计数原理及二项式定理复习1
二项式定理-高考数学复习
=59.
目录
解题技法
赋值法的应用
(1)对形如( ax + b ) n ,( ax 2 + bx + c ) m ( a , b , c
∈R, m , n ∈N * )的式子求其展开式的各项系数之和,只
需令 x =1即可;
(2)对( ax + by ) n ( a , b ∈R, n ∈N*)的式子求其展开式各项
n ), g ( r )≠0,则:
(1) h ( r )=0⇔ Tr +1是常数项;
(2) h ( r )是非负整数⇔ Tr +1是整式项;
(3) h ( r )是负整数⇔ Tr +1是分式项;
(4) h ( r )是整数⇔ Tr +1是有理项.
目录
2. 两个常用公式
(1) C0 + C1 + C2 +…+ C =2 n ;
PART
2
目录
二项式中的特定项及系数问题
【例1】
1
(1)(2 x - )5的展开式中 x 的系数是(
A. -40
B. 40
C. -80
D. 80
)
1
解析:(1)(2 x - )5展开式的通项公式为 Tr +1= 5 (2 x )5
- r (- 1 ) r =(-1) r 25- r x 5-2 r ( r =0,1,…,5),令5
理数的项的个数是
16 2
,系数为有
5 .
解析:由二项展开式的通项公式可知 Tr +1= C9 ·
( 2 )9- r ·xr , r
∈N,0≤ r ≤9,当项为常数项时, r =0, T 1= C90 ·
( 2 )9·x 0=
( 2 )9=16 2 .当项的系数为有理数时,9- r 为偶数,可得 r =
高中数学第4章计数原理4-4二项式定理1湘教版选择性必修第一册
A.112
B.48 C.-112
D.-48
答案:C
解析:展开式的常数项为C53 (-2)3+(-2)5=-112.
)
方法归纳
求形如(a+b)m(c+d)n(m,n∈N+)的展开式中与特定项相关的量的步
骤
61
巩固训练3 (x2+1)(2x+1)6展开式的x2的系数是_____.
解析:(x2+1)(2x+1)6=x2(2x+1)6+(2x+1)6,
1∶2,求含x2的项.
解析:由题设,得T2=Cn1 xn-1(- 2)=- 2nxn-1,
T4=Cn3 xn-3(- 2)3=−2 23 n-3,
− 2
1
于是有
= ,化简得n2-3n-4=0,
3
-2 2 2
解得n=4或n=-1(舍去).
(x- 2)4的展开式的通项为
4
3 12-3×3
3
①令r=3,则T = −1
=-220x8.
4
4
12
9
②令12- r=0,则r=9,从而,常数项为 −1 9 C12
=-220.
3
3 8
③当r=0,3,6,9,12时,Tr+1 是有理项,分别为T1 =x12 ,T4 =−C12
x =-
6 4
9
220x8,T7=C12
x =924x4,T10=−C12
二项式(2x+1)6的通项为Tr+1=C6r (2x)6-r.
所以当r=6时,x2的系数为1 × C66 =1.
当r=4时,x2的系数为22 × C64 =60.
所以(x2+1)(2x+1)6展开式的x2的系数为1+60=61.
角度3 形如(a+b+c)n的展开式中的特定项问题
计数原理:第3讲二项式定理
二项式定理1.二项式定理n*(a + b) = _______________________________ (k , n € N ),这个公式所表示的规律叫做二项式定理.(a + b)n 的二项展开式共有 _______________ 项,其中各项的系数 ______________ (k € {0 , 1, 2,…,n})叫 做二项式系数,式中的 _____________ 叫做二项展开式的通项,用 T k +1表示,即 ____________________ •通项为展开式的第 ___________ 项.2.二项式系数的性质 (1) 对称性在二项展开式中,与首末两端等距离”的两个二项式系数相等,即 C n = C n , C n = C n , C n =,…,C n = C 0.(2) 增减性与最大值二项式系数c n ,当 _______________ 时,二项式系数是递增的;当 ______________ 时,二项式系数是递减 的.当n 是偶数时,中间的一项 _____________ 取得最大值.当n 是奇数时,中间的两项 _____________ 和 _____________ 相等,且同时取得最大值. ⑶各二项式系数的和(a + b)n 的展开式的各个二项式系数的和等于 ____________ ,即C 0 + C 1+ U+…+ ◎+••• + C ;; = _________ 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即 c 1+ C 3+ ◎+•••=氏+ U+C 4+ …= __________ .【答案】1.++...+...+w+iCj C 制Ti 二C 紗乍护七+12.【基础自测】1在2x 2— 1 5的二项展开式中,x 的系数为( )A . 10B . — 10C . 40D .— 40解:二项展开式的通项为 T r +1= C 5(2x 2)5 'J — X / = C 525 r x 10 3r (一 1)r ,令 10— 3r = 1,解得 r = 3,所以w+_l 7T 4= C;22X (— 1)3=— 40x ,所以 x 的系数为一40•故选 D.2n *2 (1 + X ) (n € N )的展开式中,系数最大的项是 ( )A •第n + 1项B •第n 项C .第n + 1项D .第n 项与第n + 1项解:展开式共有2n + 1项,且各项系数与相应的二项式系数相同•故选 C.3使?x + 总](n € N *)的展开式中含有常数项的最小的 n 为( )A . 4B . 5C . 6D . 74 设(X — 1)21 = a °+ a 1x + a 2X 2+…+ 玄2低21,贝V a® + a^= ________________ .解:T r + 1 = C 21X^ r (一 1),,…a 10= C 21(一 1)" , a 11= C 21 ( 一 1)勺° •- a 10 + a 11 = 0.故填 0. 5 设「2+ X )10= a °+a 1x + a 2X 2+…+ a 10x 10,贝V (a °+ a 2 + a 4+…+ ag)2—⑻十 a 3 + a 5+…+ a g )2的值为解:设 f(x)=(”』2 + X )10,则(a °+ a ?+ a °+…+ ag)2—⑻十 a 3 + a §+…+ a g )2= [(a °+ a ?+ a °+…+ aw)+ ⑻ + a 3 + a 5+ …+ a 9)][( a o + a 2 + a 4 + …+ ag)—(a 1 + a 3 + a 5 + …+ a ?)] = f(1)f( — 1)=(岑2 + 1)10(p2 — 1)10 = 1.故填 1.【典例】 类型一求特定项例一 (1) x + a 2X — 1 5的展开式中各项系数的和为 2,则该展开式中的常数项为 ( )A . — 40B . — 20C . 20D . 40解:令"1,可得卄1=2, 口f的展幵式中+项的系数为C 辺(―卩工项的系数为€?2\.■.«+典肚一打的展开式中常数顷为C?2:. - 1 ]十匚工:=40一故选D.【评析】①令工=1可得所有项的系数和,②在求出口的值后,再分析常数项的构成,便可解得常数 项.广 1 帯(2)已知在 饭一 丁 '的展开式中,第6项为常数项,求含 X 2项的系数及展开式中所有的有理项.< 2钱丿 n —5 1 丨 r / 1 r n —2r解:通项 T r +1= C fi x 3 一 2 X 3= C n 一 2 X 3,•••第6项为常数项,••• r = 5时,有上器=0,得n = 10.令芝芦=2,得r = 2,二含x 2项的系数为C ?。
计数原理知识点
计数原理知识点计数原理是概率论中非常重要的一部分,它主要用于解决各种计数问题。
在实际生活中,我们经常会遇到需要计数的情况,比如排列组合、概率统计等。
掌握计数原理的知识,对于解决这些问题至关重要。
本文将从基本概念、排列组合、二项式定理和应用实例等方面介绍计数原理的相关知识点。
一、基本概念。
1.1 排列。
排列是指从给定的n个元素中取出m(m≤n)个元素,按照一定的顺序排成一列的方式。
排列通常用P(n,m)表示,计算公式为P(n,m) = n!/(n-m)!。
1.2 组合。
组合是指从给定的n个元素中取出m(m≤n)个元素,不考虑元素的顺序。
组合通常用C(n,m)表示,计算公式为C(n,m) = n!/(m!(n-m)!).1.3 二项式定理。
二项式定理是代数中的一个重要定理,它用于展开任意幂的二项式。
二项式定理的公式为(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n)b^n。
二、排列组合。
排列和组合是计数原理中的两个重要概念,它们在实际问题中经常被使用。
2.1 排列的应用。
排列常常用于解决有关顺序的问题,比如从一堆书中选出几本书按照一定的顺序排列,或者从一组人中选出几个人按照一定的顺序站成一排等。
2.2 组合的应用。
组合常常用于解决不考虑顺序的问题,比如从一组人中选出几个人组成一个团队,或者从一组水果中选出几种水果组成一个水果篮等。
三、二项式定理。
二项式定理是代数中的一个重要定理,它在计数原理中也有着重要的应用。
3.1 二项式定理的计数应用。
二项式定理可以用于计算任意幂的展开式,这在一些计数问题中非常有用。
比如,我们可以利用二项式定理来计算某个事件发生k次的概率,或者计算某个排列组合的可能性等。
3.2 二项式定理的实际案例。
在实际生活中,二项式定理也有着广泛的应用。
比如在赌博游戏中,我们可以利用二项式定理来计算各种可能的情况,从而制定合理的策略。
又如在概率统计中,我们可以利用二项式定理来计算各种事件发生的概率,从而做出科学的决策。
高考数学一轮复习 第十章 计数原理 第3讲 二项式定理
因为第 6 项为常数项,所以 k=5 时,n-23×5=0,即 n=10.
