2018-2019学年高中数学 习题课5 对数函数与幂函数练习 新人教A版必修1

合集下载

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。

高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修一、教学目标1. 知识与技能:(1)理解幂函数的定义和性质;(2)会求幂函数的导数;(3)能够运用幂函数解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳幂函数的性质,培养学生的逻辑思维能力;(2)利用信息技术手段,展示幂函数的图象,提高学生的直观认知能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。

二、教学重点与难点1. 重点:幂函数的定义和性质,幂函数的导数。

2. 难点:幂函数在实际问题中的应用。

三、教学过程1. 导入新课:(1)复习指数函数、对数函数的性质;(2)提问:幂函数是什么?它的图象和性质是怎样的?2. 自主学习:(1)学生自主探究幂函数的定义和性质;3. 课堂讲解:(1)讲解幂函数的定义和性质;(2)讲解幂函数的导数;(3)举例说明幂函数在实际问题中的应用。

4. 课堂练习:(1)学生独立完成练习题;(2)教师点评答案,解答疑问。

5. 课堂小结:(2)教师点评并补充。

四、课后作业1. 完成教材课后练习题;2. 选取两个不同的幂函数,分析它们的性质和图象;五、教学反思1. 反思教学目标是否达成,学生掌握情况如何;2. 反思教学过程中是否存在问题,如何改进;3. 针对学生的反馈,调整教学策略,为下一节课做好准备。

六、教学评价1. 评价内容:学生对幂函数的定义、性质和导数的掌握程度,以及运用幂函数解决实际问题的能力。

2. 评价方式:课堂练习、课后作业、课堂讨论、小组合作等。

3. 评价指标:准确性、逻辑性、创新性、合作精神等。

七、教学拓展1. 对比分析幂函数、指数函数和对数函数的性质及其应用;2. 探讨幂函数在其他学科领域的应用,如物理学、化学等;3. 引入复合幂函数的概念,引导学生进一步探究。

八、教学资源1. 教材:新人教A版高中数学必修教材;2. 课件:幂函数的定义、性质和导数的课件;3. 练习题:幂函数相关练习题及答案;4. 信息技术手段:多媒体投影、网络资源等。

最新人教版高中数学必修第二册: 指数函数、对数函数与幂函数 综合测试(附答案与解析)

最新人教版高中数学必修第二册: 指数函数、对数函数与幂函数 综合测试(附答案与解析)

一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知函数()3xy f =的定义域为[1,1]-,则函数()3logy f x =的定义域为( )A.[1,1]-B.1,23⎡⎤⎢⎥⎣⎦C.[1,2]D. 2.已知函数1()2)2f x x =+,则1(lg 2)lg 2f f ⎛⎫+= ⎪⎝⎭( ) A.1-B.0C.1D.23.设函数2()log f x x =,若(1)2f a +<,则实数a 的取值范围为( ) A.(1,3)- B.(,3)-∞ C.(,1)-∞ D.(1,1)-4.已知函数2||()e x f x x =+,若()02a f =,121log 4b f ⎛⎫=⎪ ⎪⎝⎭,2log 2c f ⎛⎫= ⎪ ⎪⎝⎭,则,,a b c 的大小关系为( )A.a b c >>B.a c b >>C.b a >>cD.c a b >> 5.已知(31)4,1,()log ,1aa x a x f x x x -+⎧=⎨⎩<≥,是R 上的减函数,那么实数a 的取值范围是( )A.(0,1)B.11,73⎡⎫⎪⎢⎣⎭C.10,3⎛⎫ ⎪⎝⎭D.11,93⎛⎫⎪⎝⎭6.已知,(1,)m n ∈+∞,且m n >,若26log log 13m n nm +=,则函数2()mnf x x =的图像为( )ABCD7.给出下列命题:①函数e e 2x xy -+=为偶函数;②函数e 1e 1x x y -=+在x ∈R 上单调递增;③函数lg y x =在区间(0,)+∞上单调递减;④函数13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称。

其中正确命题的个数是( ) A.1B.2C.3D.48.设函数()2ln 1y x x =-+,则下列命题中不正确的是( ) A.函数的定义域为R B.函数是增函数C.函数的图像关于直线12x =对称D.函数的值域是3ln,4⎡⎫+∞⎪⎢⎣⎭9.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100℃,水温()y ℃与时间(min)t 近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度()y ℃与时间(min)t 近似满足函数关系式101802t a y b -⎛⎫=+ ⎪⎝⎭(,a b 为常数).通常这种热饮在40℃时,口感最佳,某天室温为20℃,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A.35minB.30minC.25minD.20min 10.已知函数22log ,02,()43,2,x x f x x x x ⎧⎪=⎨-+-⎪⎩<≤>若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( ) A.[2,3]B.(2,3)C.[2,3)D.(2,3]二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.给出下列结论,其中正确的结论是( )A.函数2112x y -+⎛⎫= ⎪⎝⎭的最大值为12B.已知函数log (2)a y ax =-(0a >且1a ≠)在(0,1)上是减函数,则实数a 的取值范围是(1,2)C.在同一平面直角坐标系中,函数2x y =与2log y x =的图像关于直线y x =对称D.已知定义在R 上的奇函数()f x 在(,0)-∞内有1010个零点,则函数()f x 的零点个数为202112.定义“正对数”:0,01,ln ln , 1.x x x x +⎧=⎨⎩<<≥若0a >,0b >,则下列结论中正确的是( )A.()ln ln b a b a ++=B.ln ()ln ln ab a b +++=+C.ln ()ln ln a b a b +++++≥D.ln ()ln ln ln 2a b a b ++++++≤三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知()y f x =为定义在R 上的奇函数,且当0x >时,()e 1x f x =+,则(ln2)f -的值为________.14.某新能源汽车公司为激励创新,计划逐年加大研发资金投入,若该公司2018年(记为第1年)全年投入研发资金5300万元,在此基础上,以后每年投入的研发资金比上一年增长8%,则该公司全年投入的研发资金开始超过7000万元的年份是________年.(参考数据:lg1.080.03≈,lg5.30.72≈,lg70.85≈) 15.已知函数()log (1)a f x x =-+(0a >且1a ≠)在[2,0]-上的值域是[1,0]-.若函数()3x m g x a +=-的图像不经过第一象限,则m 的取值范围为________.16.若不等式()21212xxm m ⎛⎫-- ⎪⎝⎭<对一切(,1]x ∈-∞-恒成立,则实数m的取值范围是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(1()231251log 227-⎛⎫--+ ⎪⎝⎭的值;(2)计算:1324lg 2493-18.(12分)已知幂函数()221()1m f x m m x --=--⋅在(0,)+∞上单调递增,函数()22x xmg x =+.(1)求实数m 的值,并简要说明函数()g x 的单调性; (2)若不等式(13)(1)0g t g t -++≥恒成立,求实数t 的取值范围.19.(12分)目前,我国一些高耗能低效产业(煤炭、钢铁、有色金属、炼化等)的产能过剩将严重影响生态文明建设,“去产能”将是一项重大任务.某企业从2018年开始,每年的产能比上一年减少的百分比为(01)x x <<.(1)设n 年后(2018年记为第1年)年产能为2017年的a 倍,请用a ,n 表示x ;(2)若10%x =,则至少要到哪一年才能使年产能不超过2017年的25%?(参考数据:lg20.301≈,lg30.477≈)20.(12分)已知函数2()lg 2lg(10)3f x x a x =-+,1,10100x ⎡⎤∈⎢⎥⎣⎦. (1)当1a =时,求函数()f x 的值域;(2)若函数()y f x =的最小值记为()m a ,求()m a 的最大值.21.(12分)已知函数()log a f x x b =+(其中,a b 均为常数,0a >且1a ≠)的图像经过点()2,5与点()8,7. (1)求,a b 的值;(2)设函数2()x x g x b a +=-,若对任意的1[1,4]x ∈,存在[]220,log 5x ∈,使得()()12f x g x m =+成立,求实数m 的取值范围.22.(12分)已知函数()4()log 41()x f x kx k =++∈R 是偶函数. (1)求k 的值;(2)设44()log 23xg x a a ⎛⎫=⋅-⎪⎝⎭,若函数()f x 与()g x 的图像有且只有一个公共点,求实数a 的取值范围; (3)若函数[]1()22()421,0,log 3f x xx h x m x +=+⋅-∈,是否存在实数()h x 使得最小值为0,若存在,求出m 的值;若不存在,请说明理由.答案解析一、 1.【答案】D【解析】由[1,1]x ∈-,得13,33x ⎡⎤∈⎢⎥⎣⎦,所以31log ,33x ⎡⎤∈⎢⎥⎣⎦,所以x ∈. 2.【答案】C1()2)2f x x =+,11()()2)2)2)2)122f x f x x x x x ∴+-=+++=++ 22lg(144)1lg111x x =+-+=+=,1(lg 2)lg (lg 2)(lg 2)12f f f f ⎛⎫∴+=+-= ⎪⎝⎭.3.【答案】A【解析】函数2()log f x x =在定义域内单调递增,2(4)log 42f ==,∴不等式(1)2f a +<等价于014a +<<,解得13a -<<,故选A.4.【答案】C【解析】2||2||()()e e ()x x f x x x f x --=-+=+=知函数()f x 为偶函数,且在(0,)+∞为增函数,()02(1)a f f ==,121log (2)4b f f ⎛⎫== ⎪ ⎪⎝⎭,11log 22f f f c ⎛⎛⎫⎛⎫=-= ⎪ ⎪ ⎭⎝⎝⎭=⎝⎭,所以1(2)(1)2f f f ⎛⎫ ⎪⎝⎭>>,即b a c >>. 5.【答案】B【解析】由题意得310,3140,01,a a a a -⎧⎪-+⎨⎪⎩<≥<<解得1173a ≤<,故选B.6.【答案】A【解析】由题意,得26log log 2log 6log 13m m n n n m n m +=+=,令log (1)m t n t =<,则6213t t+=,解得12t =或6t =(舍去),所以n =21m n =,所以2()mn f x x =的图像即为()f x x =的图像,故选A.7.【答案】C 【解析】由e e ()()2x xf x f x -+-==,知e 2e x x y -+=为偶函数,因此①正确;由11e e 221111e e e x x x x x y -+-===-+++知1e e 1x x y -=+在R 上单调递增,因此②正确;当0x >时,lg lg y x x ==,它在(0,)+∞上是增函数,因此③错误;由313log log y x x =-=知13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称,因此④正确,故选C.8.【答案】B【解析】A 中命题正确,22131024x x x ⎛⎫-+=-+ ⎪⎝⎭>恒成立,∴函数的定义域为R ;B中命题错误,函数()2ln 1y x x =-+在12x >时是增函数,在12x <时是减函数;C 中命题正确,函数的图像关于直线12x =对称:D中命题正确,由221331244x x x ⎛⎫-+=-+ ⎪⎝⎭≥可得()23ln 1ln 4y x x =-+≥,∴函数的值域为3ln,4⎡⎫+∞⎪⎢⎣⎭.故选B.9.【答案】C【解析】由题图知,当05t ≤<时,函数图像是一条线段,当5t ≥时,因为函数的解析式为101802t a y b -⎛⎫=+⎪⎝⎭,所以将(5,100)和(15,60)代入解析式,得5101510110080,216080,2aa b b --⎧⎛⎫⎪=+ ⎪⎪⎪⎝⎭⎨⎪⎛⎫⎪=+ ⎪⎪⎝⎭⎩解得5,20,a b =⎧⎨=⎩故函数的解析式为51018020,52t y t -⎛⎫=+ ⎪⎝⎭≥.令40y =,解得25t =,所以最少需要的时间为25min .10.B 根据已知画出函数()f x 的草图如下。

