非线性有限元法(1)

合集下载

线性和非线性有限元

线性和非线性有限元
线性和非线性有限元

CONTENCT

• 线性有限元方法 • 非线性有限元方法 • 线性与非线性有限元的比较 • 线性与非线性有限元的实例分析 • 未来研究方向与展望
01
线性有限元方法
定义与原理
定义
线性有限元方法是一种数值分析方法,用于求解偏微分方程的近 似解。它将复杂的求解区域离散化为有限个小的、简单的子区域 ,即有限元,然后对每个有限元进行求解,最终得到原偏微分方 程的近似解。
THANK YOU
感谢聆听
在实际应用中,应根据问题的特性和需求选择合适 的有限元方法。对于复杂的问题,可能需要结合多 种有限元方法进行求解。
05
未来研究方向与展望
线性有限元方法的改进与优化
80%
高效求解算法
研究更快速、稳定的线性有限元 求解算法,提高计算效率。
100%
自适应网格生成
发展更智能、自动的网格生成技 术,以适应复杂几何形状和边界 条件。
线性有限元
由于线性有限元基于线性方程组进行求解,因此计算复杂度 相对较低,适用于求解一些较简单的问题,如弹性力学问题 。
非线性有限元
非线性有限元需要求解非线性方程组,计算复杂度较高,但 能够处理更复杂的问题,如塑性力学、流体力学等领域的问 题。
精度比较
线性有限元
对于一些简单的问题,线性有限元可以给出较为精确的结果。然而,对于一些 复杂的问题,线性有限元可能无法准确描述非线性行为。
80%
多物理场耦合
研究线性有限元在多物理场耦合 问题中的应用,如流体-结构、电 磁-热等。
非线性有限元方法的改进与优化
高阶非线性有限元
发展高阶非线性有限元方法, 以更精确地描述复杂非线性行 为。

非线性有限元法及实例分析

非线性有限元法及实例分析
[ 中图分类 号] 04 3 [ 文献标识码 ] A [ 文章编号] 1 6 77(170 一 22 0 0 — 1520) O2 — 3 0 3 4
行。 一般来说 , 以求得其精确解 , 难 通常采用数值解法 , 把非 线性问题转化为一系列线性 问题 。 为了使这一系列线性解 收敛 于非线性解 , 曾经有 过许 多方法 , 但这 些解法 都有一 定的局限性。 某解法对某 一类非线性 问题有效 。 对另一 但
・---— —
22 ・— 2 - - - —
维普资讯
梁 军 , : 等 非线 性有 限元 法及 实例 分析
1 1 2 N wtn — R p sn方 法 . . e o a ho
第 4期
荷载增量 。 此时 , 假定 方程是 线性 的 , 劲度矩 阵 为常矩
Nwo e tn—R psn方法是求解非线性方程组 ah o
() F 8 R s K 88一 R = 0 8 ()一 ( ) (3 1)
阵, 对每级增量求出位移增量 △ 对它累加 , 可以得到 , 就
合实际情 况。根据 产生 非线性 的原 因, 非线 性 问题 主要
有3 种类 型 : ①材料非线性 问题 ( 简称材料 非线性或物理
非线性) ②几何非线性问题 ; ; ③接触 非线 性问题 ( 简称接 触非线性或边界非线性 ) 。
类问题可能不合适 。 因而, 根据 问题性质 正确选用 求解方 法成为非线性有限元的一个极重要 的问题 。 常见的求解非 线性方程组的数值方法有迭代法 、 增量法和混合法 。

设其初始 的近似解为 = , 由此确定 近似 的 K矩



… )= 0
其中 , , , 是未知量 ; , , , ,2 …, … … 是 ,

非线性有限元分析1

非线性有限元分析1

非线性问题的类型和求解特点1 非线性问题的类型1. 1 线性分析的含义在有限元分析中的线性假设包含下列含义:即结点位移为无限小量,材料为线弹性,加载时边界条件的性质保持不变。

