四边形中的动点问题带答案

合集下载

二次函数与四边形动点问题(含答案)

二次函数与四边形动点问题(含答案)

72x =B(0,4) A(6,0)E FxyO二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E的坐标;若不存在,请说明理由.A练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O2l 1lx y二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x 轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线Px …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.B CPO D QA BPCO DQ Ay32 1 O1 2 x三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2.(2010年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.图2OC A Bxy DPE F 图1FE PD y xBA C O例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,xN MQ PHGFEDCBA图11QPN M HGFED CBA图10若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.x图1x图2x图3)x图4答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F,分别是1234(1,0),(3,0),(4(4F F F F - 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式27(2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725(326y x =--,顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725(326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264(2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF 为正方形.练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--.又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+). (2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的5-4-3-2- 1-1 2 3 4554 3 2 1 AEBC '1- O 2l1lxy对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是 2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍). 所以在运动过程中四边形MDNA可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

四边形之动点问题(习题及答案)

四边形之动点问题(习题及答案)

四边形之动点问题(习题)➢例题示范例1:如图,直线y = 3x +6 与x 轴、y 轴分别交于点A,B,与直线y =- 3x 交于点C.动点E 从点B 出发,以每秒1 个单位长3度的速度沿BO 方向向终点O 运动,动点F 从原点O 同时出发,以每秒1 个单位长度的速度沿折线OC-CB 向终点B 运动,当其中一点停止时,另一点也随之停止.设点F 运动的时间为t(秒).(1)求点C 的坐标;(2)当3 ≤t ≤6 时,若△BEF 是等腰三角形,求t 的值.13 ⎪ 【思路分析】 1.研究背景图形 由直线表达式 y =3x + 6 , y = - 3x ,可知两直线垂直,3且 OA = 2 3,OB = 6,∠ABO = 30 o , 得到∠COB = 60o ,OC = 3,BC = 3 ;C ⎛ - 3 3 3 ⎫ 同时,联立直线表达式可知, ⎝ 如图,, . 2 2 ⎭2.分析运动过程,分段,定范围①分析运动过程:动点 E 和 F 运动的起点,终点,速度;状态转折点;时间范围;所求目标.根据状态转折点 C 对运动过程进行分段,确定每段对应的时间范围分别为0 ≤ t < 3 和 3 ≤ t ≤ 6 .如图,②分段之后可知,当3 ≤ t ≤ 6 时,点 F 在线段 BC 上;分析 △BEF ,B 是定点,E ,F 是动点.若使△BEF 是等腰三角形, 需要分三种情况考虑:BE =BF ,BE =EF ,BF =EF .3 3 2 2 ⎭⎝ 3 ⎫ 3 3 ⎛ ∴ C - , ⎪3(1)∵直线 y = 3x + 6 与直线 y = -3x 交于点 C 3.分析几何特征、表达、设计方案求解 ①当 BE =BF 时,画出符合题意的图形从动点的运动开始表达,可得 BE =t , BF = 3 + 3 到 t 值. - t ,根据 BE =BF 即可得 此时, t =3 + 3 32②当 BE =EF 时,画出符合题意的图形;从动点的运动开始表达,可得 BE =t ,BF = 3 + 3 - t ,根据 BE =EF 且∠OBA =30°,利用等腰三角形三线合一,过点 E 作 EN ⊥BC 于点 N ,在Rt △BEN 中建立等式即可得到 t 值. 此时,t =3③当 BF =EF 时,画出符合题意的图形;从动点的运动开始表达,可 得 BE =t , BF = 3 + 3 - t , 根据 BF =EF ,且∠OBA =30°,利用等腰三角形三线合一,过点 F 作 FM ⊥ BO 于点 M ,在 Rt △BFM 中建立等式即可得到 t 值. 此时, t = 3【过程书写】3 3(2)当3 ≤t ≤6 时,点F 在线段BC 上,若使△BEF 是等腰三角形,分三种情况考虑:①当BE=BF 时,如图,由题意得,BE=t,BF = 3 + 3 3 -t∴t = 3 + 3 3 -t∴t =3 + 323,符合题意②当BE=EF 时,如图,过点E 作EN⊥BC 于点N ∴BN=NF∵BF = 3 + 3 3 -t∴BN =3 + 3∵BE =t3 + 3 3 -t 3 -t2∴ 2 =t32解得,t=3,符合题意③当BF=EF 时,如图,过点F 作FM⊥BE 于点M ∴BM=ME∵BE=t∴ BM =t2∵BF = 3 + 3 3 -tt∴ 23=3 + 3 3 -t2解得,t = 3 3 ,符合题意综上,若△BEF 是等腰三角形,则t 的值为3 + 3 3,3 或3 3 2➢巩固练习1.如图,在直角梯形ABCD 中,AD∥BC,∠ABC=90°,AD=4,DC=6,BC=7,梯形的高为3 3 .动点M 从点B 出发,沿BC 以每秒1 个单位长度的速度向终点C 运动,动点N 从点C 出发,沿C—D—A 以每秒2 个单位长度的速度向终点A 运动.M,N 两点同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动的时间为t 秒(t >0).(1)用t 表示△CMN 的面积S;(2)当t 为何值时,四边形ABMN 为矩形?(3)当t 为何值时,四边形CDNM 为平行四边形?2.如图,在直角梯形ABCD 中,∠B=90°,AD∥BC,AD=4 cm,BC=9 cm,CD=10 cm.动点P 从点A 出发,以2 cm/s 的速度沿折线AD-DC 向点C 运动;动点Q 从点C 同时出发,以1 cm/s 的速度沿CB 向点B 运动.当点P 到达点C 时,动点Q 随之停止,设运动的时间为t 秒.(1)当t 为何值时,四边形PQCD 是平行四边形?(2)当t 为何值时,PQ⊥DC?3. 如图1,在Rt△ABC 中,∠C=90°,∠A=60°,AB=12cm.点P 从点A 出发,沿AB 以2cm/s 的速度向点B 运动,点Q 从点C 同时出发,沿CA 以1cm/s 的速度向点A 运动.设运动的时间为t 秒(0 <t < 6 ).(1)直接写出线段AP,AQ 的长(用含t 的代数式表示):AP= ,AQ= ;(2)如图2,连接PC,把△PQC 沿QC 翻折,得到四边形PQP'C,则四边形PQP'C 能否成为菱形?若能,求出相应的t 值;若不能,请说明理由.(3)当t 为何值时,△APQ 是等腰三角形?图1图2备用图➢思考小结1.什么是动点问题?由速度已知的点的运动产生的几何问题称为动点问题.2.我们一般怎样处理动点问题?首先,研究背景图形.把函数信息(坐标或解析式)转化为背景图形的信息其次,分析运动过程,分段、定范围.分析运动过程常借助运动状态分析图:①起点、终点、速度——确定时间范围②状态转折点——决定分段③所求目标——明确方向最后,分析几何特征、表达、设计方案求解.分段画图、表达相关线段长,列方程求解,回归范围进行验证.3.线段长的表达,需要注意的两点是什么?①路程即线段长,可根据s=vt 直接表达已走路程或未走路程;②根据研究几何特征的需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【参考答案】⎧- 3t 2 + 7 3 t (0 < t ≤ 3) 1⎪ 2 2 .(1) S = ⎨⎪- 3 3 t + 21 3(3 < t ≤ 5) ⎪⎩ 2 2 (2) t = 103 (3) t = 133 2.(1) t = 43 (2) t = 2853.(1)2t ,6-t (2)能,相应的 t 值为 4 (3)t =2。

中考数学专题复习《四边形的动点问题》测试卷(附带答案)

中考数学专题复习《四边形的动点问题》测试卷(附带答案)

