高中物理动能与动能定理的基本方法技巧及练习题及练习题(含答案)含解析
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试动能与动能定理
1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:
(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;
(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】
(1)在B 点时有v B =
cos60︒
v ,得v B =6m/s (2)从B 点到E 点有2
102
B mgh mgL mgH mv μ--=-
,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有
2
1'202
B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能
高中物理动能与动能定理的技巧及练习题及练习题(含答案)
高中物理动能与动能定理的技巧及练习题及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。取重力加速度g =10m/s 2。求: (1)小球在C 处受到的向心力大小; (2)在压缩弹簧过程中小球的最大动能E km ; (3)小球最终停止的位置。
【答案】(1)35N ;(2)6J ;(3)距离B 0.2m 或距离C 端0.3m 【解析】 【详解】
(1)小球进入管口C 端时它与圆管上管壁有大小为 2.5F mg =的相互作用力 故小球受到的向心力为
2.5
3.5 3.511035N F mg mg mg =+==⨯⨯=向
(2)在C 点,由
2
=c v F r
向
代入数据得
2
1 3.5J 2
c mv = 在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为0x 则有
0kx mg =
解得
00.1m mg
x k
=
= 设最大速度位置为零势能面,由机械能守恒定律有
201
高中物理动能与动能定理解题技巧分析及练习题(含答案)及解析
高中物理动能与动能定理解题技巧分析及练习题(含答案)及
解析
高中物理动能与动能定理解题技巧分析及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。(1)求小物块经过B 点时对轨道的压力大小;
(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小;(3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】【详解】
(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04
m /5m /cos370.8
A v v s s =
==?
小物块经过A 点运动到B 点,根据机械能守恒定律有:
()2211cos3722
A B mv mg R R mv +-?= 小物块经过B 点时,有:2
B
NB v F mg m R
-= 解得:()232cos3762N B
高中物理动能与动能定理的基本方法技巧及练习题及练习题(含答案)
高中物理动能与动能定理的基本方法技巧及练习题及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求:
(1)滑块对P 点压力的大小;
(2)滑块返回木板上时,木板的加速度大小;
(3)滑块从返回木板到滑离木板所用的时间.
【答案】(1)70 N (2)1 m/s 2 (3)1 s
【解析】
【分析】
【详解】
(1)滑块在木板上滑动过程由动能定理得:
-μ1mgL =
12mv 2-12
20mv 解得:v =5 m/s 在P 点由牛顿第二定律得:
F -mg =m 2
v r
解得:F =70 N
由牛顿第三定律,滑块对P 点的压力大小是70 N
(2)滑块对木板的摩擦力F f 1=μ1mg =4 N
地面对木板的摩擦力
F f 2=μ2(M +m )g =3 N
对木板由牛顿第二定律得:F f 1-F f 2=Ma
a =12
f f F F M -=1 m/s 2
(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -
高中物理动能与动能定理解题技巧及练习题(含答案)及解析
高中物理动能与动能定理解题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。游客乘坐的滑草车(两者的总质量为60kg ),从倾角为53θ=︒的光滑直轨道AC 上的B 点由静止开始下滑,到达
C 点后进入半径为5m R =,圆心角为53θ=︒的圆弧形光滑轨道C
D ,过D 点后滑入倾
角为α(α可以在075α︒剟
范围内调节)、动摩擦因数为
3
μ=的足够长的草地轨道DE 。已知D 点处有一小段光滑圆弧与其相连,不计滑草车在D 处的能量损失,B 点到
C 点的距离为0=10m L ,10m/s g =。求:
(1)滑草车经过轨道D 点时对轨道D 点的压力大小;
(2)滑草车第一次沿草地轨道DE 向上滑行的时间与α的关系式;
(3)α取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan α的关系式。
【答案】(1)3000N ;(2)
3sin cos 32
t αα=
⎛⎫+ ⎪
⎝⎭
;(3)见解析 【解析】 【分析】 【详解】
(1)根据几何关系可知CD 间的高度差
()CD 1cos532m H R =-︒=
从B 到D 点,由动能定理得
()20CD D 1
sin 5302
mg L H mv ︒+=-
解得
D 102m/s v =
对D 点,设滑草车受到的支持力D F ,由牛顿第二定律
2
D D v F mg m R
-= 解得
D 3000N F =
由牛顿第三定律得,滑草车对轨道的压力为3000N 。 (2)滑草车在草地轨道DE 向上运动时,受到的合外力为
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小;
(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】
(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04
m /5m /cos370.8
A v v s s =
==︒
小物块经过A 点运动到B 点,根据机械能守恒定律有:
()2211cos3722
A B mv mg R R mv +-︒= 小物块经过B 点时,有:2
B
NB v F mg m R
-= 解得:()232cos3762N B
NB
v F mg m R
=-︒+=
高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析
高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图(a)所示,倾角θ=30°的光滑固定斜杆底端固定一电量为Q=2×10﹣4C的正点电荷,将一带正电小球(可视为点电荷)从斜杆的底端(但与Q未接触)静止释放,小球沿斜杆向上滑动过程中能量随位移的变化图象如图(b)所示,其中线1为重力势能随位移变化图象,线2为动能随位移变化图象.(g=10m/s2,静电力恒量K=9×109N•m2/C2)则
(1)描述小球向上运动过程中的速度与加速度的变化情况;
(2)求小球的质量m和电量q;