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题1、若函数x a a a y ⋅+-=)33(2是指数函数,则有 ( )A 、21==a a 或B 、1=aC 、2=aD 、10≠>a a 且2、下列所给出的函数中,是幂函数的是 ( )A .3x y -=B .3-=x yC .32x y =D .13-=x y3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( )A .log c a =bB .log c b =aC .log a b =cD .log b a =c4、若210,5100==ba ,则b a +2= ( )A 、0B 、1C 、2D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( )A 、0,0>>y xB 、0,0<>y xC 、0,0><y xD 、0,0<<y x6、函数y =)12(log 21-x 的定义域为 ( )A .(21,+∞)B .[1,+∞)C .( 21,1] D .(-∞,1) 7、若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( ) A .⎪⎭⎫ ⎝⎛43,0B .⎪⎭⎫⎢⎣⎡43,0C .⎥⎦⎤⎢⎣⎡43,0D .⎪⎭⎫ ⎝⎛+∞-∞,43]0,( 8、函数34x y =的图象是 ( )第9题 A . B . C . D .9、图中曲线是对数函数y =log a x 的图象,已知a 取4313,,,3510四个值,则相应于C 1,C 2,C 3,C 4的a 值依次为 ( )A .101,53,34,3 B .53,101,34,3 C .101,53,3,34 D .53,101,3,34 10、 函数y =lg (x +12-1)的图象关于 ( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称 11、若关于x 的方程335-+=a a x 有负根,则实数a 的取值范围是_ ____________. 12、当0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.13、函数1241++=+x x y 的值域是 .14、设1052==b a ,则=+ba 11 。

2018-2019学年高中数学 习题课3 函数的基本性质讲义 新人教A版必修1

2018-2019学年高中数学 习题课3 函数的基本性质讲义 新人教A版必修1

(2)证明:设 x1>x2>0,则 f(x1)-f(x2)=2x1-xa1-2x2-xa2= 2(x1-x2)+xa2-xa1=2(x1-x2)+axx11-x2x2=(x1-x2)2+x1ax2.
因为 x1>x2>0,所以 x1-x2>0,因为 a>0,所以 2+x1ax2 >0,所以(x1-x2)2+x1ax2>0,所以
1.用定义法判断函数的奇偶性时,为了判断 f(-x)与 f(x)
的关系,既可以从 f(-x)开始化简,也可以去考虑 f(-x)+f(x)

f(-x)-f(x)是否为
0,当
f(x)不等于
0
时也可考虑f-x与 fx
1
或-1 的关系.
2.对于函数 y=f(x),x∈[a,b].设 x1,x2∈[a,b],若 x1 -x2 与 f(x1)-f(x2)同号,则 y=f(x)在[a,b]上是单调递增的;若
本题主要考查对抽象函数的函数值域和单调性的探究.由
抽象函数求解某些函数值如f(0)时,一般采用赋值法求解,赋
值要恰当准确.已知一部分函数值求另一部分函数值时,则需 要设到所求段上,然后转到已知段求解.根据函数单调性的定 义,构造能够借助已知条件中的不等式,判断出函数的单调性 是此类问题的难点,也是关键点,需要剖析已知恒等式的结 构,转化为已知条件.
(3)解:设 x1<x2,∴f(x1)-f(x2)=f(x1)+ f(-x2)=f(x1-x2)>0, ∴f(x1)>f(x2),∴f(x)为 R 上减函数. ∵f(2x-2)-f(x)=f(2x-2)+f(-x)=f(x-2)≥-12, 又-12=4f(1)=f(4), ∴f(x-2)≥f(4),∴x-2≤4,∴x≤6, ∴原不等式的解集为{x|x≤6}.

高一【数学(人教A版)】幂函数-课后练习

高一【数学(人教A版)】幂函数-课后练习
(3)已知(2)中的气体通过的管道半径为 ,求该气体的流量速率(精确到 ).
【答案】
1.(1) .(2) .
2.因为 ,所以 为奇函数.
任取 ,且 ,则 .
因为 , ,
所以 ,即幂函数 是增函数.
3.函数 为偶函数;在 上单调递减,在 上单调递增.
4.(1) .(2) .(3) .
课程基本信息
课例编号
学科
数学
年级
高一
学期
第一学期
课题
幂函数
教科书
书名:普通高中教科书 数学必修第一册
出版社:人民教育出版社A版 出版日期:2019年6月
学生信息
姓名
学校
班级学号课后Fra bibliotek习1.利用幂函数的性质,比较下列各题中两个值的大小:
(1) , ;(2) , .
2.根据单调性和奇偶性的定义证明函数 的单调性和奇偶性.
3.画出函数 的图象,并判断函数的奇偶性,讨论函数的单调性.
4.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率 (单位: )与管道半径 (单位: )的四次方成正比.
(1)写出气体流量率 关于管道半径 的函数解析式;
(2)若气体在半径为3 的管道中,流量速率为 ,求该气体通过半径为 的管道时,其流量速率 的表达式;

高三数学一轮复习《指数函数、对数函数和幂函数》练习题(含答案)

高三数学一轮复习《指数函数、对数函数和幂函数》练习题(含答案)

高三数学一轮复习《指数函数、对数函数和幂函数》练习题(含答案)一、单选题1.已知0.33a =,0.413b -⎛⎫= ⎪⎝⎭,4log 0.3c =,则( )A .b a c >>B .a c b >>C .c b a >>D .c a b >>2.设3log 2a =,ln 2b =,125c -=,则a ,b ,c 的大小关系为( ). A .a b c <<B .c<a<bC .b a c <<D .c b a <<3.已知函数()2222()1m m f x m m x --=--是幂函数,且为偶函数,则实数m =( )A .2或1-B .1-C .4D .24.已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为( )A .10,2⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭5.已知函数()241,012,02x x x x f x x ⎧+-≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩,若方程()()2230f x af x ++=⎡⎤⎣⎦有5个不同的实数解,则实数a 的取值范围为( ) A.(,-∞B .714,45⎡⎫⎪⎢⎣⎭C.)2D .7,24⎡⎫⎪⎢⎣⎭6.若3log 2a =,53b =,7log 4c =,则a ,b ,c 的大小关系( ) A .a b c << B .b a c << C .c b a <<D .b<c<a7.设0.74a =,0.814b -⎛⎫= ⎪⎝⎭,0.70.8c =,则a ,b ,c 的大小关系为( )A .b<c<aB .c<a<bC .a b c <<D .c b a <<8.“1n =”是“幂函数()()22333nnf x n n x-=-+⋅在()0,∞+上是减函数”的一个( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要9.已知函数(),0()23,0x a x f x a x a x ⎧<⎪=⎨-+≥⎪⎩,满足对任意x 1≠x 2,都有()()1212f x f x x x -<-0成立,则a 的取值范围是( ) A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2)10.已知函数()f x 的图像如图所示,则该函数的解析式为( )A .3()e ex x x f x -=+B .3e e ()x xf x x -+=C .2()e e x x x f x -=-D .3e e ()x xf x x --=11.若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为( )A .a b c <<B .b<c<aC .b a c <<D .a c b <<12.为践行"绿水青山就是金山银山”的发展理念,全国各地对生态环境的保护意识持续增强,某化工企业在生产中产生的废气需要通过过滤使废气中的污染物含量减少到不高于最初的20%才达到排放标准.已知在过滤过程中,废气中污染物含量y (单位:mg/L ,)与时间t (单位:h )的关系式为0e kty y -=(0y ,k 为正常数,0y 表示污染物的初始含量),实验发现废气经过5h 的过滤,其中的污染物被消除了40%.则该企业生产中产生的废气要达标排放需要经过的过滤时间至少约为( )(结果四舍五入保留整数,参考数据ln 3 1.1,ln 5 1.6≈≈) A .12h B .16h C .26h D .33h二、填空题13.已知幂函数()233my m m x =--在()0,∞+上单调递增,则m =______.14.写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.15.已知函数()()212log 1,1,3,1,x x x f x x -⎧+-<=⎨≥⎩则()()31log 12f f -+=______.16.若函数2()2535xm y m m ⎛⎫- ⎝=+⎪⎭-是指数函数,且为指数增长型函数模型,则实数m =________.三、解答题17.已知函数1()x xf x a a =-(0a >且1a ≠). (1)判断函数()f x 的奇偶性,并证明;(2)若()10f >,不等式2()(4)0f x bx f x ++->在x R ∈上恒成立,求实数b 的取值范围;(3)若()312f =且221()2()xxh x a mf x a =+-在[)1,x ∞∈+上最小值为2-,求m 的值.18.已知函数4()12x f x a a=-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.19.已知函数()()()22log 2log 2f x x x =+--. (1)求函数()f x 的定义域,并判断函数()f x 的奇偶性; (2)解关于x 的不等式()()2log 1f x x ≥-.20.已知函数()xf x a =(0a >且1a ≠)的图象经过点12⎛- ⎝⎭.(1)求a 的值;(2)设()()()F x f x f x =--, ①求不等式()83F x <的解集; ②若()23xF x k ≥-恒成立,求实数k 的取值范围.21.已知()y f x =是定义在R 上的奇函数...,当0x ≥时,()()R 3xf x a a =+∈. (1)求函数()f x 在R 上的解析式;(2)若R x ∀∈,()()240f x x f mx -+->恒成立,求实数m 的取值范围.22.已知函数()()24f x x x a x =-+∈R .(1)若(1,3)x ∈时,不等式2log ()1f x ≤恒成立,求实数a 的取值范围;(2)若关于x 的方程(21)(2)|21|80x x f a +++-+=有三个不同的实数解,求实数a 的取值范围.23.已知函数2()21x x af x -=+为定义在R 上的奇函数.(1)求a 的值;(2)判断函数()f x 的单调性,并用单调性定义证明;(3)若关于x 的不等式(())()0f f x f t +<有解,求t 的取值范围。