(2)令10-3 2k=2,得 k=2,故含 x2 的项的系数是 C210-122=445. (3)根据通项公式,由题意100≤-3k≤2k∈ 10,Z,
k∈N, 令10-3 2k=r (r∈Z),则 10-2k=3r,k=5-32r, ∵k∈N,∴r 应为偶数.∴r 可取 2,0,-2,即 k 可取 2,5,8, ∴第 3 项,第 6 项与第 9 项为有理项,
2.(人教A版选修2-3P37A5改编)在x(1+x)6的展开式中,含 x3项的系数为( )
A.30
B.20
C.15
D.10
解析 因为(1+x)6 的展开式的第(r+1)项为 Tr+1=C6rxr, x(1+x)6 的展开式中含 x3 的项为 C26x3=15x3,所以系数为 15. 答案 C
3.(2015·陕西卷)二项式(x+1)n(n∈N*)的展开式中x2的系数为 15,则n等于( )
它们分别为445x2,683,24556x-2.
规律方法 (1)二项式定理的核心是通项公式,求解此类问 题可以分两步完成:第一步根据所给出的条件(特定项)和通 项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项 指数为零、有理项指数为整数等);第二步是根据所求的指 数,再求所求的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法 计数原理讨论求解.
诊断自测
1.判断正误(在括号内打“√”或“×”) (1)Cknan-kbk 是二项展开式的第 k 项.(×) (2)二项展开式中,系数最大的项为中间一项或中间两项.(a+ b)2n 中系数最大的项是第 n 项.(× ) (3)(a+b)n 的展开式中某一项的二项式系数与 a,b 无关.( √ ) (4)(a+b)n 某项的系数是该项中非字母因数部分,包括符号等, 与该项的二项式系数不同.(√ )
2020年高考数学二轮复习讲义: 计数原理与二项式定理
第三讲 计数原理与二项式定理高考考点 考点解读本部分内容在备考时应注意以下几个方面: (1)准确把握两个计数原理的区别及应用条件.(2)明确解决排列、组合应用题应遵守的原则及常用方法. (3)牢记排列数公式和组合数公式.(4)掌握二项式定理及相关概念;掌握由通项公式求常数项、指定项系数的方法;会根据赋值法求二项式特定系数和.预测2020年命题热点为:(1)以实际生活为背景的排列、组合问题.(2)求二项展开式的指定项(系数)、二项展开式的各项的系数和问题.Z 知识整合hi shi zheng he1.必记公式 (1)排列数公式:A m n =n (n -1)(n -2)…(n -m +1) =n !(n -m )!(这里,m ,n ∈N *,且m ≤n ).(2)组合数公式:①C m n =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(这里,m ,n ∈N *,且m ≤n );②C 0n =1. (3)二项式定理:①定理内容:(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n an -k b k +…+C n n b n (n ∈N *); ②通项公式:T k +1=C k n an -k b k . 2.重要性质及结论 (1)组合数的性质:①C m n =C n -mn;②C m n +1=C m n +C m -1n ; ③C 0n +C 1n +…+C n n =2n ; ④C m n +C m n -1+…+C m m =C m +1n +1.(2)二项式系数的有关性质:①二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1;②若f (x )=a 0+a 1x +a 2x 2+…+a n x n , 则f (x )展开式中的各项系数和为f (1),奇数项系数和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.Y 易错警示i cuo jing shi1.分类标准不明确,有重复或遗漏,平均分组与平均分配问题. 2.混淆排列问题与组合问题的差异.3.混淆二项展开式中某项的系数与二项式系数. 4.在求展开式的各项系数之和时,忽略了赋值法的应用.1.(2018·全国卷Ⅲ,5)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( C ) A .10 B .20 C .40D .80[解析] 展开式的通项公式为T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫2x r=2r C r 5x 10-3r ,令10-3r =4可得r =2,则x 4的系数为22C 25=40.2.(2017·全国卷Ⅱ,6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种[解析] 由题意可得其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C 13·C 24·A 22=36(种),或列式为C 13·C 24·C 12=3×4×32×2=36(种). 故选D .3.(2016·全国卷Ⅱ,5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( B )A .24B .18C .12D .9[解析] E →F 有6种走法,F →G 有3种走法,由分步乘法计数原理知,共6×3=18种走法.4.(2018·天津卷,10)在⎝⎛⎭⎫x -12x 5的展开式中,x 2的系数为52.[解析] 因为⎝⎛⎭⎫x -12x 5的第r +1项T r +1=C r 5x 5-r ⎝⎛⎭⎫-12x r =(-1)r 2-rC r 5x 10-3r 2,令10-3r2=2, 解得r =2,即T 3=T 2+1=(-1)22-2C25x 2=52x 2.所以在⎝⎛⎭⎫x -12x 5的展开式中,x 2的系数为52.5.(2018·浙江卷,14)二项式⎝⎛⎭⎪⎫3x +12x 8的展开式的常数项是7.[解析] 通项公式为T r +1=C r 8(3x )8-r ⎝⎛⎭⎫12x r =C r 82-rx 8-4r 3,由8-4r =0得r =2,所以常数项为C 282-2=7.6.(2018·全国卷Ⅰ,15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)[解析]方法一:根据题意,没有女生入选有C34=4种选法,从6名学生中任意选3人有C36=20种选法,故至少有1位女生入选的选法共有20-4=16种.方法二:恰有1位女生,有C12C24=12种,恰有2位女生,有C22C14=4种,所以不同的选法共有12+4=16种.命题方向1两个计数原理例1 (1)将1,2,3,…,9这九个数字填在如图所示的9个空格中,要求每一行从左到右,每一列从上到下增大,当3,4固定在图中的位置时,填写空格的方法有( A )A.6种B.12种C.18种D.24种[解析]分三个步骤:第一步,数字1,2,9必须放在如图的位置,只有1种方法.第二步,数字5可以放在左下角或右上角两个位置,故数字5有2种方法.第三步,数字6如果和数字5相邻,则7,8只有1种方法;数字6如果不和数字5相邻,则7,8有2种方法,故数字6,7,8共有3种方法.根据分步乘法计数原,有1×2×3=6种填写空格的方法.(2)如果一个三位正整数“a1a2a3”满足a1<a2且a3<a2,则称这样的三位数为凸数(如120,343,275),那么所有凸数的个数为( A )A.240B.204C.729D.920[解析]分8类,当中间数为2时,有1×2=2(个);当中间数为3时,有2×3=6(个);当中间数为4时,有3×4=12(个);当中间数为5时,有4×5=20(个);当中间数为6时,有5×6=30(个);当中间数为7时,有6×7=42(个);当中间数为8时,有7×8=56(个);当中间数为9时,有8×9=72(个).故共有2+6+12+20+30+42+56+72=240(个).『规律总结』两个计数原理的应用技巧(1)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.(2)对于复杂的两个计数原理综合应用的问题,可恰当列出示意图或表格,使问题形象化、直观化.G 跟踪训练en zong xun lian1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( A )A.72种B.48种C.24种D.12种[解析]解法一:首先涂A有C14=4(种)涂法,则涂B有C13=3(种)涂法,C与A,B相邻,则C有C12=2(种)涂法,D只与C相邻,则D有C13=3(种)涂法,所以共有4×3×2×3=72(种)涂法.解法二:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A、B、C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法.所以不同的涂法共有24+24×2=72(种).2.(2018·长沙一模)设集合A={(t1,t2,t3)|t i∈{-2,0,2},i=1,2,3},则集合A中满足条件:“1<|t1|+|t2|+|t3|<6”的元素个数为18.[解析]对于1<|t1|+|t2|+|t3|<6,可分以下几种情况:①|t1|+|t2|+|t3|=2,即此时集合A的元素含有一个2或-2,两个0.2或-2从三个位置选一个有3种选法,剩下的位置都填0,这种情况有6种;②|t1|+|t2|+|t3|=4,即此时集合A含有两个2或-2,一个0;或者一个2,一个-2,一个0.当是两个2或-2,一个0时,从这三个位置任选一个填0,剩下的两个位置都填2或-2,这种情况有3×2=6种;当是一个2,一个-2,一个0时,对这三个的全排列即得到3×2×1=6种.由分类加法计数原理可知:集合A中满足条件:“1<|t1|+|t2|+|t3|<6”的元素个数为6+6+6=18.命题方向2排列与组合的简单应用例2 (1)(2018·郑州一模)某次联欢会要安排3个歌舞类节,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( B )A.72种B.120种C.144种D.168种[解析]先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法,故共有36+36+48=120(种)安排方法.(2)(2018·衡水模拟)数列{a n}共有12项,其中a1=0,a5=2,a12=5,且|a k+1-a k|=1,k =1,2,3,…,11,则满足这种条件的不同数列的个数为( A )A.84 B.168C.76 D.152[解析]∵|a k+1-a k|=1,k=1,2,3,…,11,∴前一项总比后一项大1或小1,a1到a5中4个变化必然有3升1减,a5到a12中必然有5升2减,是组合的问题,∴C14×C27=84.『规律总结』解答排列组合问题的常用方法排列组合问题从解法上看,大致有以下几种:(1)有附加条件的排列组合问题,大多需要用分类讨论的方法,注意分类时应不重不漏;(2)排列与组合的混合型问题,用分类加法或分步乘法计数原理解决;(3)元素相邻,可以看作是一个整体的方法;(4)元素不相邻,可以利用插空法;(5)间接法,把不符合条件的排列与组合剔除掉;(6)穷举法,把符合条件的所有排列或组合一一写出来;(7)定序问题缩倍法;(8)“小集团”问题先整体后局部法.G 跟踪训练en zong xun lian1.