中考数学专题复习《四边形的动点问题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 菱形ABCD 的周长为8 60ABC ∠=︒ 点P Q 分别是BC BD 上的动点 则CQ PQ +的最小值为( )A .2B 3C .22D .12.如图 矩形ABCD 中 6AB = 8BC = P 是边BC 上一个动点 连接PD 在PD 上取一点E 满足2PC PE PD =⋅ 则BE 长度的最小值为( )A .6.4B 34C 733-D .1343.如图 在矩形ABCD 中 10cm AB = 点E 在线段AD 上 且6cm AE = 动点P 在线段AB 上 从点A 出发以2cm/s 的速度向点B 运动 同时点Q 在线段BC 上.以cm/s v 的速度由点B 向点C 运动 当EAP 与PBQ 全等时 v 的值为( )A .2B .4C .4或65D .2或1254.如图 点D 是ABC 的边AB 的延长线上一点 点F 是边BC 上的一个动点(不与点B 重合)以,BD BF 为邻边作平行四边形BDEF 又,AP BE AP BE =∥(点P E 在直线AB 的同侧) 如果14BD AB =那么PBC 的面积与ABC 面积之比为( )A .14B .35C .15D .345.如图 在矩形ABCD 中 6AB = 8BC =.点E 在边AD 上 且6ED = M N 分别是边AB BC 上的动点 P 是线段CE 上的动点 连接PM PN 使PM PN =.当PM PN +的值最小时 线段PC 的长为( )A .2B .C .4D .6.如图 在四边形ABCD 中 AD BC ∥ 30,60,6,4B C AB AD ∠=︒∠=︒==EF 是BC 上的两动点 且4EF = 点E 从点B 出发 当点F 移动到点C 时 两点停止运动.在四边形AEFD 形状的变化过程中 依次出现的特殊四边形是( )A .平行四边形→菱形→矩形→平行四边形B .平行四边形→菱形→正方形→平行四边形C .平行四边形→菱形→正方形→菱形D .平行四边形→矩形→菱形→平行四边形7.如图 在正方形ABCD 中 E 为对角线AC 上与A C 不重合的一个动点 过点E 作EF AB ⊥与点F EG BC ⊥于点G 连接DE FG 若AED a ∠= 则EFG ∠=( )A .90a -︒B .180a ︒-C .45a -︒D .290a -︒8.已知 如图 菱形ABCD 的四个顶点均在坐标轴上 点()3,0A - ()0,4B ()6,0E .点P 是菱形ABCD 边上的一个动点 连接PE 把PE 绕着点E 顺时针旋转90︒得到FE 连接PF .若点P 从点C 出发 以每秒5个单位长度沿C D A B C →→→→方向运动 则第2025秒时 点F 的坐标是( )A .()6,9B .()10,6-C .()10,6D .()2,6二 填空题9.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .10.如图 在矩形ABCD 中 6AB = 12AD = E 是线段AD 上一动点 以E 为直角顶点在EB 的右侧作等腰三角形EBF 连接DF 设DF t = 当t 为整数时 点F 位置有 个.11.如图 MEN ∠=90︒ 矩形ABCD 的顶点B C 分别是MEN ∠两边上的动点 已知BC =10 CD =5 点D E 之间距离的最大值是 .12.如图 正方形ABCD E 为与点D 不重合的动点 以DE 为一边作正方形DEFG .连CF CG 当DE CF CG ++的值最小时 正方形DEFG 的边长为 .13.如图 正方形ABCD 中 P 为BD 上一动点 过点P 作PQ AP ⊥交CD 边于点Q .点P 从点B 出发 沿BD 方向移动 若移动的路径长为6 则AQ 的中点M 移动的路径长为 .三 解答题14.在正方形ABCD 中 点E 为边BC 上一个动点(点E 不与点B C 重合) 连接AE 点F 在对角线AC 的延长线上 连接EF 使得EF AE =.作点F 关于直线BC 的对称点G 连接CG EG ,.(1)依题意补全图形 (2)求证:BAE GEC ∠=∠(3)用等式表示线段AC CE CG ,,之间的数量关系 并证明.15.如图 矩形ABCD 中 AD AB > 点P 是对角线AC 上的一个动点(不包含A C 两点) 过点P 作EF AC ⊥分别交射线AB 射线AD 于点E F .(1)求证:AEF BCA △∽△ (2)连接BP 若BPAB且F 为AD 中点 求APPC的值 (3)若2=AD AB 移动点P 使ABP 与CPD △相似 直接写出AFAB的值.16.在梯形ABCD 中 已知DC AB ∥ 90DAB ∠=︒ 3DC = 6DA = 9AB = 点E 在射线AB 上 过点E 作EF AD ∥ 交射线DC 于点F 设AE x =.(1)当1x =时 直线EF 与AC 交于点G 如图1 求GE 的长 (2)当3x >时 直线EF 与射线CB 交于点H .①当39x <<时 动点M (与点A D 不重合)在边AD 上运动 且AM BE = 联结MH 交AC 于点N 如图2 随着动点M 的运动 试问:CH HN 的值有没有变化 如果有变化请说明你的理由 如果没有变化 请你求出:CH HN 的值 ①联结AH 如果HAE CAD ∠=∠ 求x 的值.17.如图1 在ABCD 中 60A ∠=︒ 4=AD 8AB =.(1)请计算ABCD 的面积(2)如图2 将ADC △沿着AC 翻折 D 点的对应点为D 线段CD '交AB 于点M 请计算AM 的长度(3)如图3 在(2)的条件下 点P 为线段CM 上一动点 过点P 作PN AC ⊥于点NPG AD '⊥交AD '的延长线于点G .在点P 运动的过程中7PN PG +的长度是否为定值?如果是 请计算出这个定值 如果不是 请说明理由.18.如图1 四边形ABCD 中AD BC ∥90B 4tan 3C = 10CD =.(1)线段AB =(2)如图2 点O 是CD 的中点 E F 分别是AD BC 上的点 将DEO 沿着EO 翻折得GEO 将COF 沿着FO 翻折使CO 与GO 重合.①当点E 从点D 运动到点A 时 点G 走过的路径长为52π 求AD 的长①在①的条件下 若E 与A 重合(如图3)Q 为EF 中点 P 为OE 上一动点 将FPQ 沿PQ 翻折得到F PQ ' 若F PQ '与APF 的重合部分面积是APF 面积的14求AP 的长.参考答案:1.B 2.C3.D 4.D 5.D 6.A 7.C 8.D 910.1111.5+51213.14.(1)解:如图所示(2)解:①正方形ABCD ①45BAC ACB ∠=∠=︒ 90B①AE EF = ①EAC EFC ∠=∠①45BAE EAC BAC ∠+∠=∠=︒ ①45FEC EFC ACB ∠+∠=∠=︒ ①BAE FEC ∠=∠①点F 与点G 关于直线BC 的对称 ①HEF GEC ∠=∠ ①BAE GEC ∠=∠ (3)解:AC CG =+ 证明:①正方形ABCD ①AB BC = 45ACB ∠=︒ 90B①AC =①45FCH ACB ∠=∠=︒①点F 与点G 关于直线BC 的对称 ①45GCH FCH ∠=∠=︒ EF EG = ①AE EG =①FH BC ⊥交BC 延长线于H ①90GHC ∠=︒ ①45HGC HCG ∠=∠=︒ ①CH GH = ①2CG CH = ①2CH =在ABE 和EHG 中 BAE GEH B EHGAE EG ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS ABE EHG ≌ ①AB EH = ①EH CE CH =+①)2222AC CE CH CE CE CG ⎫=+==+⎪⎪⎭即2AC CE CG +.15.(1)证明: 四边形ABCD 是矩形 EF AC ⊥90ABC FAE ∴∠=∠=︒ 90APE ∠=︒ 90AEF EAC ∴∠+∠=︒ 90BCA EAC ∠+∠=︒ AEF BCA ∴∠=∠ AEF BCA ∴∽(2)BP AB =BAP BPA ∴∠=∠90BAP E BPA BPE ∠+∠=︒-∠+∠E BPE ∴∠=∠12AB BP BE AE ∴===设BC 交FE 于点G四边形ABCD 是矩形AD BC ∴∥ AD BC =AFE BGE ∴∽12BG BE AF AE ∴== 12BG AF ∴= 1122AF AD BC ∴== 34CG BC BG AD ∴=-= AD BC ∥AFP CGP ∴∽122334ADAP AF PC GC AD ∴===(3或54.理由如下:四边形ABCD 是矩形AD BC ∴∥ AD BC = AB CD =①当ABP CDP ∽△△时 1AP ABCP DC== ∴P 是AC 的中点AD BC ∥ACB FAP ∴∠=∠ tan tan ACB FAP ∴∠=∠即12PF AB AB AP BC AD === 设PF a = 则2AP a =5AF a ∴= 4AC a =2222(2)5AC AB BC AB AB AB =++455AB a ∴ 554455AF a AB a == ①当ABP CPD ∽时 AP AB CD CP= AP CP AB CD ∴⋅=⋅设AB CD x == AP t =则2AD BC x == 225AC AB BC x +5CP x t ∴=-2(5)t x t x ∴-=解得51x ± 51AB ±∴= 由①知12PF AB AB AP BC AD === 1122PF AP t ∴==5AF ∴=AFAB∴==554AFAB-∴=或554+或54.16.(1)DC AB∥①CFG AEG∽∴FC FGAE EG=EF AD∥∴四边形AEFD是平行四边形DF AE∴=AD EF=1AE x==1DF∴=3CD=2CF∴=又6AD=6EF∴=6FG EG∴=-∴261EGEG-=2EG(2)①:CH HN的值没有变化.过点C作CG AB⊥于点G6CG AD ∴== 3DC AG ==9AB =6GB ∴=CGB ∴是等腰直角三角形222CB CG GB ∴=+62CB ∴=45B ∠=︒ 90HEB ∠=︒45EHB ∴∠=︒B EHB ∴∠=∠HE BE ∴=AM BE =AM HE ∴=AM HE ∥∴四边形AMHE 是平行四边形A MHB ∴∥CNH CAB ∴∽ ∴CH CB HN AB= 9AB = ∴6222CH HN == ①当39x <<时 由①得HE BE =9HE x ∴=-在Rt CDA △中 31tan 62CD CAD AD ∠=== 在Rt AEH △中 9tan HE x HAE AE x-∠== CAD HAE ∠=∠∴192x x-= 6x ∴=当9x >时 同理可得BE EH =9EH x BE ∴=-= 同理12EH AE = ∴912x x -= 18x ∴=综上所述 x 的值为6或18.17.(1)解:作CE AB ⊥交AB 延长线于点E①四边形ABCD 是平行四边形①AD BC ∥ 60DAB CBE ∠=∠=︒ 4AD BC == 8AB CD ==在Rt CBE △中 122BE BC == =CE①ABCD 的面积为8AB CE ⨯=⨯=(2)解:①四边形ABCD 是平行四边形①AB CD ∥①ACD CAB ∠=∠由折叠的性质得ACD ACM ∠=∠①ACM CAM ∠=∠①MA MC =设MA MC x == 则10ME AB BE AM x =+-=-在Rt CBE △中 由勾股定理得()(22210x x =-+解得: 5.6x = 即AM 的长度为5.6(3)解:①10AE AB BE =+= CE =①2247AC AE CE =+①ACM CAM ∠=∠ 90AEC CNP ∠=∠=︒①AEC CNP ∽△△ ①2334727PN CE CP AC ==37PN 由折叠的性质得CAD CAD '∠=∠ ①60CAD CAM ∠+∠=︒①60CAD ACM CD G ''∠+∠=︒=∠过点C 作CF AG ∥交GP 的延长线于点F①PG AD '⊥①PF CF ⊥ 60PCF CD G '∠=∠=︒ ①12CF CP = 223PF CP CF =-= 37PN PF == 7PN PG +的长度是FG 的长度过点C 作CH AG ⊥交AG 的延长线于点H①四边形CFGH 是矩形①FG CH = 由折叠的性质得8C D CD '==又60CD H '∠=︒ ①142D H CD ''== ①2243CH CD D H ''-综上 7PN PG +的长度是定值 这个定值为318.(1)解:如图1作DG BC ⊥于G①90DGB ∠=︒①AD BC ∥ 90B ∠=︒①18090A B ∠∠=︒-=︒①四边形ABGD 是矩形①AB DG = ①4tan 3C =①4sin 5C = ①4sin 1085AB DG CD C ==⋅=⨯= 故答案为:8(2)解:①如图2作AH CD ⊥ 交CD 的延长线于点H①AD BC ∥①ADH C ∠=∠ ①4tan 3AH ADH DH =∠= 设4AH a = 3DH a = 则5AD a =①DEO 沿着EO 翻折得GEO①OG OD = DOE GOE ∠∠=①点G 的轨迹是以O 为圆心 5为半径的弧 ①551802n ππ⋅⋅= ①90n =︒①45AOE ∠=︒ ①tan 1AH AOD OH=∠= ①4OH AH a ==由OH DH OD -=得435a a -=①5a =①420OH a == 525AD a ==①①将DEO 沿着EO 翻折得GEO 将COF 沿着FO 翻折使CO 与GO 重合 ①DOE GOE ∠∠= COF GOF ∠∠=①90EOF ∠=︒①45AOD ∠=︒①45COF ∠=︒如图3作FW CD ⊥于W 设QF '交AP 于R ①4tan 3FW C CW == 设4FW x = 3CW x = ①tan 1FW COF OW∠== ①4OW FW x ==由OW CW OC +=得435x x += ①57x =①2047FW OW x ===①OF =由①知: AO ==①2007AF == 当QF '交AP 于R 时 取OA 的中点X 连接QX ①Q 是AF 的中点 ①QX OF ∥①12QX OF == 90AXQ AOF ∠∠==︒ 12APQ PQF APF S S S == ①14PQR APF S S = ①12PQR APQ S S =①点R 是AP 的中点由折叠得:PQF PQF '∠=∠ ①2QR AP AQ AR== ①15027RQ AQ ==①RX ==①AR AX RX =-=①2AP AR ==如图4当PF '交AQ 于R 时同理可得:R 是AQ 的中点2PF FQ PR RQ== ①2PF PF PR '==①R 是PF '的中点①四边形APQF'是平行四边形①110027 AP QF QF AF='===综上所述:8032AP=1007.。

专题03 特殊平行四边形中的三种几何动点问题(解析版)-2024年常考压轴题攻略(9年级上册人教版)

专题03 特殊平行四边形中的三种几何动点问题(解析版)-2024年常考压轴题攻略(9年级上册人教版)