于是,静力平衡方程可以表示为:[]{}{}R U K = (2.1)其中,[]K 为刚度矩阵,{}R 为荷载矢量。

由于[]K 和{}R 的元素为常数,故位移响应{}U 是荷载矢量{}R 的线性函数。

也就是说,如果{}R 变为{}R α,则{}U 变为{}U α,其中,α为常数。

这就是所谓的线性有限元分析。

如果上述假设中的任何一条不能得到满足,那么就属于非线性有限元分析。

1. 2 非线性分析的必要性结构力学问题,从本质上讲都是非线性的,线性假设只是实际工程问题的一种简化。

当然,任何实际工程问题的求解都避免不了适当地简化,简化是否合理主要应根据求解效果和实际经验来判断。

对于目前工程实际中的很多问题,如地震作用下结构的弹塑性动力响应,高层建筑抗风,大跨度网壳结构动力稳定性,索膜结构找形荷载与裁减分析,大型桥梁风致振动等问题的研究,仅仅假设为线性问题是很不够的,常常需要进一步考虑为非线性问题。

因此,对各种工程结构的非线性分析就是必不可少且日趋重要了。

对于结构力学的非线性问题来说,有限单元法是最为有效的数值分析方法。

1. 3 非线性问题的类型通常,把非线性问题分为两大类,即分为几何非线性和材料非线性。

但从建立基本方程和程序设计的方便出发,又可分为三种类型:1.材料非线性:非线性效应仅由应力应变关系的非线性引起,位移分量仍假设为无限小量,故仍可采用工程应力和工程应变来描述,即仅材料为非线性。

非线性的应力应变关系是结构非线性的常见原因,许多因素都可以影响材料的应力应变性质,包括加载历史(如在弹塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)等。

2.几何非线性:如果结构经受大变形,则变化了的几何形状可能会引起结构的非线性响应,这又可以分为两种情形:第一种情形,大位移小应变。

非线性有限元法综述

非线性有限元法综述

非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。

关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。

进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。

有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。

方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。

非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。

图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。

2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。

这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。

完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。

两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。

非线性有限元-国科大

非线性有限元-国科大

第一篇 物理非线性有限元的一般解法第一节 概述从数学角度考虑,对于偏微分方程边值问题或初值问题,如果域内的控制方程是线性方程,边界条件也是给定的线性条件,就是线性问题。

线性问题的适定性提法可保证问题的解存在、唯一而且稳定。

线性问题具有一系列重要特性,例如其解具有比例特性,求解中可用叠加原理等等。

线性有限元法就是这样一类问题,它最后归结为一个线性代数方程组的求解。

只要力学建模过程处理合理,其解不仅唯一,而且具有很高的可靠性,因此已在工程界得到了广泛的应用,并已成为必不可少的一种辅助设计手段,在不少行业中,已正式成为设计规范的一个组成部分而强制性执行。

工程中所有的问题都是非线性的,为适应工程问题的需要,在解决某些具体问题时,往往忽略一些次要因素,将它们近似地作为线性问题处理,这也是完全合理的。

但是我们不能因此认为一切问题均可以简化为线性问题。

必须注意到有许多工程问题,应用非线性理论才能得到符合实际的结果。

为适应工程应用的需要,非线性有限元是目前进行非线性问题数值计算中最有效的方法之一。

因此,有必要对非线性有限元的基础知识作较为全面的阐述,以使读者有足够的基础知识,能够理解非线性有限元的各种基本方法,选择和比较不同近似计算方法,正确处理建模和计算分析中所遇到的困难。

本篇主要介绍材料非线性有限元的一般数值解法。

所谓材料非线性指的是材料的物理定律是非线性的。

材料非线性问题可以分为二类。

第一类是非线性弹性问题,例如橡皮、塑料、岩石、土壤等材料是属于这一类,它的非线性性质是十分明显的。

第二类是非线性弹塑性问题,材料超过屈服极限以后就呈现出非线性性质,各种结构的弹塑性分析就是这类问题。

若在加载过程,这两类材料非线性问题在本质上相同的,只要写出非线性物理定律而在计算方法上是完全一样。

但是卸载过程中就会出现不同的现象,非线性弹性问题是可逆过程,卸载后结构会恢复到加载前的位置;非线性弹性问题是不可逆的,它将会出现残余变形。

第6章 非线性有限元法(几何非线性)

第6章 非线性有限元法(几何非线性)