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( B )A .192种B .216种C .240种D .288种[解析] 分两类:最左端排甲有A 55=120种不同的排法,最左端排乙,由于乙不能排在最右端,所以有C 14A 44=96种不同的排法,由加法原理可得满足条件的排法共有120+96=216种.2.将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是96.[解析] 5张参观券分为4堆,有2个连号的有4种分法,每一种分法中的不同排列有A 44种,因此共有不同分法4A 44=96种.命题方向3 二项式定理的应用(一)与特定项有关的问题例3 (1)二项式(x -13x)n 的展开式中第4项为常数项,则常数项为( B )A .10B .-10C .20D .-20[解析] 由题意得:(x -13x )n 的展开式的常数为T 4=(-1)3C 3n (x )n -3(13x)3=(-1)3C 3nx n -52,令n -5=0,得n =5,故所求的常数项为T 4=(-1)3C 35=-10. (2)在(2x +1x 2)(x 2-1x)4的展开式中,含x 3的项的系数是8.[解析] (x 2-1x )4的展开式的通项公式为T r +1=C r 4(x 2)4-r (-1x )r =(-1)r C r 4x 8-3r,则含x 2的项的系数为(-1)2C 24=6,含x 5的项的系数为(-1)1C 14=-4,所以(2x +1x 2)(x 2-1x )4的展开式中,含x 3的项的系数为2×6+1×(-4)=8.(二)与二项式系数有关的问题例4 (1)若(x 2+1)(x -2)11=a 0+a 1(x -1)+a 2(x -1)2+…+a 13(x -1)13,a 1+a 2+…+a 13的值为( C )A .0B .-2C .2D .213[解析] 记f (x )=(x 2+1)(x -2)11=a 0+a 1(x -1)+a 2(x -1)2+…+a 13(x -1)13,则f (1)=a 0=(12+1)(1-2)11=-2,而f (2)=(22+1)(2-2)11=a 0+a 1+a 2+…+a 13,即a 0+a 1+a 2+…+a 13=0,所以a 1+a 2+…+a 13=f (2)-f (1)=2.(2)在(x -ax )5的展开式中x 3的系数等于-5,则该展开式各项的系数中最大值为( B )A .5B .10C .15D .20[解析] 由T r +1=C r 5x 5-r (-a x)r =(-a )r C r 5x 5-2r,r =0,1,2,…,5,由5-2r =3得r =1,所以(-a )C 15=-5a =-5,即a =1,所以T r +1=(-1)r C r 5x 5-2r,r =0,1,2,…,5,当r =0时,(-1)0C 05=1;当r =2时,(-1)2C 25=10;当r =4时,(-1)4C 45=5.所以该展开式各项的系数中最大值为10.(3)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =3.[解析] 由已知得(1+x )4=1+4x +6x 2+4x 3+x 4,故(a +x )(1+x )4的展开式中x 的奇数次幂项分别为4ax,4ax 3,x,6x 3,x 5,其系数之和为4a +4a +1+6+1=32,解得a =3.『规律总结』1.与二项式定理有关的题型及解法2.(1)T r +1表示二项展开式中的任意项,只要n 与r 确定,该项就随之确定. (2)T r +1是展开式中的第r +1项,而不是第r 项. (3)公式中a ,b 的指数和为n ,a ,b 不能颠倒位置. (4)二项展开式中某一项的系数与某一项的二项式系数易混.(5)二项式系数最大项与展开式系数最大项不同. G 跟踪训练en zong xun lian1.(2018·辽宁鞍山一模)若(x 2+m )(x -2x )6的展开式中x 4的系数为30,则m 的值为( B )A .-52B .52C .-152D .152[解析] (x -2x )6展开式的通项为T r +1=C r 6x 6-r (-2x )r =(-2)r C r 6x 6-2r,令6-2r =2,得r =2,所以x 2项的系数为(-2)2C 26=60.令6-2r =4,得r =1,所以x 4项的系数为(-2)1C 16=-12,所以(x 2+m )(x -2x )6的展开式中x 4的系数为60-12m =30,解得m =52,故选B .2.(x 2+x +y )5的展开式中,x 5y 2的系数为( C ) A .10 B .20 C .30D .60[解析] 由于(x 2+x +y )5=[(x 2+x )+y ]5,其展开式的通项为T r +1=C r 5(x 2+x )5-r y r(r =0,1,2,…,5),因此只有当r =2,即T 3=C 25 (x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i +1=C i 3(x 2)3-i ·x i =C i 3x 6-i (i =0,1,2,3),令6-i =5,得i =1,则(x 2+x )3的展开式中x 5项的系数是C 13=3,故(x 2+x +y )5的展开式中,x 5y 2的系数是C 25·3=10×3=30.A 组1.将6名男生,4名女生分成两组,每组5人,参加两项不同的活动,每组3名男生和2名女生,则不同的分配方法有( B )A .240种B .120种C .60种D . 180种[解析] 不同的分配方法有C 36C 24=120.2.若二项式(2x +a x )7的展开式中1x 3的系数是84,则实数a =( C )A .2B .54C .1D .24[解析] 二项式(2x +a x )7的通项公式为T r +1=C r 7(2x )7-r (a x )r =C r 727-r a r x 7-2r,令7-2r =-3,得r =5.故展开式中1x3的系数是C 5722a 5=84,解得a =1. 3.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( D ) A .24 B .48 C .60D .72[解析] 由题意,可知个位可以从1,3,5中任选一个,有A 13种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A 44种方法,所以奇数的个数为A 13A 44=3×4×3×2×1=72,故选D .4.(2018·濮阳二模)将数字“124467”重新排列后得到不同的偶数个数为( D ) A .72 B .120 C .192D .240[解析] 由题意,末尾是2或6,不同的偶数个数为C 12A 35=120;末尾是4,不同的偶数个数为A 55=120.故共有120+120=240(个),故选D .5.(3x -2x )8二项展开式中的常数项为( B )A .56B .112C .-56D .-112[解析]T r +1=C r 8(3x )8-r(-2x )r =(-1)r 2r C r8·x 8-4r 3,令8-4r =0,∴r =2,∴常数项为(-1)2×22×C 28=112.6.在(x 2-12x )6的展开式中,常数项等于( D )A .-54B .54C .-1516D .1516[解析] 本题考查二项式定理,二项式(x 2-12x )6的展开式的通项公式为C r 6(x 2)6-r(-12x )2=(-12)r C r 6x 12-3r,令12-3r =0得r =4,则二项式(x 2-12x )6的展开式中的常数项为(-12)4C 46=1516.故选D .7.有5名同学参加唱歌、跳舞、下棋三项比赛,每项比赛至少有一人参加,其中甲同学不能参加跳舞比赛,则参赛方案的种数为( B )A .112B .100C .92D .76[解析] 甲同学有2种参赛方案,其余四名同学,若只参加甲参赛后剩余的两项比赛,则将四名同学先分为两组,分组方案有C 14·C 33+C 24C 22A 22=7,再将其分到两项比赛中去,共有分配方案数为7×A 22=14;若剩下的四名同学参加三项比赛,则将其分成三组,分组方法数是C 24,分到三项比赛上去的分配方法数是A 33,故共有方案数C 24A 33=36.根据两个基本原理共有方法数2×(14+36)=100(种).8.(x 2-x +1)5的展开式中x 3的系数为( A ) A .-30 B .-24 C .-20D .20[解析] 本题考查二项式定理.[1+(x 2-x )]5展开式的第r +1项T r +1=C r 5(x 2-x )r,r =0,1,2,3,4,5,T r +1展开式的第k +1项为C r 5C k r ·(x 2)r -k (-x )k =C r 5C k r (-1)k ·x 2r -k,r =0,1,2,3,4,5,k =0,1,…,r ,当2r -k =3,即⎩⎪⎨⎪⎧ r =2,k =1或⎩⎪⎨⎪⎧r =3,k =3时是含x 3的项,所以含x 3项的系数为C 25C 12(-1)+C 35C 33(-1)3=-20-10=-30.故选A .9.有大小、形状完全相同的3个红色小球和5个白色小球,排成一排,共有56种不同的排列方法?[解析] 从8个位置中选3个放红球,有C 38=56种不同方法. 10.(2018·昆明二模)(x -2)6的展开式中x 2的系数为240.[解析] (x -2)6的展开式的通项公式为T r +1=C r 6·(-2)r ·x 6-r ,令6-r =2,求得r =4,可得(x -2)6的展开式中x 2的系数为C 46·(-2)4=240. 11.设a ,b ,c ∈{1,2,3,4,5,6},若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有27个.[解析] 由题意知以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形, (1)先考虑等边三角形情况则a =b =c =1,2,3,4,5,6,此时有6个.(2)再考虑等腰三角形情况,若a,b是腰,则a=b,当a=b=1时,c<a+b=2,则c=1,与等边三角形情况重复;当a=b=2时,c<4,则c=1,3(c=2的情况等边三角形已经讨论了),此时有2个;当a=b=3时,c<6,则c=1,2,4,5,此时有4个;当a=b=4时,c<8,则c=1,2,3,5,6,此时有5个;当a=b=5时,c<10,有c=1,2,3,4,6,此时有5个;当a=b=6时,c<12,有c=1,2,3,4,5,此时有5个;由分类加法计数原理知有2+4+5+5+5+6=27个.12.设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法?(3)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?[解析](1)利用分类加法计数原理:5+2+7=14(种)不同的选法.