专题03特殊平行四边形中的三种几何动点问题类型一、面积问题(1)直接写出CD的长(cm)(2)当四边形PBQD为平行四边形时,直接写出四边形(3)在点P、点Q的运动过程中,是否存在某一时刻,使得条件的t的值;若不存在,请说明理由.【答案】(1)16(2)8+813(3)存在,满足条件的t的值为【分析】(1)过点A作AM性质以及勾股定理可得结果;(2)当四边形PBQD是平行四边形,则点-=四边形的性质可得103t(3)分两种情况进行讨论:计算即可.∠︒,BCD⊥,=90AM CD∥,∴AM CB由运动知,103BP t =-,DQ 1032t t ∴-=,2t ∴=,此时,4BP DQ ==,12CQ =∴四边形PBQD 的周长为(2BP (3)①当点P 在线段AB 上时,即:如图2,()1110322BPQ S PB BC t =⋅=- 2512t ∴=;②当点P 在线段BC 上时,即:310BP t =-,162CQ t =-,(1131022BPQ S PB CQ t ∴=⋅=- 5t ∴=或193t =(舍),即:满足条件的t 的值为2512秒或【点睛】本题考查了四边形的动点问题,平行四边形的判定与性质,勾股定理,读懂题意,根据相应图形的性质列出方程是解本题的关键.【变式训练1】如图,在四边形点P 自点A 沿折线AD DC -以同时出发,其中一个点到达终点,另一个点也停止运动.设运动时间为(1)当P 在AD 边上,点Q 在BC ①用含t 的代数式表示:DP类型二、几何图形存在性问题,的长;(1)求AB AC(2)求证:AE DF=;(3)当t为何值时,DEF为直角三角形?请说明理由.【答案】(1)AB=5,AC=10;(2)证明见解析5②∠DEF=90°时,∵AB⊥BC,DF⊥BC,.∴AE DF又∵AE=DF,∴四边形AEFD为平行四边形,,∴AD EF③∠EFD=90°时,此种情况不存在.(1)连接PD 、PQ 、DQ ,求当t 为何值时,PQD △的面积为(2)当点P 在BC 上运动时,是否存在这样的t 使得PQD △合条件的t 的值;若不存在,请说明理由.【答案】(1)1秒或94秒(2)存在,43t =秒或(424)-秒【分析】(1)根据正方形的性质和面积公式,利用割补法即可求解;(2)根据勾股定理、等腰三角形的性质得出一元二次方程,分情况讨论以【详解】(1)解:当P 在BC 上时如图:根据题意,得4AB BC CD AD ====AQ t =,4QB t =-,2BP t =,42PC t =-,7PQD ADQ BPQ DPC ABCD S S S S S =---=△△△△正方形,1111642(4)4(42)7222t t t t -⨯⨯-⨯--⨯⨯-= 整理,得2210t t -+=,4(24)8DP t =--=-1(82)42PQD S t ∴=-⨯△94t ∴=答:当t 为1秒或94(2)①当PD DQ =解得143t =,24t =(不符合题意,舍去)②当PD PQ =时,根据勾股定理,得216(42)(4t +-=-解得1424t =-,2t 答:存在这样的t =【点睛】本题考查了正方形、一元二次方程、等腰三角形的相关知识,解决本题的关键是分类讨论思想的运用.例3.如图,在四边形由;(3)从运动开始,当t 取何值时,四边形PQBA 是矩形?(4)在整个运动过程中是否存在t 值,使得四边形PQBA 是正方形?若存在,请求出t 值;若不存在,请说明理由.【答案】(1)4(2)不存在,理由见解析(3)6(4)不存在,理由见解析【分析】(1)利用平行四边形的判定和性质进行求解即可;(2)利用菱形的判定和性质进行求解即可;(3)利用矩形的判定和性质进行求解即可;(4)利用正方形的判定和性质进行求解即可.(1)解:由运动知,AP =t cm ,CQ =2t cm ,∴DP =AD ﹣AP =(12﹣t )cm ,∵AD BC ∥,要PQ CD ∥,∴四边形CDPQ 为平行四边形,∴DP =CQ ,∴12﹣t =2t ,∴t =4,即t =4时,PQ ∥CD ;(2)不存在,理由:∵四边形PQCD 是菱形,∴CQ =CD ,∴2t =10,∴t =5,此时,DP =AD ﹣AP =12﹣5=7(cm ),而DP ≠CD ,∴四边形PQCD 不可能是菱形;(3)如图4,∵∠B =90°,AD ∥BC ,∴当AP =BQ 时,四边形ABQP 是矩形,即t =18﹣2t ,解得:t =6,∴当t =6时,四边形PQBA 是矩形;(4)由当t =6时,四边形PQBA 是矩形,∴AP =6cm ,∵AB =8cm ,∴AP ≠AB ,∴矩形PQBA 不能是正方形,即不存在时间t ,使四边形PQBA 是正方形.【点睛】本题考查四边形中的动点问题.解题的关键是熟练掌握平行四边形、菱形、矩形和正方形的判定和性质,确定动点的位置.例4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,且8AC =,6BD =,现有两动点M ,N 分别从A ,C 同时出发,点M 沿线段AB 向终点B 运动,点N 沿折线C D A --向终点A 运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t (秒).2③如图4,AEMN为菱形,EN交AM ∴==-=,BT NS523∴=,, 1.4CSBS=4.8∴=+=+=,CN NS CS1.43 4.4∴=÷=÷=;4 4.44 1.1a CN综上所述,a的取值有1.5或1.94或1.4.【点睛】本题主要考查了菱形的性质、三角函数、勾股定理、面积计算,分类讨论等重要知识点,综合性和技巧性很强,计算量也较大,对学生的能力要求较高,因此综合应用所学知识成为解答本题的关键.类型三、直线位置关系问题(1)直接写出AB的长.(2)当点Q落在AB边上时,用含t的代数式表示10PQDM (1)分别求BD和BE的长度;(2)连接PQ,当95t=时,判断PQ与AD是否垂直,并说明理由;(3)试判断是否存在t的值,使得以P,Q,C,D 存在,请说明理由;动点P从点D出发沿DA以1/scm的速度向终点运动,60∴∠=∠=︒,ADQ QDC∴∠=∠=︒,60QDC BCD∴ 是等边三角形,CDQ120CDA ∠=︒ ,60PDP '∴∠=︒,点P 的对称点在线段CD 的延长线上,CDQ ∴∠BCD CDQ CQD ∠=∠+∠ ,30CDQ CQD ∴∠=∠=︒,6CD CQ ∴==,12618BQ ∴=+=,418t ∴=,92t ∴=,过点P 作PH BC ⊥于H ,则33PH DE cm ==,60BCD ∠=︒ ,6CD AB cm ==,DE BC ⊥,∴272QH CQ EH CE cm ∴=++=,(1)t 为何值时,四边形DPQA (2)t 为何值时,四边形PQBC 【答案】(1)当132t =秒时,四边形(2)当6t =秒时,四边形PQBC 【分析】(1)根据AB CD ∥(2)根据平行四边形的判定和性质,得【详解】(1)∵AB CD ∥,∴AQ DP ∥,当AQ DP =时,四边形DPQA ∵90A ∠=︒,∴平行四边形DPQA 为矩形,∵动点P 从D 开始沿DC 边向动,∴cm DP t =,3cm BQ t =,∴263AQ AB BQ t =-=-,发现:(1)在点O 的运动过程中,OE 与OF 的关系是(2)当=2t 时,=EF ______cm .探究:当=t ______时,四边形AECF 拓展:若点O 在运动过程中,能使四边形【答案】(1)OE OF =,详见解析(2)8cm ,探究:3,拓展:=AB 10cm【分析】()1根据角平分线的定义、平行线的性质分别得到角形的判定定理得到OE OC =,OF ()2根据直角三角形斜边上的中线的性质解答;探究:根据矩形的判定定理得到=OA OC 时,四边形AECF 是矩形,进而求出OA ,求出t ;拓展:根据正方形的对角线平分一组对角得到45ACE ∠=︒,进而得到90ACB ∠=︒,根据勾股定理计算,得到答案.【详解】(1)解:OE OF =,理由如下:CE 平分ACB ∠,BCE ACE ∴∠=∠,EF BC ∥ ,BCE OEC ∴∠=∠,OEC ACE ∴∠=∠,OE OC ∴=,同理可得,ACF OFC ∠=∠,OF OC ∴=,OE OF ∴=,故答案为:OE OF =;(2)由题意得,当=2t 时,2cm OA =,则4cm OC AC OA =-=,BCE ACE ∠=∠ ,GCF ACF ∠=∠,90ECF ∴∠=︒,OE OF = ,()28cm EF OC ∴==,故答案为:8;探究:当=3t 时,四边形AECF 是矩形,理由如下:90ECF ∠=︒ ,OE OF =,∴当=OA OC 时,四边形AECF 是矩形,此时,3cm OA OC ==,3t ∴=时,四边形AECF 是矩形,故答案为:3;拓展:当四边形AECF 是正方形时,45ACE ∠=︒,CE 平分ACB ∠,(1)当运动时间为秒时,点P与点Q相遇;∥时,求线段DQ的长度;(2)当BQ PD全等时,求t的值.(3)连接PA,当PAB和QAD【答案】(1)3.2(2)3.2(3)t为0.8或83【分析】(1)先判断出点P,Q相遇时,必在正方形的边BC上,利用运动路程之和为正方形的正常建立方程即可;=,进而表示出(2)先判断出四边形BQDP是平行四边形,得出BP DQ求解即可;(3)分点Q在正方形的边AB,AD,CD,BC上,建立方程求解即可得出结论;BC=,【详解】(1)解: 点P的运动速度为2,8∴点P运动到点C的时间为4,点Q的运动速度为8,∴点Q从点B出发沿BA AD DC CB---方向顺时针作折线运动到点相遇时在边BC上,∴+=⨯=,t t2848323.2t ∴=,故答案为3.2;(2)解:如图1,//BQ PD ,∴点Q 只能在边AD 上, 四边形ABCD 是正方形,//AD BC ∴,∴四边形BQDP 是平行四边形,BP DQ ∴=,2288t t ∴=⨯-,1.6t ∴=,288 3.2DQ t ∴=⨯-=;(3)解:①当点Q 在边AB 上时,如图2,AB AD = ,ABP DAQ ∠=∠,要使PAB ∆和ΔQAD 全等,只能是PAB QDA ≅ ,BP AQ ∴=,88AQ t =- ,2BP t =,882t t ∴-=,0.8t ∴=,同①的方法得,要使∴=,BP DQt t∴=-,28168t∴=,3④当点Q在边BC时,即:当PAB和QAD【点睛】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会分类讨论.Y4.如图,在ABCD运动,同时点Q从点设点P运动的时间为(1)CB的长为______.(2)用含t的代数式表示线段QB的长.(3)连接PQ,若PQ 与AC 互相平分,则四边形APCQ 是平行四边形,∴AP CQ =,∵4AP t CQ t ==,,若PQ 与AB 互相平分,则四边形APBQ 是平行四边形,∴AP BQ =,∴45t t =-,由对称得,PAQ P AQ '∠=∠,∵AD BC ∥,∴PAQ AQB ∠=∠,由对称得,12∠=∠,∵AD BC ∥,∴13∠=∠,∵24∠∠==;(1)求证:PE DQ(1)=a______cm,b=______cm;(2)t为何值时,EP把四边形BCDE的周长平分?(1)当2t =时,BP =___________cm ;(2)当t 为何值时,连接,,CP DP CDP △是等腰三角形;(3)Q 为AD 边上的点,且6DQ =,P 与Q 不重合,当角形与DCQ 全等.【答案】(1)1(2)54t =或4或232∴PD CP =,在长方形ABCD 中,∴DAP CBP ≌∴AP BP =,∴1522AP AB ==∵动点P 的速度是∴54t =;②当点P 在BC ∵90C ∠=︒,∴5CD CP ==,∵90D Ð=°,∴5DP CD ==,∴2AB CB t ++=综上所述,54t =(3)解:根据题意,如图,连接∵5,AB CD ==∠∴要使一个三角形与①当点P 运动到∴点P 的路程为:∴72 3.5t =÷=;②当点P 运动到∴点P 的路程为:∴112 5.5t =÷=③当点P 运动到∴点P 的路程为:3585220AB BC CD DP +++=+++=,∴20210t =÷=,④当点P 运动到4P 时,即P 与Q 重合时,46DP DQ ==,此时4CDQ CDP △≌△,∴点P 的路程为:4585624AB BC CD DP +++=+++=∴24212t =÷=,此结果舍去,不符合题意,综上所述,t 的值可以是: 3.5t =,5.5或10.【点睛】本题考查了动点问题,灵活运用分类讨论思想是解题关键.。

