《3.4 直线与平面的垂直关系》教案
43直线、平面垂直的判定与性质
第43课时 直线、平面垂直的判定与性质编者:刘智娟 审核:陈彩余第一部分 预习案一、学习目标1.熟记、理解线面垂直关系的判定与性质定理;2.解题中规范使用数学语言,严格证题过程;3.重视转化思想的应用,解题中要以寻找线线垂直作为突破. 二、知识回顾 1.直线与平面垂直(1)判定直线和平面垂直的方法 ①定义法.②利用判定定理:如果一条直线和一个平面内的两条 直线垂直,那么这条直线垂直于这个平面.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也 这个平面. (2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内 直线. ②垂直于同一个平面的两条直线 ③垂直于同一条直线的两平面 2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角. 3.平面与平面垂直(1)平面与平面垂直的判定方法 ①定义法.②利用判定定理:如果一个平面经过另一个平面的一条 ,那么这两个平面互相垂直.(2)平面与平面垂直的性质如果两个平面互相垂直,那么在一个平面内垂直于它们 的直线垂直于另一个平面. 4.二面角的有关概念(1)二面角:一条直线和由这条直线出发的 所组成的图形叫做二面角. (2)二面角的平面角:以二面角棱上任意一点为端点,在两个面内分别作 于棱的射线,则两射线所成的角叫做二面角的平面角.班级_________ 学号_________ 姓名_________三、基础训练1.一平面垂直于另一平面的一条平行线,则这两个平面的位置关系是__________.2. △ABC中,∠ABC=90°,PA⊥平面ABC,则图中直角三角形的个数是________.3.α、β是两个不同的平面,m、n是平面α及β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题____________________________.4.已知平面α⊥β,α∩β=l,P是空间一点,且P到平面α、β的距离分别是1、2,则点P到l的距离为________.5.设α,β,γ为平面,m,n,l为直线,则对于下列条件①α⊥β,α∩β=l,m⊥l ②α∩γ=m,α⊥β,γ⊥β③ α⊥γ,β⊥γ,m⊥α④n⊥α,n⊥β,m⊥α其中为m⊥β的充分条件的是________(将你认为正确的所有序号都填上).第二部分探究案探究一直线与平面垂直的判定与性质问题1、如图,在四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC =60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE; (2)PD⊥平面ABE.问题2、(1)如图所示,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的射影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).探究二平面与平面垂直的判定与性质问题3、如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.1求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.问题4、在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.探究三 线面、面面垂直的综合应用问题5、如图所示,在四棱锥P —ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点,求证:平面MBD ⊥平面PAD ; (2)求四棱锥P —ABCD 的体积.问题6、如图所示,已知长方体ABCD —A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点, (1)求证:EF ∥平面ABCD ;(2)设M 为线段C 1C 的中点,当D 1DAD 的比值为多少时,DF ⊥平面D 1MB ?并说明理由.我的收获第三部分 训练案 见附页。
直线与平面垂直教案
直线与平面垂直教案教案标题:直线与平面垂直教案教学目标:1. 理解直线与平面垂直的概念及特征。
2. 能够判断给定直线与平面是否垂直。
3. 掌握求解直线与平面垂直关系的方法。
教学重点:1. 直线与平面垂直的概念理解。
2. 判断直线与平面垂直的方法。
教学难点:1. 求解直线与平面垂直关系的方法。
教学准备:1. 教师准备:黑板、彩色粉笔、投影仪、教学PPT。
2. 学生准备:课本、笔记本。
教学过程:Step 1: 引入新知识 (5分钟)1. 教师使用投影仪或黑板上展示一条直线和一个平面的图形,引导学生观察并思考直线与平面之间的关系。
2. 教师提问:“你们观察到了什么?”学生回答后,教师引导学生,让他们意识到直线与平面之间可能存在的垂直关系。
Step 2: 直线与平面垂直的概念讲解 (10分钟)1. 教师使用教学PPT或黑板,讲解直线与平面垂直的定义:如果一条直线与平面上的任意一条直线都垂直相交,那么这条直线与该平面垂直。
2. 教师通过示例图形和实际生活中的例子,帮助学生更好地理解直线与平面垂直的概念。
Step 3: 判断直线与平面垂直的方法 (15分钟)1. 教师讲解判断直线与平面垂直的方法:a. 方法一:直线上的两个向量与平面上的法向量的点积为零。
b. 方法二:直线上的一点到平面上的任意一点的向量与平面的法向量的点积为零。
2. 教师通过具体的例子,演示如何使用这两种方法来判断直线与平面的垂直关系。
3. 教师鼓励学生进行思考和讨论,解决一些实际问题,以加深他们对判断直线与平面垂直关系的理解。
Step 4: 练习与巩固 (15分钟)1. 教师提供一些练习题,让学生独立或小组合作完成。
2. 学生完成练习后,教师进行讲解和答疑。
Step 5: 拓展应用 (10分钟)1. 教师提供一些拓展应用题,让学生运用所学知识解决实际问题。
2. 学生进行思考和解答,教师引导学生讨论和分享答案。
Step 6: 总结与反思 (5分钟)1. 教师对本节课的重点内容进行总结,并强调直线与平面垂直的判断方法。
直线与平面垂直的判定教学设计
“直线与平面垂直的判定〃教学设计一、内容和内容解析直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的根底,是空间中垂直位置关系间转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的根底,因而它是空间点、直线、平面间位置关系中的核心概念之一。
直线与平面垂直的定义:如果一条直线与一个平面内的任意一条直线都垂直,就称这条直线与这个平面互相垂直。
定义中的“任意一条直线〃就是“所有直线〃。
定义本身也说明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线。
直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
该定理把原来定义中要求与任意一条(无限)直线垂直转化为只要与两条(有限)相交直线垂直就行了,使直线与平面垂直的判定简捷而又具有可操作性。
对直线与平面垂直的定义的研究遵循“直观感知、抽象概括〃的认知过程展开,而对直线与平面垂直的判定的研究那么遵循“直观感知、操作确认、归纳总结、初步运用〃的认知过程展开,通过该内容的学习,进一步培养学生空间想象能力和几何直观能力,开展学生的合情推理能力、一定的推理论证能力和运用图形语言进行交流的能力。
同时体验和感悟转化的数学思想,即“空间问题转化为平面问题〃,“无限问题转化为有限问题〃,“直线与直线垂直和直线与平面垂直的相互转化〃。
教学重点:直观感知、操作确认,概括出直线与平面垂直的定义和判定定理。
二、目标和目标解析目标:理解直线与平面垂直的意义,掌握直线与平面垂直的判定定理。
目标解析:1、借助对图片、实例的观察,抽象概括出直线与平面垂直的定义。
2、通过直观感知、操作确认,归纳出直线与平面垂直的判定定理。
3、能运用直线与平面垂直的判定定理,证明与直线和平面垂直有关的简单命题:在平面内选择两条相交直线,证明它们与平面外的直线垂直。
直线与平面垂直的性质教案
直线与平面垂直的性质教案教案要求:1. 学生年级:高中数学或几何学课程2. 课时:1课时3. 主题:直线与平面垂直的性质教学目标:1. 了解什么是直线与平面垂直的几何关系;2. 掌握直线与平面垂直的判定条件;3. 能够解答直线与平面垂直相关的数学问题。
教学准备:1. 平面几何教材;2. 黑板、白板或投影设备;3. 教学PPT或展示素材。
教学过程:1. 导入(5分钟)- 引入问题:什么是直线与平面垂直的几何关系?- 引导学生回顾直线与平面的定义,根据直观经验,直线与平面垂直表示什么意思?2. 探究(10分钟)- 提示学生思考:如何判定一条直线与一个平面垂直?- 引导学生尝试给出判定准则,并解释其原理。
- 让学生讨论并交流,引导他们总结判定直线与平面垂直的条件。
3. 讲解(15分钟)- 结合学生的讨论结果,给出判定直线与平面垂直的条件,并用几何公式或示意图进行解释。
- 强调判定条件的重要性并给出几个典型的示例。
4. 示例分析(10分钟)- 提供一些例题或实际问题,让学生运用所学的知识判定直线与平面之间的垂直关系。
- 引导学生分析和解答问题,让他们积极思考并应用所学知识。
5. 拓展应用(10分钟)- 提供一些更复杂或具有挑战性的问题,让学生应用所学知识解决。
- 引导学生思考解决问题的方法和步骤,并鼓励他们进行讨论和合作。
6. 小结(5分钟)- 总结本节课所学的内容和思考问题,并强调直线与平面垂直的判定条件。
- 提醒学生复习和巩固所学的知识,并鼓励他们提出对直线与平面垂直性质的理解和感悟。
教学延伸:如果时间允许,可以让学生进行实践活动或小组讨论,进一步探究直线与平面垂直性质的应用。
可以使用动画或虚拟现实技术来展示直线与平面垂直的几何关系,以增加学生的兴趣和参与度。
直线与平面垂直的判定的教案