高中的数学幂函数、指数函数与对数函数(经典练习题目)-精选.pdf

高中的数学幂函数、指数函数与对数函数(经典练习题目)-精选.pdf

高中数学精英讲解-----------------幂函数、指数函数、对数函数【第一部分】知识复习【第二部分】典例讲解考点一:幂函数例1、比较大小例2、幂函数,(m∈N),且在(0,+∞)上是减函数,又,则m= A.0B.1C.2D.3解析:函数在(0,+∞)上是减函数,则有,又,故为偶函数,故m为1.例3、已知幂函数为偶函数,且在区间上是减函数.(1)求函数的解析式;(2)讨论的奇偶性.∵幂函数在区间上是减函数,∴,解得,∵,∴.又是偶数,∴,∴.(2),.当且时,是非奇非偶函数;当且时,是奇函数;当且时,是偶函数;当且时,奇又是偶函数.例4、下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系(1)(A),(2)(F),(3)(E),(4)(C),(5)(D),(6)(B).变式训练:1、下列函数是幂函数的是()A.y=2x B.y=2x-1C.y=(x+1)2D.y=2、下列说法正确的是()A.y=x4是幂函数,也是偶函数B.y=-x3是幂函数,也是减函数C.是增函数,也是偶函数D.y=x0不是偶函数3、下列函数中,定义域为R的是()A.y=B.y=C.y=D.y=x-14、函数的图象是()A.B.C.D.5、下列函数中,不是偶函数的是()A.y=-3x2B.y=3x2C.D.y=x2+x-1 6、若f(x)在[-5,5]上是奇函数,且f(3)<f(1),则()A.f(-1)<f(-3)B.f(0)>f(1) C.f(-1)<f(1)D.f(-3)>f(-5) 7、若y=f(x) 是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是()A.(a,-f(a))B.(-a,-f(a)) C.(-a,-f(-a))D.(a,f(-a )) 8、已知,则下列正确的是()A.奇函数,在R上为增函数B.偶函数,在R上为增函数C.奇函数,在R上为减函数D.偶函数,在R上为减函数9、若函数f(x)=x2+ax是偶函数,则实数a=()A.-2B.-1 C.0D.110、已知f(x)为奇函数,定义域为,又f(x)在区间上为增函数,且f(-1)=0,则满足f(x)>0的的取值范围是()A.B.(0,1) C.D.11、若幂函数的图象过点,则_____________.12、函数的定义域是_____________.13、若,则实数a的取值范围是_____________.14、是偶函数,且在上是减函数,则整数a的值是_____________.DACAD ABACD9、,函数为偶函数,则有f(-x)=f(x),即x2-ax=x2+ax,所以有a=0.10、奇函数在对称区间上有相同的单调性,则有函数f(x)在上单调递增,则当x<-1时,f(x)<0,当-1<x<0时,f(x)>0,又f(1)=-f(-1)=0,故当0<x<1时,f(x)<0,当x>1时,f(x)>0.则满足f(x)>0的.11、解析:点代入得,所以.12、解:13、解析:,解得.14、解:则有,又为偶函数,代入验证可得整数a的值是5.考点二:指数函数例1、若函数y=a x+m-1(a>0)的图像在第一、三、四象限内,则()A.a>1B.a>1且m<0C.0<a<1且m>0D.0<a<1例2、若函数y=4x-3·2x+3的值域为[1,7],试确定x的取值范围.例3、若关于x的方程有负实数解,求实数a的取值范围.例4、已知函数.(1)证明函数f(x)在其定义域内是增函数;(2)求函数f(x)的值域.例5、如果函数(a>0,且a≠1)在[-1,1]上的最大值是14,求a的值.例1、解析:y=a x的图像在第一、二象限内,欲使其图像在第一、三、四象限内,必须将y=a x向下移动.而当0<a<1时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限.只有当a>1时,图像向下移动才可能经过第一、三、四象限,故a>1.又图像向下移动不超过一个单位时,图像经过第一、二、三象限,向下移动一个单位时,图像恰好经过原点和第一、三象限.欲使图像经过第一、三、四象限,则必须向下平移超过一个单位,故m-1<-1,∴m<0.故选B.答案:B例2、分析:在函数y=4x-3·2x+3中,令t=2x,则y=t2-3t+3是t的二次函数,由y ∈[1,7]可以求得对应的t的范围,但t只能取正的部分. 根据指数函数的单调性我们可以求出x的取值范围.解答:令t=2x,则y=t2-3t+3,依题意有:∴x≤0或1≤x≤2,即x的范围是(-∞,0]∪[1,2].小结:当遇到y=f(a x)类的函数时,用换元的思想将问题转化为较简单的函数来处理,再结合指数函数的性质得到原问题的解.例3、分析:求参数的取值范围题,关键在于由题设条件得出关于参数的不等式.解答:因为方程有负实数根,即x<0,所以,解此不等式,所求a的取值范围是例4、分析:对于(1),利用函数的单调性的定义去证明;对于(2),可用反解法求得函数的值域.解答:(1),设x1<x2,则.因为x1<x2,所以2x1<2x2,所以,所以.又+1>0, +1>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),故函数f(x)在其定义域(-∞,+∞)上是增函数.(2)设,则,因为102x>0,所以,解得-1<y<1,所以函数f(x)的值域为(-1,1).例5、分析:考虑换元法,通过换元将函数化成简单形式来求值域.解:设t=a x>0,则y=t2+2t-1,对称轴方程为t=-1.若a>1,x∈[-1,1],∴t=a x∈,∴当t=a时,y max=a2+2a-1=14.解得a=3或a=-5(舍去).若0<a<1,x∈[-1,1],∴t=a x∈.∴当时,.解得(舍去).∴所求的a值为3或.变式训练:1、函数在R上是减函数,则的取值范围是()A.B.C.D.2、函数是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数3、函数的值域是()A.B.C.D.4、已知,则函数的图像必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限5、函数的定义域为()A.B.C.D.6、函数,满足f(x)>1的x的取值范围是()A.B.C.D.7、函数的单调递增区间是()A.B.C.D.8、已知,则下列正确的是()A.奇函数,在R上为增函数B.偶函数,在R上为增函数C.奇函数,在R上为减函数D.偶函数,在R上为减函数9、函数在区间上是增函数,则实数的取值范围是()A.B.C.D.10、下列说法中,正确的是()①任取x∈R都有;②当a>1时,任取x∈R都有;③是增函数;④的最小值为1;⑤在同一坐标系中,的图象对称于y轴.A.①②④B.④⑤C.②③④D.①⑤11、若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,则a的取值范围__.12、函数的定义域是______________.13、不论a取怎样的大于零且不等于1的实数,函数y=a x-2+1的图象恒过定点________.14、函数y=的递增区间是___________.15、已知9x-10·3x+9≤0,求函数y=()x-1-4()x+2的最大值和最小值.16、若关于x的方程25-|x+1|-4·5-|x+1|-m=0有实根,求m的取值范围.17、设a是实数,.(1)试证明对于a取任意实数,f(x)为增函数;(2)试确定a的值,使f(x)满足条件f(-x)=-f(x)恒成立.18、已知f(x)=(a>0且).(1)求f(x)的定义域、值域.(2)讨论f(x)的奇偶性.(3)讨论f(x)的单调性.答案及提示:1-10 DADAD DDACB1、可得0<a2-1<1,解得.2、函数定义域为R,且,故函数为奇函数.3、可得2x>0,则有,解得y>0或y<-1.4、通过图像即可判断.5、.6、由,由,综合得x>1或x<-1.7、即为函数的单调减区间,由,可得,又,则函数在上为减函数,故所求区间为.8、函数定义域为R,且,故函数为奇函数,又,函数在R上都为增函数,故函数f(x)在R上为增函数.9、可得.10、①中当x=0时,两式相等,②式也一样,③式当x增大,y减小,故为减函数.11、0<a<提示:数形结合.由图象可知0<2a<1,0<a<.12、提示:由得2-3x>2,所以-3x>1,.13、(2,2) 提示:当x=2时,y=a0+1=2.14、(-∞,1]提示:∵y=()x在(-∞,+∞)上是减函数,而函数y=x2-2x+2=(x-1)2+1的递减区间是(-∞,1],∴原函数的递增区间是(-∞,1].15、解:由9x-10·3x+9≤0得(3x-1)(3x-9)≤0,解得1≤3x≤9.∴0≤x≤2,令()x=t,则≤t≤1,y=4t2-4t+2=4(t-)2+1.当t=即x=1时,y min=1;当t=1即x=0时,y max=2.16、解法一:设y=5-|x+1|,则0<y≤1,问题转化为方程y2-4y-m=0在(0,1]内有实根.设f(y)=y2-4y-m,其对称轴y=2,∴f(0)>0且f(1)≤0,得-3≤m<0.解法二:∵m=y2-4y,其中y=5-|x+1|∈(0,1],∴m=(y-2)2-4∈[-3,0).17、(1)设,即f(x1)<f(x2),所以对于a取任意实数,f(x)在(-∞,+∞)上为增函数.(2)由f(-x)=-f(x)得,解得a=1,即当a=1时,f(-x)=-f(x).18、解:(1)定义域为R...∴值域为(-1,1).(2),∴f(x)为奇函数.(3)设,则当a>1时,由,得,,∴当a>1时,f(x)在R上为增函数.同理可判断当0<a<1时,f(x)在R上为减函数.考点三:对数函数例1、求函数的定义域和值域,并确定函数的单调区间.例2、已知函数f(x)=lg(ax2+2x+1)(a∈R).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.例3、已知的最大值和最小值以及相应的x值.例4、已知f(x)=log a(a x-1)(a>0,a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求函数y=f(2x)与y=f-1(x)的图象交点的横坐标.例1解:由-x2+2x+3>0 ,得 x2-2x-3<0,∴-1<x<3,定义域为 (-1,3);又令 g(x)=-x2+2x+3=-(x-1)2+4,∴当 x∈(-1,3) 时, 0<g(x)≤4.∴ f(x)≥=-2 ,即函数 f(x) 的值域为[-2,+∞);∵ g(x)=-(x-1)2+4 的对称轴为 x=1.∴当-1<x≤1 时, g(x) 为增函数,∴为减函数.当 1≤x<3 时, g(x)为减函数,∴ f(x)为增函数.即f(x) 在(-1,1] 上为减函数;在[1,3 )上为增函数.例2、分析:令g(x)=ax2+2x+1,由f(x)的定义域为R,故g(x)>0对任意x∈R均成立,问题转化为g(x)>0恒成立,求a的取值范围问题;若f(x)的值域为R,则g(x)的值域为B必满足B(0,+∞),通过对a的讨论即可.解答:(1)令g(x)=ax2+2x+1,因f(x)的定义域为R,∴ g(x)>0恒成立.∴∴函数f(x)的定义域为R时,有a>1.(2)因f(x)的值域为R,设g(x)=ax2+2x+1的值域为B,则B(0,+∞).若a<0,则B=(-∞,1-](0,+∞);若a=0,则B=R,满足B(0,+∞).若a>0,则△=4-4a≥0,∴ a≤1.综上所述,当f(x)的值域为R时,有0≤a≤1.例3、分析:题中条件给出了后面函数的自变量的取值范围,而根据对数的运算性质,可将函数化成关于log2x的二次函数,再根据二次函数在闭区间上的最值问题来求解.解答:当t=3时,y有最大值2,此时,由log2x=3,得x=8.∴当x=2时,y有最小值-.当x=8时,y有最大值 2.例4、分析:题设中既含有指数型的函数,也含有对数型的函数,在讨论定义域,讨论单调性时应注意对底数a进行讨论,而(3)中等价于求方程f(2x)=f-1(x)的解.解答:(1)a x-1>0得a x>1.∴当a>1时,函数f(x)的定义域为(0,+∞),当0<a<1时,函数f(x)的定义域为(-∞,0).(2)令g(x)=a x-1,则当a>1时,g(x)=a x-1在(0,+∞)上是增函数.即对0<x1<x2,有0<g(x1)<g(x2),而y=log a x在(0,+∞)上是增函数,∴ log a g(x1) <log a g(x2),即f(x1)<f(x2).∴ f(x)= log a(a x-1)在(0,+∞)上是增函数;当0<a<1时,g(x)=a x-1在(-∞,0)上是减函数.即对x1<x2<0,有g(x1)>g(x2)>0.而y=log a x在(0,+∞)上是减函数,∴ log a g(x1) <log a g(x2),即f(x1)<f(x2).∴ f(x)=log a(a x-1)在(-∞,0)上是增函数.综上所述,f(x)在定义域上是增函数.(3)∵ f(2x)= log a(a2x-1),令y=f(x)= log a(a x-1),则a x-1=a y,∴ a x=a y+1,∴ x= log a (a y+1)(y∈R).∴ f-1(x)= log a (a x+1)(x∈R).由f(2x)=f-1(x),得log a(a2x-1)= log a(a x+1).∴ a2x-1= a x+1,即(a x)2-a x-2=0.∴ a x=2或a x=-1(舍).∴ x=log a2.即y=f(2x)与y= f-1(x)的图象交点的横坐标为x=log a2.变式训练:一、选择题1、当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是()A.B.C.D.2、将y=2x的图象(),再作关于直线y=x对称的图象,可得函数y=log2(x+1)和图象.A.先向左平行移动1个单位B.先向右平行移动1个单位C.先向上平行移动1个单位D.先向下平行移动1个单位3、函数的定义域是()A.(1,+∞)B.(2,+∞)C.(-∞,2)D.(1,2]4、函数y=lg(x-1)+3的反函数f-1(x)=()A.10x+3+1B.10x-3-1 C.10x+3-1D.10x-3+15、函数的递增区间是()A.(-∞,1)B.(2,+∞)C.(-∞,)D.(,+∞)6、已知f(x)=|log a x|,其中0<a<1,则下列各式中正确的是()A.B.C.D.7、是()A.奇函数而非偶函数B.偶函数而非奇函数C.既是奇函数又是偶函数D.既非奇函数也非偶函数8、已知0<a<1,b>1,且ab>1,则下列不等式中正确的是()A.B.C.D.9、函数f(x)的图象如图所示,则y=log0.2f(x)的图象示意图为()A.B.C.D.10、关于x的方程(a>0,a≠1),则()A.仅当a>1时有唯一解B.仅当0<a<1时有唯一解C.必有唯一解D.必无解二、填空题11、函数的单调递增区间是___________.范围内的最大值和最小值分别是12、函数在2≤x≤4___________.13、若关于x的方程至少有一个实数根,则a的取值范围是___________.14、已知(a>0,b>0),求使f(x)<0的x的取值范围.15、设函数f(x)=x2-x+b,已知log2f(a)=2,且f(log2a)=b(a>0且a≠1),(1)求a,b的值;(2)试在f(log2x)>f(1)且log2f(x)<f(1)的条件下,求x的取值范围.16、已知函数f(x)=log a(x-3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是y=g(x)图象上的点.(1)写出y=g(x)的解析式;,试求a的取值范围.(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1答案及提示:1-10 DDDDA BBBCC1、当a>1时,y=log a x是单调递增函数,是单调递减函数,对照图象可知D正确. ∴应选 D.2、解法1:与函数y=log2(x+1)的图象关于直线y=x对称的曲线是反函数y=2x-1的图象,为了得到它,只需将y=2x的图象向下平移1个单位.解法2:在同一坐标系内分别作出y=2x与y=log2(x+1)的图象,直接观察,即可得 D.3、由≥0,得 0<x-1≤1,∴ 1<x≤2.5、应注意定义域为(-∞,1)∪(2,+∞),答案选 A.6、不妨取,可得选项B正确.7、由f(-x)=f(x)知f(x)为偶函数,答案为 B.8、由ab>1,知,故且,故答案选 B. 10、当a>1时,0<<1,当0<a<1时,>1,作出y=a x与y=的图象知,两图象必有一个交点.11、答案:(-∞,-6)提示: x2+4x-12>0 ,则 x>2 或 x<-6.当 x<-6 时, g(x)=x2+4x-12 是减函数,∴在(-∞,-6)上是增函数 .12、答案:11,7 :∵ 2≤x≤4,∴.则函数,∴当时,y最大为11;当时,y最小为7.13、答案:(-∞,] 提示:原方程等价于由③得. ∴当x>0时,9a≤,即a≤.又∵ x≠3,∴ a≠2,但a=2时,有x=6或x=3(舍).∴ a≤.14、解:要使f(x)<0,即.当a>b>0时,有x>;当a=b>0时,有x∈R;当0<a<b时,有x<.15、解:(1)∵f(log2a)=b,f(x)=x2-x+b,∴(log2a)2-log2a+b=b,解得a=1(舍去),a=2,又log2f(a)=2,∴log2(a2-a+b)=2,将a=2代入,有log2(2+b)=2, ∴b=2;(2)由log2f(x)<f(1)得log2(x2-x+2)<2,∴x2-x-2<0,解得-1<x<2,由f(log2x)>f(1)得(log2x)2-log2x+2>0,解得0<x<1或x>2,∴x∈(0,1).16、解:(1)设Q(x′,y′),则,∵点P(x,y)在y=f(x)的图象上,∴.(2)当x∈[a+2,a+3]时,有x-3a>0且>0成立.而x-3a≥a+2-3a=2-2a>0,∴ 0<a<1,且恒成立.∴ 0<a<1.由 |f(x)-g(x)|≤1,即∴ r(x)=x2-4ax+3a2在[a+2,a+3]上是增函数.∴ h(x)=log a(x2-4ax+3a2)在[a+2,a+3]上是减函数. ∴当x=a+2时,h(x)max=h(a+2)=log a(4-4a),当x=a+3时,h(x)min=h(a+3)=log a(9-6a).。