四边形中的动点问题(带答案)

四边形中的动点问题(带答案)

四边形中的动点问题(带答案)四边形中的动点问题1、如图,把矩形ABCD沿 EF翻折,点B恰好落在AD边的B'处,若AE= 2, DE= 6,Z EFB= 60°, 则矩形ABCD勺面积是 _____________________2、如图,在四边形ABCD中对角线ACL BD 垂足为0,点E, F, G, H分别为边AD AB, BC CD 的中点•若AC= 8, BD= 6,则四边形EFGH的面积为3、如图,正方形ABCD勺边长为4,点P在DC 边上,且DP= 1,点Q是AC上一动点,则D® PQ 的最小值为 _____________________4、如图,在Rt△ ABC中,/ B= 90°,AC= 60 cm Z A= 60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D, E 运动的时间是t s(0 < t < 15) •过点D作DF 丄BC于点F,连接DE EF.(1)求证:AE= DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△ DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm射线AG// BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF当EF经过AC边的中点D时,(1)求证:△ ADE^A CDF:6、在菱形ABCD中,/ B=60°,点E在射线BC上运动,/ EAF=60,点F在射线CD上(1)当点E在线段BC上时(如图1)( 1)求证:EC+CF=A; (2) 当点E在BC的延长线上时(如图2),线段EC CFAB有怎样的相等关系?写出你的猜想,不需证明图1 027、如图,在菱形ABC[中, AB=2 / DAB=60 , 点E 是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N 连接MD AN(1)求证:四边形AMDI是平行四边形;(2)填空:①当AM的值为时,四边形AMD是矩形;②当AM的值为时,四边形AMD是菱形.D8 如图,△ ABC中,点0是边AC上一个动点,过0作直线MN BC 设MN交/ BCA的平分线于点E, 交/ BCA 的外角平分线于点F.(1)探究:线段0E与OF的数量关系并加以证明;(2)当点0运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形?(3)当点0在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABC[中, / ABC=60 , AB=8 过线段BD上的一个动点P (不与B、D重合)分别向直线AB AD作垂线,垂足分别为E、F.(1)BD的长是______ ;(2)连接PC当PE+PF+P(取得最小值时,此时PB的长是_______10、如图,/ MON=9°,矩形ABCD勺顶点A B 分别在边OM ON上,当B在边ON上运动时,A随之在OMk运动,矩形ABCD勺形状保持不变,其中AB=2 BC=1运动过程中,点D到点O的最大距离为 __________________ .11、如图,已知矩形ABCD AD=4 CD=10 P是AB上一动点,M N E分别是PD PC CD的中点.(1)求证:四边形PMEI是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEf有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm AC=16cm AC BD相交于点0,若E, F 是AC上两动点,分别从A, C两点以相同的速度向C、A 运动,其速度为0.5cm/s。

四边形中的动点问题(带答案)

四边形中的动点问题(带答案)

四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠ EFB =2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 _____3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ +PQ 的最小值为___________4、如图,在Rt△ABC中,∠ B=90°,AC=60cm,∠A=60°,点 D 从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点 A 出发沿AB 方向以2cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t ≤15).过点 D 作DF⊥ BC于点F,连接DE,EF.(1) 求证:AE=DF;(2) 四边形AEFD能够成为菱形吗如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△ DEF为直角三角形请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点 A 出发沿射线AG以1cm/s 的速度运动,同时点 F 从点 B 出发沿射线BC以2cm/s 的速度运动,设运动时间为t.(1)连接EF,当EF经过AC边的中点 D 时,(1)求证:△ ADE≌△ CDF;:(2)当t 为____ s 时,四边形ACFE是菱形;6、在菱形ABCD中,∠ B=60°,点E在射线BC上运动,∠ EAF=60°,点 F 在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点 E 在BC的延长线上时(如图2),线段EC、CF、AB 有怎样的相等关系写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠ DAB=60°,点E是AD边的中点.点M 是AB边上一动点不与点 A 重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为____ 时,四边形AMDN 是矩形;②当AM 的值为____ 时,四边形AMDN 是菱形.8、如图,△ ABC中,点O 是边AC上一个动点,过O 作直线MN ∥BC,设MN 交∠ BCA的平分线于点E,交∠ BCA 的外角平分线于点F.(1)探究:线段OE与OF 的数量关系并加以证明;(2)当点O 运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形(3)当点O 在边AC上运动时,四边形BCFE会是菱形吗若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D 重合)分别向直线AB、AD 作垂线,垂足分别为E、F.(1)BD的长是___ ;(2)连接PC,当PE+PF+PC取得最小值时,此时PB 的长是__10、如图,∠ MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON 上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为_____ .11、如图,已知矩形ABCD,AD=4,CD=10,P 是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN 是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEN有可能是矩形吗若有可能,求出AP 的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A 运动,其速度为/s。