直线与平面垂直的判定的教案一、教学目标1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.二、教学重点、难点重点:直线与平面垂直的定义和直线与平面垂直判定定理的探究;难点:操作确认并概括出直线与平面垂直的判定定理及初步运用.三、教学过程1. 从实际背景中感知直线与平面垂直的形象问题1:空间一条直线和一个平面有哪几种位置关系?(一学生用教具演示)问题2:在日常生活中你见到最多的直线与平面相交的情形是哪种?试举例说明.(师生互动,给出实例与图片)2.提炼直线与平面垂直的定义问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?教师(在学生发言的基础上归纳):两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,由这样的思路启发我们:能否将线面垂直问题转化为线线垂直问题呢?请学生结合对下列问题的思考,试着给出直线和平面垂直的定义.问题4:(1)阳光下,旗杆AB与它在地面上的影子所成的角度是多少?(2)随着太阳的移动,影子的位置也会移动,而旗杆AB与影子所成的角度是否会发生改变?教师引导学生发现:旗杆AB所在的直线始终与地面上任意一条过点B的直线垂直.(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?引导学生再发现:旗杆AB所在的直线也与地面上任意一条不过点B的直线垂直.教师:现在,你能给直线与平面垂直下个定义吗?请学生用自己理解的语言概括定义:如果直线与平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.教师继而引导学生用数学符号与图形语言表述之)教师:这样我们就从线与线的垂直来定义线面垂直.即把空间问题转化为了平面问题.你对定义中的“任意”两个字是如何理解的?思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?对问(1),在学生回答的基础上教师可用直角三角板在黑板上直观演示,或引导学生:可将教材中每一行字看成平行线,当钢笔所在直线与其垂直时,钢笔不一定就与教材所在平面垂直;对问(2)可引导学生给出符号语言表述:若,则.教师引导学生体悟:线线垂直线面垂直线线垂直的转化思想教师:通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验.那么,是否有更简捷、可行的方法来判定直线与平面垂直呢?3.探究直线与平面垂直的判定定理创设情境猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上).如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?学生发表自己的见解,……?(折纸试验)请同学们拿出一块三角形纸片,我们先一起来做一个试验:过三角形的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)问题5:(1)折痕AD与桌面所在的平面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?提出问题让学生思考:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?根据学生思考情况启发学生可从线与线的位置关系来考虑.再提出:使得折痕与桌面所在平面垂直的的关键因素是什么?问题6:如果我们把折痕抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D 始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内.问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)问题7:如果,将图3中的两条相交直线、的位置改变一下,仍保证,(如图4)你认为直线还垂直于平面吗?教师:这说明了什么?要判断一条直线和一个平面是否垂直,取决于在这个平面内能否找到两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点是无关紧要的.根据试验,你能给出直线与平面垂直的判定方法吗?学生叙写判定定理:一条直线与一个平面内的两条相交直线都垂直,则称该直线与此平面垂直.给出文字、图形、符号这三种语言的相互转化问题8:(1)和直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?(师生共同揭示本节课蕴涵的丰富的数学思想方法)思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?“为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证,即不翻折无法使其竖立在桌面上)4.直线与平面垂直判定定理的应用如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线.并说明这些直线有怎样的位置关系?思考:如图6,已知,则吗?请说明理由.引导学生分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明,并用文字语言概括:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.教师:这个问题给出了判断直线和平面垂直的又一个方法,间接判定直线与平面垂直.这个命题体现了平行关系与垂直关系之间的联系.练习:如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.求证:AC⊥平面VKB思考:(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;(请学生判定后,追问:EF与VB的位置关系如何?)(3)在⑵的条件下,有人说“VB⊥AC, VB⊥EF,∴VB⊥平面ABC”,对吗?5.小结回授(1)本节课你学会了哪些判定直线与平面垂直的方法?试用自己理解的语言叙述.(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?6.作业布置(1)课本P73探究:如图2.3-7,直四棱柱A1B1C1D1-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A1C⊥B1D1.(2)如图9,PA⊥平面ABC,BC⊥AC,写出图中所有的直角三角形.(3)课本P74练习2.。
直线与平面垂直的判定 说课稿 教案 教学设计
直线与平面垂直的判定●三维目标1.知识与技能(1)经历对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义.(2)通过直观感知、操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题.(3)理解直线与平面所成的角的概念,并能解决简单的线面角问题.2.过程与方法(1)通过类比空间的平行关系提高提出问题、分析问题的能力.(2)在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等化归的数学思想.(3)尝试用数学语言(文字、符号、图形语言)对定义和定理进行准确表述和合理转换.3.情感、态度与价值观经历线面垂直的定义和定理的探索过程,培养严谨与求实的学习作风,形成锲而不舍的钻研精神和科学态度.●重点难点重点:直线与平面垂直的定义和判定定理.难点:操作确认并概括出直线与平面垂直的定义和判定定理.重难点突破:以日常生活中见到的线面垂直的实例为切入点,通过“展示物体的支架图片直观感知”和“折纸的操作探究”两条途径让学生经历由特殊到一般,由具体到抽象,让学生增加线面垂直的感性认识的同时突出重点、突破难点.(教师用书独具)●教学建议直线与平面垂直是直线与平面相交中的一种特殊情况,它是空间中线线垂直位置关系的拓展.也是连接线线垂直和面面垂直的纽带,在教材中起到了承上启下的作用.鉴于本节知识的特点,建议采用“启发—探究”的教学方法,先利用投影仪展示多幅图片,使学生直观感知线面垂直的定义;紧接着让学生动手参与折纸试验,并对试验现象进行观察分析和归纳概括;通过一系列的双边活动,帮助学生实现从具体到抽象、从特殊到一般的过渡,从而完成定义的建构和定理的发现.最后通过典例及变式训练突出线面垂直判定定理的应用.●教学流程创设问题情境,引出问题:如何定义直线与平面垂直?⇒引导学生通过观察图片及身边的事物,直观感知线面垂直并归纳出线面垂直定义.⇒通过引导学生动手实验理解线面垂直的判定定理.⇒通过例1及其变式训练,使学生掌握线面垂直的判定定理.⇒通过例2及其变式训练,使学生掌握直线与平面所成角的求法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读 1.了解直线与平面垂直的定义.(重点) 2.理解直线与平面垂直的判定定理,并会用其判断直线与平面垂直.(重点、难点)3.理解直线与平面所成角的概念,并能解决简单的线面角问题.(重点、易错点)直线与平面垂直的定义在阳光下观察直立于地面的旗杆及它在地面上的影子,随着时间的变化,影子的位置在移动,在各个时刻旗杆所在的直线与其影子所在的直线什么关系?【提示】垂直.直线与平面垂直的定义文字语言图形语言符号语言如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,ll⊥α叫做平面α的垂线,平面α叫做直线l的垂面,它们惟一的公共点P叫做垂足直线和平面垂直的判定定理【问题导思】将一块三角形纸片ABC沿折痕AD折起,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).观察折痕AD与桌面的位置关系.1.折痕AD与桌面一定垂直吗?【提示】不一定.2.当折痕AD满足什么条件时,AD与桌面垂直?【提示】当AD⊥BD且AD⊥CD时,折痕AD与桌面垂直.文字语言图形语言符号语言一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba⊂αb⊂αa∩b=P⇒l⊥α直线与平面所成的角图2-3-11.定义:平面的一条斜线和它在平面上的射影所成的锐角.2.