(2)国画有5种不同选法,油画有2种不同的选法,水彩画有7种不同的选法,利用分步乘法计数原理得到5×2×7=70(种)不同的选法.(3)选法分三类,分别为选国画与油画、油画与水彩画、国画与水彩画,由分类加法计数原理和分步乘法计数原理知共有5×2+2×7+5×7=59(种)不同的选法.B组1.安排6名歌手演出顺序时,要求歌手乙、丙均排在歌手甲的前面或者后面,则不同排法的种数是( D )A.180 B.240C.360 D.480[解析]将6个位置依次编号为1、2、3、…、6号,当甲排在1号或6号位时,不同排法种数为2A55种;当甲排在2号或5号位时,不同排法种数为2A13·A44种;当甲排在3号或4号位置时,不同排法种数有2(A22A33+A23A33)种,∴共有不同排法种数,2A55+2A13A44+2(A22A33+A23A33)=480种,故选D.2.如图,M、N、P、Q为海上四个小岛,现要建造三座桥,将这四个小岛连接起来,则不同的建桥方法有( C )A .8种B .12种C .16种D .20种[解析] 把四个小岛看作四个点,可以两两之间连成6条线段,任选3条,共有C 36种情形,但有4种情形不满足题意,∴不同的建桥方法有C 36-4=16种,故选C .3.设(1+x +x 2)n =a 0+a 1x +…+a 2n x 2n ,则a 2+a 4+…+a 2n 的值为( B ) A .3n +12B .3n -12C .3n -2D .3n[解析] (赋值法)令x =1,得a 0+a 1+a 2+…+a 2n -1+a 2n =3n .① 再令x =-1得,a 0-a 1+a 2+…-a 2n -1+a 2n =1.② 令x =0得a 0=1.则①+②得2(a 0+a 2+…+a 2n )=3n +1, ∴a 0+a 2+…+a 2n =3n +12,∴a 2+a 4+…+a 2n =3n +12-a 0=3n +12-1=3n -12.4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( B ) A .144个 B .120个 C .96个D .72个 [解析] 据题意,万位上只能排4,5.若万位上排4,则有2×A 34个;若万位上排5,则有3×A 34个.所以共有2×A 34+3×A 34=5×24=120(个).故选B .5.若(x 2+12x)n的展开式中前三项的系数成等差数列,则展开式中一次项的系数为( B )A .32B .74C .6D .7[解析] 因为(x 2+12x )n 的展开式通项为T r +1=C r n (x 2)n -r (12x )r =(12)r C r n x 2n -3r ,其系数为(12)r C r n .故展开式中前三项的系数为C 0n ,12C 1n ,14C 2n ,由已知可得这三个数成等差数列,所以C 0n +14C 2n =2×12C 1n ,即n 2-9n +8=0,解得n =8或n =1(舍去). 令2n -3r =16-3r =1,可得r =5,所以一次项的系数为(12)5C 58=74. 6.(2018·太原模拟)用5,6,7,8,9组成没有重复数字的五位数,其中有且仅有一个奇数夹在两个偶数之间的五位数的个数为( A )A .36B .48C .72D .120[解析] 第一步,将3个奇数全排列有A 33种方法;第二步,将2个偶数插入,使它们之间只有一个奇数,共3种方法;第三步,将2个偶数全排列有A 22种方法,所以,所有的方法数是3A 33A 22=36.7.(2018·漳州二模)已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( D )A .-20B .0C .1D .20[解析] 令x =1得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.8.(2018·江西宜春二模)若(x 3+1x )n的展开式中含有常数项,且n 的最小值为a ,则⎠⎛-aa a 2-x 2d x =( C ) A .0 B .6863C .49π2D .49π[解析] 由展开式的通项,由展开式中含有常数项,得3n -72r =0有整数解,故n 的最小值为7,⎠⎛-7772-x 2d x =49π2.9.将编号1,2,3,4的四个小球放入3个不同的盒子中,每个盒子里至少放1个,则恰有1个盒子放有2个连号小球的所有不同放法有18种.(用数字作答)[解析] 先把4个小球分为(2,1,1)一组,其中2个连号小球的种类有(1,2,),(2,3),(3,4)为一组,分组后分配到三个不同的盒子里,共有C 13A 33=18种.10.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为472.[解析] 由题意,不考虑特殊情况,共有C 316种取法,其中每一种卡片各取三张,有4C 34种取法,两种红色卡片,共有C 24C 112种取法,故所求的取法共有C 316-4C 34-C 24C 112=560-16-72=472.11.若对于任意实数x ,有x 5=a 0+a 1(x -2)+…+a 5(x -2)5,则a 1+a 3+a 5-a 0=89. [解析] 令x =3得a 0+a 1+…+a 5=35,令x =1得a 0-a 1+…-a 5=1,两式相减得a 1+a 3+a 5=35-12=121,令x =2得a 0=25=32,故a 1+a 3+a 5-a 0=121-32=89.12.如果(3x -13x 2)n 的展开式中各项系数之和为128,则展开式中1x3的系数是21.[解析] (3x -13x 2)n 的展开式的各项系数之和为(3×1-1312)n =2n =128,所以n =7,所以(3x -13x 2)n =(3x -13x 2)7,其展开式的通项为T r +1=C r 7(3x )7-r(-13x 2)r =C r 7·37-r ·x 7-r ·(-x -23)r =(-1)r C r 737-rx 7-53r ,由7-53r =-3,得r =6,所以1x3的系数是C r 7·(-1)6·3=21. 13.某医科大学的学生中,有男生12名、女生8名在某市人民医院实习,现从中选派5名学生参加青年志愿者医疗队.(1)某男生甲与某女生乙必须参加,共有多少种不同的选法? (2)甲、乙均不能参加,有多少种选法? (3)甲、乙二人至少有一人参加,有多少种选法? (4)医疗队中男生和女生都至少有一名,有多少种选法? [解析] (1)只需从其他18人中选3人即可,共有C 318=816(种). (2)只需从其他18人中选5人即可,共有C 518=8568(种).(3)分两类:甲、乙中只有一人参加,则有C 12·C 418种选法;甲、乙两人都参加,则有C 318种选法.故共有C 12·C 418+C 318=6936(种).(4)方法一(直接法):男生和女生都至少有一名的选法可分为四类:1男4女;2男3女;3男2女;4男1女,所以共有C112·C48+C212·C38+C312·C28+C412·C18=14656(种).方法二(间接法):由总数中减去5名都是男生和5名都是女生的选法种数,得C520-(C58+C512)=14656(种).14.设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.(1)求证:f(7)具有性质P.(2)若存在n≤2016,使f(n)具有性质P,求n的最大值.[解析](1)f(7)的展开式中第二、三、四项的二项式系数分别为C17=7,C27=21,C37=35,因为C17+C37=2C27,即C17,C27,C37成等差数列,所以f(7)具有性质P.(2)设f(n)具有性质P,则存在k∈N*,1≤k≤n-1,使C k-1n ,C k n,C k+1n成等差数列,所以C k-1 n +C k+1n=2C k n,整理得:4k2-4nk+(n2-n-2)=0,即(2k-n)2=n+2,所以n+2为完全平方数,又n≤2016,由于442<2016+2<452,所以n的最大值为442-2=1934,此时k=989或945.。
第1讲计数原理二项式定理
第1讲计数原理二项式定理计数原理是组合数学中的一个重要分支,它研究的是对一些数量进行计数的方法和原理。
而二项式定理是计数原理的一个经典定理,它在数学和实际生活中都有着广泛的应用。
二项式定理是由法国数学家帕斯卡在17世纪提出的,他是计数原理的奠基人之一、二项式定理的具体内容是指出了如何求一个二项式的n次方。
一个n次方的二项式可以表示为(a+b)^n,其中a和b是任意常数。
二项式定理告诉我们可以通过展开这个二项式,得到它的展开式。
(a+b)^n的展开式的一般形式是:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,n)b^n其中C(n,0),C(n,1),C(n,2),...,C(n,n)被称为组合数,它表示从n 个元素中取k个元素的组合数。
组合数的计算可以借助计数原理中的排列组合问题来解决。
组合数C(n,k)的计算公式为:C(n,k)=n!/(k!(n-k)!)其中n!表示n的阶乘,k!表示k的阶乘。
阶乘是一个非常重要的数学概念,它表示从1到一些正整数的连乘积。
阶乘的计算可以通过递归或迭代的方式进行。
二项式定理通过组合数的计算,将一个n次方的二项式展开为多个项的和,其中每个项都包含了a和b的不同次数的幂。
这个展开式的应用非常广泛,几乎涉及到了所有领域的数学问题。
在代数中,二项式定理可以求解多项式的展开式,简化复杂表达式的计算。
在概率论中,二项式定理可以用来计算事件的可能性,求解二项分布等概率分布。
在组合数学中,二项式定理可以用来计算组合数,求解排列组合问题。
总之,二项式定理是计数原理中的一个重要定理,它通过组合数的计算,将一个n次方的二项式展开为多个项的和。
二项式定理的应用涉及到了代数、概率论、组合数学等多个领域。
深入理解和掌握二项式定理,对于推导和解决各种数学问题都具有重要意义。
计数原理与二项式定理
3.(2018·全国卷Ⅰ)从 2 位女生,4 位男生中选 3 人参加 科技比赛,且至少有 1 位女生入选,则不同的选法共有 ___1_6____种.(用数字作答)
解析 解法一:3 人中至少 1 位女生的情况有 1 女 2 男,2 女 1 男两种情况,则不同的选择方法有 C12C24+C22C14= 16 种.
3.(2015·全国卷Ⅱ)(a+x)(1+x)4 的展开式中 x 的奇数次 幂项的系数之和为 32,则 a=___3_____.
解析 解法一:由已知得(1+x)4=1+4x+6x2+4x3+ x4,故(a+x)(1+x)4 的展开式中 x 的奇数次幂项分别为 4ax,4ax3,x,6x3,x5,其系数之和为 4a+4a+1+6+1=32, 解得 a=3.
解法二:3 人中至少 1 位女生的情况可由随机选取 3 人减去全是男生的情况求解,故本题不同的选择方法共有 C36-C34=16 种.
【误区警示】 排列组合的实际应用题中限制条件较多,如何处理这些 限制条件是解决问题的关键. (1)一般来说要遵循排列组合的基本策略:先组后排, 特殊优先.如第 3 题,经常错解为先挑 1 位女生参赛 C12, 再从其余的 5 人中选出两人参加,由乘法原理有 C12C25=20 种.此种解法的错因为出现了重复现象.因此解决此种问题 应将选择的男女生情况进行分类或者是排除不满足条件的 方法进行求解.