部编数学八年级下册专题19四边形中的动图问题(解析版)含答案

部编数学八年级下册专题19四边形中的动图问题(解析版)含答案

专题19 四边形中的动图问题(解析版)类型一平行四边形及特殊平行四边形的存在性问题1.如图,平行四边形OABC的顶点O为坐标原点,A点在X轴正半轴上,∠COA=60°,OA=10cm,OC =4cm,点P从C点出发沿CB方向,以1cm/s的速度向点B运动;点Q从A点同时出发沿AO方向,以3cm/s的速度向原点运动,其中一个动点达到终点时,另一个动点也随之停止运动.(1)求点C,B的坐标(结果用根号表示)(2)从运动开始,经过多少时间,四边形OCPQ是平行四边形;(3)在点P、Q运动过程中,四边形OCPQ有可能成为菱形吗?若能,求出运动时间;若不能,请说明理由.思路引领:(1)过C作CE⊥OA于E,过B作BF⊥OA于F,根据直角三角形的性质算出OE的长,再利用勾股定理即可求出CE的长,从而得到C点坐标;根据平行线间的距离相等可知CE=BF=证明Rt△COE≌Rt△BAF,从而得到AF的长,即可得到B点坐标;(2)根据平行四边形的性质可知CP=OQ,设时间为x秒,表示出OQ、CP的长,可得到方程10﹣3x=x,解方程即可;(3)如果四边形OCPQ菱形,则CO=QO=CP=4cm,根据运动速度,算出运动时间,计算可发现不能成为菱形.解:(1)过C作CE⊥OA于E,过B作BF⊥OA于F,∵∠COA=60°,∴∠1=30°,∴OE=12CO=2cm,在Rt△COE中,CE==∴C点坐标是(2,,∵四边形OABC是平行四边形,∴CO=AB,CO∥AB,∵CE⊥OA,过B作BF⊥OA,∴CE=BF=,∴Rt△COE≌Rt△BAF,∴AF=EO=2,∴OF=OA+AF=12(cm),∴B点坐标是(12,;(2)设从运动开始,经过x秒,四边形OCPQ是平行四边形,10﹣3x=x,解得:x=2.5,故运动开始,经过2.5秒,四边形OCPQ是平行四边形;(3)不能成为菱形,如果四边形OCPQ菱形,则CO=QO=CP=4cm,∵OA=10cm,∴AQ=10﹣4=6(cm),则Q的运动时间是:6÷3=2(秒),这时CP=2×1=2(cm)∵CP≠4cm,∴四边形OCPQ不能成为菱形.总结提升:此题主要考查了平行四边形的性质,矩形的性质,直角梯形的性质,菱形的性质,是一道综合题,关键是需要同学们熟练掌握各种特殊四边形的性质,并能熟练应用.2.(2022春•广信区期末)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.思路引领:(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=CQ,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4×10,根据菱形的面积求出面积即可.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.总结提升:本题考查了菱形、矩形的判定与性质.解决此题注意结合方程的思想解题.3.(2021春•睢县期中)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连结EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,以A、C、F、E为顶点的四边形是平行四边形?思路引领:(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,∠EAD=∠FCD∠AED=∠CFDAD=CD,∴△ADE≌△CDF(AAS);(2)解:当t=2或6时,A、C、E、F为顶点的四边形是平行四边形.理由如下:①当点F在C的左侧时,根据题意,得AE=tcm,BF=2tcm,则CF=BC﹣BF=(6﹣2t)cm,∵AG∥BC,当AE=CF时,四边形AECF是平行四边形,即t=6﹣2t,解得t=2;②当点F在C的右侧时,根据题意,得AE=tcm,BF=2tcm,则CF=BF﹣BC=(2t﹣6)cm,∵AG∥BC,当AE=CF时,四边形AEFC为平行四边形,即t=2t﹣6,解得t=6,综上可得:当t=2或6时,A、C、E、F为顶点的四边形是平行四边形.总结提升:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解决本题的关键是注意掌握分类讨论思想、数形结合思想与方程思想的应用.类型二动点最值问题4.(2021春•灌云县期末)如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△PAB =13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )A.B.C.D.思路引领:过P点作MN∥AB,交AD于M,交BC于N,作A点关于MN的对称点A',连接A'B交MN于点P,AP+PB=A'B即为所求,由面积关系可得AM=23AD=4,在Rt△ABA'中求出A'B即可.解:过P点作MN∥AB,交AD于M,交BC于N,作A点关于MN的对称点A',连接A'B交MN于点P,∴AP+PB=A'P+PB=A'B,此时PA+PB的值最小,∵S△PAB =13S矩形ABCD,∴12×AB×AM=13×BA×AD,∴AM=23 AD,∵AD=6,∴AM=4,∴AA'=8,∵AB=10,在Rt△ABA'中,A'B=故选:B.总结提升:本题考查轴对称求最短距离,通过面积关系,能确定P点所在直线是解题的关键.5.(自贡中考)如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是 形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是 .思路引领:根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作ME⊥AD,交AB于点P,此时PE+PF最小,求出ME即可.解:∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,故答案为菱;如图作出F关于AB的对称点M,再过M作ME⊥AD,交AB于点P,此时PE+PF最小,此时PE+PF=ME,过点A作AN⊥BC,∵AD∥BC,∴ME=AN,作CH⊥AB,∵AC =BC ,∴AH =12,由勾股定理可得,CH ∵12×AB ×CH =12×BC ×AN ,可得,AN =∴ME =AN =4,∴PE +PF总结提升:此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.6.(2020•锦州模拟)如图,已知平行四边形ABCD 中,AB =BC ,BC =10,∠BCD =60°,两顶点B 、D 分别在平面直角坐标系的y 轴、x 轴的正半轴上滑动,连接OA ,则OA 的长的最小值是 .思路引领:利用菱形的性质以及等边三角形的性质得出A 点位置,进而求出AO 的长.解:如图所示:过点A 作AE ⊥BD 于点E ,当点A ,O ,E 在一条直线上,此时AO 最短,∵平行四边形ABCD 中,AB =BC ,BC =10,∠BCD =60°,∴AB =AD =CD =BC =10,∠BAD =∠BCD =60°,∴△ABD 是等边三角形,∴AE 过点O ,E 为BD 中点,∵∠BOD =90°,BD =10,∴EO =5,故AO 的最小值为:AO =AE ﹣EO =AB sin60°―12×BD =―5.故答案为:―5.总结提升:此题主要考查了菱形的性质以及等边三角形的判定与性质,得出当点A,O,E在一条直线上,此时AO最短是解题关键.7.(2022•利州区校级模拟)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为( )A.0.5B.2.5C D.1思路引领:由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在线段轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EHG,连接BH,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,延长HM交CD于点N.则△EFB≌△EHG,∴HE=BE=1,∠BEH=60°,∠GHE=∠FBE=90°,∴△EBH为等边三角形.∵四边形ABCD是矩形,∴∠FBE=90°,∴∠GHE=∠FBE=90°,∴点G在垂直于HE的直线HN上,作CM⊥HN,由垂线段最短可知,CM即为CG的最小值,作EP⊥CM,连接BH,EH,则四边形HEPM为矩形,∴MP=HE=1,∠HEP=90°,∴∠PEC=30°.∵EC=BC﹣BE=3,∴CP=12EC=32,∴CM=MP+CP=1+32=52,即CG的最小值为5 2.方法二:以CE为边作等边三角形CEH,连接FH,则△CEG≌△EFH,∴CG=FH,当FH⊥AB时,FH最小=1+32=52.故选:B.总结提升:本题考查了旋转的性质,线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.8.(2022秋•射阳县月考)如图,△APB中,AB=4,∠APB=90°,在AB的同侧作正△ABD、正△APE 和正△BPC,则四边形PCDE面积的最大值是 .思路引领:先延长EP 交BC 于点F ,得出PF ⊥BC ,再判定四边形PCDE 平行四边形,根据平行四边形的性质得出:四边形CDEP 的面积=EP ×CF =a ×12b =12ab ,最后根据a 2+b 2=8,判断12ab 的最大值即可.解:如图,延长EP 交BC 于点F ,∵∠APB =90°,∠APE =∠BPC =60°,∴∠EPC =150°,∴∠CPF =180°﹣150°=30°,∴PF 平分∠BPC ,又∵PB =PC ,∴PF ⊥BC ,设Rt △ABP 中,AP =a ,BP =b ,则CF =12CP =12b ,a 2+b 2=42=16,∵△APE 和△ABD 都是等边三角形,∴AE =AP ,AD =AB ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB ,在△EAD 和△PAB 中,AE =AP ∠EAD =∠PAB AD =AB,∴△EAD ≌△PAB (SAS ),∴ED =PB =CP ,同理可得:△APB ≌△DCB (SAS ),∴EP=AP=CD,∴四边形PCDE是平行四边形,∴四边形PCDE的面积=EP×CF=a×12b=12ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=16,∴12ab≤4,即四边形PCDE面积的最大值为4.故答案为:4.总结提升:本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.9.(2022春•番禺区校级期中)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,C,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值.思路引领:(1)连接CF,根据FG垂直平分CE和菱形的对称性即可得到CF=EF,CF=AF,从而求证结论.(2)利用M和N分别是AE和EF的中点,点G为CE中点,即可得到MN+NG=12(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,结合已知推断△ABC为等边三角形,即可求解.解:(1)证明:连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A 和C 关于对角线BD 对称,∴CF =AF ,∴AF =EF ;(2)连接AC ,∵M 和N 分别是AE 和EF 的中点,点G 为CE 中点,∴MN =12AF ,NG =12CF ,即MN +NG =12(AF +CF ),当点F 与菱形ABCD 对角线交点O 重合时,AF +CF 最小,即此时MN +NG 最小,∵菱形ABCD 边长为1,∠ABC =60°,∴△ABC 为等边三角形,AC =AB =1,即MN +NG 的最小值为12;总结提升:本题考查了菱形的性质,中位线的性质、等边三角形性质的知识,关键在于熟悉各个知识点在本题的灵活运用.属于拔高题.类型三 求运动路径的长10.(2022•虞城县二模)如图,矩形ABCD 中.AB =AD =1,点E 为CD 中点,点P 从点D 出发匀速沿D ﹣A ﹣B 运动,连接PE ,点D 关于PE 的对称点为Q ,连接PQ ,EQ ,当点Q 恰好落在矩形ABCD的对角线上时(不包括对角线端点),点P 走过的路径长为 12或1 .思路引领:当点Q 恰好落在矩形ABCD 的对角线上时存在两种情况:①如图1,点P 在AD 上,点Q 在AC 上,连接DQ ,证明AP =PD 可得结论;②如图2,点P 在AB 上,连接PD ,根据30°角的三角函数列式可得AP 的长,从而计算结论.解:如图1,点P 在AD 上,点Q 在AC 上,连接DQ ,∵E 为CD 的中点,∴DE =CE ,∵点D 关于PE 的对称点为Q ,∴PE ⊥DQ ,DE =EQ =EC ,∴∠DQC =90°,∴DQ ⊥AC ,∴PE ∥AC ,∴PD =AP =12AD =12,即点P 走过的路径长为12;如图2,点P 在AB 上,连接PD ,∵E 为CD 的中点,且CD =∴DE =CE ∵∠DFE =90°,∴cos ∠EDF =cos30°=DF DE,∴DF =34,∵BD 2,∴BF =2―34=54,cos ∠ABD =cos30°=BF PB ,∴BP 5=∴AP ==∴此时点P 走过的路径长为1综上,点P 走过的路径长为12或1+故答案为:12或1+总结提升:本题主要考查了矩形的性质,对称的性质,解直角三角形,勾股定理等知识,掌握矩形的性质,勾股定理,直角三角形的性质等知识是解题的关键,并注意运用分类讨论的思想.11.如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.(1)当点B '恰好落在边CD 上时,线段BM 的长为 cm ;(2)点M 从点A 运动到点B 的过程中,若边MB ′与边CD 交于点E ,求点E 相应运动的路径长度.(3)当点A 与点B '距离最短时,求AM 的长.思路引领:(1)运用矩形性质和翻折性质得出:MB′=NB′,再利用勾股定理即可求得答案;(2)探究点E的运动轨迹,寻找特殊位置解决问题即可.(3)如图5中,连接AN,当点B′落在AN上时,AB′的值最小,此时MN平分∠ANB.利用面积法求出AM:BM=2,可得结论.解:(1)如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′cm),∴BM=NB′=cm).(2)如图1中,点B'恰好落在边CD上时,BM=NB′=cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt △ADE 中,则有x 2=22+(4﹣x )2,解得x =52,∴DE =4―52=32(cm ),如图3中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=5﹣1﹣2=2(cm ),如图4中,当点M 运动到点B ′落在CD 时,DB ′(即DE ″)=5﹣1―(4―(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=2―32+2﹣(432)(cm ).(3)如图5中,连接AN ,当点B ′落在AN 上时,AB ′的值最小,此时MN 平分∠ANB .过点M 作MP ⊥AN 于点P ,MQ ⊥BN 于点Q .在Rt △ADN 中,AN ===∵S △AMN S △MNB =AM BM =12⋅AN⋅MP 12⋅BN⋅MQ =2,∴AM =23AB =103.总结提升:本题属于四边形综合题,考查了矩形的性质,翻折变换,勾股定理,轨迹等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型.类型四 平移、翻折及旋转问题12.(2019春•江北区期中)如图,在菱形ABCD 中,∠A =60°,AD =8,F 是AB 的中点.过点F 作FE ⊥AD ,垂足为E .将△AEF 沿点A 到点B 的方向平移,得到△A ′E ′F ′.设P 、P ′分别是EF 、E ′F ′的中点,当点A ′与点B 重合时,四边形PP ′F ′F 的面积为( )A .B .C .D .―8思路引领:如图,连接BD ,DF ,DF 交PP ′于H .首先证明四边形PP ′CD 是平行四边形,再证明DF ⊥PP ′,求出FH 即可解决问题.解:如图,连接BD ,DF ,DF 交PP ′于H .由题意PP ′=AA ′=AB =CD ,PP ′∥AA ′∥CD ,∴四边形PP ′CD 是平行四边形,∵四边形ABCD 是菱形,∠A =60°,∴△ABD 是等边三角形,∵AF =FB ,∴DF ⊥AB ,DF ⊥PP ′,在Rt △AEF 中,∵∠AEF =90°,∠A =60°,AF =4,∴AE =2,EF =∴PE =PF =在Rt △PHF 中,∵∠FPH =30°,PF∴HF =12PF∴平行四边形PP ′FF ′的面积8=故选:B .总结提升:本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.13.(2021•海南模拟)如图,正方形ABCD 的边长为1;将其绕顶点C 按逆时针方向旋转一定角度到CEFG 的位置,使得点B 落在对角线CF 上,则阴影部分的面积是( )A .14B .2―C 1D .12思路引领:依据△BFH 、△CEF 为等腰直角三角形,即可得到阴影部分的面积.解:正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到CEFG 位置,使得点B 落在对角线CF 上,∴EF =CE =1,∴CF =∴BF =―1,∵∠BFE =45°,∴BH =BF ―1,∴阴影部分的面积=12×1×1―12×―1)2―1,故选:C .总结提升:本题考查了正方形的性质及旋转的性质,本题关键是利用△BFH 、△CEF 为等腰直角三角形求解线段的长.14.(2020•湘西州)在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的正半轴上,∠ABO =30°,矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,OD =2.将矩形CODE 沿x 轴向右平移,当矩形CODE 与△ABO 重叠部分的面积为CODE 向右平移的距离为 .思路引领:由已知得出AD =OA ﹣OD =4,由矩形的性质得出∠AED =∠ABO =30°,在Rt △AED 中,AE =2AD =8,由勾股定理得出ED =解:∵点A (6,0),∴OA =6,∵OD =2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED∵OD=2,∴点E的坐标为(2,;∴矩形CODE的面积为2=∵将矩形CODE沿x轴向右平移,矩形CODE与△ABO重叠部分的面积为∴矩形CODE与△ABO不重叠部分的面积为如图,设ME′=x,则FE′,依题意有x×÷2=解得x=±2(负值舍去).故矩形CODE向右平移的距离为2.故答案为:2.总结提升:考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质是解题的关键(2022•大连模拟)如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD 边的中点E处,折痕为FG,点F、G分别在边AB、AD上,则GE= .思路引领:过点E作EH⊥AD于H,根据勾股定理可求DH的长度,由折叠的性质得出AG=GE,在Rt△HGE中,由勾股定理可求出答案.解:过点E作EH⊥AD于H,∵ABCD是菱形,∴AB∥CD,AD=AB=4,∴∠BAD=∠HDE=60°,∵E是CD中点,∴DE=2,在Rt△DHE,中,DE=2,HE⊥DH,∠HDE=60°,∴DH=1,HE=∵将菱形纸片翻折,使点A落在CD边的中点E处,∴AG=GE,在Rt△HGE中,GE2=GH2+HE2,∴GE2=(4﹣GE+1)2+3,∴GE=2.8.故答案为:2.8.总结提升:本题考查了折叠问题,菱形的性质,勾股定理,关键是添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度.。