(3)斜杆底端至小球速度最大处由底端正点电荷形成的电场的电势差U;
(4)在图(b)中画出小球的电势能ε 随位移s变化的图线.(取杆上离底端3m处为电势零点)
【答案】(1)小球的速度先增大,后减小;小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.(2)4kg;1.11×10﹣
5C;(3)4.2×106V(4)图像如图,线3即为小球电势能随位移s变化的图线;
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐
减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零. (2)由线1可得:
E P =mgh=mgs sin θ
斜率:
k =20=mg sin30°
所以
m =4kg
当达到最大速度时带电小球受力平衡:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
(2)求小球的质量m和电量q;
(3)斜杆底端至小球速度最大处由底端正点电荷形成的电场的电势差U;
(4)在图(b)中画出小球的电势能ε随位移s变化的图线.(取杆上离底端3m处为电势零点)
【答案】(1)小球的速度先增大,后减小;小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.(2)4kg;1.11×10﹣5C;(3)4.2×106V(4)图像如图,线3即为小球电势能 随位移s变化的图线;
对滑块有:(x+L)=vt- μ1gt2
对木板有:x= at2
解得:t=1 s或t= s(不合题意,舍去)
故本题答案是: (1)70 N (2)1 m/s2(3)1 s
【点睛】
分析受力找到运动状态,结合运动学公式求解即可.
2.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点、圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道CD间的动摩擦因数μ=0.2.某运动员从轨道上的A点以v0=3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60kg,B、E两点与水平轨道CD的竖直高度分别为h=2m和H=2.5m.求:
高考物理动能与动能定理答题技巧及练习题(含答案)及解析
高考物理动能与动能定理答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:
(1)物块第一次通过C 点时的速度大小v C .
(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.
【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】
由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】
(1)BC 长度tan 530.4m l R ==o ,由动能定理可得
21
()sin 372
B mg L l mv -=o
代入数据的
32m/s B v =
物块在BC 部分所受的摩擦力大小为
cos370.60N f mg μ==o
所受合力为
sin 370F mg f =-=o
故
32m/s C B v v ==
(2)设物块第一次通过D 点的速度为D v ,由动能定理得
高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析
高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧
半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB =。为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。 (3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N ;(2)6m/s ,6m ;(3)见解析。 【解析】 【详解】
(1)玩具滑车到达D 点时,由牛顿第二定律:
2D
D v F mg m R
-=
解得
22
10=404=80N 10
D D v F mg m R =++⨯;
(2)若无传送带时,由平抛知识可知:
D x v t =
解得
1s t =
如果传送带保持不动,则当小车滑到最右端时,由动能定理:
22
1122
D mv mv mgL μ-=- 解得
高考物理动能与动能定理解题技巧及练习题(含答案)及解析
高考物理动能与动能定理解题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小;
(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】
(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04
m /5m /cos370.8
A v v s s =
==︒
小物块经过A 点运动到B 点,根据机械能守恒定律有:
()2211cos3722
A B mv mg R R mv +-︒= 小物块经过B 点时,有:2
B
NB v F mg m R
-= 解得:()232cos3762N B
NB
v F mg m R
=-︒+=
根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:
高考物理动能与动能定理解题技巧及练习题(含答案)及解析
高考物理动能与动能定理解题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小;
(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】
(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04
m /5m /cos370.8
A v v s s =
==︒
小物块经过A 点运动到B 点,根据机械能守恒定律有:
()2211cos3722
A B mv mg R R mv +-︒= 小物块经过B 点时,有:2
B
NB v F mg m R
-= 解得:()232cos3762N B
NB
v F mg m R
=-︒+=
根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理
1.如图所示,圆弧轨道AB是在竖直平面内的1
4
圆周,B点离地面的高度h=0.8m,该处切
线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:
(1)圆弧轨道的半径
(2)小球滑到B点时对轨道的压力.
【答案】(1)圆弧轨道的半径是5m.
(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.
【解析】
(1)小球由B到D做平抛运动,有:h=1
2
gt2
x=v B t
解得:
10
410/
220.8
B
g
v x m s
h
==⨯=
⨯
A到B过程,由动能定理得:mgR=1
2
mv B2-0
解得轨道半径R=5m
(2)在B点,由向心力公式得:
2
B
v N mg m
R -=
解得:N=6N
根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下
点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.
