态源中的硅表面;硅表面因吸收能量而变为液体层;同时气态掺杂源由于热解或光解作用产生杂质原子;通过液相扩散,杂质原子进入这个很薄的液体层,溶解在液体层中的杂质扩散速度比在固体中高八个数量级以上,因而杂质快速并均匀地扩散到整个熔化层中。

当激光照射停止后,已经掺有杂质的液体层通过固相外延转变为固态结晶体。

由液体变为固态结晶体的速度非常快。

在结晶的同时,杂质也进入激活的晶格位置,不需要近一步退火过程,而且掺杂只发生在表面的一薄层内。

由于硅表面受高能激光照射的时间很短,而且能量又几乎都被表面吸收,硅体内仍处于低温状态,不会发生扩散现象,体内的杂质分布没有受到任何扰动。

硅表面溶化层的深度由激光束的能量和脉冲时间所决定。

因此,可根据需要控制激光能量密度和脉冲时间达到控制掺杂深度的目的。

2.集成电路制造中有哪几种常见的扩散工艺?各有什么优缺点?扩散工艺分类:按原始杂质源在室温下的相态分类,可分为固态源扩散,液态源扩散和气态源扩散。

半导体制造技术题库答案样本

半导体制造技术题库答案样本

1.分别简述RVD和GILD原理,它们优缺陷及应用方向。

迅速气相掺杂(RVD,Rapid Vapor-phase Doping) 运用迅速热解决过程(RTP)将处在掺杂剂氛围中硅片迅速均匀地加热至所需要温度,同步掺杂剂发生反映产生杂质原子,杂质原子直接从气态转变为被硅表面吸附固态,然后进行固相扩散,完毕掺杂目。

同普通扩散炉中掺杂不同,迅速气相掺杂在硅片表面上并未形成具有杂质玻璃层;同离子注入相比(特别是在浅结应用上),RVD技术潜在优势是:它并不受注入所带来某些效应影响;对于选取扩散来说,采用迅速气相掺杂工艺仍需要掩膜。

此外,迅速气相掺杂依然要在较高温度下完毕。

杂质分布是非抱负指数形式,类似固态扩散,其峰值处在表面处。

气体浸没激光掺杂(GILD:Gas Immersion Laser Doping) 用准分子激光器(308nm) 产生高能量密度(0.5—2.0J/cm2)短脉冲(20-100ns)激光,照射处在气态源中硅表面;硅表面因吸取能量而变为液体层;同步气态掺杂源由于热解或光解作用产生杂质原子;通过液相扩散,杂质原子进入这个很薄液体层,溶解在液体层中杂质扩散速度比在固体中高八个数量级以上,因而杂质迅速并均匀地扩散到整个熔化层中。

当激光照射停止后,已经掺有杂质液体层通过固相外延转变为固态结晶体。

由液体变为固态结晶体速度非常快。

在结晶同步,杂质也进入激活晶格位置,不需要近一步退火过程,并且掺杂只发生在表面一薄层内。

由于硅表面受高能激光照射时间很短,并且能量又几乎都被表面吸取,硅体内仍处在低温状态,不会发生扩散现象,体内杂质分布没有受到任何扰动。

硅表面溶化层深度由激光束能量和脉冲时间所决定。

因而,可依照需要控制激光能量密度和脉冲时间达到控制掺杂深度目。

2.集成电路制造中有哪几种常用扩散工艺?各有什么优缺陷?扩散工艺分类:按原始杂质源在室温下相态分类,可分为固态源扩散,液态源扩散和气态源扩散。

固态源扩散(1). 开管扩散长处:开管扩散重复性和稳定性都较好。

半导体工艺《半导体制造技术》答案

半导体工艺《半导体制造技术》答案

电子科技大学微电子与固体电子学院
2013 年 5 月 8 日
蚀 Si-Al-Cu) ;制作压点及合金(SiO2 和 SiN 钝化层沉积→光刻压焊窗口→SiO2 和 SiN 刻蚀 合金化退火) ;参数测试。 2. 在早期基本的 3.0μm CMOS IC 工艺技术中,P 阱的作用是什么?并描述 LOCOS 隔离原理。 P 阱作用:为 NMOS 提供合适的体区掺杂,以调节阈值电压和减小衬底寄生电阻防止发生闩 锁效应。 (注意:3um 工艺短沟道效应不明显,基本不考虑漏源穿通) LOCOS 隔离原理:通过 NMOS 场区的硼注入及 NMOS、PMOS 场区选择氧化,增加 NMOS 场 区的表面掺杂浓度及 NMOS、PMOS 场区氧化层厚度,从而提高寄生 NMOS 管的阈值电压, 使该阈值电压大于 Vcc,并降低寄生 PMOS 管的阈值电压,使该阈值电压小于-Vcc,从而实 现 NMOS 管和 PMOS 管之间的隔离。 3. 画出早期基本的 3.0μm CMOS IC 工艺器件制作的剖面图及对应的版图。
N MAX 0.4 0.4 5 1015 cm2 9.7 1020 cm3 RP 207 A
exp t kT
x j RP RP 2 ln N MAX N B 582 A 207 A 2 ln 9.7 1020 cm 3 1016 cm 3 1574 A
第十章作业 1. 写出早期基本的 3.0μm CMOS IC 工艺技术的工艺流程。 双阱工艺(备片→初氧氧化→光刻 N 阱区→N 阱磷注入→刻蚀初氧层→光刻 P 阱区→P 阱硼 注入→阱推进) ;LOCOS 隔离工艺(垫氧氧化→氮化硅沉积→光刻有源区→氮化硅刻蚀光 刻 NMOS 管场区→NMOS 管场区硼注入→场区选择氧化) ;多晶硅栅结构工艺(去除氮化硅 →栅氧化→多晶硅沉积→多晶掺磷→光刻多晶硅) ;源/漏(S/D)注入工艺(光刻 NMOS 管 源漏区→NMOS 管源漏区磷注入→光刻 PMOS 管源漏区→PMOS 管源漏硼注入) ; 金属互连的 形成(BPSG 沉积→回流/增密→光刻接触孔→BPSG 刻蚀溅射 Si-Al-Cu→光刻金属互连刻