范围:设直线与平面所成的角为θ,则0°≤θ≤90°.3.画法:如图所示,斜线AP与平面α所成的角是∠P AO.直线和平面垂直的定义下面叙述中:①若直线垂直于平面内的两条直线,则这条直线与平面垂直;②若直线与平面内的任意一条直线都垂直,则这条直线与平面垂直;③若直线垂直于梯形的两腰所在的直线,则这条直线垂直于两底边所在的直线;④若直线垂直于梯形的两底边所在的直线,则这条直线垂直于两腰所在的直线.其中正确的有( )A .1个B .2个C .3个D .4个【思路探究】 与线面垂直的定义及线面垂直的判定定理进行对照,区分异同,分析条件变换的影响,辨析正误.【自主解答】 ①中若两条直线为平行直线,则这条直线不一定与平面垂直,所以不正确;②由定义知正确;③中直线与梯形的两腰所在直线垂直,则与梯形所在平面垂直,由定义知也与两底边所在直线垂直,所以正确;④中直线与梯形两底边所在直线垂直,则不一定与梯形所在平面垂直,故不一定与两腰所在直线垂直,不正确.故选B.【答案】 B1.直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.2.由定义可得线面垂直⇒线线垂直,即若a ⊥α,b ⊂α,则a ⊥b .有下列说法:①如果一条直线和一个平面平行,那么它和这个平面内的任意直线都不垂直. ②如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直. ③过点A 垂直于直线a 的所有直线都在过点A 且垂直于a 的平面内. 其中错误的是( )A .①②B .①③C .②③D .①②③【解析】 ①直线与平面平行,过该直线任作平面与已知平面相交,则直线与交线平行,可知平面内与交线垂直的所有直线都与已知直线垂直,①错误;②如果平面内的无数条直线是平行的,那么就不能得到直线和平面垂直的结论,②错误;③因为过一点有且只有一个平面与已知直线垂直,所以过点A 与直线a 垂直的直线都在过点A 且与a 垂直的平面内,③正确.【答案】 A线面垂直的判定在平面α内有直角∠BCD ,AB ⊥平面α,求证CD ⊥平面ABC . 【思路探究】AB ⊥平面α――→定义AB ⊥CD ――→判定CD ⊥平面ABC BC ⊥CD ――→垂直关系∠BCD =90°【自主解答】如图所示.⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫AB⊥αCD⊂α⇒AB⊥CD∠BCD=90°⇒BC⊥CDAB∩BC=B⇒CD⊥平面ABC1.使用直线与平面垂直的判定定理的关键是在平面内找到两条相交直线都与已知直线垂直,即把线面垂直转化为线线垂直来解决.2.线面垂直的定义具有双重作用:判定和性质,证题时常用它作为性质使用,即“如果一条直线垂直于一个平面,那么这条直线就垂直于平面内的任意一条直线”.如图2-3-2,在正方体ABCD-A1B1C1D1中,E,F分别是棱AB,BC的中点,O 是底面ABCD的中心,求证:EF⊥平面BB1O.图2-3-2【证明】∵ABCD为正方形,∴AC⊥BO.又∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵BO∩BB1=B,∴AC⊥平面BB1O,又EF是△ABC的中位线,∴EF∥AC,∴EF⊥平面BB1O.求直线与平面所成的角1111图2-3-3(1)求A 1B 与平面AA 1D 1D 所成的角; (2)求A 1B 与平面BB 1D 1D 所成的角.【思路探究】 (1)找A 1B 在平面AA 1D 1D 内的射影,即为A 1A . (2)找A 1B 在平面BB 1D 1D内的射影←证A 1C 1⊥平面BB 1D 1D ←正方体的性质【自主解答】 (1)∵AB ⊥平面AA 1D 1D , ∴∠AA 1B 就是A 1B 与平面AA 1D 1D 所成的角,在Rt △AA 1B 中,∠BAA 1=90°,AB =AA 1, ∴∠AA 1B =45°,∴A 1B 与平面AA 1D 1D 所成的角是45°. (2)连接A 1C 1交B 1D 1于点O ,连接BO , ∵A 1O ⊥B 1D 1,BB 1⊥A 1O , ∴A 1O ⊥平面BB 1D 1D ,∴∠A 1BO 就是A 1B 与平面BB 1D 1D 所成的角, 设正方体的棱长为1,∴A 1B =2,A 1O =22. 又∵∠A 1OB =90°,∴sin ∠A 1BO =A 1O A 1B =12,∴∠A 1BO =30°.∴A 1B 与平面BB 1D 1D 所成的角是30°.1.求直线和平面所成角的步骤:(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.2.在上述步骤中,作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,图形中的特殊点是突破口.如图2-3-4所示,Rt △BMC 中,斜边BM =5,它在平面ABC 上的射影AB 长为4,∠MBC =60°,求MC 与平面CAB 所成角的正弦值.图2-3-4【解】 由题意知,A 是M 在平面ABC 内的射影, ∴MA ⊥平面ABC ,∴MC 在平面CAB 内的射影为AC .∴∠MCA 即为直线MC 与平面CAB 所成的角. 又∵在Rt △MBC 中,BM =5,∠MBC =60°, ∴MC =BM sin ∠MBC =5sin 60°=5×32=532. 在Rt △MAB 中,MA =MB 2-AB 2=52-42=3.在Rt △MAC 中,sin ∠MCA =MA MC =3532=235.即MC 与平面CAB 所成角的正弦值为235.因考虑不周全致误已知平面α外两点A 、B 到平面α的距离分别为1和2,A 、B 两点在平面α内的射影之间的距离为3,求直线AB 和平面α所成的角.【错解】 如图,由点A 、B 分别向平面α作垂线,垂足分别为A 1、B 1,则AA 1=1,BB 1=2,B 1A 1= 3.由点A 向BB 1作垂线,垂足为H ,则AB 与平面α所成的角即为AB 与AH 所成的角,即∠BAH 为AB 与平面α所成的角.在Rt △BHA 中,AH =A 1B 1=3, BH =BB 1-AA 1=1,∴tan ∠BAH =BH AH =13=33,∴∠BAH =30°,∴AB 与平面α所成的角为30°.【错因分析】 上述错解的原因是思维不周密,没有考虑问题可能出现的其他情况. 【防范措施】 平面α外两点A 、B 到平面α的距离分别为1和2,首先应想到A 、B 两点与平面α的位置关系,可分点A 、B 位于平面α的同侧和点A 、B 位于平面α的异侧两种情况分别求解.【正解】 ①当点A 、B 在平面α的同侧时,由以上知直线AB 与平面α所成的角为30°. ②当点A 、B 位于平面α的异侧时,如图,由点A 、B 分别向平面α作垂线,垂足分别为A 1、B 1,AB 与平面α相交于点C ,A 1B 1为AB 在平面α上的射影,∴∠BCB 1或∠ACA 1为AB 与平面α所成的角. 在Rt △BCB 1中,BB 1=2, 在Rt △AA 1C 中,AA 1=1.∵△BCB 1∽△ACA 1,∴BB 1AA 1=B 1CCA 1=2,∴B 1C =2CA 1,而B 1C +CA 1=3,∴B 1C =233,∵tan ∠BCB 1=BB 1B 1C =2233=3,∴∠BCB 1=60°,∴AB 与平面α所成的角为60°.综合①、②可知:直线AB 与平面α所成的角为30°或60°.小结1.线面垂直的定义具有双重性,既可以由线面垂直得出线线垂直,也可以由线线垂直得出线面垂直.2.求线面角的关键是找直线在相应平面内的射影,并借助直角三角形的边角关系求线面角.3.线线垂直和线面垂直体现了知识间的互化,在学习中体会等价转化思想.。
直线与平面垂直教学设计
直线与平面垂直的判定的教学设计一、内容和内容解析本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用.直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行.直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的.本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想.直线与平面垂直是研究空间中的线线关系和线面关系的桥梁,为后继面面垂直的学习、距离的学习奠定基础.二、目标和目标解析1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.三、教学问题诊断分析学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础.学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义,感悟直线与平面垂直的意义;以及如何从折纸试验中探究出直线与平面垂直的判定定理.教学的重点是直线与平面垂直的定义和直线与平面垂直判定定理的探究;教学的难点是操作确认并概括出直线与平面垂直的判定定理及初步运用.四、学习行为分析本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解.进一步,在一个具体的数学问题情境中猜想直线与平面垂直的判定定理,并在教师的指导下,通过动手操作、观察分析、自主探索等活动,切身感受直线与平面垂直判定定理的形成过程,体会蕴涵在其中的思想方法.继而,通过课本例1的学习概括直线与平面垂直的几种常用判定方法.再通过练习与课后小结,使学生进一步加深对直线与平面垂直的判定定理的理解.五、教学支持条件分析观察和展示现实生活中的实例与图片,以直观感知直线与平面垂直的形象;准备三角形纸片,用于探究直线与平面垂直的判定定理;制作多媒体课件动态演示,以加深对直线与平面垂直定义及判定定理的感知与理解.六、教学过程设计1. 从实际背景中感知直线与平面垂直的形象问题1:空间一条直线和一个平面有哪几种位置关系?设计意图:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”.问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明.