八年级四边形动点问题及难题

八年级四边形动点问题及难题

动点问题及四边形难题1如图1,在平面直角坐标系中,点0是坐标原点,四边形ABCO是菱形,点A的坐标为(一3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C 匀速运动,设△PMB的面积为S(SHO),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);2.已知:如图,在直角梯形COAB中,OC〃AB,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积(3)动点P从点O出发,沿折线OABD的路线移动过程中,设A OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;简单作业练习题4.如图,已知AD 与BC 相交于E,Z1=Z2=Z3,BD=CD ,ZADB=90CH 丄AB 于H,CH 交AD 于F.(1) 求证:CD 〃AB ;(2) 求证:△BDE^AACE;1(3) 若0为AB 中点,求证:OF=BE. 2简单作业练习题5、如图1—4—21,在边长为a 的菱形ABCD 中,ZDAB=60°,E 是异于A 、D 两点的动点,F 是CD 上的动点,满足AE+CF=a ,说明:不论E 、F 怎样移动,三角形BEF 总是正三角形. 3.如图,已知A ABC 中,AB =AC =10厘米,BC =8厘米,点D 为AB 的中点.(1) 如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.① 若点Q 的运动速度与点P 的运动速度相等,经过1秒后,MPD 与A COP 是否全等, 请说明理由;② 若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使A BPD 与A COP 全等?(2) 若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在厶ABC 的哪条边上相遇?PDF C6、如图1—4—38,等腰梯形ABCD中,AD〃BC,AB=CD,ZDBC=45O,翻折梯形使点B重合于点D,折痕分别交边AB、BC于点F、E,若AD=2,BC=8,求BE的长.7、在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.8、如图1—4—80,已知正方形ABCD的对角线AC、BD相交于点0,E是AC上一点,过点A 作AG丄EB,垂足为G,AG交BD于F.(1)请证明0E=0F(2)若点E在AC的延长线上,其他条件不变,0E=0F是否成立?若成立,请给出证明;若不成立,请说明理由.9已知:如图4-26所示,△ABC中,AB=AC,ZBAC=90°,D为BC的中点,P为BC的延长线上一点,PE丄直线AB于点E,PF丄直线AC于点F.求证:DE丄DF并且相等.中难度10已知:如图4-27,ABCD为矩形,CE丄BD于点E,ZBAD的平分线与直线CE相交于点F.求证:CA=CF.中难度11已知:如图4-56A.,直线l通过正方形ABCD的顶点D平行于对角线AC,E为l上U4—SB一点,EC=AC,并且EC与边AD相交于点F.求证:AE=AF.E本例中,点E与A位于BD同侧.如图4-56B.,点E与A位于BD异侧,直线EC与DA 的延长线交于点F,这时仍有AE=AF.请自己证明.AI12求证:矩形各内角平分线(对角的平分线不在一直线上)所围成的四边形EFGH是正方形.。

初二数学《平行四边形中的动点问题》(附练习及答案)

初二数学《平行四边形中的动点问题》(附练习及答案)

四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。

解决这类问题关键是动中求静,灵活运用有关数学知识。

数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。

这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。

解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。

1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。

2023年中考数学高频考点提升练习--四边形的动点问题

2023年中考数学高频考点提升练习--四边形的动点问题

2023年中考数学高频考点提升练习--四边形的动点问题一、单选题1.如图,在正方形ABCD中,点E是CD边上的一个动点(不与点C、D重合),BE的垂直平分线分别交AD,BC于点F,G。

若FD=5AF,则CE:ED的值为()A.6-2 √3B.√10−52C.√3-1D.√1042.如图,在长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E运动,最终到达点E.若点P运动的时间为x秒,则当△APE的面积为5cm2时,x的值为()A.5B.3或5C.103D.103或53.如图,已知AB=8,点P是线段AB上的动点,以AP为边作正方形APCD,以PB 为底作等腰△PBE,连接CE,则△PCE的面积的最大值是()A.3√2B.4C.4.2D.4√24.如图,在矩形ABCD中,点E,F将对角线AC三等分,已知AB=9,BC=12,点P在矩形ABCD的边上,则满足PE+PF=12的点P的个数是()A.2B.4C.6D.85.如图,在矩形ABCD中,P是边AD上的一个动点,连接BP,CP,过点B作射线,交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y,其中2<x⩽5.则下列结论中,正确的个数为()△y与x的关系式为y=x−4x;(2)当AP=4时,△ABP∽△DPC;(3)当AP=4时,tan∠EBP=35.A.0个B.1个C.2个D.3个6.如图,已知正方形ABCD的边长为4,动点P从点A出发在边AB上运动,同时动点Q从点B出发以同样的速度在边BC上运动.分别连接AQ,DP,AQ与DP相交于点E,连接BE,则线段BE的最小值为()A.√5B.2√2C.2√2−1D.2√5−27.如图,已知正方形ABCD的边长为4, P是AB边上的一个动点,连结PD,作PQ△PD交BC边于点Q.当点P从点A出发向终点B运动时,点Q所经过的路径长为()A.1B.2C.3D.48.如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C−D−A−E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为()A.98或194B.194或98或274C.94或6D.6或94或274二、填空题9.如图在矩形ABCD中,AB=6,AD=8,E为对角线AC上的动点,EF△DE交BC边于点F,以DE,EF为邻边作矩形DEFG.(1)当AE=2时,求EDEF=;(2)点H在AD上且HD=3,连接HG,则HG的取值范围是.10.如图,在直角梯形ABCD中,AD△BC,△C=90°,BC=16,DC=12,AD=21.动点P从点D 出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P 随之停止运动.设运动的时间为t(秒).当t为时,以B,P,Q三点为顶点的三角形是等腰三角形?11.如图,在矩形ABCD中,AB=5cm,BC=2cm,M,N两点分别从A,B两点以2cm/s和1cm/s 的速度在矩形ABCD边上沿逆时针方向运动,其中有一点运动到点D即停止,当运动时间为秒时,△MBN为等腰三角形.12.如图,一个桌球游戏的长方形桌面ABCD中,AD=2m。

2023年中考九年级数学高频考点提升练习--四边形的动点(含答案)

2023年中考九年级数学高频考点提升练习--四边形的动点(含答案)

2023年中考九年级数学高频考点提升练习--四边形的动点1.如图,在四边形ABCD中,AD//BC,∠C=90°,BC=16,DC= 12,AD=21,动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动;动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动;点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动,设运动的时间为t秒).(1)当t=2时,求△BPQ的面积;(2)若四边形ABQP为平行四边形,求运动时间t.(3)当t为何值时,以B、P、Q为顶点的三角形是等腰三角形?2.已知:正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在的直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图1,当点P在对角线AC上时,请你猜想PE与PB有怎样的数量关系,并加以证明;(2)如图2,当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图2,当点P运动到CA的反向延长线上时,请你利用图3画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)3.如图1,在矩形ABCD中,AD=4,CD=2,点M从点A出发向点D移动,速度为每秒1个单位长度,点N从点C出发向点D移动,速度为每秒2个单位长度.两点同时出发,且其中的任何一点到达终点后,另一点的移动同时停止.(1)若两点的运动时间为t,当t为何值时,ΔAMB∼ΔDNA?(2)在(1)的情况下,猜想AN与BM的位置关系并证明你的结论.(3)①如图2,当AB=CD=2时,其他条件不变,若(2)中的结论仍成立,则t=.2)中的结论仍成立,则②当ADAB=n(n>1),AB=2时,其他条件不变,若(t=(用含n的代数式表示).4.如图1,正方形ABCD的对角线相交于点O,延长OD到点G,延长OC到点E,使OG=2OD,OE=2OC,以OG,OE为临边做正方形OEFG,连接AG,DE.(1)探究AG与DE的位置关系与数量关系,并证明;(2)固定正方形ABCD,以点O为旋转中心,将图1中的方形OEFG逆时针转n°(0<n<180)得到正方形OE1F1G1,如图2,①在旋转过程中,当∠OAG1=90°时,求n的值;②在旋转过程中,设点E1到直线AG1的距离为d,若正方形ABCD的边长为1,请直接写出d的最大值与最小值,不必说明理由.5.如图,四边形ABCD中,∠A=∠B=90°,AB=AD,BC=7cm,点P,Q同时从点B出发,点P以2cm/s的速度沿B→A→D运动,到点D停止,点Q以3cm/s的速度沿B→C→D运动,到点D停止.设点P的运动时间为t(s),∠PBQ的面积为S(cm2).当点Q到达点C时,点P在AD上,此时S=14(cm2).(1)求CD的长;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.6.如图(1)(问题发现)如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)(拓展探究)如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)(解决问题)如图③,∠ABC和∠ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).7.在矩形ABCD中,AB = 6,AD = 4,点M为AB边上一个动点,连接DM,过点M作MN∠DM,且MN = 32DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:∠ABD∠∠MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.8.正方形ABCD在平面直角坐标系中的位置如图所示,AD//BC//x轴,AD与y轴交于点E,OE=1,且AE,DE的长满足√AE−3+|DE−1|=0.(1)求点A的坐标;(2)若P(−4,−1),求△EPC的面积;(3)在(2)的条件下,正方形ABCD的边上是否存在点M,使S△EPC=2S△CEM?若存在,请直接写出点M的坐标;若不存在,请说明理由.9.已知,如图1,在四边形ABCD中,AD//BC,∠BCD=90°,AD=CD=6,tanB=3,动点P从B出发,以每秒1个单位长度的速度沿BC方向运动,过点P作PE∠BC,交折线BA-AD于点E,以PE为斜边向右作等腰直角三角形PEF,设点P的运动时间为t 秒(t>0)(1)当t为何值时,点F恰好落在CD上?(2)若P与C重合时运动结束,在整个运动过程中,设等腰直角三角形PEF与四边形ABCD重叠部分的面积为S,请求S关于t之间的函数关系式;(3)当F在CD右侧时,是否存在某一时刻,使得重叠部分的面积S与四边形ABCD重叠部分的面积比为1:8?若存在,求出t的值;若不存在,请说明理由;(4)如图2,在点P开始运动时,BC上另一点Q同时从点C出发,以每秒2个单位长度的速度沿CB方向运动,当Q到达B点时停止运动,同时点P也停止运动,过点Q作QM∠BC,交射线CA于点M,以QM为斜边向左作等腰直角三角形QMN,若两个等腰直角三角形分别有一条边恰好在一条直线上,请直接写出t的值.10.如图,在四边形ABCD中,AB// DC,CB∠AB.AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s。