半导体工艺《半导体制造技术》答案

半导体工艺《半导体制造技术》答案
N MAX 0.4 0.4 5 1015 cm2 9.7 1020 cm3 RP 207 A
exp t kT
x j RP RP 2 ln N MAX N B 582 A 207 A 2 ln 9.7 1020 cm 3 1016 cm 3 1574 A
第十章作业 1. 写出早期基本的 3.0μm CMOS IC 工艺技术的工艺流程。 双阱工艺(备片→初氧氧化→光刻 N 阱区→N 阱磷注入→刻蚀初氧层→光刻 P 阱区→P 阱硼 注入→阱推进) ;LOCOS 隔离工艺(垫氧氧化→氮化硅沉积→光刻有源区→氮化硅刻蚀光 刻 NMOS 管场区→NMOS 管场区硼注入→场区选择氧化) ;多晶硅栅结构工艺(去除氮化硅 →栅氧化→多晶硅沉积→多晶掺磷→光刻多晶硅) ;源/漏(S/D)注入工艺(光刻 NMOS 管 源漏区→NMOS 管源漏区磷注入→光刻 PMOS 管源漏区→PMOS 管源漏硼注入) ; 金属互连的 形成(BPSG 沉积→回流/增密→光刻接触孔→BPSG 刻蚀溅射 Si-Al-Cu→光刻金属互连刻
备片初氧氧化N 阱光刻N 阱磷注入
刻蚀初氧层P 阱光刻P 阱硼注入
阱推进
垫氧氧化→氮化硅沉积→光刻有源区→氮化硅刻蚀
电子科技大学微电子与固体电子学院
2013 年 5 月 8 日
光刻 NMOS 管场区→NMOS 管场区硼注入
选择性氧化氮化硅去除
栅氧氧化多晶硅沉积多晶硅掺磷多晶硅光刻多晶硅刻蚀
电子科技大学微电子与固体电子学院
2013 年 5 月 8 日
蚀 Si-Al-Cu) ;制作压点及合金(SiO2 和 SiN 钝化层沉积→光刻压焊窗口→SiO2 和 SiN 刻蚀 合金化退火) ;参数测试。 2. 在早期基本的 3.0μm CMOS IC 工艺技术中,P 阱的作用是什么?并描述 LOCOS 隔离原理。 P 阱作用:为 NMOS 提供合适的体区掺杂,以调节阈值电压和减小衬底寄生电阻防止发生闩 锁效应。 (注意:3um 工艺短沟道效应不明显,基本不考虑漏源穿通) LOCOS 隔离原理:通过 NMOS 场区的硼注入及 NMOS、PMOS 场区选择氧化,增加 NMOS 场 区的表面掺杂浓度及 NMOS、PMOS 场区氧化层厚度,从而提高寄生 NMOS 管的阈值电压, 使该阈值电压大于 Vcc,并降低寄生 PMOS 管的阈值电压,使该阈值电压小于-Vcc,从而实 现 NMOS 管和 PMOS 管之间的隔离。 3. 画出早期基本的 3.0μm CMOS IC 工艺器件制作的剖面图及对应的版图。

4第四章 离子注入

4第四章 离子注入





1.硅材料的热退火特性
结构简单的缺陷(空位、间隙原子),热处理时具有较 高的迁移率,它们相互靠近时,就可能复合而使缺陷消 失;对于非晶区域,由单晶区向非晶区通过固相外延再 生长而使整个非晶区得到恢复。 退火的温度、时间和方式依据损伤程度、损伤区域的大 小而定;选择退火条件,需考虑基片电参数的恢复程度, 还应考虑基片许可的热处理温度。 低剂量损伤,在低温下退火即可消除;高剂量损失形成 的非晶区域,需要较高的退火温度(550-600℃开始重结 晶),并且随着温度的升高,位错环的密度增大 (<800℃)。
轻离子,电子碰撞为主,位移少,晶格损伤小,损伤体 积计算见P105
重离子,原子碰撞为主,位移多,晶格损伤大,损 伤体积计算见P105 4.22式
4.4