2018版高中数学人教版A版必修一学案:第二单元 §2.3 幂函数 Word版含答案 (5)

2018版高中数学人教版A版必修一学案:第二单元 §2.3 幂函数 Word版含答案 (5)

§2.2对数函数2.2.1对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).预习教材P62-P63,完成下面问题:知识点1对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.()(2)对数式log32与log23的意义一样.()(3)对数的运算实质是求幂指数.()提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√由对数的定义可知(3)正确.知识点2对数的基本性质(1)负数和零没有对数.(2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________.解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1.答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________. (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析 由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log 5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 【训练1】 将下列指数式化为对数式,对数式化为指数式: (1)43=64;(2)ln a =b ;(3)⎝⎛⎭⎫12m=n ;(4)lg 1000=3. 解 (1)因为43=64,所以log 464=3; (2)因为ln a =b ,所以e b =a ;(3)因为⎝⎛⎭⎫12m=n ,所以log 12n =m ;(4)因为lg 1 000=3,所以103=1 000.题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6;③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2.答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23 =43×(-23 )=4-2=116;②由log x 8=6,得x 6=8,又x >0,即x =816 =23×16 =2;③由lg 100=x ,得10x =100=102,即x =2;④由-ln e 2=x ,得ln e 2=-x ,所以e -x =e 2,-x =2,x =-2. 规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. (2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中的x 值. (1)log 2x =-12;(2)log x 25=2;(3)log 5x 2=2.解 (1)由log 2x =-12,得2-12 =x ,∴x =22. (2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】 (1)71-log75;(2)100⎝ ⎛⎭⎪⎫12lg 9-lg 2;(3)a log ab ·log bc(a ,b 为不等于1的正数,c >0).解 (1)原式=7×7-log 75=77log 75=75. (2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1(10lg 2)2=94. (3)原式=(a log ab )log bc =b log bc =c .规律方法 对数恒等式a log a N =N 的应用 (1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】 (1)设3log 3(2x+1)=27,则x =________.(2)若log π(log 3(ln x ))=0,则x =________. 解析 (1)3log 3(2x+1)=2x +1=27,解得x =13.(2)由log π(log 3(ln x ))=0可知log 3(ln x )=1,所以ln x =3,解得x =e 3. 答案 (1)13 (2)e 3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log 3(-5)=-5成立.其中正确的个数为( )A .0B .1C .2D .3解析 (1)正确;(2),(3),(4)不正确. 答案 B2.使对数log a (-2a +1)有意义的a 的取值范围为( ) A .a >12且a ≠1B .0<a <12C .a >0且a ≠1D .a <12解析 由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12.答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132.答案1324.计算:2log 23+2log 31-3log 77+3ln 1=________. 解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝⎛⎭⎫17a =b ;(3)lg 11 000=-3; (4)ln 10=x .解 (1)由2-3=18可得log 218=-3;(2)由⎝⎛⎭⎫17a=b 得log 17b =a ; (3)由lg11 000=-3可得10-3=11 000; (4)ln 10=x 可得e x =10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log aN =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.3.指数式与对数式的互化。