四边形中的动点问题

四边形中的动点问题
(4)在b值的变化过程中,若△PCD为等腰三角形,求所有符合条件的b 值.
例5、如图,直角梯形OABC中,AB∥OC,O为坐标原点, 点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2, 2√3 ),∠BCO=60°,OH⊥BC于点H.动点P从点H出发, 沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P运 动的时间为t秒.
APQD是平行四边形.
(1)求a的值; (2)线段PQ是否可能平分对角线BD?若能,求t的值, 若不能,请说明理由;
(3)若在某一时刻点P恰好在DQ的垂直平分线上,求此 时t的值.
例3.在梯形ABCD中, AD∥BC,AB=AD=CD=5cm,BC=11cm,点P从 点D开始沿DA边以每秒1cm的速度移动,点Q从点B开始沿BC边以每 秒2cm的速度移动(当点P到达点A时,点P与点Q同时停止移动), 假设点P移动的时间为x(秒),四边形ABQP的面积为y(cm2). (1)求y关于x的函数解析式,并写出x的取值范围; (2)在移动的过程中,求四边形ABQP的面积与四边形QCDP的面 积相等时x的值; (3)在移动的过程中,是否存在x使得PQ=AB,若存在求出所有x的 值,若不存在请说明理由.
(1)求OH的长; (2)若△OPQ的面积为S,求S与t之间的函数关系式. (3)设PQ与OB交于点M.当t为何值时,△OPM为等腰三 角形?y
A
B
QM
H
P
O
Cx
例7、如图,在平面直角坐标系中,直线y=- x+b(b>0)分别交x轴、 y轴于A、B两点,以OA、OB为边作矩形OACB,D为BC的中点.以M(4, 0)、N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限, 设矩形OACB与△PMN重叠部分的面积为S. (1)求点P的坐标; (2)求S与b的函数关系式; (3)若在直线y=- x+b(b>0)上存在点Q,使∠OQM=90°,求b的 取值范围;

四边形之动点问题(习题及答案)

四边形之动点问题(习题及答案)

四边形之动点问题(习题)➢例题示范例1:如图,直线y = 3x +6 与x 轴、y 轴分别交于点A,B,与直线y =- 3x 交于点C.动点E 从点B 出发,以每秒1 个单位长3度的速度沿BO 方向向终点O 运动,动点F 从原点O 同时出发,以每秒1 个单位长度的速度沿折线OC-CB 向终点B 运动,当其中一点停止时,另一点也随之停止.设点F 运动的时间为t(秒).(1)求点C 的坐标;(2)当3 ≤t ≤6 时,若△BEF 是等腰三角形,求t 的值.13 3 3 【思路分析】 1. 研究背景图形如图 1 所示.2. 分析运动过程,分段,定范围如下图,图 1① 0 ≤ t < 3 ② 3 ≤ t ≤ 63.分析几何特征、表达、设计方案求解分段之后可知,当3 ≤ t ≤ 6 时,点 F 在线段 BC 上;分析△BEF , B 是定点,E ,F 是动点.若使△BEF 是等腰三角形,需要分三种情况考虑:BE =BF ,BE =EF ,BF =EF .①当 BE =BF 时,画出符合题意的图形,如图 2;从动点的运 动开始表达,可得 BE =t ,BF = 3 + 3 得到 t 值.此时, t = 3 + 3 32- t ,根据 BE =BF 即可 ②当 BE =EF 时,画出符合题意的图形,如图 3;从动点的运 动开始表达,可得 BE =t , BF = 3 + 3 - t ,根据 BE =EF ,且 ∠OBA =30°,利用等腰三角形三线合一,过点 E 作 EN ⊥BC 于点 N ,在 Rt △BEN 中建立等式即可得到 t 值. 此时,t =3③当 BF =EF 时,画出符合题意的图形,如图 4;从动点的运 动开始表达,可得 BE =t , BF = 3 + 3 - t ,根据 BF =EF ,且 ∠OBA =30°,利用等腰三角形三线合一,过点 F 作 FM ⊥BO 于点 M ,在 Rt △BFM 中建立等式即可得到 t 值. 此时, t = 33 图 2图 3解得, t = 3 3 ,符合题意综上,若△BEF 是等腰三角形,则 t 的值为3 + 3 3 ,3 或3 322 =3 + 3 3 - t∴ 2 3 解得,t =3,符合题意③当 BF =EF 时,如图,过点 F 作 FM ⊥BE 于点 M ∴BM =ME ∵BE =t ∴ BM = t2 ∵ BF =3 + 3 3 - t t2 3 ∴ 2 = t23 - t∴ BN = 3 + 3 ∵ BE = t 3 + 3 3 - t②当 BE =EF 时,如图, 过点 E 作 EN ⊥BC 于点 N ∴BN =NF ∵ BF = 3 + 3 3 - t 3 ,符合题意 2 ∴ t =3 + 3 (2)当3 ≤ t ≤ 6 时,点 F 在线段 BC 上,若使△BEF 是等腰三角 形,分三种情况考虑: ①当 BE =BF 时,如图, 由题意得,BE =t , BF = 3 + 3 3 - t ∴ t = 3 + 3 3 - t2 2 ⎭ ⎝3 ⎫ 3 3 ⎛ ∴ C - , ⎪ 3(1)∵直线 y = 3x + 6 与直线 y = -3x 交于点 C 【过程书写】➢巩固练习1.如图,在直角梯形ABCD 中,AD∥BC,∠ABC=90°,AD=4,DC=6,BC=7,梯形的高为3 3 .动点M 从点B 出发,沿BC 以每秒1 个单位长度的速度向终点C 运动,动点N 从点C 出发,沿C—D—A 以每秒2 个单位长度的速度向终点A 运动.M,N 两点同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动的时间为t 秒(t >0).(1)用t 表示△CMN 的面积S;(2)当t 为何值时,四边形ABMN 为矩形?(3)当t 为何值时,四边形CDNM 为平行四边形?2.如图,在直角梯形ABCD 中,∠B=90°,AD∥BC,AD=4 cm,BC=9 cm,CD=10 cm.动点P 从点A 出发,以2 cm/s 的速度沿射线AD 运动;同时动点Q 从点C 出发,以1 cm/s 的速度沿CB 向点B 运动.当点Q 到达点B 时,动点P 随之停止,设运动的时间为t 秒.(1)当t 为何值时,以P,Q,C,D 为顶点的四边形是平行四边形?(2)当t 为何值时,PQ⊥DC?3. 如图1,在Rt△ABC 中,∠C=90°,∠A=60°,AB=12cm.点P 从点A 出发,沿AB 以2cm/s 的速度向点B 运动,同时点Q 从点C 出发,沿CA 以1cm/s 的速度向点A 运动.设运动的时间为t 秒(0 <t < 6 ).(1)直接写出线段AP,AQ 的长(用含t 的代数式表示):AP= ,AQ= ;(2)如图2,连接PC,把△PQC 沿QC 翻折,得到四边形PQP'C,则四边形PQP'C 能否成为菱形?若能,求出相应的t 值;若不能,请说明理由.图1图24. 如图1,直线y =- 3x + 2 与直线y =33x 交于点A,与x 轴交于点B,∠AOB 的平分线OC 交AB 于点C.动点P 从点B 出发沿折线BC-CO 以每秒1 个单位长度的速度向终点O 运动;同时动点Q 从点C 出发沿折线CO-y 轴正半轴以相同的速度运动.当点P 到达点O 时,P,Q 同时停止运动,设运动的时间为t 秒.(1)AC= ,BC= ;(2)当t 为何值时,PQ∥OB?(3)当P 在OC 上,Q 在y 轴上运动时,如图2,设PQ 与OA 交于点M,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.图1图2➢思考小结1.什么是动点问题?由速度已知的点的运动产生的几何问题称为动点问题.2.我们一般怎样处理动点问题?首先,研究背景图形.研究背景图形需要研究边、角、特殊图形.其次,分析运动过程,分段、定范围.分析运动过程常借助运动状态分析图:①起点、终点、速度——确定时间范围②状态转折点——确定分段,拐点为常见的状态转折点③所求目标——明确方向最后,分析几何特征、表达、设计方案求解.分段画图、表达相关线段长,根据几何特征列方程求解,回归范围进行验证.3.线段长的表达,需要注意的两点是什么?①路程即线段长,可根据s=vt 直接表达已走路程或未走路程;②根据研究几何特征的需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【参考答案】⎧- 3t 2 + 7 3 t (0 < t ≤ 3) 1⎪ 2 2 .(1) S = ⎨⎪- 3 3 t + 21 3(3 < t ≤ 5) ⎪⎩ 2 2 (2) t = 103 (3) t = 133 2.(1) t = 4或 43(2) t = 8 3.(1)2t ,6-t(2)能,相应的 t 值为 4 4.(1)AC =1,BC =2(2) t = 1或83(3) t = 8 或 6+2 33 3。

二次函数与四边形的动点问题(含答案)

二次函数与四边形的动点问题(含答案)

72x = B(0,4) A(6,0) EF xyO 二次函数与动点一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.A练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O2l 1lx y二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x 轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线Px …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.B CPO D QA BPCO DQ Ay321 O1 2 x三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2.(2010年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.图2OC A Bxy DPE F 图1FE PD y xBA C O例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.xN MQ PHGFEDCBA图11QPN M HGFED CBA图10图12练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.x图1x图2x图3)x图4答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(4(4F F F F - 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式27(2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725(326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725(326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E 使OEAF 为正方形.5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--. 又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+).(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍).所以在运动过程中四边形MDNA 可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

与四边形有关的动点问题

与四边形有关的动点问题

与四边形有关的动点问题动点型问题常常集几何、代数知识于一体,数形结合,有较强的综合性.常见的类型有单动点型、双动点型及多动点型.下面就与四边形有关的动点问题,分类举例说明,供同学们参考.1.单动点型例1 如图1所示,在△ABC 中,点O 在AC 边上运动,过O 作直线MN ∥BC 交∠BCA内角平分线于E 点,外角平分线于F 点.试探究:当点O 运动到何处时,四边形AECF 是矩形?析解:当点O 运动到AC 的中点时,四边形AECF 是矩形.因为MN ∥BC ,所以∠ECB=∠FEC .因为∠ECB=∠ECA ,所以∠ECA=∠FEC ,所以EO=OC .同理可得OF=OC ,所以EO=OF .又因为点O 是AC的中点,所以CA 与FE 互相平分,所以四边形AECF 是平行四边形.又因为CE 、CF 分别是∠BCA 的内、外角平分线,而∠BCD 是一平角,所以∠ECA+∠ACF=90º,即∠ECF=90º.所以四边形AECF 是矩形.2.双动点型例2 如图2所示,在直角坐标系中,四边形OABC 为直角梯形,OA ∥BC ,BC=14cm ,A 点坐标为(16,0),C 点坐标为(0,2).点P 、Q 分别从C 、A 同时出发,点P 以2cm/s 的速度由C 向B 运动,点Q 以4cm/s 的速度由A 向O 运动,当点Q 停止运动时,点P 也停止运动,设运动时间为ts (0≤t≤4). (1)求当t 为多少时,四边形PQAB 为平行四边形.(2)求当t 为多少时,PQ 所在直线将梯形OABC 分成左右两部分的面积比为1:2,求出此时直线PQ 的函数关系式. 析解:(1)因为ts 后,BP=(14-2t) cm ,AQ=4t cm .由BP= AQ ,得14-2t=4t ,t=37(s).因此当t=37s 时,BP= AQ ,又OA ∥BC ,所以四边形PQAB 为平行四边形. (2)因为C 点坐标为(0,2),A 点坐标为(16,0),所以OC=2 cm ,OA=16 cm .所以OABC S 梯形=21(OA+BC)·OC=21×(16+14)×2=30(cm 2). 因为ts 后,PC=2t cm ,OQ=(16-4t) cm ,所以PQ O C S 四边形=21(2t+16-4t)×2=16-2t . 由题意可得PQ O C S 四边形=10,所以16-2t=10,解得t=3(s).此时直线PQ 的函数关系式为y=x-4.点评:解决动点问题时,先要弄清动点运动的出发点、路线、终点以及运动的速度和时间,然后再假设动点在某处不动的情况下,对图形进行分析与探究,利用所学数学知识求解. A C D OB F N E M 图1。