热退火
退火:将注入离子的硅片在一定温度和真空或氮、氩 等高纯气体的保护下,经过适当时间的热处理, 作用:①部分或全部消除硅片中的损伤,少数载流子 的寿命及迁移率也会不同程度的得到恢复;②电激活 掺入的杂质。 根 据 注 入 的 杂 质 数 量 不 同 , 退 火 温 度 一 般 在 450 - 950℃之间。 讲授内容:硅的热退火特性、硼的退火特性、磷的退 火特性、扩散效应、快速退火等5部分。
1.平均投影射程Rp,标准偏差DR通过查表 根据靶材(Si,SiO2,Ge),杂质离子(B,P,As)能量 (keV)
2.单位面积注入电荷:Qss =It/A,I:注入束流,t:时 间,A:扫描面积(园片尺寸) 3.单位面积注入离子数(剂量): Ns = Qss/q =(I t) /(q A) Ns 4.最大离子浓度:NMAX= 2 DR
2
NB
x j R p DR p

半导体制造技术 习题4-7章

半导体制造技术 习题4-7章

4-5章1.为什么集成电路芯片制造需要用单晶硅材料?因为非晶态和多晶态,从晶粒边界散射的电子会会严重影响PN节的特性。

2.在一个立方体上画出<100>和<111>平面。

3.在集成电路工业中,硅晶圆比其他半导体晶圆普遍使用的原因是什么?1.硅是地球上最丰富的元素之一2.硅晶圆能够再热氧化的过程中生长一层二氧化硅3.硅材料具有较大的能隙,所以能承受较高的工作温度和较大的杂质掺杂范围4.哪种化学药品用于将MGS纯化成EGS?说明其安全性与危险性。

HCL和氢气5. CZ法提拉单晶的工艺流程是什么?为什么CZ法提拉的晶圆比悬浮区熔法提拉的单晶有较高的氧浓度?1.将高纯度的电子级硅材料放入缓慢转动的石英坩埚中在1415C熔化(硅的熔点是1414C)2.将一个安装在慢速转动夹具上的单晶硅籽晶棒缓慢降低高度,溶解在熔融硅中3.将单晶硅籽晶缓慢拉出就可以把熔融的硅拉出来,使其沿着籽晶的晶体方向凝固。

CZ法提拉的单晶硅棒总是有微量的氧和碳杂质,这是由于坩埚本身的材料引起的。

而悬浮区熔法处理的时候不接触坩埚。

6.说明外延工艺的目的。

外延层能够在低阻衬底上形成一个高阻层,这样可以提高双载流子晶体管bipolar transistor的性能外延层也可以增强动态随机存储DRAM和互补金属氧化物半导体CMOS的性能。

双载流子晶体管需要外延层在硅的深部形成重掺杂深埋层。

外延层能够提供与衬底晶圆不同的物理特性。

7.什么是自掺杂效应?如何避免?8.列出三种外延硅的原材料。

SIH4SIH2CL2SIHCL3掺杂AsH3、PH3、B2H69.列出常用的三种外延硅掺杂物,并说明掺杂气体的安全性。

掺杂AsH3、PH3、B2H6三种氢化物都有剧毒、易燃和易爆炸10.单晶硅外延反应器优于批量外延系统的优点是什么?有较高的外延层生长速率和较高的可靠性,重复性,能够在大气压和低压下沉积高质量、低成本的薄膜。

11.键合SOI技术需要哪种离子注人? SIMOX注氧隔离SOI晶圆需要哪种离子注人?氢离子氧离子键合SOI的主要优势在于成本12.解释为什么大多数IC制造商使用局部应变strain技术代替应变硅技术制造MOSFET?因为只有MOSFET的栅极氧化层下方的沟道需要应变,因此没有必要对整个晶片进行应变,13.大多数IC制造商将具有局部应变的体硅晶圆用于先进IC芯片制造,而且使用混合定位技术,请解释原因是什么?在PMOS和NMOS上分别实现压应变和拉应变,用于提高P沟道的空穴迁移率和N沟道的电子迁移率。

半导体制造技术考试答案(考试必看

半导体制造技术考试答案(考试必看

1、问答题热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。

2、问答题什么是扩散效应?什么是自掺杂效应?这两个效应使得衬底/外延界面杂质分布有怎样的变化?3、问答题说明SiO2的结构和性质,并简述结晶型SiO2和无定形SiO2的区别。