2019高中数学指数函数、幂函数、对数函数同步训练题精品教育.doc

2019高中数学指数函数、幂函数、对数函数同步训练题精品教育.doc

高中数学指数函数、幂函数、对数函数同步训练题3.6《指数函数、幂函数、对数函数增长的比较》1.当x越来越大时,下列函数中,增长速度最快的应该是 () A.y=100x B.y=log100xC.y=x100 D.y=100x解析:由于指数型函数的增长是爆炸式增长,则当 x越来越大时,函数y=100x的增长速度最快.w答案:D2.设x(0,1)时,y=xp(pZ)的图像在直线y=x的上方,则p的取值范围是()A.p B.01C.p1且p D.p1解析:当p 0时,f(x)=xp=(1x )-p,在(0,1)上单调递减,yf(1)=1在直线y=x上面,故只有C正确.答案:C3.四人赛跑,假设其跑过的路程和时间的函数关系分别为f1(x)=x2,f2(x)=4x,f3 (x)=log2x,f4(x)=2x如果他们一直跑下去,最终跑在最前面的人具有的函数关系是 () A.f1(x)=x2 B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x解析:在同一坐标系中画图像可知,当x取较大值时指数函数y=2x在上方,即2x值最大.答案:D4.如图所示的是某池塘中的浮萍蔓延的面积y(m2)与时间t(月)的关系:y=at,有以下叙述:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m2;③浮萍从 4 m2蔓延到12 m2需要经过1.5个月;④浮萍每月增加的面积都相等;⑤若浮萍蔓延到2 m2,3 m2,6 m2所经过的时间分别为t1,t2,t3,则t1+t2=t3.其中正确的是 ()A.①② B.①②③④C.②③④⑤ D.①②⑤解析:由于图像经过点(1, 2),所以2=a1,即a=2.①正确.y=2t .当t=5时,y=25=3230,故②正确.令y=4,得t=2.即第2个月浮萍蔓延的面积为4 m2.再过1.5个月,即t=3.5时,y=23.5=272=82 m2,故③错误.前几个月浮萍的面积分别为2 m2,4 m2,8 m2,16 m2,显然浮萍每个月增加的面积不相等,故④错误.若浮萍蔓延到2 m2,3 m2,6 m2所经过的时间分别为t1,t2,t3,即2t1=2,2t2=3,2t3=6,则t1=log22=1,t2=log23,t3=log26,又log26=log2(23)=log22+log23,t3=t1+t2,故⑤成立.综上,①②⑤正确.答案:D5.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子没有什么变化,但价格却上涨了,小张在2019年以15万元的价格购得一所新房子,假设这10年来价格年膨胀率不变,那么到2019年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是________.解析:1年后,y=15(1+x);2年后,y=15(1+x)2;3年后,y=15(1+x)3,…,10年后,y=15(1+x)10.x答案:y=15(1+x)106.已知元素“碳14”每经过5 730年,其质量就变成原来的一半.现有一文物,测得其中“碳14”的残存量为原来的41%,此文物距现在约有________年.(注:精确到百位数,lg2=0.301 0,lg4.1=0.613)解析:设距现在为x年,则有(12)x5 730=41%,两边取对数,利用计算器可得x7 400.答案:7 4007.已知甲、乙两个工厂在今年的1月份的利润都是6万元,且甲厂在2月份的利润是14万元,乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2+b1x+6,g(x)=a23x+b2(a1,a2,b1,b2 R).(1)求甲、乙两个工厂今年5月份的利润;(2)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年甲、乙两个工厂的利润的大小情况.解:(1)依题意:由f1=6,f2=14,有a1+b1=0,4a1+2b1=8.解得a1=4,b1 =-4,f(x)=4x2-4x+6.由g1=6,g2=8,有3a2+b2=6,9a2+b2=8.解得a2=13,b2=5,g(x)=133x+5=3x-1+5,所以甲在今年5月份的利润为f(5)=86万元,乙在今年5月份的利润为g(5)=86万元,故有f(5)=g(5),即甲、乙两个工厂今年5月份的利润相等;(2)作函数图像如下:从图中,可以看出今年甲、乙两个工厂的利润:当x=1或x=5时,有f(x)=g(x);当15时,有f(x)g(x);当512 时,有f(x)g(x).8.现有某种细胞100个,其中占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg3=0.477,lg2=0.301)解:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数:1小时后,细胞总数为12100+121002=32100;2小时后,细胞总数为1232100+12321002=94100;3小时后,细胞总数为1294100+12941002=278100;4小时后,细胞总数为12278100+122781002=8116100.可见,细胞总数y与时间x(小时)之间的函数关系为y=10032x,xN+.由10032x1010,得32x108,两边同时取以10为底的对数.得xlg328,x8lg3-lg2.∵8lg3-lg2=80.477-0.30145.45,x45.45.故经过46小时,细胞总数超过1010个.。

2018-2019学年高中数学人教A版必修一:2.2.2 对数函数及其性质 第二课时 对数函数的图象及性质的应用

2018-2019学年高中数学人教A版必修一:2.2.2 对数函数及其性质 第二课时 对数函数的图象及性质的应用

眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14

14
即时训练2-1:(1)(2017·北京高一月考)已知f(x)=log3x,f(a)>f(2),那么a的取值范 围是( )
(A){a|a>2} (B){a|1<a<2}
(C){a|a> 1 } (D){a| 1 <a<1}
2
2
(2)函数 y= log1 3x 4 1 的定义域是
2
3
2
32
答案:(1)A (2)( 4 , 3 ]
32
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14

15
题型三 对数型复合函数的单调性
【例 3】 (2018·唐山高一期末)函数 f(x)= log1 (x2-2x-3)的单调递增区间是( )
(A)(-∞,-1)
(B)(-∞,1)
2
(C)(1,+∞)
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14

22
即时训练4-1:已知f(x)=loga(1-x)+loga(x+3)(a>0且a≠1). (1)求函数f(x)的定义域、值域; (2)若函数f(x)有最小值为-2,求a的值.
解:(1)因为
1 x 0, x 3 0,
所以
定义域为{x|-3<x<1}.
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14

2
新知探求 课堂探究
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14

3
新知探求·素养养成
自我检测

高一数学_指数函数、对数函数、幂函数练习(含答案)(可编辑修改word版)

高一数学_指数函数、对数函数、幂函数练习(含答案)(可编辑修改word版)

x 4 y 3 ⎛ ⎫ 3a 31、用根式的形式表示下列各式(a > 0)分数指数幂1(1) a 5=(2) a-32 =2、用分数指数幂的形式表示下列各式:m 2(1) =(2) =m(m > 0)3、求下列各式的值325 - 2 (1) 252=(2) = 4 ⎪ ⎝ ⎭4、解下列方程 - 1 1 (1) x 3=83(2) 2x 4 - 1 = 15分数指数幂(第 9 份)答案1332、 x 2y 2,m23、(1)125 (2) 81254、(1)512(2)16指数函数(第 10 份)1、下列函数是指数函数的是( 填序号)(1) y = 4 x(2) y = x 4(3) y = (-4) x(4) y = 4x 2 。

2、函数 y = a 2x -1 (a > 0, a ≠ 1) 的图象必过定点。

3、若指数函数 y = (2a + 1) x 在 R 上是增函数,求实数a 的取值范围。

4、 如 果 指 数 函 数 f (x ) = (a - 1) x 是 R 上 的 单 调 减 函 数 , 那 么 a 取 值 范 围 是( )A 、 a < 2B 、 a > 2C 、1 < a < 2D 、0 < a < 11、 5 a ,3 35、 下 列 关 系 中 , 正 确 的 是( )1 1 1 1 1 - 1 1 - 1A 、( ) 3 > ( ) 5B 、 20.1 > 20.2C 、 2-0.1 > 2-0.2D 、 ( ) 5 > ( ) 32 22 26、比较下列各组数大小:(1) 3.10.53.12.3⎛ 2 ⎫-0.3(2) ⎪⎝ ⎭⎛ 2 ⎫-0.24⎪ ⎝ ⎭(3) 2.3-2.50.2-0.17、函数 f (x ) = 10 x 在区间[ -1,2]上的最大值为,最小值为 。

函数 f (x ) = 0.1x 在区间[ -1,2]上的最大值为,最小值为。

2018-2019学年高中数学习题课5对数函数与幂函数练习新人教A版必修1

2018-2019学年高中数学习题课5对数函数与幂函数练习新人教A版必修1

习题课(五)对数函数与幕函数(时间:45分钟满分:75分)一、选择题(每小题5分,共30分)1. 在同一直角坐标系中,函数f(x) =x a(x>0), g(x) = log a x的图象可能是()解析:若a> 1,则函数g(x) = log a x的图象过点(1,0),且单调递增,但当x € [0,1)时,Iy= x a的图象应在直线y = x的下方,故C选项错误;若O v a v 1,则函数g(x) = log a x的图象过点(1,0),且单调递减,函数y = x a(x>0)的图象应单调递增,且当x€ [0,1)时图象应在直线y = x的上方,因此A, B均错,只有D项正确.答案:D2. 若函数y = f(x)的定义域为[1,2],则y= f (log 1 x)的定义域为()vU yA. [1,4]C. [1,2]jr J*解析:由 1 w log 1 x w2,21 1解得4< x w 2.故选D. B. [4,16] D.答案:D3. 已知a= log 32,那么log 38 —2log 36 用a 表示为()A. a —2B. 5a—22 2C. 3a—(1 + a)D. 3a—a —13解析:log 38 —2log 36= log 32 —2log 3(2 x 3)=3log 3 2 —2log 3 2 —2log 3 3 = log 3 2 —2= a— 2.答案:A4. 设函数f(x) = log a| x|在(—g, 0)上单调递增,则f(a+ 1)与f(2)的大小关系是( )A. f(a+ 1) >f(2)B. f(a+ 1) v f(2)C. f(a+ 1) = f(2)D.不能确定解析:由已知得O v a v 1,所以1v a+1 v 2,根据函数f(x)为偶函数,可以判断f(x)在(0,+g)上单调递减,所以f(a+ 1) > f(2).亠亠X-答案:A25. 已知函数f(x) = log 0.5(x —ax+ 4a)在[2 ,+g)上单调递减,则a的取值范围是()A. ( —g, 4]B. [4 ,+g)C. [ —2,4]D. ( —2,4]2解析:令u = x —ax+ 4a.••• y= log 0.5u在(0,+g)上为单调减函数,•••u= x2—ax + 4a在[2 ,+g)上是单调增函数且u>0,2,• i2•••—2v aw4,故选 D.[2 —2a+ 4a > 0,答案:Dy= log 1 f (x)的图象大致是(6•函数y= f(x)的图象如图所示,则函数解析:由函数y= f(x)的图象知,当x€ (0,2)时,f(x) > 1,所以log寺(x) w 0.又函数1f (x)在(0,1)上是减函数,在(1,2)上是增函数,所以y = log ~f (x)在(0,1)上是增函数,在(1,2)上是减函数•结合各选项知,选 C.答案:C二、填空题(每小题5分,共20分)7.若函数f (x) = (2 3)x m—3是幕函数,则m的值为________ .解析:本题主要考查幕函数的概念.由幕函数的定义可得2m+ 3= 1,即卩m=—1.答案:—1&方程 ln(3 X2x — 2) = log 23+ log g 的解为 ________=0,所以 3X2x — 2= 1,解得 x = 0.答案:x = 09. ____________________________________________ 函数f (x ) = log 1 ( x — 3)的单调递减区间为 _______________________________________________8解析:本题主要考查复合函数的单调性.首先令x — 3> 0,得x > 3,即函数的定义域为1(3 ,+8).又已知函数的底数为 8,而g (x ) = x — 3在R 上单调递增,根据复合函数的单调 性,可知函数f (x ) = log 1 ( x — 3)的单调递减区间为(3 ,+^).8答案:(3 ,+^)10. ____________________________________________________________________ 若关于x 的方程|log 3X | = a ( a € R )有2个解,则实数a 的取值范围是 _______________________解析:设函数 屮=|log 3X | , y 2 = a ,log 3x , x > 1,则y 1=其图象为—log 3X , 0v x v 1,•••方程|log 3X | = a 有2个解, •••函数y 1与y 2的图象有2个交点. 由图象可知,此时 a > 0. 答案:(0 ,+^) 三、解答题11. (本小题满分12分)已知幕函数f (x ) = (m i — m — 1) • x—5m —3在(0 , +^)上是增函数,1 — mx 又 g (x ) = log a ^x —1 (a > 1).(1) 求函数g (x )的解析式.(2) 当x € (t , a )时,g (x )的值域为(1 ,+s ),试求a 与t 的值. 解:(1)因为f (x )是幕函数,且在(0,+^)上是增函数,m i — m — 1 = 1, 所以 解得m =— 1,—5 - 3> 0,解析:本题主要考查对数的运算.因为 ln(3 X2x — 2) = log 23 + log23= log 2〔3X 3 ;= log 2I2],> 0可解得x v — 1或x > 1所以g (x )的定义域是(一a, — 1) U (1 ,+^). 又 a > 1, x € (t , a ),可得 t > 1,设 X 1, x 2 € (1 ,+a ),且 为 v X 2,于是 X 2— X 1> 0, X 1— 1 > 0, X 1 + 1 X 2 + 1X 2— X 1 X —X 2-1 >0,所以斗 > 斗.X 1 - 1 X 2 - 1 ,亠X 1 + 1 X 2 + 1由 a>X 有 |og a x ?T7>loga R ,解得a = 1 ± 2,因为a > 1,所以a = 1 + ^ 2,厂综上,a = 1 +, t = 1.1 112. (本小题满分13分)已知f (x )为偶函数,且 x >0时,f (x ) = --(a >0). a x (1) 判断函数f (x )在(0,+a )上的单调性,并说明理由;yyX \ -1 ~1 T(2) 若f (x )在|-, 2上的值域是I-, 2 I,求a 的值;/ Z」⑶求x € ( -a, 0)时,函数f (x )的解析式.解:(1)函数f (X )在(0,+a )上是增函数.理由如下:任取 X 1 , X 2€ (0,+a ),设X 1 v X 2,则1 11 1 X 1 — X 2X 2—X 1=H ,一 X2> X1>0,...X 1 — X 2 v 0, X 1X 2> 0, •••f (X 1)- f (X 2) v 0.即 f (X 1) v f (X 2),• f (X )在(0,+a )上为增函数.1⑵ 由(1)知函数f (x )在区间 纭,2]上是增函数,所以 g (x ) = log x +1a ・x -1X 2 — 1> 0, 所以 x - 1 X 2-1即g (x )在(1 ,+a )上是减函数.又g (x )的值域是(1 ,+a ),所以 t = 1, ga = 1,得 g (a )= 11心)一fx)=(1-£)-肓-$,1 1又f (x)在迈,2]上的值域为场,1 1•-f (2)= 2, f (2)= 2,⑶设 x € ( —g, 0),则—x € (0 ,+s ),又:f(x)为偶函数,1 1 • •• f (x ) = f ( — x ) = +—. a x2,解得a = 5.1111。