式中,Eij称为Almanshi应变张量 或Almanshi –Eular应变张量。
可以证明Green应变张量和Almanshi应变张量都是二阶对称张量。
3、应变与变形测度
2、Green – Lagrangian应变张量eij与小应变张量εij的关系
将变形梯度张量表达式代入到 Green应变张量公式中,得:
ds2 ds2 dxi dxi dxidxi
dxiFki Fkj dxj dxidxi Fki Fkj ij dxidxi 2eij dxidxi
1 eij Fki Fkj ij 2
ds ds
dxi dxi dxidxi
t0=0
P0
Pn An
Pn+1
An+1
选取t0=0时刻未变形物体的构 形A0作为参照构形进行分析。
A0
x1
x2
2、修正拉格朗日列式法(U.L列式法—Updated Lagrangian Formulation): 选取tn时刻的物体构形An作为参照构形。由于An随计算而变化,因 此其构形和坐标值也是变化的,即与t有关。tn为非线性增量求解时增量 步的开始时刻。 3、欧拉描述法(Eulerian Formulation): 独立变量是质点当前时刻的位置xn+1与时间tn+1。
1 1 dxi dxi dxi Fki Fkj dx j
1 1 ij Fki Fkj dxi dxi 2 Eij dxi dxi
Eij
1 1 1 ij Fki Fkj 2
式中,eij称为Green应变张量或 Green-Lagrangian应变张量。
x dxi i dxj Fij dxj xj x Fij i xj

非线性有限元方法

非线性有限元方法

非线性有限元方法非线性有限元方法是大量应用于工程领域的计算方法,它主要用于求解复杂结构的力学问题,例如材料的变形、破坏和变形控制等。

与线性有限元方法不同,非线性有限元方法考虑因为载荷和边界条件的非线性导致问题的非线性本质,以及材料的非线性行为。

在这篇文章中,我们将讨论非线性有限元方法,包括其应用、工作原理以及其在工程领域中的重要性等内容。

首先,我们来研究一下非线性有限元方法的应用。

非线性有限元方法在许多方面都有应用。

其中最重要的领域是结构力学,包括建筑、航空航天、汽车等领域。

由于这些结构需要承受复杂的载荷,因此非线性有限元方法可以很好地模拟这些结构的行为,预测它们的性能和寿命。

此外,非线性有限元方法还可以应用于材料力学研究中,例如破碎、断裂和塑性变形等方面。

其次,我们来了解一下非线性有限元方法的工作原理。

与线性有限元方法类似,非线性有限元方法通过将结构分成小块进行离散,然后在每个小块中进行力学分析,最后将分析结果合并为整个结构的行为。

但是,与线性有限元方法不同的是,非线性有限元方法考虑到材料的非线性行为,采用迭代的方法计算结构的响应。

通常,在每一次迭代中,我们都将结构的当前状态作为一个初始猜测,然后求解出该状态下的切应力和位移场。

然后我们将这个位移场的结果代入底部,从而更新结构的状态。

如果解决方案收敛,则完成计算,否则就将新的状态再次代入求解。

这种方法的本质是将非线性问题转化为一系列线性问题的求解,通过迭代求解来逼近非线性问题的解。

最后,我们来讨论一下非线性有限元方法在工程领域中的重要性。

非线性有限元方法已成为现代工程设计和分析的不可或缺的工具。

它允许工程师们模拟和预测各种工程机构的行为,以及设计和优化各种结构。

例如,它可以帮助我们了解在不同载荷下建筑和桥梁行为的变化,预测材料的破坏和失效,以及优化汽车和飞机的结构以提高其性能。

总之,非线性有限元方法是一种复杂但十分有用的计算方法,它可以模拟各种结构的行为并预测其性能和寿命。

非线性有限元之非线性求解方法

非线性有限元之非线性求解方法

非线性有限元之非线性求解方法平衡回顾✧静态平衡是内力I和外载P力量平衡;✧在非线性问题中,模型的内力I可以是以下量的非线性函数;✧在非线性问题中,模型的外力P也可以是某些量的非线性函数,如位移u和时间t。

非线性求解方法1.已知一个分析,知道结构总载荷和初始刚度,目的是找到最后的位移。

线性分析中,一次计算就能求解出最终位移;非线性问题中不可能,因为结构刚度随着结构变形而改变。

2.求解这类非线性问题需要的是一种增量\迭代技术,获得的解是非线性问题准确的近似。

这些方程通常没有精确解。

3.Abaqus使用迭代求解该方程:使用牛顿拉普森方法求解近似解,使误差最小。

4.Abaqus用法:1)载荷历史被拆解为一系列的分析步;每个分析步拆解为一系列增量步;用户为初始时间增量猜测一个值;Abaqus使用自动增量算法确定其他的增量步。