4、问答题从寄生电阻和电容、电迁移两方面说明后道工艺中(Back-End-Of-Line,BEOL)采用铜(Cu)互连和低介电常数(low-k)材料的必要性。

5、问答题写出菲克第一定律和第二定律的表达式,并解释其含义。

6、问答题说明影响氧化速率的因素。

7、问答题CVD淀积过程中两个主要的限制步骤是什么?它们分别在什么情况下会支配整个淀积速率?8、问答题假设进行一次受固溶度限制的预淀积扩散,从掺杂玻璃源引入的杂质总剂量为Qcm-2。

9、问答题什么是溅射产额,其影响因素有哪些?简述这些因素对溅射产额产生的影响。

10、问答题以P2O2为例说明SiO2的掩蔽过程。

11、问答题简述杂质在SiO2的存在形式及如何调节SiO2的物理性质。

12、问答题什么是离子注入的横向效应?同等能量注入时,As和B哪种横向效应更大?为什么?13、问答题简述BOE(或BHF)刻蚀SiO2的原理。

14、问答题简述在热氧化过程中杂质再分布的四种可能情况。

15、问答题下图为直流等离子放电的I-V曲线,请分别写出a-g 各段的名称。

可用作半导体制造工艺中离子轰击的是其中哪一段?试解释其工作原理。

16、问答题简述电子束光刻的光栅扫描方法和矢量扫描方法有何区别。

17、问答题典型的光刻工艺主要有哪几步?简述各步骤的作用。

18、问答题简述RTP设备的工作原理,相对于传统高温炉管它有什么优势?19、问答题简述RTP在集成电路制造中的常见应用。

20、问答题简述几种典型真空泵的工作原理。

21、问答题影响外延薄膜的生长速度的因素有哪些?22、问答题下图是硅烷反应淀积多晶硅的过程,写出发生反应的方程式,并简述其中1~5各步的含义。

半导体芯片制造工:半导体制造技术考试答案.doc

半导体芯片制造工:半导体制造技术考试答案.doc

半导体芯片制造工:半导体制造技术考试答案考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。

1、问答题热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。

本题答案: 2、问答题什么是扩散效应?什么是自掺杂效应?这两个效应使得衬底/外延界面杂质分布有怎样的变化? 本题答案: 3、问答题说明SiO2的结构和性质,并简述结晶型SiO2和无定形SiO2的区别。

本题答案: 4、问答题从寄生电阻和电容、电迁移两方面说明后道工艺中(Back-End-Of-Line ,BEOL )采用铜(Cu )互连和低介电常数(low-k )材料的必要性。

本题答案: 5、问答题写出菲克第一定律和第二定律的表达式,并解释其含义。

本题答案: 6、问答题说明影响氧化速率的因素。

本题答案:姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线----------------------7、问答题CVD淀积过程中两个主要的限制步骤是什么?它们分别在什么情况下会支配整个淀积速率?本题答案:8、问答题假设进行一次受固溶度限制的预淀积扩散,从掺杂玻璃源引入的杂质总剂量为Qcm-2。

本题答案:9、问答题什么是溅射产额,其影响因素有哪些?简述这些因素对溅射产额产生的影响。

本题答案:10、问答题以P2O2为例说明SiO2的掩蔽过程。

本题答案:11、问答题简述杂质在SiO2的存在形式及如何调节SiO2的物理性质。

本题答案:12、问答题什么是离子注入的横向效应?同等能量注入时,As和B哪种横向效应更大?为什么?本题答案:13、问答题简述BOE(或BHF)刻蚀SiO2的原理。

微电子工艺答案第四章离子注入习题参考答案

微电子工艺答案第四章离子注入习题参考答案
2
2. 离子注入技术的实施过程中包括注入和退火两个基本工艺 过程。试描述退火工艺过程的工艺目的。 答 :所谓退火,是一个工艺过程:将完成离子注入的硅片置 于特定的温度下,经过适当时间的热处理,则可达到两个目 的。第一个目的是使硅片由于高能离子注入而产生的表层晶 格损伤部分地或绝大部分得到消除;另一个目的是使处于电 离状态的掺杂离子得到激活还原为受主或施主状态,从而使 少数载流子的寿命、迁移率得到恢复。
3
3. 离子在靶内运动时,损失能量可分核阻止和电子阻止,解 释什么是核阻止、电子阻止?在一级近似下,两种阻止本领 与注入离子能量具有何关系?
答:核阻止即核碰撞,是注入离子与靶原子核之间的相互碰 撞。因两者质量是一个数量级,一次碰撞可以损失较多能量, 且可能发生大角度散射,使靶原子核离开原来的晶格位置, 留下空位,形成缺陷。
第四章 离子注入习题参考答案
1
1. 试叙述离子注入掺杂技术与常规热扩散掺杂技术的不同之 处。
1)掺杂纯度高; 2)注入剂量范围宽,同一平面内杂质分布的均匀性精度在
±1%以内; 3)不受固溶度限制、掩模材料范围大; 4)可精确控制掺杂的浓度分布和掺杂深度; 5)掺杂温度低,可避免产生热缺陷; 6)横向扩散效应小; 7)易于实现化合物半导体的掺杂; 8)可通过氧化硅膜进行注入,可有效防止污染。
7
5. 注入离子在无定形靶纵向服从何分布,有何特点?
服从高斯分布:
N(x)Nmaxexp12xRRpp
2
特点
1)在 x = RP 处的两边,注入离子浓度对称地下降,且下 降速度越来越快。
2)注入剂量为
N s0N (x)d x2N m aR x p
3)最大浓度Nmax位置在样品内的平均投影射程处