设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义.2.提炼直线与平面垂直的定义问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念.(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念.通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法.通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验.这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法.3.探究直线与平面垂直的判定定理创设情境猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上).如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理.师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)问题5:(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?(组织学生动手操作、探究、确认)设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直.问题6:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内.问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线.问题7:如果将图3中的两条相交直线、的位置改变一下,仍保证,(如图4)你认为直线还垂直于平面吗?设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.根据试验,请你给出直线与平面垂直的判定方法.(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)问题8:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出 “为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解.4.直线与平面垂直判定定理的应用如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线.并说明这些直线有怎样的位置关系?思考:如图6,已知,则吗?请说明理由.(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系.练习:如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.求证:AC⊥平面VKB思考:(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;(3)在⑵的条件下,有人说“VB⊥AC,VB⊥EF,∴VB⊥平面ABC”,对吗?设计意图:例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理.3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通.5.小结回授(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述.(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?设计意图:以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生运用自己理解的语言对问题进行质疑和概括.七、目标检测设计1.课本P73探究:如图2.3-7,直四棱柱A1B1C1D1-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A1C⊥B1D1.2.如图9,PA⊥平面ABC,BC⊥AC,写出图中所有的直角三角形.3.课本P74练习2设计意图:第1题是本节教材中的一道探究题,主要运用直线与平面垂直的意义与判定定理;第2题也是活用直线与平面垂直的意义与判定定理,前两题重在检测本节课的知识与技能目标,检测运用知识解决问题的能力;第3题通过学生探索,培养学生观察──分析──归纳和综合运用知识的能力.“直线与平面垂直的判定”教学设计 一、内容和内容解析直线与平面垂直的定义:如果直线与平面内的任意一条直线都垂直,就称直线与平面互相垂直。
直线与平面垂直说课稿
直线与平面垂直高考中的地位与作用立体几何是历年高考中必考的内容,一般会有 道小题,1道解答题。
解答题的第一问一般着重考查空间平行与12垂直关系的论证、探索性问题。
在垂直关系中会有线线垂直、线面垂直、面面垂直,而线线垂直、面面垂直都可转化为线面垂直来分析解决。
可以说线面垂直是证明垂直关系的核心。
重点本节的重点是线面垂直的定义及判定定理定义:如果一条直线和一个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直。
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
(这是判定线面垂直的依据,应让学生加强理解)难点判定线面垂直的方法:(1)判定定理线线垂直⇒线面垂直。
(在证明线线垂直关系时,可以利用棱长、角度大小等数据,通过计算来证明)(2)面面垂直⇒线面垂直(在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系)(3)若直线a(4)若平面(5)若平面(6)利用平面的法向量来证明线面垂直。
下面通过两个具体的例题来分析一下这些方法在证明线面垂直中的应用。
例1 (2011年全国卷)19.如图,四棱锥S A B C D -中, //A B C D ,BC C D ⊥,侧面SA B 为等边三角形,2,1AB BC CD SD ====.(Ⅰ)证明:SD ⊥平面SA B ;【命题意图】以四棱锥为载体考查线面垂直证明,注重与平面几何的综合.解法一:(Ⅰ)取A B 中点E ,连结D E ,则四边形B C D E 为矩形,2D E C B ==,连结SE ,则SE A B ⊥,SE =又1SD =,故222ED SE SD =+,所以D S E∠为直角.由AB D E ⊥,A B SE ⊥,DE SE E =I ,得AB ⊥平面SD E ,所以A B SD ⊥.S D 与两条相交直线A B 、SE 都垂直.所以SD ⊥平面SA B .另解:由已知易求得1,2SD AD SA ===,于是222SA SD AD +=.可知SD SA ⊥,同理可得SD SB ⊥,又SA SB S =I .所以SD ⊥平面SA B .解法二:以C 为原点,射线C D 为x 轴的正半轴,建立如图所示的空间直角坐标系C xyz -.设(1,0,0)D ,则(2,2,0)A 、(0,2,0)B .又设(,,)S x y z ,则0,0,0x y z >>>.(Ⅰ)(2,2,),(,2,),(1,,)AS x y z BS x y z DS x y z =--=-=-uur uu r uu u r ,由||||AS BS =uur uu r 得=故1x =.H 由||1D S =uu u r 得221y z +=,又由||2BS =uu r 得222(2)4x y z +-+=,即22410y z y +-+=,故1,22y z ==.于是1331(1,,(1,,(1,,(0,,22222222S AS BS D S =--=-=uur uu r uu u r , 0,0DS AS DS BS ⋅=⋅=uu u r uur uu u r uu r.故,DS AS DS BS ⊥⊥,又AS BS S =I ,所以SD ⊥平面SA B .例2(2011年广东高考卷)18.如图5,在椎体P A B C D -中,A B C D 是边长为1的棱形,且060DAB ∠=,PA PD ==2,PB = ,E F 分别是,BC PC 的中点,(1)证明:AD DEF ⊥平面;【命题意图】本题以四棱锥为载体考查线面垂直证明,注重与平面几何的综合..,,//,,,,//,//,//,//,,,,,,,,23,60,1,21,,,,,:)1(:2220DEF AD PHB AD PHB DEF E EF DE DEF EF DE PHB DE DE BH PHB EF PB EF BC BC F E PHB AD HB AD HB AH AB BH AH BH DAB AB AH AD PH PD PA BH PH H AD 平面平面平面平面平面又平面又显然平面的中点分别是又平面即从而可得出连接中点为设证明解⊥∴⊥∴=⊂∴∴∴⊥∴⊥⊥∴=+==∠==⊥∴=(数学中“转化”思想的体现) 本题也可以5,,,=PC AP AB AD 先算出为一组向量,利用空间向量基本定理及向量的内积运算,直接证得垂直。
直线与平面垂直教案
直线与平面垂直教案
一、教学目标
1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。
2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。
3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
二、教学重点、难点
1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。
2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。
三、课前准备
1.教师准备:
教学课件。
2.学生自备:
三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板。
四、教学过程设计
1.直线与平面垂直定义的建构:
(1)创设情境:
①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?