期末复习(五)对数函数-【新教材】人教A版(2019)高中数学必修第一册

期末复习(五)对数函数-【新教材】人教A版(2019)高中数学必修第一册

又 f (x) 的最大值为 M ,最小值为 m ,
g(x) 的最大值是 M 1 ,最小值是 m 1 ;
(M 1) (m 1) 0 ,则 M m 2 .故选: C .
5.解:由题意知
不等式
f (log4 x) 2 ,即
f (log4 x)
f (1) ,又偶函数 2
f (x) 在 ( , 0] 上
3
3.解:由题意可得 g(x) x2 2ax 的对称轴为 x a
①当 a 1 时,由复合函数的单调性可知, g(x) 在[4 , 5] 单调递增,且 g(x) 0 在 [4 , 5] 恒
a 1
成立,则
g
(4)
16
8a
0
1
a
2
a 4
② 0 a 1 时,由复合函数的单调性可知,g(x) 在[4 ,5] 单调递增,且 g(x) 0 在 [4 ,5] 恒
a , b , c , d 互不相同,不妨设 a b c d . 且 f (a) f (b) f (c) f (d), 3 c 4 , d 6 .
log3 a log3 b , c d 10 , 即 ab 1, c d 10 , 故 abcd c(10 c) c2 10c ,由图象可知: 3 c 4 , 由二次函数的知识可知: 32 10 3 c2 10c 42 10 4 , 即 21 c2 12c 24 ,
a

16.若函数 y loga (x2 ax 1) 有最小值,则 a 的取值范围是 .
四.解答题
17.已知函数 f (x) 2 log5 x , x [1 , 25] , g(x) [ f (x)]2 f (x2 ) .
(1)求函数 g(x) 的定义域;

人教A版数学必修一周练(五)对数函数、幂函数.docx

人教A版数学必修一周练(五)对数函数、幂函数.docx

高中数学学习材料马鸣风萧萧*整理制作周练(五) 对数函数、幂函数(时间:80分钟 满分:100分)一、选择题(每小题5分,共40分)1.(2013·郑州高一检测)下列函数中,与函数y =1x 2有相同定义域的是 ( ).A .f (x )=ln xB .f (x )=1x C .f (x )=x 3D .f (x )=e x解析 y =1x 2的定义域是{x |x ∈R ,且x ≠0},f (x )=1x 的定义域为{x |x ∈R ,且x ≠0}. 答案 B2.下列各式错误的是( ).A .30.5>30.4B .log 0.50.4>log 0.50.3 C.⎝ ⎛⎭⎪⎫123<⎝ ⎛⎭⎪⎫122D .log 24.3<log 25.3解析 ∵y =log 0.5x 在(0,+∞)上是减函数,而0.4>0.3,∴log 0.50.4<log 0.50.3,B 错,A ,C ,D 对. 答案 B3.已知y =⎝ ⎛⎭⎪⎫14x的反函数为y =f (x ),若f (x 0)=-12,则x 0=( ).A .-2B .-1C .2D.12解析 ∵y =f (x )是y =⎝ ⎛⎭⎪⎫14x 的反函数,∴f (x )=x ,则f (x 0)=x 0=-12,∴x 0==2.答案 C4.计算log 225·log 322·log 59的结果为( ).A .3B .4C .5D .6解析 原式=log 252·log 3232·log 532 =2×32×2×log 25·log 32·log 53=6. 答案 D 5.函数y =的定义域是( ).A .[1,+∞)B .(0,+∞)C .[0,1]D .(0,1]解析 要使函数有意义,则 (2x -1)≥0,∴0<2x -1≤1,即1<2x ≤2, ∴函数的定义域为(0,1]. 答案 D6.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系 是( ).A .a =b <cB .a =b >cC .a <b <cD .a >b >c解析 由a =log 233,b =log 233,则a =b >1.又c =log 32<1,∴a =b >c . 答案 B7.若点(a ,b )在y =lg x 的图象上,a ≠1,则下列点也在此图象上的是( ).A.⎝ ⎛⎭⎪⎫1a ,bB .(10a,1-b ) C.⎝ ⎛⎭⎪⎫10a ,b +1D .(a 2,2b )解析 ∵点(a ,b )在函数y =lg x 的图象上,∴b =lg a ,则2b =2lg a =lg a 2, 故点(a 2,2b )也在函数y =lg x 的图象上. 答案 D8.(2013·成都高一检测)已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图象是( ).解析 函数y =log 2x 的反函数是f (x ), ∴f (x )=2x ,则y =f (1-x )=21-x =⎝ ⎛⎭⎪⎫12x -1,∴y =f (1-x )在R 上是减函数,且过点(0,2). 答案 C二、填空题(每小题5分,共20分)9.(2013·福州高一检测)设g (x )=⎩⎨⎧e x(x ≤0),ln x (x >0),则g [g (12)]=________. 解析 ∵g ⎝ ⎛⎭⎪⎫12=ln 12<0,∴g ⎣⎢⎡⎦⎥⎤g ⎝ ⎛⎭⎪⎫12=eln 12=12.答案 1210.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.解析 ∵f (x )=lg x ,f (ab )=1, ∴lg(ab )=1,∴f (a 2)+f (b 2)=lg a 2+lg b 2=2lg(ab )=2. 答案 211.(2013·陕西师大附中高一检测)若幂函数y =(m 2+3m +3)xm 2+2m -3的图象不过原点,且关于原点对称,则m 的取值是________. 解析 ∵函数为幂函数,∴m 2+3m +3=1, 解之得m =-2或m =-1.当m =-2时,y =x -3是奇函数,且图象不过原点;当m =-1时,函数为y =x -4=1x 4是偶函数, 图象不关于原点对称,应舍去.答案 -212.若log a 2<1(a >0,且a ≠1),则a 的取值范围是________.解析 若0<a <1时,log a 2<0<1.当a >1时,y =log a x 在(0,+∞)上是增函数, 由log a 2<1=log a a ,∴a >2, 因此,a 的取值范围为a >2或0<a <1. 答案 a >2或0<a <1三、解答题(每小题10分,共40分) 13.计算(1)log 2748+log 212-12log 242; (2)设3x =4y =36,求2x +1y 的值. 解 (1)原式=log 27×1248-log 242 =log 27×1248×42=log 212=log 22-12=-12. (2)由3x =4y =36, ∴x =log 336,y =log 436, ∴1x =1log 336=log 363,1y =1log 436=log 364.∴2x +1y =2log 363+log 364=log 36(32×4) =log 3636=1.14.已知幂函数y =f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z},满足:(1)是区间(0,+∞)上的增函数;(2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足(1),(2)的幂函数f (x )的解析式,并求x ∈[0,3]时f (x )的值域.解 因为m ∈{x |-2<x <2,x ∈Z},所以m =-1,0,1.因为对任意x ∈R ,都有f (-x )+f (x )=0,即f (-x )=-f (x ),所以f (x )是奇函数.当m =-1时,f (x )=x 2只满足条件(1)而不满足条件(2). 当m =1时,f (x )=x 0条件(1),(2)都不满足. 当m =0时,f (x )=x 3条件(1),(2)都满足, 因此m =0,且f (x )=x 3在区间[0,3]上是增函数, ∴0≤f (x )≤27,故f (x )的值域是[0,27].15.已知f (x )=2+log 3x ,x ∈[1,9],求g (x )=[f (x )]2+f (x 2)的最大值以及y 取最大 值时x 的值.解 ∵f (x )的定义域为[1,9],∴要使g (x )=[f (x )]2+f (x 2)有意义,必须有⎩⎨⎧1≤x 2≤91≤x ≤9∴1≤x ≤3, 此时g (x )=[f (x )]2+f (x 2) =(2+log 3x )2+2+log 3x 2=(log 3x )2+6log 3x +6=(log 3x +3)2-3.由1≤x ≤3,知0≤log 3x ≤1.∴3≤log 3x +3≤4,从而6≤g (x )≤13, 当log 3x =1,即x =3时,y =g (x )=13.∴当x =3时,函数g (x )=[f (x )]2+f (x 2)取得最大值13. 16.设函数f (x )=log a (1-ax ),其中0<a <1.(1)证明:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.(1)证明 设0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2). 又∵0<a <1, ∴f (x 1)>f (x 2).∴f (x )在(a ,+∞)上是减函数. (2)解 ∵log a (1-ax )>1, ∴0<1-ax <a , ∴1-a <ax <1,又0<a <1,则1-a >0, 从而a <x <a 1-a. ∴不等式的解集为{x |a <x <a1-a}.。