半导体工艺与制造技术习题答案(第四章 氧化)

半导体工艺与制造技术习题答案(第四章 氧化)

第四章氧化1.简述几种常用的氧化方法及其特点。

答:(1)干氧氧化在高温下,氧气与硅反应生成SiO2,其反应为干氧氧化的生成的SiO2结构致密、干燥、均匀性和重复性好,掩蔽能力强,与光刻胶粘附性好,然而干氧氧化法的生长速率慢,所以经常同湿氧氧化方法相结合生长SiO2。

(2)水汽氧化在高温下,硅与高纯水产生的蒸汽反应生成SiO2,其反应为:产生的分子沿界面或者以扩散方式通过层散离。

因为水比氧在中有更高的扩散系数和大得多的溶解度,所以水汽氧化的速率一般比较高。

(3)湿氧氧化湿氧氧化的氧化剂是通过高纯水的氧气,高纯水一般被加热到95左右。

通过高纯水的氧气携带一定水蒸气,所以湿氧氧化的氧化剂既含有氧,又含有水汽。

因此,的生长速率介于干氧和水汽氧化之间,与氧气流量、水汽的含量有着密切的关系。

(4)氢氧合成氧化采用高温合成技术进行水汽氧化,在这种氧化系统中,氧化剂是由纯氢和纯氧直接反应生成的水汽,可在很宽的范围内变化的压力。

(5)快速热氧化使用快速热氧化设备进行氧化,用于制造非常薄(<30埃)的氧化层。

2.说明的结构和性质,并简述结晶型和无定型的区别。

答:的中心是Si原子,四个顶点是O原子,顶角上的4个O原子正好与Si原子的4个价电子形成共价键,相邻的Si-O四面体是靠Si-O-Si键桥连接。

其密度一般为2.20g/,熔点1700左右,折射率为波长的函数,密度较大则折射率较大,化学性质十分稳定,室温下只与HF发生反应。

结晶型由Si-O四面体在空间规则排列构成,每个顶角的O原子与两个相邻四面体中心的Si原子形成共价键,Si-O-Si键桥的角度为144;无定型的Si-O四面体的空间排列没有规律,Si-O-Si键桥的角度不固定,在110之间,平均值.相比之下,无定型网络疏松,不均匀,有孔洞。

3.以为例说明的掩蔽过程。

答:当与接触时,就转变为含磷的玻璃体(PSG),其变化过程如图所示。

(a)扩散刚开始,只有靠近表面的转变为含磷的玻璃体;(b)随着扩散的进行,大部分层转变为含磷的玻璃体;(c)整个层都转变为含磷的玻璃体;(d)在层完全转变为玻璃体后,又经过一定时间,层保护的硅中磷已经扩进一定深度。

半导体工艺之离子注入(精)

半导体工艺之离子注入(精)

半导体离子注入工艺09电科A柯鹏程 0915221019离子注入法掺杂和扩散法掺杂对比来说,它的加工温度低、容易制作浅结、均匀的大面积注入杂质、易于自动化等优点。

当前,离子注入法已成为超大规模集成电路制造中不可缺少的掺杂工艺。

离子注入是一种将带点的且具有能量的粒子注入衬底硅的过程。

注入能量介于1eV到1MeV之间,注入深度平均可达10nm~10um。

相对扩散工艺,粒子注入的主要好处在于能更准确地控制杂质参杂、可重复性和较低的工艺温度。

1.离子注入原理:离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。

可通过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定的能量进入wafer内部达到掺杂的目的。

离子注入到wafer中后,会与硅原子碰撞而损失能量,能量耗尽离子就会停在wafer中某位置。

离子通过与硅原子的碰撞将能量传递给硅原子,使得硅原子成为新的入射粒子,新入射离子又会与其它硅原子碰撞,形成连锁反应。

杂质在wafer中移动会产生一条晶格受损路径,损伤情况取决于杂质离子的轻重,这使硅原子离开格点位置,形成点缺陷,甚至导致衬底由晶体结构变为非晶体结构。

2.离子射程离子射程就是注入时,离子进入wafer内部后,从表面到停止所经过的路程。

入射离子能量越高,射程就会越长。

投影射程是离子注入wafer内部的深度,它取决于离子的质量、能量,wafer的质量以及离子入射方向与晶向之间的关系。

有的离子射程远,有的射程近,而有的离子还会发生横向移动,综合所有的离子运动,就产生了投影偏差。

3.离子注入剂量注入剂量是单位面积wafer表面注入的离子数,可通过下面的公式计算得出 Q=It/enA ,式中,Q是剂量;I是束流,单位是安培;t是注入时间,单位是秒;e是电子电荷,1.6×10-19C;n是电荷数量;A是注入面积,单位是。