在每个增量步结束时,Abaqus根据载荷与时间关系计算当前负载大小2)使用牛顿拉普森程序迭代求解每个增量结束时的解;根据收敛容差判断牛顿拉普森程序的收敛;如果迭代不收敛,减少增量步的大小;然后使用小增量步重新进行计算。

5.分析步、增量步、迭代步1)分析步仿真载荷历程含有一个或多个分析步。

2)增量步是分析步的一部分;在静态问题中,总载荷被分成很小的增量步。

以便可以沿着非线性路径求解。

3)迭代步迭代步是增量步中寻找平衡解得一次计算尝试。

5.牛顿拉普森方法Abaqus/Standard 基于牛顿拉普森方法的增量迭代求解技术,该方法是无条件稳定(任何大小的增量步都可以)。

增量步大小影响动态分析精度,每个增量步通常要求多次迭代才能满足收敛要求,每个分析步通常有多个增量步,牛顿拉普森定义了一个残差为0位移曲线。

6.牛顿拉普森方法基础。

平衡是u的非线性方程,牛顿拉普森迭代求解在Cu 处的线性方程,Cu是位移u的修正量。

7.残差定义为了得到线性方程组,重写一下平衡方程,R(u)是u的残差。

这个残差表示的是位移u处不平衡力。

非线性结构有限元分析课件

非线性结构有限元分析课件

非线性结构有限元分析的步骤与流程
• 设定边界条件和载荷,如固定约束、压力 或力矩等。
非线性结构有限元分析的步骤与流程
01 步骤三:求解
02
选择合适的求解器,如Newton-Raphson迭代法或 直接积分法。
03 进行迭代计算,求解非线性结构的内力和变形。
非线性结构有限元分析的步骤与流程
01
步骤四:后处理
非线性有限元分析的基本概念
总结词
非线性有限元分析是一种数值分析方法,通过将复杂的结构或系统离散化为有限个小的单元,并建立 每个单元的数学模型,来模拟和分析结构的非线性行为。
详细描述
非线性有限元分析是一种基于离散化的数值分析方法,通过将复杂的结构或系统划分为有限个小的单 元(或称为有限元),并建立每个单元的数学模型,来模拟和分析结构的非线性行为。这种方法能够 考虑各种复杂的边界条件和材料特性,提供更精确的数值结果。
非线性有限元分析的常用方法
总结词
非线性有限元分析的常用方法包括迭代法、增量法、 降维法等。这些方法可以根据不同的非线性问题选择 使用,以达到更好的分析效果。
详细描述
在非线性有限元分析中,常用的方法包括迭代法、增量 法、降维法等。迭代法是通过不断迭代更新有限元的位 移和应力,逐步逼近真实解的方法;增量法是将总载荷 分成若干个小的增量,对每个增量进行迭代计算,最终 得到结构的总响应;降维法则是通过引入一些简化的假 设或模型,将高维的非线性问题降维处理,以简化计算 和提高计算效率。这些方法各有优缺点,应根据具体的 非线性问题选择使用。
03
02
弹性后效
材料在卸载后发生的变形延迟现象。
材料强化
材料在受力过程中发生的强度增加 现象。
04

非线性有限元方法及实例分析

非线性有限元方法及实例分析

非线性有限元方法及实例分析梁军河海大学水利水电工程学院,南京(210098)摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。

关键词:非线性有限元,方程组求解,实例分析1引 言有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。

有限元的线性分析已经设计工具被广泛采用。

但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。

根据产生非线性的原因,非线性问题主要有3种类型[1]:1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题3.接触非线性问题(简称接触非线性或边界非线性)2 非线性方程组的求解在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]:()()()00021212211=……==n n n n δδδψδδδψδδδψΛΛΛ (1.1)其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记号[]T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3)上述方程组(1.1)可表示为()0=δψ (1.4)可以将它改写为()()()0=−≡−≡R K R F δδδδψ (1.5)其中()δK 是一个的矩阵,其元素是矢量的函数,n n ×ijk R 为已知矢量。