计数原理与二项式定理
[考情分析] 本部分内容在高考中常以选择、填空题的 形式出现.对计数原理的考查主要是实际应用问题;对二项 式定理的考查主要是定理的运用或求二项式系数、常数项、 二项式指定项等.
热点题型分析
热点1 计数问题 【方法结论】 求解排列、组合问题的思路:排列分清,加乘明确;有 序排列,无序组合;分类相加,分步相乘.解答通常的途径 有: (1)以元素为主体,即选满足特殊元素的要求,再考虑其 余元素;
计数原理-二项式定理
二项式定理知识点1•二项式定理:(a b)n C :a n C ;a n 1b LC :a n r b r L C ;b n (n N ),2. 基本概念:① 二项式展开式:右边的多项式叫做(a b)n 的二项展开式。
② 二项式系数:展开式中各项的系数 C n r (r 0,1,2, ,n). ③ 项数:共(r 1)项,是关于a 与b 的齐次多项式④ 通项:展开式中的第 r 1项C :a n r b r 叫做二项式展开式的通项。
用 T r 1 C ;a n r b r 表示。
3. 注意关键点:①项数:展开式中总共有 (n 1)项。
② 顺序:注意正确选择 a ,b ,其顺序不能更改。
(a b)n 与(b a)n 是不同的。
③ 指数:a 的指数从n 逐项减到0,是降幕排列。
b 的指数从0逐项减到n ,是升幕排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数, 二项式系数依次是4. 常用的结论:④ 奇数项的系数和与偶数项的系数和:b 的系数 (包括二项式系数)。
C n , C n , C n ,, C n ,, C n-项的系数是a与令 a 1,b x, (1 x)n C 0 C :x C :x 2 L C ;x r L C ;x n (n N 令 a 1,b x, (1 x)n C 0 C ;x CnX 2 Lc ;x rLn n n(1) C nX (n5. 性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 kk 1• • • C n②二项式系数和:令 a b 1,则二项式系数的和为Cn c nCn c n LC : 2n,1变形式c n cL C ; LC : 2n③奇数项的二项式系数和 =偶数项的二项式系数和: 在二项式定理中,令 a 1,b 1,则 C° C 1 Cn C 31)n C ; (1 1)n从而得到:C0 CC :Cn rc n c ; L2r 1C n大值。
第一讲 计数原理、二项式定理
专题七概率与统计、推理与证明、算法初步、框图、复数第一讲计数原理、二项式定理1.分类加法计数原理.完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法;那么完成这件事共有N=m1+m2+m3+…+m n 种不同的方法.2.分步乘法计数原理.完成一件事需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N= m1×m2× m3× …×m n种不同的方法.1.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(阶乘形式).2.组合数公式:C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(阶乘形式).1.二项式定理.(1)定理:(a+b)n C0n a n+C1n a n-1b1+…+C k n a n-k b k+…+C n nb n(n∈N*,k=0,1,…,n).(2)通项与二项式系数.二项展开式的通项为T k+1=C k n a n-k b k,其中C k n(k=0,1,2,…,n)叫做二项式系数.2.二项式系数的性质.(1)对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C0n=C n n,C1n=C n-1n ,C2n=C n-2n,…,C r n=C n-rn.判断下面结论是否正确(请在括号中打“√”或“×”).(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)C k n a n-k b k是二项展开式的第k项.(×)(4)二项展开式中,系数最大的项为中间一项或中间两项.(×)(5)(a+b)n的展开式中某一项的二项式系数与a,b无关.(√)1.(2014·全国大纲卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(C) A.60种B.70种C.75种D.150种解析:由已知可得不同的选法共有C26C15=75.故选C.2.对于小于55的自然数n,积(55-n)(56-n)·…·(68-n)·(69-n)等于(B)A.A55-n69-nB.A1569-n C.A1555-n D.A1469-n3.(2015·广东卷)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1_560条毕业留言.(用数字作答)解析:A240=40×39=1 560.4.(2015·广东卷)在(x-1)4的展开式中,x的系数为6.解析:T r+1=C r4·(x)4-r·(-1)r.令r=2,则C24(-1)2=6.一、选择题1.把6名学生分配到3个校门值日,其中前门3人,侧门2人,后门1人,则不同的分配方案共有(A)A.C36C23种B.3C36C23种C.C36C23A33种 D.C36C23 A33种解析:分三步完成分配方案:第一步,从6人中选3人到前门值日,有C36种方法;第二步,从剩下的3人中选2人到侧门值日,有C23种方法;第三步,把剩下的1人派到后门值日,有1种方法.由乘法计数原理,不同的分配方案有C36C23种.2.(2014·辽宁卷)6把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为(D)A.144 B.120 C.72 D .24解析:将6把椅子依次编号为1,2,3,4,5,6,故任何两人不相邻的坐法,可安排:“1,3,5”;“1,3,6”;“1,4,6”;“2,4,6”号位置坐人,故总数由4A33=24.故选D.3.(2015·陕西卷)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=(C)A.4 B.5 C.6 D.7解析:(x+1)n=(1+x)n,(1+x)n的通项为T r+1=C r n x r,令r=2,则C2n=15,即n(n-1)=30.又n>0,得n=6.4.在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是(A)A.-15 B.85C.-120 D.274解析:从四个括号中取x,剩下的括号里取常数项,得到x4的系数,故x4的系数是(-1)+(-2)+(-3)+(-4)+(-5)=-15.5.若多项式x2+x10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a9等于(D)A.9 B.10C.-9 D.-10解析:根据等式左边x10的系数为1,易知a10=1,等式右边x9的系数为a9+a10C110=10+a9,等式左边x9的系数为0,故10+a9=0,所以a9=-10.6.设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有(B) A.50种B.49种C.48种D.47种解析:对A中最大的数进行分类讨论:①若集合A中最大的数为1,则B的选择方法有C14+C24+C34+C44=15种;②若集合A中最大数为2,则B的选择方法有C13+C23+C33=7种;而A有2种选法,故共有14种;③若集合A中最大数为3,则B的选择方法有C12+C22=3种,而A有4种选法,故共有12种;④若集合A中最大数为4,则B的选择方法有1种,而A有8种选法,如下:4;1,4;2,4;3,4;1,2,4;1,3,4;2,3,4;1,2,3,4.故共有8种.所以一共有15+14+12+8=49种不同的选法.二、填空题7.(2015·新课标Ⅱ卷)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.解析:设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,得(a+1)×24=a0+a1+a2+a3+a4+a5.①令x=-1,得0=a0-a1+a2-a3+a4-a5.②①-②,得16(a+1)=2(a1+a3+a5)=2×32,∴a=3.8.(2014·浙江卷)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有60种(用数字作答).三、解答题9.有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.(1)共有几种放法?(2)恰有一个盒不放球,共有几种放法?(3)恰有一个盒放两个球,共有几种放法?(4)恰有两个盒不放球,共有几种放法?解析:(1)一个球一个球地放到盒子里,每个球都可有4种独立的放法.由分步计数原理,放法共有44=256种.(2)为保证“恰有一个盒子不放球”,先从4个盒子中任意拿出去1个;将4个球分为2,1,1三组,有C 24种分法;然后再从三个盒子中选一个放两个球,其余两个各放一个球,两个盒子全排列即可.由分步计数原理,共有C 14·C 24·C 13·A 22=144种放法.(3)“恰有一个盒内有2个球”,即另外的三个盒子共放2个球,每个盒子至多放1个球,即另外三个盒子中恰有一个空盒,因此,“恰有一个盒内有2个球”与“恰有一个盒子不放球”是一回事,故也有144种放法.(4)先从四个盒子中任意拿走两个,问题转化为:“4个球,两个盒子,每个盒子必放球,有几种放法?”从放球数目看,可分为3,1和2,2两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有C 34C 12种放法;第二类:有C 24种放法.因此共有C 34C 12+C 24=14种.由分步计数原理得“恰有两个盒内不放球”的放法有:14C 24=84种.10.已知(a +1)n展开式中的各项系数之和等于⎝⎛⎭⎪⎫165x 2+1x 5展开式的常数项,而(a +1)n 展开式中的二项式系数最大的项等于54,求a 的值.解析:⎝ ⎛⎭⎪⎫165x 2+1x 5的展开式的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫165x 25-r ·⎝ ⎛⎭⎪⎫1x r =⎝ ⎛⎭⎪⎫1655-r C r5x 20-5r 2,令20-5r 2=0,得r =4,∴常数项为T 5=C 45·165=16.又∵(a+1)n的展开式的各项系数之和等于2n.∴2n=16,∴n=4.由二项式系数的性质知,(a+1)4展开式中二项式系数最大的项是中间项即第3项,T3=C24a2=54,解得a=±3.。
计数原理及二项式定理概念公式总结
计数原理及二项式定理概念公式总结计数原理和二项式定理是组合数学中的基本概念之一,被广泛应用于概率统计、离散数学、组合数学等领域。
下面将对这两个概念进行详细的解释和总结。
一、计数原理计数原理是组合数学中的一种基本原理,用于求解离散数学中的计数问题。
计数原理包括基本计数原理、乘法原理、加法原理和排列组合原理。
1.基本计数原理:基本计数原理是运用数学归纳法来解决计数问题的基本方法。
它的核心思想是将一个计数问题分解为若干个互相独立的子问题,再对子问题求解,最后将子问题的解累加得到原问题的解。
2.乘法原理:乘法原理是计数原理的一种特殊形式,用于解决多阶段决策类计数问题。
乘法原理的关键是将决策问题分解为多个阶段的决策子问题,然后通过求解每个子问题在相应阶段的可选项个数,再将各阶段的可选项个数相乘得到问题的解。
3.加法原理:加法原理是计数原理的另一种特殊形式,适用于解决分情况计数问题。
加法原理的核心思想是将计数问题分解为若干个情况,然后分别计算每种情况下的计数结果,最后将各种情况下计数结果相加得到问题的解。
4.排列组合原理:排列组合原理是计数原理的核心概念,描述了从给定元素集合中选取若干元素进行排列或组合的方法。
排列组合分为无重复元素的排列组合和有重复元素的排列组合两种情况。
-无重复元素的排列组合:若从n个不同元素中选取r个元素进行排列,称为排列数,用符号P(n,r)表示,排列数的计算公式为P(n,r)=n*(n-1)*...*(n-r+1)=n!/(n-r)。
若从n个不同元素中选取r个元素进行组合,称为组合数,用符号C(n,r)表示,组合数的计算公式为C(n,r)=P(n,r)/r!=n!/(r!*(n-r)。
-有重复元素的排列组合:若从n个相同元素中选取r个元素进行排列,称为重复排列,用符号P(n;r₁,r₂,...,r_k)表示,重复排列的计算公式为P(n;r₁,r₂,...,r_k)=n!/(r₁!*r₂!*...*r_k!),其中r₁,r₂,...,r_k分别表示重复元素的个数。
2019-2020年全国通用2017年高考数学大二轮专题复习第二编专题整合突破专题七概率与统计第一讲计数原理二项
(2)满足 a,b∈{-1,0,1,2},且关于 x 的方程 ax2+2x+b
=0 有实数解的有序数对(a,b)的个数为( )
A.14
B.13
C.12
D.10
[解析] 方程 ax2+2x+b=0 有实数解的情况应分类讨
论.当 a=0 时,关于 x 的方程为 2x+b=0,此时有序数对
(0,-1),(0,0),(0,1),(0,2)均满足要求;当 a≠0 时,Δ=
2.[2015·天津五区县一模] 如图,用四种不同的颜色给 图中的 A,B,C,D,E,F 六个点涂色,要求每个点涂一 种颜色,且图中每条线段的两个端点涂不同颜色,则不同的 涂色方法有( )
A.288 种 C.240 种
B.264 种 D.168 种
解析 解法一:先涂 A,D,E 三个点,共有 4×3×2 =24(种)涂法,然后再按 B,C,F 的顺序涂色,分为两类:
4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),
(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-
1),(2,0).综上,满足要求的有序数对共有 4+9=13(个),
故选 B.