4.离子注入工艺(1)沟道效应入射离子与wafer之间有不同的相互作用方式,若离子能量够高,则多数被注入到wafer内部;反之,则大部分离子被反射而远离wafer。

半导体工艺半导体制造工艺技术试题库3 答案

半导体工艺半导体制造工艺技术试题库3 答案

一、填空题(每空1分,计10分)1、工艺上用于四氯化硅的提纯方法有 吸附法 和 精馏法 。

2、在晶片表面图形形成过程中,一般通过腐蚀的方法将抗蚀膜图形转移到晶片上,腐蚀的方法有 湿法腐蚀 和 干法腐蚀 。

3、抛光是晶片表面主要的精细加工过程,抛光的主要方式有 化学抛光 、 机械抛光 和 化学机械抛光 。

4、掺杂技术包括有 热扩散 、 离子注入 、合金和中子嬗变等多种方法。

5、在离子注入法的掺杂过程中,注入离子在非晶靶中的浓度分布函数满足对称的高斯分布,其浓度最大位于 Rp 处。

二、选择题(每题2分,单项多项均有,计30分)1、在SiO 2网络中,如果掺入了磷元素,能使网络结构变得更( A )(A )疏松 (B )紧密 (C )视磷元素剂量而言2、在微电子加工环境中,进入洁净区的工作人员必须注意以下事项(A 、B 、C 、D )(A ) 进入洁净区要先穿戴好专用净化工作服、鞋、帽。

(B ) 进入洁净区前先在风淋室风淋30秒,然后才能进入。

(C ) 每周洗工作服,洗澡、理发、剪指甲,不用化妆品。

(D ) 与工作无关的纸张、书报等杂物不得带入。

3、离子注入设备的组成部分有(A 、B 、C 、D )(A )离子源 (B )质量分析器 (C )扫描器 (D )电子蔟射器 4、CVD 淀积法的特点有(A 、C 、D ) (A )淀积温度比较低 (B )吸附不会影响淀积速度(C )淀积材料可以直接淀积在单晶基片上 (D )样品本身不参与化学反应5、工艺中消除沟道效应的措施有( A 、B 、C 、D ) (A )增大注入剂量 (B )增大注入速度 (C )增加靶温 (D )通过淀积膜注入6、液态源硼扩散所选用的硼源有(A 、B 、C )(A )硼酸三甲脂 (B )硼酸三丙脂 (C )三溴化硼 (D )三氯氧磷7、在目前所用的钝化膜中,对钠离子阻挡作用最强的是( B )(A )二氧化硅 (B )PSG (C )氮化硅 (D )难熔金属8、化学定影液中的主要成分有(A 、B 、C 、D )(A )络合剂 (B )中和剂 (C )保护剂 (D )显影剂9、工艺中常用的键合方式有(A 、B 、C 、D )(A )热压键合 (B )针压键合 (C )带式自动键合 (D )超声键合 10、衬底气相抛光方式有(A 、C 、D )(A )HCl 气相抛光 (B )氧化抛光 (C )Cl 2抛光 (D )水气抛光 11、外延生长有如下几个过程:(1) 在生长层表面进行化学反应,得到硅原子和其它副产物。

半导体工艺原理作业题集

半导体工艺原理作业题集

集成电路工艺作业第一章半导体衬底1、列举生产半导体级硅的三个步骤,给出反应方程式。

说明半导体级硅有多纯?2、为什么要用单晶进行硅片制造?3、CZ单晶生长法定义Czochralski(CZ)-查克洛斯基法生长单晶硅,把熔化了的半导体级硅液体变为有正确晶向并且被掺杂成n型或p型的固体硅锭。

85%以上的单晶硅是采用CZ法生长出来的。

CZ法特点:a. 低功率IC的主要原料。

b. 占有~80%的市场。

c. 制备成本较低。

d. 硅片含氧量高。

4、影响CZ法直拉工艺的两个主要参数是什么?拉伸速率和晶体旋转速率。

5、区熔法的特点是什么?a. 硅片含氧量低、纯度高。

b. 主要用于高功率IC。

c. 制备成本比CZ法低。

d. 难生长大直径硅晶棒。

e. 低阻值硅晶棒掺杂均匀度较差。

7、使用更大直径硅片的主要原因是什么?300mm硅片比200mm硅片面积大2.25倍,这样就会在一块硅片上生产更多的芯片。

每块芯片加工和处理时间都减少了,设备生产效率提高了。

使用300mm直径的硅片可以把每块芯片的成本减少30%。

节省成本是驱使半导体业转向使用更大直径硅片的主要原因。

8、硅中的晶体缺陷:点缺陷、位错、层错。

第二章氧化1、半导体器件生产中使用的介质材料有二氧化硅、氮化硅、多晶硅、硅化物。

2、二氧化硅的基本性质有哪些?a、可以方便地利用光刻和刻蚀实现图形转移、b、可以作为多数杂质掺杂的掩蔽、c、优秀的绝缘性能、d、很高的击穿电场(>107 V/cm)、e、体电学性能稳定、f、稳定、可重复制造的Si/ SiO2界面3、金属层间绝缘阻挡层目的:用于金属连线间的保护层。