在位移有限元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。

在线弹性有限元中,线性方程组0=-R K δ (1.6)可以毫无困难地求解,但对线性方程组()0=δψ则不行。

一般来说,难以求得其精确解,通常采用数值解法,把非线性问题转化为一系列线性问题。

非线性有限元

非线性有限元
Ki-1
(三)混合法 如对同一非线性方程组混合使用增量
法和迭代法,则称为混合法或逐步迭代法。 一般在总体上采用Euler增量法,而在
同一级荷载增量内,采用迭代法。
Ki-1
刚度的取值可根据给定的应力-应变曲 线导出。若每级计算都采用上一级增量计算 终了时的刚度值,则称为始点刚度法。
Ki-1
始点刚度法类似于解微分方程初值问题 的欧拉(Euler)折线法,计算方法简单但计算 精度较低,容易“漂移”。
若采用中点刚度法则可以提高精度。该 法类似于解常微分方程初值问题的龙格-库塔 (Runge-Kutta)法,包括中点切线刚度法 和中点平均刚度法。
(1) 直接迭代法 对非线性方程组
设其初始的近似解为 ,由此确定近似的
矩阵
可得出改进的近似解
重复这一过程,以第i次近似解求出第i+1 次近似解的迭代公式为直接迭代法
对非线性方程组
直到 变得充分小,即近似解收敛时,终止迭代。
在迭代过程中,得到的近似解一般不会满足 作为对平衡偏离的一种度量,称为失衡力。
q-Newton—Raphson迭代法的计算过程
(2)初应力法 如果在弹性材料内确实存在初应力 ,则材料的应力应变关系为
由上式及虚功原理可导出单元的结点力为
集合单元得出以下的有限元方程 式中, 为由初应力 引起的等效结点荷载
初应力法就是将初应力看作是变化的, 以此来反映应力和应变之间的非线性关系。 通过不断地调整初应力,使线弹性解逼近非 线性解。
接触非线性 由于接触体的变形和接触边界的摩擦作用,
使得部分边界条件随加载过程而变化,且不 可恢复。这种由边界条件的可变性和不可逆 性产生的非线性问题,称为接触非线性。
材科非线性有限元法 材料非线性是由本构关系的非线性引

非线性有限元1_非线性方程求解及收敛控制

非线性有限元1_非线性方程求解及收敛控制

2014-12-3
18
2.1 非线性方程组的解法--增量法
增量法:就是将荷载分成一系列的荷载增量,即ANSYS中的 荷载步或荷载子步。 要点:在每一个荷载增量求解完成后,继续进行下一个荷载 增量之前,调整刚度矩阵以反映结构刚度的变化。
公式( 4) ui 1 ui ui 1
2014-12-3 6
1.1 非线性行为——材料非线性
非线性的应力-应变关系是产生结构非线性的一个 普遍原因。
应力
应力
应变
应变

橡胶
2014-12-3 7
1.1 非线性行为——状态改变非线性
许多非线性问题是与状态相关的。例如一段 绳索可以是松驰的或拉紧的。一个装配件的两部分可 能接触或脱离接触。
在这个接触例题中 ,接触面积未知, 它取决与施加载荷 的大小。
2014-12-3
8
1.1 非线性行为——分析方法特点

不能使用叠加原理! 结构响应与路径有关,也就是说加载的顺序可能是重要的。 结构响应与施加的载荷可能不成比例。
2014-12-3
9
第一章 非线性有限元概述
1.1 非线性行为 1.2 非线性分析的应用
2014-12-3 25
2.2 Newton-Raphson迭代法--力平衡
Newton-Raphson 法需要一个收敛的度量以决定何 时结束迭代。 给定外部载荷(Fa),内部载荷( Fnr ,由单元应力 产生并作用于节点),在一个体中,外部载荷必须与内 力相平衡。
Fa - Fnr = 0
收是平衡的度量。
载荷
F
收敛半径 如果 ustart 在收敛半径内将收 敛,否则将发散。
ustart ?