应用两个计数原理解题的方法 (1)在应用分类计数原理和分步计数原理时,一般先分类 再分步,每一步当中又可能用到分类计数原理. (2)对于复杂的两个原理综合使用的问题,可恰当列出示 意图或表格,使问题形象化、直观化.
高中数学第一章计数原理1.3.1二项式定理学案含解析
1.3.1 二项式定理问题1:我们在初中学习了(a+b)2=a2+2ab+b2,试用多项式的乘法推导(a+b)3,(a +b)4的展开式.提示:(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4.问题2:上述两个等式的右侧有何特点?提示:(a+b)3的展开式有4项,每项的次数是3;(a+b)4的展开式有5项,每一项的次数为4.问题3:你能用组合的观点说明(a+b)4是如何展开的吗?提示:(a+b)4=(a+b)(a+b)(a+b)(a+b).由多项式的乘法法则知,从每个(a+b)中选a或选b相乘即得展开式中的一项.若都选a,则得C04a4b0;若有一个选b,其余三个选a,则得C14a3b;若有两个选b,其余两个选a,则得C24a2b2;若都选b,则得C44a0b4.问题4:能用类比方法写出(a+b)n(n∈N*)的展开式吗?提示:能,(a+b)n=C0n a n+C1n a n-1b+…+C n n b n.二项式定理及其相关概念1.二项展开式的特点(1)展开式共有n+1项.(2)各项的次数和都等于二项式的幂指数n.(3)字母a的幂指数按降幂排列,从第一项开始,次数由n逐项减1直到为0,字母b 的幂指数按升幂排列,从第一项开始,次数由0逐项加1直到为n.2.二项展开式的通项公式的特点(1)它表示(a +b )n 的展开式的第k +1项,该项的二项式系数为C kn . (2)字母b 的次数与二项式系数的组合数的上标相同. (3)a 和b 的次数之和为n .(1)求(x +(2)化简:C 0n (x +1)n -C 1n (x +1)n -1+C 2n (x +1)n -2-…+(-1)k C k n (x +1)n -k+…+(-1)n C nn .(1)(x +2y )4=C 04x 4+C 14x 3(2y )+C 24x 2(2y )2+C 34x ·(2y )3+C 44(2y )4=x 4+8x 3y +24x 2y 2+32xy 3+16y 4.(2)原式=C 0n (x +1)n +C 1n (x +1)n -1(-1)+C 2n (x +1)n -2(-1)2+…+C k n (x +1)n -k(-1)k+…+C nn (-1)n=n=x n.1.(a +b )n的二项展开式有n +1项,是和的形式,各项的幂指数规律是:①各项的次数等于n ;②字母a 按降幂排列,从第一项起,次数由n 逐项减1直到0;字母b 按升幂排列,从第一项起,次数由0逐项加1直到n .2.逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.1.求⎝ ⎛⎭⎪⎫2x -32x 24的展开式. 解:法一:⎝⎛⎭⎪⎫2x -32x 24=C 04(2x )4+C 14(2x )3·⎝ ⎛⎭⎪⎫-32x 2+C 24(2x )2⎝ ⎛⎭⎪⎫-32x 22+C 34(2x )⎝ ⎛⎭⎪⎫-32x 23+C 44⎝ ⎛⎭⎪⎫-32x 24=16x 4-48x +54x 2-27x 5+8116x 8.法二:⎝ ⎛⎭⎪⎫2x -32x 24=⎝ ⎛⎭⎪⎫4x 3-32x 24=116x 8(4x 3-3)4=116x 8=16x 4-48x +54x 2-27x 5+8116x 8. 2.化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).解:原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-C 55=5-1=x 5-1.(1)在⎝⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项共有( )A .4项B .5项C .6项D .7项(2)(浙江高考)设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________. (1)T k +1=C k20(32x )20-k⎝⎛⎭⎪⎫-12k=⎝ ⎛⎭⎪⎫-22k ·(32)20-k C k 20·x 20-k. ∵系数为有理数, ∴⎝ ⎛⎭⎪⎫-22k与2203k -均为有理数,∴k 能被2整除,且20-k 能被3整除. 故k 为偶数,20-k 是3的倍数,0≤k ≤20, ∴k =2,8,14,20.(2)T k +1=C k5(x )5-k⎝⎛⎭⎪⎪⎫-13x k=C k 5(-1)kx5526k-,令52-5k 6=0,得k =3,所以A =-C 35=-10. (1)A (2)-101.在通项公式T k +1=C k n an -k b k(n ∈N *,k =0,1,2,3,…,n )中含有a ,b ,n ,k ,T k +1五个量,只要知道其中4个量,便可求出第5个量.在运用二项式定理解决展开式中的项或项的系数的一些问题时,常涉及这5个量的求解问题.这通常是化归为方程的问题来解决.2.对于常数项,隐含条件是字母的指数为0(即0次项);而对于有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好是整数的项.已知在⎝⎛⎭⎪⎪⎫3x -33x n 的展开式中,第6项为常数项.(1)求n ;(2)求展开式中所有的有理项.解:通项公式为T k +1=C k n x 3n k - (-3)kx3k -=C k n(-3)kx3n k -.(1)∵第6项为常数项, ∴k =5时,有n -2k3=0,即n =10.(2)根据通项公式,由题意得⎩⎨⎧10-2k3∈Z ,k ≤10,k ∈Z.令10-2k 3=r (r ∈Z),则10-2k =3r ,即k =5-32r .∵k ∈Z ,∴r 应为偶数.于是r 可取2,0,-2,即k 可取2,5,8.故第3项、第6项与第9项为有理项,它们分别为 C 210(-3)2x 2,C 510(-3)5,C 810(-3)8x -2.在⎝⎛⎭⎪⎪⎫2x 2-13x 8的展开式中,求: (1)第5项的二项式系数及第5项的系数; (2)倒数第3项.法一:利用二项式的展开式解决.(1)⎝ ⎛⎭⎪⎪⎫2x 2-13x 8=(2x 2)8-C 18(2x 2)7·13x +C 28(2x 2)6·⎝ ⎛⎭⎪⎪⎫13x 2-C 38(2x 2)5·⎝ ⎛⎭⎪⎪⎫13x 3+C 48(2x 2)4·⎝ ⎛⎭⎪⎪⎫13x 4-C 58(2x 2)3·⎝ ⎛⎭⎪⎪⎫13x 5+C 68(2x 2)2·⎝ ⎛⎭⎪⎪⎫13x 6-C 78(2x 2)·⎝ ⎛⎭⎪⎪⎫13x 7+C 88⎝ ⎛⎭⎪⎪⎫13x 8, 则第5项的二项式系数为C 48=70,第5项的系数为C 48·24=1 120.(2)由(1)中⎝ ⎛⎭⎪⎪⎫2x 2-13x 8的展开式可知倒数第3项为C 68·(2x 2)2·⎝ ⎛⎭⎪⎪⎫13x 6=112x 2. 法二:利用二项展开式的通项公式.(1)T 5=C 48·(2x 2)8-4·⎝⎛⎭⎪⎪⎫-13x 4=C 48·24·x 203,则第5项的二项式系数是C 48=70,第5项的系数是C 48·24=1 120.(2)展开式中的倒数第3项即为第7项,T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎪⎫-13x 6=112x 2.1.本例第(2)问也可转化为求另一二项展开式的某些项,即在⎝ ⎛⎭⎪⎪⎫2x 2-13x 8展开式中的倒数第3项就是⎝ ⎛⎭⎪⎪⎫13x -2x 28展开式中第3项,T 3=C 28·⎝ ⎛⎭⎪⎪⎫13x 8-2·(-2x 2)2=112x 2.2.要注意区分二项式系数与指定某一项的系数的差异,前者只与二项式的指数及项数有关,与二项式无关,它是一个组合数C kn ;后者与二项式、二项式的指数及项的字母和系数均有关.1.(全国乙卷)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案) 解析:(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r (x )r =25-r ·C r5·x 5-r 2. 令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.答案:102.(山东高考)若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________. 解析:T r +1=C r5·(ax 2)5-r⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-rx 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2.答案:-22.二项式定理破解三项式问题求⎝ ⎛⎭⎪⎫x 2+1x +25的展开式的常数项.法一:由二项式定理得⎝ ⎛⎭⎪⎫x 2+1x +25=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 2+1x +25 =C 05·⎝ ⎛⎭⎪⎫x 2+1x 5+C 15·⎝ ⎛⎭⎪⎫x 2+1x 4·2+C 25·⎝ ⎛⎭⎪⎫x 2+1x 3·(2)2+C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3+C 45·⎝ ⎛⎭⎪⎫x 2+1x ·(2)4+C 55·(2)5.其中为常数项的有:C 15⎝ ⎛⎭⎪⎫x 2+1x 4·2中的第3项:C 15C 24·⎝ ⎛⎭⎪⎫122·2; C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3中的第2项:C 35C 12·12·(2)3;展开式的最后一项C 55·(2)5.综上可知,常数项为C 15C 24·⎝ ⎛⎭⎪⎫122·2+C 35C 12·12·(2)3+C 55·(2)5=6322.法二:原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x5·5=132x5·(x +2)10. 求原式中展开式的常数项,转化为求(x +2)10的展开式中含x 5的项的系数,即C 510·(2)5.所以所求的常数项为C 5102532=6322.解决三项式问题有两种方法:方法一,反复利用二项式定理,先把三项式中的某两项视为一项,用二项式定理展开,然后再利用二项展开式求解.方法二,转化为二项式.转化为二项式常见的有两种形式:三项式恰好是二项式的平方,则可转化为二项式定理求解,三项式可分解因式,则转化为两个二项式的积的形式.利用二项式定理求特定项,注意下列题型的变化.⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是( ) A .1 B .2 C .3D .12解析:选C 根据题意,所给式子的展开式中含x 的项有(1-x )4展开式中的常数项乘⎝ ⎛⎭⎪⎫2x +x 中的x 以及(1-x )4展开式中的含x 2的项乘⎝ ⎛⎭⎪⎫2x +x 中的2x 两部分,所以所求系数为1×2+1=3,故选C.在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是( ) A .-15 B .85 C .-120D .274解析:选A 根据分类加法、分步乘法计数原理,得-5x 4-4x 4-3x 4-2x 4-x 4=-15x 4, 所以原式的展开式中,含x 4的项的系数为-15.在(1+x )+(1+x )2+…+(1+x )6的展开式中,x 2的系数是________.(用数字作答) 解析:法一(转化为二项式定理解决):(1+x )2,(1+x )3,…,(1+x )6中x 2的系数分别为C 22,C 23,…,C 26,所以原式的展开式中,x 2的系数为C 22+C 23+…+C 26=C 33+C 23+…+C 26=C 34+C 24+…+C 26=…=C 37=35.法二(利用数列求和方法解决):由题意知1+x ≠0,原式=+x7-+xx,故只需求(1+x )7中x 3的系数, 即(1+x )7的展开式中第4项的系数, 即C 37=35. 答案:351.在(x -3)10的展开式中,含x 6的项的系数是( ) A .-27C 610 B .27C 410 C .-9C 610D .9C 410解析:选D 含x 6的项是T 5=C 410x 6(-3)4=9C 410x 6. 2.(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112D .168解析:选D (1+x )8的展开式中x 2的系数为C 28,(1+y )4的展开式中y 2的系数为C 24,所以x 2y 2的系数为C 28C 24=168.3.在⎝⎛⎭⎪⎫2x 2-1x 6的展开式中,中间项是________.解析:由n =6知中间一项是第4项,因T 4=C 36(2x 2)3·⎝ ⎛⎭⎪⎫-1x 3=C 36·(-1)3·23·x 3,所以T 4=-160x 3.答案:-160x 34.⎝⎛⎭⎪⎫x 2-12x 9的展开式中,第4项的二项式系数是________,第4项的系数是________.解析:T k +1=C k9·(x 2)9-k·⎝ ⎛⎭⎪⎫-12x k =⎝ ⎛⎭⎪⎫-12k ·C k 9·x 18-3k ,当k =3时,T 4=⎝ ⎛⎭⎪⎫-123·C 39·x 9=-212x 9,所以第4项的二项式系数为C 39=84,项的系数为-212.答案:84 -2125.求⎝⎛⎭⎪⎫x 3+23x 25的展开式的第3项的系数和常数项.解:T 3=C 25(x 3)3⎝⎛⎭⎪⎫23x 22=C 25·49x 5,所以第3项的系数为C 25·49=409.通项T k +1=C k 5(x 3)5-k⎝ ⎛⎭⎪⎫23x 2k =⎝ ⎛⎭⎪⎫23k ·C k 5x 15-5k ,令15-5k =0得k =3,所以常数项为T 4=C 35(x 3)2·⎝⎛⎭⎪⎫23x 23=8027.一、选择题1.二项式(a +b )2n的展开式的项数是( ) A .2n B .2n +1 C .2n -1D .2(n +1)解析:选B 根据二项式定理可知,展开式共有2n +1项.2.化简多项式(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1的结果是( )A .(2x +2)5B .2x 5C .(2x -1)5D .32x 5解析:选D 原式=5=(2x )5=32x 5.3.在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( ) A .3项 B .4项 C .5项D .6项解析:选C T k +1=C k24·x 24-k 2·x -k 3=C k 24·x 12-56k ,则k =0,6,12,18,24时,x 的幂指数为整数.4.在⎝⎛⎭⎪⎫2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( )A .3B .5C .8D .10解析:选B T k +1=C kn (2x 3)n -k⎝ ⎛⎭⎪⎫1x 2k =2n -k ·C k n x 3n -5k .令3n -5k =0,∵0≤k ≤n , ∴n 的最小值为5.5.对于二项式⎝ ⎛⎭⎪⎫1x+x 3n (n ∈N *),有以下四种判断:①存在n ∈N *,展开式中有常数项; ②对任意n ∈N *,展开式中没有常数项; ③对任意n ∈N *,展开式中没有x 的一次项; ④存在n ∈N *,展开式中有x 的一次项. 其中正确的是( ) A .①与③ B .②与③ C .②与④D .①与④解析:选D 二项式⎝ ⎛⎭⎪⎫1x+x 3n 的展开式的通项公式为T k +1=C k n x 4k -n,由通项公式可知,当n =4k (k ∈N *)和n =4k -1(k ∈N *)时,展开式中分别存在常数项和一次项.二、填空题6.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是________. 解析:由{ T 2>T 1,T 2>T 3,得{ C 162x >1,162x >C 26x2.解得112<x <15.答案:⎝⎛⎭⎪⎫112,157.(1+x +x 2)(1-x )10的展开式中含x 4的项的系数为________.解析:因为(1+x +x 2)(1-x )10=(1+x +x 2)(1-x )·(1-x )9=(1-x 3)(1-x )9, 所以展开式中含x 4的项的系数为1×C 49(-1)4+(-1)×C 19(-1)=135.答案:1358.230+3除以7的余数是________.解析:230+3=(23)10+3=810+3=(7+1)10+3=C 010·710+C 110·79+…+C 910·7+C 1010+3=7×(C 010·79+C 110·78+…+C 910)+4,所以230+3除以7的余数为4.答案:4 三、解答题9.已知在⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中,第5项的系数与第3项的系数之比为56∶3,求展开式中的常数项.解:T 5=C 4n (x )n -424x -8=16C 4n xn -202,T 3=C 2n (x )n -222x -4=4C 2n x n -102.由题意知,16C 4n 4C 2n =563,解得n =10.T k +1=C k 10(x )10-k 2k x -2k =2k C k10x 10-5k2, 令5-5k2=0,解得k =2.∴展开式中的常数项为C 21022=180.10.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求:(1)第3项的二项式系数及系数; (2)含x 2的项.解:(1)第3项的二项式系数为C 26=15,又T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24·C 26x ,所以第3项的系数为24C 26=240. (2)T k +1=C k6(2x )6-k⎝⎛⎭⎪⎫-1x k =(-1)k 26-k C k 6x 3-k.令3-k =2,得k =1. 所以含x 2的项为第2项, 且T 2=-192x 2.11.已知在⎝⎛⎭⎪⎫12x 2-1x n 的展开式中,第9项为常数项.求: (1)n 的值;(2)展开式中x 5的系数;(3)含x 的整数次幂的项的个数.解:二项展开式的通项为T k +1=C kn ⎝ ⎛⎭⎪⎫12x 2n -k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k ⎝ ⎛⎭⎪⎫12n -k C k n x 522n k -. (1)因为第9项为常数项,即当k =8时,2n -52k =0,解得n =10. (2)令2n -52k =5,得k =25(2n -5)=6, 所以x 5的系数为(-1)6⎝ ⎛⎭⎪⎫124C 610=1058. (3)要使2n -52k ,即40-5k 2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.。
计数原理与二项式定理
计数原理与二项式定理一、计数原理计数原理是数学中的一种基本方法,用于计算事件发生的可能性和计数问题。
这一原理主要包括排列、组合和分配原理。
1.排列原理排列是指在一组元素中取出若干个元素按照一定顺序排列的方法。
排列原理是指,对于一个有n个元素的集合,从中取出m个元素进行排列时,可以得到的不同排列数为:P(n,m)=n!/(n-m)!其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*…*3*2*12.组合原理组合是指在一组元素中取出若干个元素,不考虑顺序的方法。
组合原理是指,对于一个有n个元素的集合,从中取出m个元素进行组合时,可以得到的不同组合数为:C(n,m)=n!/(m!(n-m)!)3.分配原理分配原理是指,将n个物体分配给r个不同的盒子中去,每个盒子中可以有0个或多个物体,要求所有物体都要分完的方法。
分配原理可以用斯特林数或简单的计算方法得到。
二项式定理是数学中的一个重要定理,描述了一个二项式的乘积的展开式。
具体表述如下:对于任意实数a和b,以及正整数n,有以下的等式成立:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+…+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中C(n,m)表示从n个元素中取出m个元素的组合数。
二项式定理的展开式被称为二项式展开式,展开后的每一项被称为二项式系数,可以由组合数的形式表示。
二项式定理的表述非常简洁,但具有广泛的应用。
它可以用于计算多项式的幂、二项式系数的求解、概率论等多个领域。
总结:计数原理是一种重要的数学方法,用于解决计数问题。
它包括排列原理、组合原理和分配原理。
排列原理用于计算在有限集合中从中取出若干元素进行排列的不同可能性。
组合原理用于计算在有限集合中从中取出若干元素进行组合的不同可能性。
分配原理用于将若干物体分配给一组盒子中,每个盒子可以为空或包含多个物体。
1[1].3.1二项式定理
(2) 0 1 2 r r n n (3) Cn 2Cn 4Cn 2 Cn 2 Cn 解:(1)二项式定理中令 可得
0 1 2 r n Cn Cn Cn Cn Cn 0 1 2 r r n Cn Cn Cn (1) Cn (1)n Cn
利用归纳推理,思考对于任意的正整数n,(a+b)n 展开式如何呢?