②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?
③请将①中旗杆与地面的位置关系画出相应的几何图形。
(2)观察归纳:
①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?
②多媒体演示:旗杆与它在地面上影子的位置变化。
③归纳出直线与平面垂直的定义及相关概念。
定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α。
直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。
直线与平面垂直的判定教案
直线与平面垂直的判定教案教案标题:直线与平面垂直的判定教案教学目标:1. 理解直线与平面垂直的概念,并能判断给定直线与平面是否垂直。
2. 掌握判定直线与平面垂直的条件。
3. 运用所学知识解决相关问题并拓展思维。
教学内容:1. 直线与平面垂直的概念2. 判定直线与平面垂直的条件3. 相关问题的解决和应用教学步骤:Step 1: 引入新概念在课堂一开始,通过问题或实例引入直线与平面垂直的概念。
可以使用身边的物体作为例子,如直线与桌面的垂直关系等,引起学生的兴趣。
Step 2: 讲解直线与平面垂直的概念通过讲解和示意图,向学生明确直线与平面垂直的定义。
强调直线与平面的交角为90度。
Step 3: 判定直线与平面垂直的条件详细讲解判定直线与平面垂直的条件,并提供示例进行讲解和演示。
可通过几何性质、垂直投影等方法探讨。
Step 4: 练习与巩固让学生进行一些练习,巩固所学内容。
可以包括选择题、判断题、填空题和应用题等多种形式,以检验学生的理解和掌握。
Step 5: 拓展思维针对学生思维的扩展,提供一些拓展问题,让学生运用所学知识解决更复杂的问题,激发学生的思考和创造力。
Step 6: 总结与归纳对直线与平面垂直的判定条件进行总结和归纳,让学生对所学知识形成更加清晰的概念框架。
Step 7: 实例分析选择一个实际问题,如垂直过马路的斑马线设计等,引导学生运用所学知识分析并解决该问题,培养学生应用知识解决实际问题的能力。
Step 8: 作业布置布置相关作业,包括练习题和思考题,让学生巩固所学内容,并鼓励他们在课外积极拓展学习。
Step 9: 教学反思回顾教学过程,总结教学效果,尝试找出不足之处,以便今后的教学改进。
教学资源:1. 手绘的直线与平面垂直示意图2. 相关练习题和答案3. 讲义和教学课件(可选择性使用)教学评估:通过课堂练习、问题解答以及作业的批改等方式进行学生的教学评估。
评估可以分为定性和定量评估,以全面了解学生对直线与平面垂直判定的掌握情况。
直线与平面垂直的判定教案史世芳
《直线与平面垂直的判定》教案岚县高级中学史世芳一、教学目标1、知识与技能①使学生掌握直线和平面垂直的定义及判定定理;②使学生掌握判定直线和平面垂直的方法;③培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
2、过程与方法①通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;②探究判定直线与平面垂直的方法。
3、情感态度价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知。
二、教学重点、难点重点:直线与平面垂直的定义和判定定理的探究;难点: 判定定理的应用。
三、学法与教学用具1、学法:学生通过阅读教材,联想周围的实物思考、交流,师生共同讨论等,从而完成本节教学目标。
2、反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.3、教学用具:电脑、投影仪、模型、。
四、教学过程【创设情景,揭示课题】1、前面我们全面学习了直线与平面平行的概念、判定和性质,对于直线与平面相交,又有哪些相关概念和原理?我们有必要进一步研究.2、为使学生学会从“感性认识”到“理性认识”过程中获取新知,教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?(教师可以提出如下思考让学生讨论交流)【思考1】:地面上竖立的旗杆与地面的位置关系给人以什么感觉?你还能列举一些类似的实例吗?【思考2】:将一本书打开直立在桌面上,观察书脊(想象成一条直线)与桌面的位置关系呈什么状态?此时书脊与每页书和桌面的交线的位置关系如何?【思考3】:在阳光下观察直立于地面的旗杆及它在地面的影子,随着时间的变化,影子BC的位置在移动,在各时刻旗杆AB所在直线与影子BC所在直线的位置关系如何?【思考4】:上述旗杆与地面、书脊与桌面的位置关系,称为直线与平面垂直.一般地,直线与平面垂直的基本特征是什么?怎样定义直线与平面垂直?多媒体演示:旗杆与它在地面上影子的位置变化。
《直线与平面垂直的判定》教学设计
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与直线与平面垂直相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用三角板和直尺制作一个垂直于地面的直线模型。
-举例:分析建筑设计中的垂直结构,如墙壁与地面、柱子与梁的垂直关系,让学生学会在实际问题中运用判定定理。
在教学过程中,教师应针对重点内容进行详细讲解和强调,通过举例、演示等方式帮助学生突破难点,确保学生能够透彻理解直线与平面垂直的判定方法及其在实际问题中的应用。
四、教学流程
(一)导入新课(用时5分钟)
《直线与平面垂直的判定》核心素养目标:
1.培养学生的空间观念:通过直观演示、动手操作和合作交流,让学生掌握直ቤተ መጻሕፍቲ ባይዱ与平面垂直的定义及判定方法,提高对空间几何体的认识和理解,发展空间想象力。
2.培养学生的逻辑推理能力:在学习直线与平面垂直判定定理的过程中,引导学生运用逻辑推理方法,学会从特殊到一般、从具体到抽象的分析和解决问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直线与平面垂直的基本概念。直线与平面垂直是指直线与平面内的任意一条直线都垂直。这个概念在几何学中具有重要意义,它帮助我们更好地理解和分析空间几何体的结构。
2.案例分析:接下来,我们来看一个具体的案例。以教室里的黑板为例,分析黑板与地面、墙壁与地面的垂直关系,展示直线与平面垂直在实际中的应用。
3.培养学生的数学建模能力:通过实际生活中的实例,让学生学会将实际问题抽象为数学模型,运用数学知识解决实际问题,提高数学应用意识。
直线与平面垂直的判定教案
直线与平面垂直的判定教案引言在几何学中,直线和平面是基本的图形概念,它们的关系十分重要。
本教案将详细介绍如何判定一条直线与一个平面是否垂直。
什么是直线与平面的垂直关系在三维空间中,直线与平面垂直表示直线与平面之间的夹角为90度。
垂直的直线和平面在几何学中非常常见,因此掌握判定的方法具有重要意义。
判定直线与平面垂直的方法判定直线与平面垂直的方法有以下几种:方法一:判断直线是否平行于平面上的两条相交直线1.确定平面上的两条相交直线,记为L1和L2;2.判断给定的直线是否和L1和L2都平行;3.如果给定的直线和L1、L2都平行,则直线与平面垂直。
方法二:判断直线上的一点是否在平面上1.确定直线上的一点P;2.判断点P是否在平面上;3.如果点P在平面上,则直线与平面垂直。
方法三:使用向量判断1.确定直线上的向量v和平面的法向量n;2.计算向量v和n的点积;3.如果点积为0,则直线与平面垂直。
具体计算步骤与示例下面通过具体计算步骤和示例来说明判定直线与平面垂直的方法。