第6章 非线性有限元法(几何非线性)分析

第6章 非线性有限元法(几何非线性)分析
dxiFkiFkjdxj dxidxi
FkiFkj ij dxidxi 2eijdxidxi
由于大变形问题有
2、限A元lm方an程sh主i应要变采用张量
T.L列式法或U.L列式 Alm法an建sh立i应,变因张此量应采在用初Eular运动 描述始方状法态,下即定按义当应前变状张态下的构 形定量义,应即变采张用量G。reen应
变ds张2 量d。s2 dxidxi dxidxi
dxidxi dxi Fki1Fkj1dx j
ij Fki1Fkj1 dxidxi 2Eij dxidxi
eij
1 2
FkiFkj ij
式中,eij称为Green应变张量或 Green-Lagrangian应变张量。
Eij
第六章 非线性有限元法(几何非线性)
1、变几形何非体线性的的有运限动元方描程一述 般采用T.L或U.L列式法建立!
变形体上的质点的运动状态 可以随不同的坐标选取以下几 种描述方法:
1、全拉格朗日列式法(T.L列式 法—Total Lagrangian Formulation):
选取t0=0时刻未变形物体的构 形A0作为参照构形进行分析。
uk xj
ij
ij
式中:
ij
1
ui
2 xj
u j xi
为小变形应变张量;
ij
1 2
uk xi
uk xj
为非线性二次项
2、Green变形张量也可写为:
eij
1 2
Cij
ij
式中,Cij是Cauchy变形张量
Cij FkiFkj
由于Cauchy变形张量是正定对称 阵,因此该张量有三个实特征值; 这些特征值的平方根记为材料的 主轴拉伸。