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。

四边形中的动点问题(带答案)

四边形中的动点问题(带答案)

四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以 4 cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以 2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF,当EF经过AC边的中点D时,(1)求证:△ADE≌△CDF;:(2)当t为______s时,四边形ACFE是菱形;6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A 随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。

八年级数学四边形之动点问题(框架)(北师版)(含答案)

八年级数学四边形之动点问题(框架)(北师版)(含答案)

学生做题前请先回答以下问题问题1:动点问题的处理框架是什么?问题2:在分析运动过程时常借助运动状态分析图,需要关注哪几个要素?四边形之动点问题(框架)(北师版)一、单选题(共9道,每道11分)1.如图,在矩形ABCD中,AB=6,BC=8,动点P以每秒2个单位的速度从点A出发,沿AC 方向向点C移动,同时动点Q以每秒1个单位的速度从点C出发,沿CB方向向点B移动;当P,Q两点中其中一点到达终点时,则停止运动.设运动时间为t秒,则当t为( )秒时,△CPQ是以PQ为底的等腰三角形.A.5B.C.4D.答案:D解题思路:试题难度:三颗星知识点:动点问题2.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发以每秒1个单位的速度沿AD向点D运动,动点Q从点C出发以每秒2个单位的速度沿CB向点B 运动.点P,Q同时出发,当点P停止运动时,点Q也随之停止,连接PQ,DQ.设点P的运动时间为t秒,当t为( )秒时,△PDQ≌△CQD.A.4B.6C.8D.12答案:A解题思路:试题难度:三颗星知识点:动点问题3.已知:如图,等边三角形ABC的边长为9.动点P从点A出发沿AB-BC-CA方向以每秒3个单位的速度运动,再次回到点A时停止运动.设点P运动时间为t秒.解答下列问题:(1)运动状态分析图如下空缺处依次所填正确的是( )A.①1/s;②B.①3/s;②C.①3/s;②D.①3/s;②答案:D解题思路:试题难度:三颗星知识点:动点问题4.(上接第3题)(2)当点P沿AB-BC-CA方向运动时,需要分_____种情况来考虑,时间段的划分为( )A.1;B.2;;C.3;;;D.3;;;答案:C解题思路:试题难度:三颗星知识点:动点问题5.(上接第3,4题)(3)当P在BC上运动时,线段CP的长可用含t的式子表示为( )A.3tB.18-3tC.3t-9D.3t-18答案:B解题思路:试题难度:三颗星知识点:动点问题6.(上接第3,4,5题)(4)当点P在CA上运动时,线段PC的长可用含t的式子表示为( )A.18-3tB.3t-18C.27-3tD.3t-9答案:B解题思路:试题难度:三颗星知识点:动点问题7.如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发,沿折线段BA-AD-DC以每秒5个单位长度的速度向点C匀速运动;点Q从点C出发,沿线段CB以每秒3个单位长度的速度匀速运动.过点Q向上作射线QK⊥BC,交折线段CD-DA-AB 于点E.点P,Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P,Q运动的时间为t秒().(1)当运动终止时,线段BQ的长为( )A.105B.45C.35D.30答案:D解题思路:试题难度:三颗星知识点:动点问题8.(上接第7题)(2)当点P落在射线QK上时,t的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:动点问题9.(上接第7,8题)(3)当点P运动到AD上时,若PQ∥DC,则t的值为( )A. B.25C. D.答案:A解题思路:试题难度:三颗星知识点:动点问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)带答案(四边形中的动点问题.四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是 AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA 方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方 2 / 20向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速 3 / 20度运动,设运动时间为t. (1)连接EF,当EF经过AC边的中点D时,(1)求证:△ADE≌△CDF;:(2)当t为______s时,四边形ACFE是菱形;6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明4 / 207、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.5 / 20上一个动点,是边AC中,点8、如图,△ABCO,的平分线于点EMN交∠BCAMN过O作直线∥BC,设的外角平分线于点F.交∠BCA的数量关系并加以证OFOE与(1)探究:线段明;满足什么条运动到何处,且△ABC(2)当点O 件时,四边形AECF是正方形?会BCFEAC)当点O在边上运动时,四边形3(是菱形吗?若是,请证明,若不是,则说明理由. / 620,°,AB=8中,∠ABC=60、9如图,已知菱形ABCD重合)分别向D(不与B、过线段BD 上的一个动点P . EAD作垂线,垂足分别为、FAB直线、的长是______;)(1BD取得最小值时,此,当PE+PF+PC2()连接PC______的长是时PB / 720B、ABCD的顶点A10、如图,∠MON=90°,矩形随之AON上运动时,,ON上,当B在边OM分别在边,其中的形状保持不变,AB=2OM 上运动,矩形ABCD在 ______.D到点O的最大距离为BC=1,运动过程中,点是P,CD=10,11、如图,已知矩形ABCD,AD=4 的中点.、PC、CDEMAB上一动点,、N、分别是PD PMEN是平行四边形;)求证:四边形(1PMEN为何值时,四边形AP(2)请直接写出当是菱形; / 820(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。

(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)点 E,F在AC上运动过程中,以D、E、B、F为顶点的四边形是否可能为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由。

9 / 20四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是 AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA 方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方 10 / 20向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.当AE=AD时,四边形AEFD是菱形,即60-4t=2t. 解得t=10 s,∴当t=10 s时,四边形AEFD为菱形.(3)①当∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°. ∵∠A=60°,060,即60-4t=又∴30AED∴∠=. AD=t,AD/ 1120s.t=12 -4t=t,解得矩EBFD为四°时,边形②当∠EDF=90 °. 则∠ADE=3060 在Rt△AED中,∠A=°,形. s. 解得t=15/2 -2AE,即604t=4t,∴AD=重合,A重合,D与E③若∠EFD=90°,则与B 此种情况不存在.DEFs时,△s=15/2 或t=12 综上所述,当t 为直角三角形..射线ABC中,BC=6cm5、如图,在等边三角形的速度以1cm/sE从点A出发沿射线AGAG∥BC,点的速2cm/sB出发沿射线BC以从点运动,同时点F经EF)连接EF,当t. 度运动,设运动时间为(1 边的中点D时,过AC ;:)求证:△(1ADE≌△CDF ACFE四边形是菱形;为2()当t______s时,CF=2t-6.AE=t试题分析:由题意得:,若四边形ACFE是菱形,则有CF=AE=AC=6,则 12 / 20t=2t-6,解得.t=6 所以,当t=6时,四边形ACFE是平行四边形;BC在射线B=60°,点E6、在菱形ABCD中,∠)当点(1CD上运动,∠EAF=60°,点F在射线上))BCE在线段上时(如图1),(1求证:EC+CF=AB;(2、CFEC),线段、当点E在BC的延长线上时(如图2 AB有怎样的相等关系?写出你的猜想,不需证明)证明:连接AC,如下图所示:(1ABC∠EAF=60°,△∠B=60°,在菱形ABCD中, ACD为等边三角形,和△,∴∴,∴△AEC≌△AFD(ASA)EC+CF=DF+CF=CD=AB.、.AB的关系为:CF-CE=ABEC2()解:线段、CF,ABC已知∠B=60°,不难求出∠1解析分析:()ACDABC,△DAC∠的度数为60°,从而进一步求得△得出1AEC为正三角形,从而证明△≌△AFD,图、EC+CF=AB / 1320,,DF=CE△ADF≌△ACE图(2)2先证明,得出CF-CE=AB.CF=CD+DF=CE+BC°,,∠DAB=607、如图,在菱形ABCD中,AB=2边上一动点(不与点是ABE是AD边的中点.点M点.,连接MD、ANA重合),延长ME交射线CD于点N 1)求证:四边形AMDN是平行四(四边形时,①当AM的值为______(2)边形;填空:AMDN是矩形;四边形的值为______时,②当AM AMDN是菱形.,∴∠AMND∥(1)证明:∵四边形ABCD是菱形,∴ AME,MAE,∠DNE=∠∠NDE=,MAE ∴△NDE≌△,E是AD边的中点,∴DE=AE 又∵点,∴ND=MA 是平行四边形;∴四边形AMDN是矩形.理时,四边形AMDN)①当AM的值为1(2 由如下:1°,∴∠°∵∠DAM=60AM=1=∵ADM=30AD,∴∠2是矩形;AMD=90°,∴平行四边形AMDN / 1420AMDN是菱形.理由如下:AM的值为2时,四边形②当,∴AM=DMAM=AD=2,∴△AMD是等边三角形,∵AM=2,∴ AMDN是菱形,∴平行四边形上一个动点,是边AC、如图,△ABC中,点O8,EMN,设交∠BCA的平分线于点过O作直线MN∥BC BCA的外角平分线于点F.交∠的数量关系并加以证OF1)探究:线段OE与(明;满足什么条ABC)当点O运动到何处,且△(2 AECF件时,四边形是正方形?会AC上运动时,四边形BCFE(3)当点O在边是菱形吗?若是,请证明,若不是,则说明理由.的角平分ACBCE是∠解:(1)OE=OF.理由如下:∵,∠BCE线,∴∠ACE=,∴∠ACE∠ECB,∴∠NEC=又∵MN∥BC,∴∠NEC= 的外角平分线,是∠,∵OFBCAOE=OC,∴∠ECDOFC=∠,又∵FCDMN∥BC,∴∠∴∠OCF=∠ OE=OF;COF,∴OF=OC,∴OFC=∠满的中点,且△ACABC)当点(2O运动到为直角的直角三角形时,四边形ACB足∠AECF是正方形.理由如下: 15 / 20,EO=FOAO=CO,又∵AC∵当点O运动到的中点时,是平行四边形,∴四边形AECF,AC=EF,即∴AO=CO=EO=FO,∴AO+CO=EO+FO∵FO=CO,是矩形.∴四边形AECFCOF=COE=∠°,则∠AOF=∠ACB=90已知MN ∥BC,当∠ EF,AOE=90°,∴AC⊥∠ AECF 是正方形;∴四边形3)不可能.理由如下:(1∠ACD,∴∠ECF=平分∠如图,∵CE平分∠ACB,CF211°,ACD)=90∠ACD=(∠ACB+ACB+∠22,⊥EC若四边形BCFE是菱形,则BF°,所以不存中,不可能存在两个角为GFC90但在△在其为菱形.故答案为不可能.,°,AB=8中,∠ABC=60、9如图,已知菱形ABCD重合)分别向D(不与B、过线段BD上的一个动点P . EAD作垂线,垂足分别为、FAB直线、的长是______;)(1BD取得最小值时,此,当PE+PF+PC2()连接PC______的长是时PB / 1620BA、10、如图,∠MON=90°,矩形ABCD的顶点上ON,ON上,当B在边分别在边OMABCD上运动,矩形随之在运动时,AOM,BC=1的形状保持不变,其中AB=2,的最大距离运动过程中,点DO到点.______为 / 1720OD,∵,连接如图,取AB的中点EOE、DE、OD ,≤OE+DE的距离最O、∴当OD、E三点共线时,点D到点大此时,AB=BC=,AB=OE=AE2。

相关文档
最新文档