方法一示例假设有直线L:x = y = z 和平面P:2x + 2y + 2z = 6。
1. 平面上的两条相交直线可以选取为L1:x = 0,L2:y = 1; 2. 直线L的方向向量为(1, 1, 1),和L1、L2都平行; 3. 因此直线L与平面P垂直。
方法二示例假设直线L过点P(1, 2, 3),平面P的一般方程为2x + y - z = 4。
1. 点P(1, 2, 3)代入平面的一般方程,得到2(1) + 2 - 3 = 1,点P在平面上; 2. 因此直线L与平面P垂直。
方法三示例假设直线L的方向向量为(2, 1, -1),平面P的法向量为(1, 2, 3)。
1. 向量v 和n的点积为2(1) + 1(2) + (-1)(3) = 1 + 2 - 3 = 0; 2. 点积为0,因此直线L与平面P垂直。
总结本教案介绍了三种判定直线与平面垂直关系的方法,包括判断直线是否平行于平面上的两条相交直线、判断直线上的一点是否在平面上,以及使用向量计算点积。
直线与平面垂直的性质 精品课教案
直线与平面垂直的判定和性质第一课时教学目标1.理解线面垂直的定义.2.掌握线面垂直的判定定理并能简单进行应用.教具准备:三角板.教学过程:[设置情境]复习“两条直线互相垂直的定义”并让学生观察、思考:教室内直立的墙角线和地面的位置关系是什么?直立于地面的旗杆和地面的位置关系又是什么?从而使学生在头脑中产生直线和平面垂直的初步形象,并以此引出课题.[探索研究]1.直线和平面垂直的定义为使学生从感性认识逐步上升到理性认识,展开以下问题:(1)阳光下,旗杆与它在地面上的影子所成的角度是多少?(2)随着时间的变化,影子的位置会移动,而旗杆与影子所成的角度是否会发生改变呢?(3)旗杆与地面上任意一条不过点的直线的位置关系又是什么?所成的角为多AB B 少?再让学生看一个演示实例:将书打开直立在桌面上,观察书脊和桌面上任何直线的位置关系.根据两个实例的结论,让学生归纳、概括出线面垂直的定义.如果一条直线和一个平面内的任意一条直线都垂直,我们就说直线和平面互l αl α相垂直,记作,直线叫做平面的垂线,平面叫做直线的垂面.若与互相α⊥l l ααl l α垂直,则与一定相交,交点叫做垂足,任意,都有.l αα⊂a α⊥⇒⊥l a l 2.两个真命题以下两个真命题,可以当作“定理”直接应用.(1)过一点有且只有一条直线和一个平面垂直.(2)过一点有且只有一个平面和一条直线垂直.3.直线和平面垂直的判定学习了线面垂直的定义,对于直线和平面,垂直于内的任意一条直l αl l ⇔⊥αα线,用这个定义,我们可以判定直线和平面垂直,先看一个例子.例题 求证:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.已知:,,图1.b a //α⊥a 求证:.α⊥b 证明:设是内的任意一条直线.m α. 图1αααα⊥⇒⎭⎬⎫⊂⊥⇒⎭⎬⎫⊥⇒⎭⎬⎫⊂⊥b m m b b a m a m a //例1 给出了判定直线和平面垂直的一个命题,以后我们可以直接利用它来判定直线和平面垂直.在讲线面垂直的判定定理前,先提出以下两个问题让学生思考:(1)如果一条直线和一个平面内的一条直线垂直,此直线是否和平面垂直?(2)如果一条直线和一个平面内的两条直线垂直,此直线是否和平面垂直?学生不难得出结论:如果一条直线和一个平面内的一条或两条平行直线垂直,那么此直线不一定和平面垂直.紧接着,提问:如果一条直线垂直于一个平面内的两条相交直线,那么此直线是否和平面垂直?而后,引出直线和平面垂直的判定定理.直线和平面垂直的判定定理 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.已知:,,,,.α⊂m α⊂n B n m = m l ⊥n l ⊥求证:.α⊥l 教师可从以下三个方面引导学生进行分析:(1)要证,根据定义,转化为证明垂直于平面内的任意一条直线(第一次转α⊥l g 化).接下来应让学生清楚之间的位置关系有哪几种(分类).通过提问,让n m g l 、、、学生思考,并鼓励学生主动、踊跃来回答.之后,投影显示四种情况(图2):图2启发学生,只要证明了图(1)的情况,根据异面直线所成的角,其他三种情况也就得证了.下面对图(1)进行分析(2)构造平面图形解决问题(第二次转化):先对直线分类:(ⅰ)当与(或)重合,命题即可得证.(ⅱ)当与、g g m n g m 都不重合时,启迪学生:如果能证明是上某条线段的中垂线,问题就解决了.根据n g l 对称性,让学生找到线段.接下来,证明的关键是:证明上一点(点除外)到点A A 'g B 、的距离相等.需要添加什么样的辅助线?提示学生:在平面内作一条直线,A A 'αCD 与直线、、分别相交于,会怎样?由此,连结m n g E D C 、、,通过两次三角形全等得到,从而证得E A AE D A AD C A AC '''、、、、、E A AE '=g是线段的中重线,即得.(图(5))A A 'g l ⊥(3)如果中有一条或两条不经过点(其他三种情况),由前面的分析容易得g l 、B 证(第三次转化).证明方法的书写可参照课本.[演练反馈]1.,,则与的位置关系是( )α⊥a α//b a b A . B .b a //ba ⊥C .与垂直相交 D .与垂直且异面a b a b 2.若直线不垂直于平面,那么在平面内( )l ααA .不存在与垂直的直线 B .只存在一条与垂直的直线l l C .存在无数条直线与垂直 D .以上都不对l 3.在正方体中,与垂直的平面是()1111D C B A ABCD -1AD A .平面B .平面C C DD 1111DB A C .平面 D .平面1111D C B A DB A 14.如图3,已知平面,是⊙的直径,是⊙上的任一点,求⊥PA ABC AB O C O 证:.BC PC ⊥图35.如图4,已知,于,于,于点,求l =βαα⊥PA A β⊥PB B l AQ ⊥Q 证:.l BQ ⊥图46.如图5,已知异面直线,,,是的公垂线,求证b a 、α//a α//b AB b a 、.α⊥AB图57.课本练习1.(1)(2)(3),2,3.[参考答案]1.B 2.C 3.B4.提示:证明、.PA BC ⊥AC BC ⊥5.提示:连结,先证面,得到,再证平面.PQ ⊥l PAQ PQ l ⊥⊥l PQB 6.提示:令与确定的平面交于直线,令与确定的平面交于直线a AB αa 'b AB α,由已知可证,从而,.b 'a a '//b b '//a AB '⊥b AB '⊥7.1.(1)√ (2)× (3)√2.提示:利用线面垂直的判定定理证.3.提示:利用中直角边小于斜边证.∆Rt [总结提炼]只有当直线和平面内任意一条直线都垂直时,才定义直线和平面垂直,但这种定义不方便证明线面垂直,线面垂直的判定定理解决了这个问题,只要发现平面内两条相交直线都和某直线垂直就行了.布置作业:课本习题 1.(1)(2)(4),2,3,4,5.板书设计:1.线面垂直的定义2.线面垂直的判定定理例题。
直线与平面垂直的性质教案
直线与平面垂直的性质教案教案:直线与平面垂直的性质一、教学目标1.知识目标:了解直线与平面的垂直关系,并掌握直线与平面垂直的性质。
2.能力目标:能够判断直线与平面是否垂直,并能够运用垂直的性质解决问题。
3.情感目标:培养学生对数学的兴趣,激发学习的主动性。
二、教学重点三、教学难点如何判断直线与平面是否垂直。
四、教学准备教师准备:教学课件、黑板、白板、绘图工具等。
学生准备:课本、笔记本等。
五、教学过程Step1:导入新知1.通过引入两个概念:“直线”和“平面”,并介绍其定义、性质和符号表示。
2.通过实际示例,引导学生思考并提出问题:“直线与平面之间是否存在一种特殊的关系?”“你认为直线与平面有什么样的垂直关系?”3.引导学生观察周围环境中直线与平面的垂直关系,并与学生一起讨论。