非线性 元法 几何非线性

非线性 元法 几何非线性

5、几何非线性有限元方程的建立
如前所述,几何非线性的有限元方程一般采用T.L或U.L列式法建立:
1、全拉格朗日列式法(T.L列式法): 选取t0=0时刻未变形物体的构形A0作为参照构形进行分析。
2、修正拉格朗日列式法(U.L列式法): 选取tn时刻的物体构形An作为参照构形。由于An随计算而变化,因
Ni (参考面积法向矢量)
变形前面积dA’
变参2形考、后后Ti状状j不态态对下下称::,dd因PiiP 而T较iijjN n难jjdd应A A用到有ijn 限jd元分A T 析ijN 中j。dA ni(变形后面积法向矢量)
将面积映射关系:njdA JN iFij1dA代入上式,得:
iJ j N kF k1jdA TiN j jdA
V
V
S
或写为:
12Sij 12ei*jdV12Q
V
式中, 1 2Q 1 2fibui*dV1 2fiSui*dS 表示外力所做的虚功。
V
S
5、几何非线性有限元方程的建立
引入此前Green应变张量表达式,可得:
e ijijij e ijijij
虚功方程:
12Sij 12ei*jdV12Q
和应变在变形后状态下表示未知。
x2
x3 t0=0 P0
A0
x1
tn tn+1=tn+Δtn
Pn
Pn+1
An
An+1
5、几何非线性有限元方程的建立
为了求解,需将以上变形后状态下表示的虚功方程转换到
初始状态下表达。
1、采用二阶Piola应力张量和 Green应变张量将虚应变能转换 到初始状态下表示:
2、在外力作用点和方向都不改
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构的非线性现象 Physical Nonlinearity
E1 = 2E2 = 2E
结构的非线性现象
结构的非线性现象 Nonlinearity Due to Boundary Conditions
本课程的内容
1. 有限变形理论基础 2. 非线性有限元列式 3. 本构关系 4. 非线性方程组解法 5. CB壳单元(Continuum Based Shell Element) 6. 大转动问题 7. 三维杆系 8. 稳定性分析 9. 接触问题 10.应用专题
有限元法的发展史
Turner等(1960)将应用到大挠度和热应力分析 Gallagher等(1962)考虑了材料非线性 Gallagher等(1963)首次分析了屈曲问题 Zienkiewicz等(1968)应用到粘弹性问题 Archer(1965)建立了一致质量矩阵,进行了动力分析 1960s中后期开始有限元法应用到场问题和流体问题 Belystchko(1976)考虑了与大位移非线性动力分析问题
Mixed Finite Element 唐立民,陈万吉,刘迎曦(1980)基于广义变分原理的拟协调元
Quasi-conforming finite element
有限元法的发展史 有限元列式更一般的方法--加权余量法
Szabo和Lee(1969)推导了结构分析的弹性有限元方程 Zienkiewicz和Parekh(1970)推导了瞬态问题的有限元方程 Hughes(1979)应用到流体力学的Navier-Stokes方程求解
有限元法的三个特点 1)以一组几何上简单的子域表示一个几何上复杂的域 2)对每一个子域运用基本概念推导近似函数 3)利用相关的物理原理或数学方法建立联立方程组
有限元法的发展史
1941年Hrenikoff用线单元网格求解连续体中的应力
“Solution of problem in elasticity by frame work method”, Journal of Applied Mechanics, Vol. 8,pp.169-175, 1941
1960年Clough命名了“Finite Element Method”
“The finite element method in plan stress analysis”, Proceedings of 2nd ASCE Conference on Electric Computation, Pittsburgh, pp.345-378, 1960
有限元的应用
有限元法起源于结构力学的计算方法,现已应用到各 种领域,包括固体力学、流体力学、传热分析、电场、 电磁场,甚至纳米材料,交通规划和经济学领域 由于商业软件的推广,加速了在工程问题中的应用 由于计算机硬件和CAD、CAE软件的迅速发展,使得复 杂的工程问题的建模和求解问题得到解决,目前报道的 有限元计算的规模达到10亿DOF
有限元法的发展史
六十年代初人们认识到有限元的理论基础是变分原理
Pian(1964)基于最小余能原理建立了杂交应力有限元法 Hybrid Finite Element
de Veubeke(1964)基于最小余能原理建立了平衡元列式方法 Herrmann(1965)基于Reissner变分原理建立了混合有限元法
非线性有限元法
Nonlinear Finite Element Methods
主讲:潘亦苏
西南交通大学 SOUTHWEST JIAOTONG UNIVERSITY 力学与工程学院 School of Mechanics and Engineering
绪论
什么是有限元法 -- 一种求解场问题的数值方法 -- 目前工程中应用最广泛的数值计算方法
结构的非线性现象
Nonlinear Phenomena in Solid Structures: 1 Geometrical Nonlinearity 2 Physical Nonlinearity 3 Nonlinearity Due to Boundary Conditions
结构的非线性现象 Large Displacements of a Rigid Beam
结构的非线性现象
结构的非线性现象
The process, in which the system changes from one equilibrium state to another instantaneous, is called snap-through. Due to that, point D is called snap-through point.
结构的非线性现象
Force versus rotation:
结构的非线性现象 Large Displacements of an Elastic System
结构的非线性现象
结构的非线性现象
结构的非线性现象 Bifurcation Problem
结构的非线性现象
结构的非线性现象 Snap-Through Problem
参考书
Peter Wriggers. Nonlinear Finite Element Methods. Berlin: Springer Verlag, 2008
MIT相关课程介绍
1954-1960年Argyris出版了能量原理与结构分析书,从 能量原理建立了矩阵结构分析方法,为有限元法找到了 理论基础
有限元法的发展史
1961年Melosh建立了平面矩形板弯曲单元 1963年Grafton和Strome建立了轴对称壳单元 Martin(1961),Gallagher(1962),Melosh(1963) 建立了四面体单元将有限元法推广到三维问题 Clough等(1965),Wilson(1965)建立了轴对称单元
1943年Courant用三角区域解enant扭转问题
“Variational Methods for the solution of problems of equilibrium and vibrations”, Bulletin of American Mathematical Society, Vol.49, pp.123,1943
有限元法的发展史
1956年 Turner,Clough,Martin和Topp将刚架分析中 的位移法推广到弹性力学平面问题
“Stiffness and deflection analysis of complex structures”, Journal of Aeronautical Sciences, Vol.23, pp.805-824,1956
有限元法在数学方面的研究 Zienkiewicz、Babuska、Oden,冯康(1960s)
有限元法的发展史
有限元程序的发展
从六十年代末、七十年代初出现了广泛应用的有限元 分析程序 ANSYS,Abaqus,MSC/NASTRAN,Algor,Cosmos,Adina… 各种专业的分析软件Dynaform,Autoform,Deform, Autodyn,Sysweld,FemFat,Procast… 新型的多场分析软件Comsol,Fegen
参考书
1. T Belytscho, W K Liu, B Moran,庄茁 译. 连续体和结构的非线性 有限元,清华大学出版社,2002 T Belytscho, W K Liu, B Moran. Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons , 2000 2. M A Crisfield. Non-linear Finite Element Analysis of Solids and Structures: Vol. 1 Essentials, John Wiley and sons, 1991 3. M A Crisfield. Non-linear Finite Element Analysis of Solids and Structures: Vol. 2 Adanced Topics, John Wiley and sons, 1997
相关文档
最新文档