Bqr6401@
三、概念形成
普 通 高 中 课 程 标 准
Liangxiangzhongxue
概念1.二项式定理
探索
(a+b)2 =a2+2ab+b2 (a+b)3=a3+3a2b+3ab2+b3
(a+b)2=(a+b)(a+b) =a2+2ab+b2 a2 ab ab b2 (a+b)3=(a+b)(a+b)(a+b)=a3+3a2b+3ab2+b3
Liangxiangzhongxue
下课
Bqr6401@
C0 a3 C1 a2b C2 ab2 C3 b3 3 3 3 3
Bqr6401@
共有四项
三、概念形成
普 通 高 中 课 程 标 准
Liangxiangzhongxue
概念1.二项式定理
探索
(a+b)3=a3+3a2b+3ab2+b3 = C0 a3+ C1a2b+ C2 ab2+C3 b3 3 3 3 3 (a+b)4=(a+b) (a+b) (a+b) (a+b) = C0a4+ C1 a3b+ C2a2b2+C3 ab3+C4 b4 4 4 4 4 4
0 1 2 22 n=C 0 1 rC r r+…+(-1)nC n n (1-x) -C x+C x -…+(-1) x x n n n
新高考 核心考点与题型 计数原理 第2讲 二项式定理 - 解析
第2讲二项式定理【考情考向分析】以理解和应用二项式定理为主,常考查二项展开式,通项公式以及二项式系数的性质,赋值法求系数的和也是考查的热点;本节内容在高考中以选择题、填空题的形式进行考查,难度中档.1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*);(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质性质性质描述对称性与首末等距离的两个二项式系数相等,即C k n=C n-kn增减性二项式系数C k n 当k<n+12(n∈N*)时,是递增的当k>n+12(n∈N*)时,是递减的二项式系数最大值当n为偶数时,中间的一项2Cnn取得最大值当n为奇数时,中间的两项12Cnn-与12Cnn+取得最大值3.各二项式系数和(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.[微点提醒] (a+b)n的展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.(4)二项式的系数从C0n,C1n,一直到C n-1n,C n n.题型一 二项展开式考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1]⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40 D.80解 ⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4, 得r =2.故展开式中x 4的系数为C 25·22=40. 规律方法 求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.【变式1】若(2x -a )5的二项展开式中x 3的系数为720,则a =________.解 (2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r , 令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3. 【变式2】已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11, 则a =________.解 ⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )r x 5-32r .由5-32r =5, 得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2, 则由1+10a 2=11,解得a =±1.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1-x )6(1+x )4的展开式中x 的系数是( )A.-4B.-3C.3D.4解 (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4,令m 2+n 2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数为C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. 规律方法 求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.【变式1】已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.解 (ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. 【变式2】在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (x 2+x +y )5的展开式中x 5y 2的系数为( )A.10B.20C.30D.60解 (x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2, 又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x 6-k ,令6-k =5,则k =1, 所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.规律方法 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项; 第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量. 【变式1】将⎝⎛⎭⎫x +4x -43展开后,常数项是________. 解 ⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k . 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.【变式2】⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________.解 ⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.题型二 二项式系数的和与各项的系数和问题典例1 设2002002210200)14(x a x a x a a x ++++=- ,求: ①展开式中各二项式系数的和;②展开式中各项系数的和;③19931a a a +++ 的值④20042a a a +++ 的值⑤20021a a a +++ 的值【思路解析】本题级出二项式及其二项展开式求各系数和或部分系数和,可用赋值法,即令x 取特殊值来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.把6个学生分到一个工厂的三个车间实习,每个车间2 人,若甲必须分到一车间,乙和丙不能分到二车间,则 9 不同的分法有________种 。 7.从6位同学中选出4位参加一个座谈会,要求张、王两 9 人中至多有一个人参加,则有不同的选法种为______.
8.如图所示,从A地到B地有3条不同的道路,从B地到 C地有4条不同的道路,从A地不经B地直接到C地有2 条不同的道路.
达标检测 1.从7人中选出3人分别担任学习委员、宣传委员、体育 委员,则甲、乙两人不都入选的不同选法种数共有( D)
A.C A
2 5
3 3
B.2C A
3 5
3 3
C5 3 3
3 5
2.从7盆不同的盆花中选出5盆摆放在主席台前,其中有两 1800 盆花不宜摆放在正中间,则一共有________种不同的摆 放方法(用数字作答)。
4.在数字 1,2,3 与符号“+”,“-”五个元素的所有全排列中, 任意两个数字都不相邻的全排列个数是 ( B ) A.6 B.12 C.18 D.24 5.将 5 名志愿者分配到 3 个不同的世博会展览馆参加接待工作,每 个场馆至少分配一名志愿者的方案种数为 ( D ) A.540 B.300 C.180 D.150
此时不能再从该人所在的行和列上选人,还剩一个 4 行 3 列的队形,
此时第三个人的选法有 12 种,
根据分步乘法计数原理,
总的选法种数是 30×20×12=7 200.
例2.在2013年4月20日的芦山抗震救灾中,3名医 生和6名护士被分配到3所帐篷为地震中受伤的人 检查,每个帐篷分配1名医生和两名护士,不同 D 的分配方法共有( ) A.90种 B.180种 C.270种 D.540种
3.2008年北京奥运会期间,计划将5名志愿者分配到3个 不同的奥运场馆参加接待工作,每个场馆至少分配一名 2 2 志愿者的方案种数为 ( C ) 3 C5 C3 (C5 ) A3 3 A.540 B.300 C.150 D.180 2
作业:P40 3,7 P41
2,3,4
6
例 1.某次活动中,有 30 人排成 6 行 5 列,现要从中选出 3 人进行礼仪表演,要求这 3 人中的任意 2 人不同行也 7200 不同列,则不同的选法种数为________(用数字作答).
解析 其中最先选出的一个人有 30 种方法,
此时不能再从这个人所在的行和列共 9 个位置上选人,还剩一个 5 行 4 列的队形,故选第二个人有 20 种方法,
排列组合、二项式定理复 习课(一)
知识结构网络
基础自测 1.从0,1,2,…,9这10个数字中,任取两个不同数字作为平 面直角坐标系中点的坐标,能够确定不在x轴上的点的个 数是( C )A.100个 B.90个 C.81个 D.72个
A
3.7人站成一排照相,甲站在正中间,乙、丙与甲相邻且 站在甲的两边的排法共有( C ) A.120种 B.240种 C.48种 D.24种
例3.有两排座位,前排11个,后排12个,现安排2 人就座,规定前排中间的3个座位不能坐,并且这 2个人不左右相邻,那么不同的排法的种数是 ( B )A.234 B.346 C.350 D.363
解析:因为前排中间3个座位不能坐,所以实际可坐的前排8个, 后排12个. (1)两人一个前排,一个后排,方法数为C81C121A22; (2)两人均在后排,共A122种,排除两人相邻的情况A22A111,即 A122-A22A111; (3)两人均在前排又分两类:①两人一左一右时为C41C41A22;② 两人同左或同右时为2(A42-A22A31). 综上,不同的排法种数为 C81C121A22 + (A122 - A22A111) + C41C41A22 + 2(A42 - A22A31) = 346(种).
(1)从A地到C地共有多少种不同的走法? 3×4+2=14 (2)从A地到C地再回到A地有多少种不同的走法?196 (3)从A地到C地再回到A地,但返回时要走与去时不同 的道路.有多少种不同的走法? 14×13=182 9.某中学从高中7个班中选出12名学生组成校代表队, 参加市中学数学应用题竞赛活动,使代表中每班至少有 1人参加的选法有多少种? C 2 15