(word完整版)高中数学幂函数、指数函数与对数函数(经典练习题)

(word完整版)高中数学幂函数、指数函数与对数函数(经典练习题)

高中数学精英讲解-------------------- 幕函数、指数函数、对数函数【第一部分】知识复习【第二部分】典例讲解考点一:幕函数例1、比较大小(1〕1弓与1臣⑵06“与07"「⑶3 了予与33正(4)0一匹恥与0巧心⑴•・• 1•拆与L祜可看作幕函数尸/在1 .馬1/处的函数值,3$ 吏且丁沁1"1血:由霉函數单调性知丄刖⑵叮D.护与。

尸可看作霍醱尸』^0.^0.7处的函数值,且 1. 9>0? 0.6 <0.7, /.由爲函数单调性®:0.61J<0.71;32 j _2_(3) /3. P与5.煮可看作舷数产尺飞在35与阴处的函数值,_2 _2fl-- <0, 3,5<5. 3,由幕函数单调Uffli3,5 ®>5.31.3(4) v Q 18-03与0.15~°■不T看作幕函数y=r°唯0.丄呂与0L1證的函数值,且7 3C® Q.1QCUE二由幕函数单谓性知心lgTdg 154^g JW ■刍例2、幂函数」,(m € N),且在(0,+a)上是减函数,又,贝y m=A . 0 B. 1 C. 2 D . 33m—5 <0,P2J <—//?T P/. m—0r l 解析:函数在(0 , )上是减函数,则有;又■"-,故为偶函数,故m为1.例3、已知幂函数J为偶函数,且在区间「「:上是减函数.卩(x)= ------- -⑴求函数-■'■的解析式;(2)讨论「V"的奇偶性.•••幂函数在区间-…='上是减函数,••• =;“ [■二,解得-】吃吃■汇,•.•叱已二, ...牌二0丄2 .又曲—如7是偶数,•称二],二才」.(2)就补=口尸-bd何—町二&+h^当r L且】-1时,•八.■是非奇非偶函数;当••「一「且〉一「时,「八」是奇函数;当二且2-1时,」•,是偶函数;当】且:-一」时,;,」宀奇又是偶函数.例4、下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系(1) y = (2> y=込<3) y =込丄(4) y - A-2;〔5) y■点2 (6) y ■孑2.(A) 辺) (C) (D) (E) ⑵⑴ T (A),⑵-(F),⑶ I (E),⑷ I (C),⑸ J (D),⑹ I (B).变式训练:1、下列函数是幂函数的是()A. y=2xB. y=2x一1C. y=(x + 1)22、下列说法正确的是( )3、下列函数中,定义域为 R 的是()44、函数「一 ‘的图象是()5、下列函数中,不是偶函数的是( )7、若y=f (x )- -是奇函数,则下列坐标表示的点一定在y=f (x )图象上的是()B . (一 a ,— f(a))C . (— a ,— f( — a))D . (a ,f( — a ))A . y=x 4是幂函数,也是偶函数C .匸一厂是增函数,也是偶函数B. y= — x 3是幂函数,也是减函数D . y=x °不是偶函数B . y= -C . y=JD .y=x A . y= — 3x 2 B . y=3x 2C . -D . y=x 2 + x — 16、若f (x )在[—5, 5]上是奇函数,且 f(3) v f(1),则( A . f( — 1)v f( — 3) B . f(0) > f(1) C . f( — 1)v f(1) D . f( — 3) > f( —5) A . (a ,— f(a)) 8、已知则下列正确的是(B .偶函数,在R上为增函数A.奇函数,在R上为增函数]_312、函数'的定义域是 __________________________________13、若1,则实数a 的取值范围是 _________________________________14、丨“ 是偶函数,且在°上是减函数,则整数 a 的值是 ________________________DACAD ABACD 9、'-'"',函数为偶函数,则有 f( — x)=f(x),即 x 2— ax=x 2 + ax ,所以有a=0.10、奇函数在对称区间上有相同的单调性,贝惰函数 f(x)在•厂 '上单调递增,则当x<—1 时,f(x)<0,当—1<x<0 时,f(x)>0,又 f(1)= — f( — 1)=0,故当 0<x<1 时,f(x)<0,当 x>1 时,f(x)>0.则满足 f(x)>0 的''-L 1-、.C. 奇函数,在R 上为减函数D. 偶函数,在 R 上为减函数9、若函数f(x)=x 2 + ax 是偶函数,则实数 a=() A . - 2B . - 1C . 0D . 110、已知f(x)为奇函数,定义域为''I - - v --,又f(x)在区间- 八 上为增函数, 且f( — 1)=0,则满足f(x)>0的工的取值范围是()(*)11、若幂函数 川) D . I -'I<:211、二解析:1 :■i12、13、-解析:1 1> (2A - 2)* + >0,解得谟 £也刃14、解:则有 / — ■- ■■■<,又为偶函数,代入验证可得整数 a 的值是5.考点二:指数函数例1、若函数y=a x + m — 1(a>0)的图像在第一、三、四象限内,贝U( ) A.a>1B.a>1 且 m<0C.O<a<1 且 m>0D.0<a<1例2、若函数y=4x — 3 2x + 3的值域为[1,7],试确定x 的取值范围.例3、若关于x 的方程I?丿 —有负实数解,求实数a 的取值范围.(1)证明函数f(x)在其定义域内是增函数;(2)求函数f(x)的值域.-2*屠例5、如果函数F" (a>o ,且a 工1在[— 1,1]上的最大值是14,求a 的值.例1、解析:y=a x 的图像在第一、二象限内,欲使其图像在第一、三、四象限内,必须 将y=a x 向下移动.而当0<a<1时,图像向下移动,只能经过第一、二、四象限或第二、 三、四象限•只有当a>1时,图像向下移动才可能经过第一、三、四象限,故a>1 •又图像向下移动不超过一个单位时,图像经过第一、二、三象限,向下移动一个单位时, 图像恰好经过原点和第一、三象限.欲使图像经过第一、三、四象限,则必须向下平移 超过一个单位,故 m- 1<— 1,二m<0故选B. 答案:B例4、 已知函数E -1厂 10' +10^例2、分析:在函数y=4x — 3 • 2x + 3中,令t=2 x ,则y=t 2— 3t + 3是t 的二次函数,由y € [1,7]可以求得对应的t 的范围,但t 只能取正的部分•根据指数函数的单调性我们 可以求出x 的取值范围.解答:令t=2 x ,则y=t 2— 3t + 3,依题意有:P - 3^+ 3^7—1W/W 斗J二一1W 虑 1 或20W4,但 1=2">0…或2忌冬4••• x < 0 或 K x < 2,即 x 的范围是(一R, 0] U [1,2].小结:当遇到y=f(a x )类的函数时,用换元的思想将问题转化为较简单的函数来处理,再 结合指数函数的性质得到原问题的解.例3、分析:求参数的取值范围题,关键在于由题设条件得出关于参数的不等式.解答:因为方程有负实数根,即 x v 0,解此不等式,所求a 的取值范围是-例4、分析:对于⑴,利用函数的单调性的定义去证明;对于 (2),可用反解法求得函 数的值域.10 -]/(x)二刍一i解答:(1) ■ -1■-,设 x iV X 2,贝V103T 3 -12(10a *l -1^3)10^2 41 (ID 如 +i)(m 打210^1 -1 10 馮;L/ -12、因为X iV X 2,所以2x iV 2X 2,所以:,1 -l '',所以… ■•又…L + 1>0,--广’+1 >0,所以 f(x i ) -f(x 2) v 0,即 f(x i ) v f(x 2),故函数 f(x)在其定义域(―乂, + )上是增函数.⑵设 ,则-I ,因为102x >0,所以-• ,解得一1V y v 1,所以函数f(x)的值域为(—1 , 1).例5、分析:考虑换元法,通过换元将函数化成简单形式来求值域.解:设t=a x>0,则y=t 2+ 2t - 1,对称轴方程为t= - 1.卄 • x Si •、「斗 2右 a>1, x € [ — 1, 1],…t=a € -V ,…当 t=a 时,y max =a + 2a — 1=14.解得a=3或a= — 5(舍去).卄 x [耳―] 若 0<a<1, x € [ — 1, 1] ,••• t=a x€ .f= - +■ 2 X -1 - L= 14a=•••当"时, •, - .解得 _•所求的a 值为3或-.变式训练:函数' ■ " ' ' I •在R 上是减函数,则亡的取值范围是(D .「:小厂2:(舍去).1、A .奇函数B.偶函数C.既奇又偶函数 D .非奇非偶函数1函数…—是()A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数11-'二 -------------3、函数 的值域是()A . (-gl )B .(F0U (l"boo ) c.(7加)D.4、已知1 :-■: 1,则函数■ _ ■' 1 的图像必定不经过()A .第一象限B .第二象限C .第三象限D .第四象限_15、函数的定义域为()A .. -B fC .一二-:'.D :■ ■ ■ ■ - - ■:2~x -lx^0/(Qi !_y2 〒勺Hl ' ,满足f (x )>1的x 的取值范围是()(-M B . (-1「皿)c .〜口专U (i 〕户对D.-已知 - ,则下列正确的是( )6、函数7、 函数1”-以仆2- 的单调递增区间是()A .奇函数,在 R 上为增函数B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在 R 上为减函数9、函数丿二一… '''在区间「「上是增函数,则实数■<的取值范围是()10、下列说法中,正确的是( )①任取x € R都有;②当a>1时,任取x € R都有J ••山';③■■- '是增函数;④-的最小值为1;⑤在同一坐标系中,」"-i?' '■■'的图象对称于y轴.•①②④ B •④⑤C.②③④ D •①⑤A .他B. C 9恥]11、若直线y=2a与函数y=|a x—1|(a>0且a工1的图象有两个公共点,则a的取值范围12、函数《2丿2的定义域是__________________ .13、不论a取怎样的大于零且不等于1的实数,函数y=a x—2+ 1的图象恒过定点 __________ 14、函数y=W 的递增区间是____________ ._1_ £15、已知9x—10 3x+ 9W0,求函数y=(4)x-1—4(Z)x+ 2的最大值和最小值.16、若关于x的方程25—|x+1|—4 5—|x+1|—m=0有实根,求m的取值范围.17、设a是实数,亠一1 .(1) 试证明对于a取任意实数,f(x)为增函数;⑵试确定a 的值,使f(x)满足条件f( — x) = — f(x)恒成立.F-118、已知 f(x)=」一 -(a>0 且-'-:).(1) 求f(x)的定义域、值域.(2)讨论f(x)的奇偶性.(3)讨论f(x)的单调性. 答案及提示:1-10 DADAD DDACB1、可得 0<a 2— 1<1,解得"I L ! I ' ■ 'y = 112>o3、可得2x >0,则有.■- ,解得y>0或y< — 1.4、通过图像即可判断.,综合得x>1或XV — 1.专■肘 予¥了"=二一畑8、函数定义域为 R 且-,故函数为奇函数,2、函数定义域为 R 且-L-八1,故函数为奇5、x-2 >07、即为函数 ''厂'「二的单调减区间,由十兀卄2孑|j 可得-1W JT W 2—A 3 + x+2=[山9 又」,则函数在J 上为减函数,故所求区间为又- 2 ,函数;_:," 在R上都为增函数,故函数f(x)在R上为增函数.10、①中当x=0时,两式相等,②式也一样,③式当x增大,y减小,故为减函数. 提示:数形结合.由图象可知0v 2a v 1, 0v a v二.9、可得 -11、0v a v --CQ —- 2 > □X12、l 提示:由12丿得2〜>2,所以—3x > 1, 3.13、(2,2) 提示:当x=2 时,y=a0+ 仁2.14、(—a, 1]J.提示:T y=(二)x在(—8,+^ )上是减函数,而函数y=x2—2x+ 2=(x—1)2+ 1的递减区间是(一汽1],二原函数的递增区间是(一比,1].15、解:由9x—10 • 3x+ 9<0 得(3x—1)(3 x—9) < 0,解得 1 <3x<9.£J_ J.••• 0< x< 2,令(二)x=t,贝<t < 1 , y=4t2—4t + 2=4(t —- )2+ 1.J.当t=二即x=1 时,y min = 1 ;当t=1 即x=0 时,y max=2.16、解法一:设y=5—|x +11,则0v y< 1,问题转化为方程y2—4y —m=0在(0 , 1 ]内有实根.设f(y)=y 2—4y —m,其对称轴y=2, • f(0) >0 且f(1) < 0,得—3< m v 0.解法二:T m=y—4y,其中y=5—lx +11€ (0 , 1] , • m=(y—2)2—4€[—3, 0).17、.'2气 <2^,2^ > 0,2^ >。