Step2:理论讲解1.引入直线与平面垂直的定义:“如果直线与平面上的任意一条直线都垂直相交,那么称这条直线与这个平面垂直。
”2.讲解直线与平面垂直的性质:(1)直线与平面垂直的定理:在同一个平面内,如果一条直线与另一条直线垂直相交,则它们与该平面垂直。
(2)直线与平面垂直的判定定理:一条直线与一个平面垂直的充分必要条件是这条直线上有一点在这个平面上,且在这个平面上有一般的直线与这条直线垂直。
3.讲解直线飞平面垂直的表示方法:以垂直符号“⊥”表示。
Step3:示例演练1.给出一些具体问题,引导学生分析并判断直线与平面是否垂直,并用判定定理进行解答。
例如:过一个点作平面外的一条直线,该直线与这个平面有什么样的关系?2.引导学生根据给定的条件使用垂直的性质进行证明,以锻炼思维能力。
Step4:归纳总结1.让学生复习并总结判定直线与平面垂直的方法和性质。
2.强化学生对垂直符号“⊥”的理解和应用。
Step5:拓展应用将所学的直线与平面垂直的知识应用到实际问题中,例如建筑工程、地理测量等领域,培养学生运用数学知识分析和解决实际问题的能力。
《直线与平面垂直的判定定理》教学设计
《直线与平面垂直的判定定理》教学设计作者:杨桂仙来源:《学校教育研究》2017年第30期一、教学目标1.知识与技能(1)掌握直线和平面垂直的定义及判定定理;(2)培养几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
2.过程与方法通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程。
3.情态、态度与价值观在探究活动中,学生亲历从“感性认识”到“理性认识”获取新知的过程,体验探索的乐趣,通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。
二、教学重点、难点重点:直线与平面垂直的定义和判定定理;难点:直线与平面垂直判定定理的探究.三、教学课时:一课时四、教具:多媒体、折纸、三角板五、教学过程:(一)创设情景,揭示课题(预算5分钟)情境问题1:空间中一条直线和一个平面有哪几种位置关系?【设计意图】:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”。
情境问题2:故事意大利比萨斜塔举在日常生活中你见到的可以抽象成直线与平面垂直的实例?【设计意图】:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义.(二)讲授新课提炼定义(10分钟左右)从实际背景出发,直观感知直线和平面垂直的位置关系,从而建立初步印象,为下一步的教学做准备.情境问题3:把一本书直立放在桌面上,书脊AB所在的直线与桌面所在的平面是什么关系?假设书有无数页,过B点的直线就有无数条。
探讨:(1)书脊AB与桌面上经过B点的直线有什么关系?发现:书脊AB所在的直线与桌面所在平面内经过点B的直线都是垂直的.进而提出问题(2)书脊AB与桌面上不过B点的直线有什么关系?平移以后发现也是垂直,再提出问题(3)书脊AB与桌面上的任意直线有什么关系?【设计意图】第(1)问旨在让学生发现书脊AB所在直线始终与桌面上任意一条过点B的直线垂直,第(2)问进一步让学生发现书脊AB所在直线始终与桌面上任意一条不过点B的直线也垂直,第(3)问引导学生通过观察总结书脊AB与桌面所在平面内的任意一条直线垂直,归纳直线与平面垂直这一概念。
直线与平面垂直的教案
教材:苏教版《普通高中课程标准实验教科书·数学》必修②课题:直线与平面垂直授课教师:新沂市第一中学彭龙升授课时间:2013-9-26课题:直线与平面垂直授课教师:新沂市第一中学彭龙升教材:苏教版《普通高中课程标准实验教科书·数学》必修②【教学理念】感性发展理性,培养创新意识。
倡导培养学生的多元智能,通过教学创造活动激励、唤醒、鼓舞开发其潜能,为其将来步入社会做准备。
(哈弗大学心理学教授加德纳博士提出的MI理论(多元智能理论))。
【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理以及性质定理,并能对它们进行简单的应用;过程与方法目标:通过对定义与判定定理的生成与运用和对性质定理的论证,不断提高学生的抽象概括、逻辑推理和逆向思维等逻辑思维能力;情感态度与价值观目标:通过学习,使学生在认识到数学源于生活的同时,体会到数学中的严谨细致之美,简洁朴实之美,和谐自然之美,从而使学生更加热爱数学,热爱生活。
【教学重点及难点】教学重点:直线与平面垂直的定义、判定定理的初步应用以及性质定理的理解.教学难点:对直线与平面垂直定义的理解和判定定理的探究及性质定理的证明.【教学方法】教法:启发诱导、问题驱动。
学法:自主体验、归纳生成、抽象概括、合作交流、自主探究、反思总结。
【教具准备】电脑、多媒体课件、课本【教学过程】一、直线与平面垂直定义的构建1、联系生活——提出问题请同学们看两张图片:“倾斜的虎丘塔”,“无锡市区全景图”,思考问题“远处的高楼与水平的湖面之间的关系给我们一种什么样的印象?”从而引出课题:直线与平面垂直。
设计意图:通过学生对两个环境的观察,形成强烈的视觉对比冲击让学生感受什么是“线面垂直”。
既引出本节课的课题,也更加吸引了学生的注意力,激发了学生的好奇心,使其主动参与到本节课的学习中来.另外这样设计既打破了常规,又避免了因情境而分散学生的数学化思维的情况发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《3.4 直线与平面的垂直关系》教案一、教学内容和内容解析《直线与平面垂直的判定》是高中新教材人教A版必修2第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。
其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。
直线与平面垂直的判定定理本节是通过折纸试验来感悟的,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。
直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。
二、教学重点、难点,以及期望目标和目标解析根据《课程标准》,线面垂直判定定理的严格证明在本节课中不做要求,这样降低了难度。
教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。
教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。
期望目标:理解直线与平面垂直的定义,掌握直线与平面垂直的判定定理.目标解析: 1.利用已有知识与生活经验,抽象概括出直线与平面垂直的定义;2.通过概括、辨析与应用,正确理解直线与平面垂直的定义;3.通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;4.运用直线与平面垂直的判定定理,证明和直线与平面垂直有关的简单命题.5.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想. 三、教学问题诊断分析学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。
学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义,感悟直线与平面垂直的意义;以及如何从折纸试验中探究出直线与平面垂直的判定定理。