4、热生长SiO2 的各种运用对厚度有不同要求栅氧(0.18μm工艺):20~60埃;STI隔离氧化物:150埃;场氧:2500~15000埃5、有几种类型的电荷存在于氧化层内部或在SiO2和Si/SiO2界面附近?a)界面陷阱电荷; b)固定氧化层电荷; c)移动离子电荷; d)大量氧化层陷阱电荷6、干氧和湿氧氧化反应方程式及氧化层的特点?这两种反应都在700 ºC~1200 ºC之间进行,湿氧氧化比干氧氧化反应速率约高10倍。

半导体工艺及芯片制造技术问题答案(全).

半导体工艺及芯片制造技术问题答案(全).

常用术语翻译active region 有源区2.active component有源器件3.Anneal退火4.atmospheric pressure CVD (APCVD) 常压化学气相淀积5.BEOL(生产线)后端工序6.BiCMOS双极CMOS7.bonding wire 焊线,引线8.BPSG 硼磷硅玻璃9.channel length沟道长度10.chemical vapor deposition (CVD) 化学气相淀积11.chemical mechanical planarization (CMP)化学机械平坦化12.damascene 大马士革工艺13.deposition淀积14.diffusion 扩散15.dopant concentration掺杂浓度16.dry oxidation 干法氧化17.epitaxial layer 外延层18.etch rate 刻蚀速率19.fabrication制造20.gate oxide 栅氧化硅21.IC reliability 集成电路可靠性22.interlayer dielectric 层间介质(ILD)23.ion implanter 离子注入机24.magnetron sputtering 磁控溅射25.metalorganic CVD(MOCVD)金属有机化学气相淀积26.pc board 印刷电路板27.plasma enhanced CVD(PECVD) 等离子体增强CVD28.polish 抛光29.RF sputtering 射频溅射30.silicon on insulator绝缘体上硅(SOI)第一章半导体产业介绍1. 什么叫集成电路?写出集成电路发展的五个时代及晶体管的数量?(15分)集成电路:将多个电子元件集成在一块衬底上,完成一定的电路或系统功能。

集成电路芯片/元件数产业周期无集成 1 1960年前小规模(SSI) 2到50 20世纪60年代前期中规模(MSI) 50到5000 20世纪60年代到70年代前期大规模(LSI) 5000到10万 20世纪70年代前期到后期超大规模(VLSI) 10万到100万 20世纪70年代后期到80年代后期甚大规模(ULSI) 大于100万 20世纪90年代后期到现在2. 写出IC 制造的5个步骤?(15分)Wafer preparation(硅片准备)Wafer fabrication (硅片制造)Wafer test/sort (硅片测试和拣选)Assembly and packaging (装配和封装)Final test(终测)3. 写出半导体产业发展方向?什么是摩尔定律?(15分)发展方向:提高芯片性能——提升速度(关键尺寸降低,集成度提高,研发采用新材料),降低功耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 离子注入与快速热处理
1.下图为一个典型的离子注入系统。

(1)给出1-6数字标识部分的名称,简述其作用。

(2)阐述部件2的工作原理。

答:(1)1:离子源,用于产生注入用的离子;
2:分析磁块,用于将分选所需的离子;
3:加速器,使离子获得所需能量;
4:中性束闸与中性束阱,使中性原子束因直线前进不能达到靶室; 5:X & Y 扫描板,使离子在整个靶片上均匀注入;
6:法拉第杯,收集束流测量注入剂量。

(2)由离子源引出的离子流含有各种成分,其中大多数是电离的,离子束进入一个低压腔体内,该腔体内的磁场方向垂直于离子束的速度方向,利用磁场对荷质比不同的离子产生的偏转作用大小不同,偏转半径由公式:
决定。

最后在特定半径位置采用一个狭缝,可以将所需的离子分离出来。

2.离子在靶内运动时,损失能量可分为核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具体有何关系?
答:核阻滞即核碰撞,是注入离子与靶原子核之间的相互碰撞。

因两者质量是同一数量级,一次碰撞可以损失很多能量,且可能发生大角度散射,使靶原子核离开原来的晶格位置,留下空位,形成缺陷。

电子阻滞即电子碰撞,是注入离子与靶内自由电子以及束缚电子之间的相互碰撞。

因离子质量比电子质量大很多,每次碰撞损失的能量很少,且都是小角度散射,且方向随机,故经多次散射,离子运动方向基本不变。

在一级近似下,核阻滞本领与能量无关;电子阻滞本领与能量的平方根成正比。

1 2 3 4 5
6
3.什么是离子注入横向效应?同等能量注入时,As和B哪种横向效应更大?为什么?
答:离子注入的横向效应是指,注入过程中,除了垂直方向外,离子还向横向掩膜下部分进行移动,导致实际注入区域大于掩膜窗口的效应。