幂函数、指数函数、对数函数专练习题(含答案)

幂函数、指数函数、对数函数专练习题(含答案)

若 x≥0,则 3x≥2x≥1,∴ f (3 x) ≥f (2 x) .
若 x<0,则 3x<2x<1,∴ f (3 x)> f (2 x) .
∴f
(3
x
)

f
(2
x
)

答案: A
3. 解析:由于函数 y= |2 x-1| 在 ( -∞, 0) 内单调递减,在 (0 ,+∞ ) 内单调递增,而函数在 区间 ( k- 1, k+ 1) 内不单调,所以有 k-1<0<k+ 1,解得- 1<k<1.
1 f ( x)< ,则实数
a 的取值范围
2
是(
)
1 A. (0 , ] ∪ [2 ,+∞ )
2
1 B. [ , 1) ∪ (1,4]
4
1 C. [ 2, 1) ∪ (1,2]
1
D.
(0

) 4

[4
,+∞)
二、填空题
7.函数 y= ax( a>0,且 a≠1) 在 [1,2] 上的最大值比最小值大
u( x) 在 (1,2) 上单调递增,则 u( x)> u(1) = a- 3,即 a≥3. 答案: B 5. 解析:数列 { an} 满足 an= f ( n)( n∈ N*) ,则函数 f ( n) 为增函数,
x
B
、 y log 2 x2 1
D、 y log 1 (x2 4x 5)
2
12 、 已 知 g( x) loga x+1 (a 0且a 1) 在 1,0 上 有 g( x ) 0, 则 f ( x) a x 1 是


A、在 ,0 上是增加的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课(五) 对数函数与幂函数
(时间:45分钟 满分:75分)
一、选择题(每小题5分,共30分)
1.在同一直角坐标系中,函数f (x )=x a
(x ≥0),g (x )=log a x 的图象可能是( )
解析:若a >1,则函数g (x )=log a x 的图象过点(1,0),且单调递增,但当x ∈[0,1)时,
y =x a 的图象应在直线y =x 的下方,故C 选项错误;若0<a <1,则函数g (x )=log a x 的图
象过点(1,0),且单调递减,函数y =x a
(x ≥0)的图象应单调递增,且当x ∈[0,1)时图象应在直线y =x 的上方,因此A ,B 均错,只有D 项正确.
答案:D
2.若函数y =f (x )的定义域为[1,2],则y =f (log 12 x )的定义域为( )
A .[1,4]
B .[4,16]
C .[1,2]
D .⎣⎢⎡⎦
⎥⎤14,12
解析:由1≤log 12 x ≤2,
解得14≤x ≤1
2.故选D.
答案:D
3.已知a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2 B .5a -2 C .3a -(1+a )2
D .3a -a 2
-1
解析:log 38-2log 36=log 323
-2log 3(2×3) =3log 3 2-2log 3 2-2log 3 3=log 3 2-2=a -2. 答案:A
4.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )
A .f (a +1)>f (2)
B .f (a +1)<f (2)
C .f (a +1)=f (2)
D .不能确定
解析:由已知得0<a <1,所以1<a +1<2,根据函数f (x )为偶函数,可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).
答案:A
5.已知函数f (x )=log 0.5(x 2
-ax +4a )在[2,+∞)上单调递减,则a 的取值范围是( ) A .(-∞,4] B .[4,+∞) C .[-2,4]
D .(-2,4]
解析:令u =x 2
-ax +4a .
∵y =log 0.5u 在(0,+∞)上为单调减函数,
∴u =x 2
-ax +4a 在[2,+∞)上是单调增函数且u >0,
∴⎩⎪⎨⎪⎧
a 2≤2,22-2a +4a >0,
∴-2<a ≤4,故选D.
答案:D
6.函数y =f (x )的图象如图所示,则函数y =log 12
f (x )的图象大致是( )
解析:由函数y =f (x )的图象知,当x ∈(0,2)时,f (x )≥1,所以log 1
2
f (x )≤0.又函数
f (x )在(0,1)上是减函数,在(1,2)上是增函数,所以y =lo
g 12
f (x )在(0,1)上是增函数,在
(1,2)上是减函数.结合各选项知,选C.
答案:C
二、填空题(每小题5分,共20分) 7.若函数f (x )=(2m +3)x
m 2
-3是幂函数,则m 的值为______.
解析:本题主要考查幂函数的概念.由幂函数的定义可得2m +3=1,即m =-1.
答案:-1
8.方程ln(3×2x
-2)=log 23+log 213
的解为______.
解析:本题主要考查对数的运算.因为ln(3×2x
-2)=log 23+log 213=log 2⎝ ⎛⎭⎪⎫3×13=log 21
=0,所以3×2x
-2=1,解得x =0.
答案:x =0
9.函数f (x )=log 18
(x -3)的单调递减区间为______.
解析:本题主要考查复合函数的单调性.首先令x -3>0,得x >3,即函数的定义域为(3,+∞).又已知函数的底数为1
8,而g (x )=x -3在R 上单调递增,根据复合函数的单调
性,可知函数f (x )=log 18
(x -3)的单调递减区间为(3,+∞).
答案:(3,+∞)
10.若关于x 的方程|log 3x |=a (a ∈R )有2个解,则实数a 的取值范围是________. 解析:设函数y 1=|log 3x |,y 2=a ,
则y 1=⎩
⎪⎨
⎪⎧
log 3x ,x ≥1,-log 3x ,0<x <1,其图象为
∵方程|log 3x |=a 有2个解, ∴函数y 1与y 2的图象有2个交点. 由图象可知,此时a >0. 答案:(0,+∞) 三、解答题
11.(本小题满分12分)已知幂函数f (x )=(m 2
-m -1)·x -5m -3
在(0,+∞)上是增函数,
又g (x )=log a 1-mx
x -1
(a >1).
(1)求函数g (x )的解析式.
(2)当x ∈(t ,a )时,g (x )的值域为(1,+∞),试求a 与t 的值. 解:(1)因为f (x )是幂函数,且在(0,+∞)上是增函数,
所以⎩⎪⎨
⎪⎧
m 2
-m -1=1,-5m -3>0,
解得m =-1,
所以g (x )=log a x +1
x -1
. (2)由
x +1
x -1
>0可解得x <-1或x >1, 所以g (x )的定义域是(-∞,-1)∪(1,+∞). 又a >1,x ∈(t ,a ),可得t ≥1,
设x 1,x 2∈(1,+∞),且x 1<x 2,于是x 2-x 1>0,x 1-1>0,x 2-1>0,
所以x 1+1x 1-1-x 2+1x 2-1=x 2-x 1
x 1-x 2->0,
所以
x 1+1x 1-1>x 2+1
x 2-1
. 由a >1,有log a
x 1+1x 1-1>log a x 2+1
x 2-1

即g (x )在(1,+∞)上是减函数. 又g (x )的值域是(1,+∞),
所以⎩
⎪⎨
⎪⎧
t =1,
g a =1,得g (a )=log a
a +1=1
解得a =1±2,因为a >1综上,a =1+2,t =1.
x >0时,f (x )=1a -1
x
(a >0).

⎥⎤2,求a 的值; 的解析式. x 1<x 2,则
=1x 2-1x 1=x 1-x 2
x 1x 2,∵x 2>x 1>0,
∴x 1-x 2<0,x 1x 2>0, ∴f (x 1)-f (x 2)<0. 即f (x 1)<f (x 2),
∴f (x )在(0,+∞)上为增函数.
(2)由(1)知函数f (x )在区间[1
2,2]上是增函数,
又f (x )在[12,2]上的值域为[1
2
,2],
∴f (12)=1
2,f (2)=2,
即⎩⎪⎨⎪⎧
1a -2=121a -12=2
,解得a =2
5
.
(3)设x ∈(-∞,0),则-x ∈(0,+∞), ∴f (-x )=1a -1-x =1a +1
x .
又∵f (x )为偶函数, ∴f (x )=f (-x )=1a +1
x
.。

相关文档
最新文档