2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数
μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶
(1)物块通过P 点的速度大小;
(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;
【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】
(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则
22y v gh =
o sin 60y v v
=
整理可得,物块通过P 点的速度
8m/s v =
(2)从P 到M 点的过程中,机械能守恒
22
11=(1cos60)+22
o M mv mgR mv + 在最高点时根据牛顿第二定律
2
M
N mv F mg R
+= 整理得
4.8N N F =
根据牛顿第三定律可知,物块对轨道的压力大小为4.8N
(3)从D 到P 物块做平抛运动,因此
o cos 604m/s D v v ==
从C 到D 的过程中,根据能量守恒定律
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数
μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶
(1)物块通过P 点的速度大小;
(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;
【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】
(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则
22y v gh =
o sin 60y v v
=
整理可得,物块通过P 点的速度
8m/s v =
(2)从P 到M 点的过程中,机械能守恒
22
11=(1cos60)+22
o M mv mgR mv + 在最高点时根据牛顿第二定律
2
M
N mv F mg R
+= 整理得
4.8N N F =
根据牛顿第三定律可知,物块对轨道的压力大小为4.8N
(3)从D 到P 物块做平抛运动,因此
o cos 604m/s D v v ==
从C 到D 的过程中,根据能量守恒定律
高考物理动能与动能定理答题技巧及练习题(含答案)及解析
高考物理动能与动能定理答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.某小型设备工厂采用如图所示的传送带传送工件。传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为7
8
μ=
,所运送的每个工件完全相同且质量2kg m =。传送带长度为6m =L ,不计空气阻力。(工件可视为质点,
sin370.6︒=,cos370.8︒=,210m /s g =)求:
(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?
(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?
【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件
cos sin mg mg ma μθθ-=
22v ax =
1v at =
12s t =
得
2m x =
12x vt x ==带 2m x x x =-=相带
由能量守恒定律
p k E Q E E =+∆+∆电
即
21
cos sin 2
E mg x mgL mv μθθ=⋅++电相
代入数据得
104J E =电
(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。匀速运动的相邻的两个工件间距为
2m x v t ∆=∆=
L x n x -=∆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动能与动能定理的基本方法技巧及练习题及练习题(含答案)含解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:
(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;
(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.
【答案】(1)5m/s ;10m/s ;(2)2
3.510B m L -=⨯(3)22.510m -⨯
【解析】 【分析】 【详解】
试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 2
12
h gt =
解得:t=0.40s A 离开桌边的速度A s
v t
=
,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:
0()A B mv Mv M m v =++
B 离开桌边的速度v B =10m/s
(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:
012A mv mv Mv =+
v 1=40m/s
子弹在物块B 中穿行的过程中,由能量守恒
2221111()222
B A B fL Mv mv M m v =
+-+① 子弹在物块A 中穿行的过程中,由能量守恒
222
01111()222
A A fL mv mv M M v =--+②
由①②解得2
3.510B L -=⨯m
(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:
2
11()02
A fs M M v =+-③
子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理
2221122
B A fs Mv Mv =
-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,
解得:2
min 2.510s m -=⨯
考点:平抛运动;动量守恒定律;能量守恒定律.
2.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。某弹珠游戏可简化成如图所示的竖直平面内OABCD 透明玻璃管道,管道的半径较小。为研究方便建立平面直角坐标系,O 点为抛物口,下方接一满足方程y 59
=
x 2
的光滑抛物线形状管道OA ;AB 、BC 是半径相同的光滑圆弧管道,CD 是动摩擦因数μ=0.8的粗糙直管道;各部分管道在连接处均相切。A 、B 、C 、D 的横坐标分别为x A =1.20m 、x B =2.00m 、x C =2.65m 、x D =3.40m 。已知,弹珠质量m =100g ,直径略小于管道内径。E 为BC 管道的最高点,在D 处有一反弹膜能无能量损失的反弹弹珠,sin37°=0.6,sin53°=0.8,g =10m/s 2,求:
(1)若要使弹珠不与管道OA 触碰,在O 点抛射速度ν0应该多大;
(2)若要使弹珠第一次到达E 点时对轨道压力等于弹珠重力的3倍,在O 点抛射速度v 0应该多大;
(3)游戏设置3次通过E 点获得最高分,若要获得最高分在O 点抛射速度ν0的范围。 【答案】(1)3m/s (2)2m/s (3)3m/s <ν0<6m/s 【解析】 【详解】 (1)由y 59
=
x 2
得:A 点坐标(1.20m ,0.80m ) 由平抛运动规律得:x A =v 0t ,y A 212
gt =
代入数据,求得 t =0.4s ,v 0=3m/s ; (2)由速度关系,可得 θ=53°
求得AB 、BC 圆弧的半径 R =0.5m OE 过程由动能定理得: mgy A ﹣mgR (1﹣cos53°)2201122
E mv mv =- 解得 v 0=22m/s ;
(3)sinα 2.65 2.000.40
0.5
--=
=0.5,α=30°
CD 与水平面的夹角也为α=30°
设3次通过E 点的速度最小值为v 1.由动能定理得 mgy A ﹣mgR (1﹣cos53°)﹣2μmgx CD cos30°=02112
mv - 解得 v 1=23m/s
设3次通过E 点的速度最大值为v 2.由动能定理得 mgy A ﹣mgR (1﹣cos53°)﹣4μmgx CD cos30°=02212
mv - 解得 v 2=6m/s
考虑2次经过E 点后不从O 点离开,有
﹣2μmgx CD cos30°=02
312
mv -
解得 v 3=26m/s 故 23m/s <ν0<26m/s
3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(3
32
R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).
(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;
(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.