B的横向效应更大,因为在能量一定的情况下,轻离子比重离子的射程要深且标准差更大。

4.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。

答:离子注入后会对晶格造成简单晶格损伤和非晶层形成;损伤晶体空位密度要大于非损伤晶体,且存在大量间隙原子核其他缺陷,使扩散系数增大,扩散效应增强;故虽然热退火温度低于热扩散温度,但杂质的扩散也是非常明显的,出现高斯展宽与拖尾现象。

5.什么是离子注入中常发生的沟道效应(Channeling)和临界角?怎样避免沟道效应?
答:沟道效应,即当离子入射方向平行于主晶轴时,将很少受到核碰撞,离子将沿沟道运动,注入深度很深。

由于沟道效应,使注入离子浓度的分布产生很长的拖尾;对于轻原子注入到重原子靶内是,拖尾效应尤其明显。

临界角是用来衡量注入是否会发生沟道效应的一个阈值量,当离子的速度矢量与主要晶轴方向的夹角比临界角大得多的时候,则很少发生沟道效应。

临界角可用下式表示:
6.什么是固相外延(SPE)及固相外延中存在的问题?
答:固相外延是指半导体单晶上的非晶层在低于该材料的熔点或共晶点温度下外延再结晶的过程。

热退火的过程就是一个固相外延的过程。

高剂量注入会导致稳定的位错环,非晶区在经过热退火固相外延后,位错环的最大浓度会位于非晶和晶体硅的界面处,这样的界面缺陷称为射程末端缺陷。

若位错环位于PN结耗尽区附近,会产生大的漏电流,位错环与金属杂质结合时更严重。

因此,选择的退火过程应当能够产生足够的杂质扩散,使位错环处于高掺杂区,同时又被阻挡在器件工作时的耗尽区之外。

7.离子注入在半导体工艺中有哪些常见应用?
答:阱注入、VT调整注入,轻掺杂漏极(LDD),源漏离子注入,形成SOI结构。

8.简述RTP设备的工作原理,相对于传统高温炉管它有什么优势?
答:RTP设备是利用加热灯管通过热辐射的方式选择性加热硅片,使得硅片在极短的时间内达到目标温度并稳定维持一段时间。

相对于传统高温炉管,RTP设备热处理时间短,热预算小,冷壁工艺减少硅片污染。

9.简述RTP在集成电路制造中的常见应用。

答:RTP常用于退火后损失修复、杂质的快速热激活、介质的快速热加工、硅化物和接触的形成等。

10.采用无定形掩膜的情况下进行注入,若掩膜/衬底界面的杂质浓度减少至峰值
浓度的1/10000,掩蔽膜的厚度应为多少?用注入杂质分布的射程和标准偏差写出表达式。

答:
因此
11.相较扩散掺杂,离子注入有哪些优缺点?
答:优点:掺杂均匀性好,工艺温度低,可精确控制杂质含量,可注入元素种类多,横向扩散比纵向扩散小得多,注入的离子能穿过薄膜,无固溶度极限。

缺点:入射离子对半导体晶格有损伤,很浅很深的注入分布难以实现,对高剂量注入产率有限,离子注入设备昂贵。

12.简述硼和磷的退火特性。

答:(1)对于高剂量的退火,可把退火温度分为三个区域:
在区域Ⅰ中,随退火温度上升,点缺陷的移动能力增强,因此间隙硼和硅原子与空位的复合几率增加,使点缺陷消失,替位硼的浓度上升,电激活比例增加,自由载流子密度增大;当退火温度在的范围内,点缺陷通过重新组合或结团,降低其能量。

因为硼原子非常小,和缺陷团有很强的作用,很容易迁移或被结合到缺陷团中,处于非激活位置因而出现随温度升高而替位硼的浓度下降的现象,也就是自由载流子浓度随温度上升而下降的现象(逆退火特性)。

在区域Ⅲ中,硼的替位浓度以接近于5eV的激活能随温度上升而增加,这个激活能与升温时Si自身空位的产生和移动的能量一致。

产生的空位向间隙硼处运动,因而间隙硼就可以进入空位而处于替位位置,硼的电激活比例也随温度上升而增加。

图 1 硼退图2 磷退火特性
火特性
(2)磷退火特性如图所示
图中虚线所表示的是损伤区还没有变为非晶层时的退火性质,实线则表示非晶层的退火特性。

对于和时所形成的非晶层,退火温度在左右,低于剂量为左右没有形成非晶层的退火温度,这是因为两种情况的退火机理不同。

非晶层的退火效应是与固相外延再生长过程相联系的,在再生长过程中,V族原子实际上与硅原子是难以区分的,被注入V族原子P在再结晶过程中与硅原子一样,同时被结合到晶格位置上。

相关文档
最新文档