四、学习行为分析本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解。
进一步,在一个具体的数学问题情境中猜想直线与平面垂直的定义及判定定理,并在教师的指导下,通过动手操作、观察分析、自主探索等活动,切身感受直线与平面垂直及定义判定定理的形成过程,体会蕴涵在其中的思想方法。
继而,通过课本例1的学习概括直线与平面垂直的几种常用判定方法。
再通过练习与课后小结,使学生进一步加深对直线与平面垂直的判定定理的理解。
五、教学支持条件分析为了有效实现教学目标,教师准备:多媒体课件(以PowerPoint为平台)、三角板、大三角形纸片等教具;学生自备:三角形纸片(任意形状)、笔(表直线)、课本(表平面)等学具。
六、教学过程设计(一)直观感知直线与平面垂直的位置关系复习:直线和平面的位置关系是什么?(在直线与平面的位置关系中,直线在平面内、直线与平面平行我们已经系统研究过了,接下来要研究直线与平面相交的情形.)问题1. 日常生活中有哪些现象给人以直线与平面相交的感觉?你认为哪种直线与平面相交的位置关系比较特殊?问题2. 在已学过的空间几何体中,说一说你心目中哪些是直线与平面垂直的?问题3. 你觉得画怎样的直观图最能反映直线与平面垂直的情形?【意图】基于学生的客观现实,通过对生活事例的观察以及以前学过的知识内容为基础,让学生直观感知直线与平面相交中的特例——直线与平面垂直的位置关系,由此引出课题.问题4. 究竟直线与平面垂直的意义是什么?(二)抽象概括直线与平面垂直的定义探究一:直线与平面垂直的含义?情景创设1:一个人走在灯火通明的大街上,会在地面上形成影子,随着人不停的走动,这个影子忽前忽后、忽左忽右,但是无论怎样,人始终与影子相交于一点,并始终保持垂直.情景创设2:立竿见影:太和殿丹陛上日晷【意图】旨在让学生发现AB所在直线始终与地面上任意一条过点B的直线垂直,与地面上任意一条不过点B的直线也垂直。
注意强调:两条直线垂直有相交垂直和异面垂直两种,从中概括出:一条直线与一个平面垂直,那么该直线与此平面内的任意一条直线都垂直.从而由感性认识上升到理性认识的过程。
定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线⊥. 直线l叫做平面α的垂线,平面α叫做直线l的垂面.直l与平面α互相垂直,记作:lα线与平面垂直时,它们唯一的公共点P叫做垂足. (如图1)辨析1:命题“如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直”是否正确?为什么?【意图】使学生明确平面中直线的“任意性”.通过辨析讨论,深化直线与平面垂直的概念。
探究二:除定义外,如何判定一条直线与平面垂直?(教师可提问:定义作为线面垂直判定的方法有何不足?)思考1.能不能像判定直线与平面平行那样,利用直线与平面内的一条直线垂直来判定直线与平面垂直呢?思考2:一条直线不行,那么又能不能像判断平面与平面平行那样,利用直线与平面内两条直线都垂直来判定直线与平面垂直呢?【意图】通过利用类比思想,寻找线面垂直的判定方法。
也进一步让学生体会由无限转有限、平面化、降维等思想。
(三)动手操作,探究直线与平面垂直的判定定理实验:请你拿出准备好的三角形的纸片,我们一起来做一个试验:如图2,过△ABC 的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,(BD、DC与桌面接触)(1)折痕AD与桌面垂直吗?图2 B C AD (2)如何翻折才能使AD 与桌面所在平面α垂直?【意图】通过折纸活动让学生发现,当且仅当折痕AD 是BC 边上的高时,AD 所在直线与桌面所在的平面α垂直问题5:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线l ,把BD 、CD 抽象为直线m n ,,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?如果将图3中的两条相交直线、的位置改变一下,仍保证, (如图4)你认为直线还垂直于平面吗? 根据上面的试验,结合两条相交直线确定一个平面的事实,你能给出直线与平面垂直的判定方法吗?定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(如图5)用符号语言表示为: (可让学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化,教师注意引导。
)(四)初步应用,深化确认线面垂直的判定定理lP m n图5(1)长方体1111ABCD A B C D -,棱1BB 与底面ABCD 垂直.你认为保证1BB ABCD⊥的条件是什么? (2)准的跨栏架,其支架必须垂直于地面,如何检验?(3)该如何检验旗杆与地面是否垂直?(五)理论应用(典型例题)(练习)判断下列命题是否正确?(1)若一条直线与一个三角形的两条边垂直,则这条直线垂直于三角形所在的平面.( )(2)若一条直线与一个平行四边形的两条边垂直,则这条直线垂直于平行四边形所在的平面.( )(3)若一条直线与一个梯形的两腰垂直,则这条直线垂直于梯形所在的平面.( )例1:如图6,已知a ∥b ,a ⊥α,求证:b ⊥α.(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)【意图】能分别用判定定理与定义解决问题,会用证明问题的一般思维策略:由已知想可知(性质),由未知想需知(判定),合理选择辅助线. 这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系。
【意图】进一步领会问题解决的一般思维策略,合理选择辅助平面,体会转化思想在解决问题中的作用.例2:如图,在三棱锥V-ABC 中 ,V A =VC,AB =BC,K 是AC 的中点。
求证:AC ⊥平面VKB思考:(1)在三棱锥V-ABC 中,V A =VC ,AB =BC ,求证:VB ⊥AC ;(2)在⑴中,若E 、F 分别是AB 、BC 的中点,试判断EF 与平面VKB 的位置关系; ba 图6(3)在⑵的条件下,有人说“VB ⊥AC , VB ⊥EF , ∴VB ⊥平面ABC ”,对吗?【意图】例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理。
3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通。
(六)总结反思(1)通过本节课的学习,你学会了哪些判断直线与平面垂直的方法?(2)上述判断直线与平面垂直的方法体现了什么数学思想?(3)你还有什么收获与感想?【意图】培养学生反思的习惯,鼓励学生对研究的问题进行质疑和概括.(七)目标检测设计例1: 如图6,点P 是平行四边形ABCD 所在平面外一点,O 是对角线AC 与BD 的交点,且PA =PC PB =PD .求证:PO ⊥平面ABCD2.如图,直四棱柱A1B1C1D1-ABCD (侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD 满足什么条件时,A1C⊥B1D1.3.如图,PA ⊥平面ABC ,BC ⊥AC ,写出图中所有的直角三角形。
【意图】第1题是基础题,巩固复习线面垂直的判定定理;第2题本节教材中的一道探究题,主要运用直线与平面垂直的意义与判定定理;第3题也是活用直线与平面垂直的意义与判定定理,前两题重在检测本节课的知识与技能目标,检测运用知识解决问题的能力;第3题通B AD C B 1C 1D 1A 1A D P C O 图6过学生探索,培养学生观察——分析——归纳和综合运用知识的能力。