夏热冬冷地区人体热舒适的气候适应模型研究硕士学位论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
夏热冬冷地区人体热舒适的气候适应模型研究﹡
摘要
室内舒适温度的设定标准直接影响着人体的热舒适与建筑设备能耗。以实测研究为基础的适应性热舒适理论认为:人们在实际环境中的热感觉受着过去的热经历、文化背景、建筑特性、室内外气候等诸多因素的影响,室内舒适温度与室外平均温度显著相关。因此,从适应性的观点来看,传统上的空调系统设计过程中,室内设定温度为一固定点,且没有考虑人的主动控制调节能力是不恰当的。适应性热舒适理论充分考虑人们对其生活环境的主动调控能力,允许舒适温度在一定范围内随室外温度的变化而变化,迎合了人们喜欢变化的自然环境的心理。因此,确立一个与当地室外气候、建筑特性、文化背景、生活习惯等因素相适应的室内舒适温度设计指标,既可以积极地改善室内的热舒适度,又能够显著地降低建筑设备能耗。
我国夏热冬冷地区夏季炎热、冬季寒冷。其冬夏季节气候特征虽然没有寒冷地区及夏热冬暖地区气候恶劣,但是由于其建筑围护结构的保温隔热性能差,自然通风室内热环境状况较差。而这一地区又不在采暖区范围之内,大部分地区都没有集中采暖,随着人们生活水平的提高,对室内舒适度的要求也在不断提高,人们自行采取降温与采暖措施,缺乏科学指导,使得夏热冬冷地区空调与采暖能耗正大幅度急剧增加。
为了切实改善夏热冬冷地区室内的热环境状况,降低空调与采暖能耗,本文以实测与问卷相结合的方式对夏热冬冷地区室内的热环境状况、主动调节热环境的适宜性措施等做了详细调查,并以ASHRAE的7级热感觉标度记录了居民的热感觉主观反应。借助于统计学分析方法对测试与调查结果进行了统计回归分析,得出如下结论:
*本项研究得到国家自然科学基金重大国际合作项目(50410083)及国家青年自然科学基金项目(50408014)的资助。
1.夏热冬冷地区居民对室内热环境的适应性调节措施为:夏季主要为开窗通风、使用电风扇、空调等设备以及减少着衣量,而冬季的主要控制措施为增加衣服的数量及厚度,从而加大衣服的热阻;改变着衣量是适应温度变化的主要调节措施,夏热冬冷地区夏季居民室内着装的平均热阻为0.28clo,冬季为 1.41clo,着衣量的季节性特点显著。
2. 在实际的生活环境条件下,夏热冬冷地区居住建筑冬季室内的热中性温度为1
3.6℃,期望温度为1
4.5℃,80%人群可接受的舒适温度区域为11.2-16.8℃,
而夏季的中性温度为27.3℃,期望温度为26.7℃,80%可接受的舒适温度范围为
24.2-29.8℃。期望温度总是偏向于其中性点的这一侧或那一侧,夏季的期望温度
低于中性温度0.9℃,而冬季的期望温度又比中性温度高0.6℃;
3.热中性温度总是与室内平均温度相接近,而室内温度又通过围护结构受着
室外气候的影响,因此,舒适温度不是一个固定不变的值,而是随着室外气候(主
要是温度变量)的变化而不断变化的,并且与室外平均空气温度之间存在着一种
相互适应的函数关系,并据此建立了夏热冬冷地区人体热舒适的适应性模型:
⎩
⎨⎧+=4.285.12092.10607.0 n o n T t T (R ²=0.8295) 其中,T n ----热中性温度,℃;
t o ----室外平均空气温度,℃;
确立夏热冬冷地区适应性热舒适温度设计标准是改善居住建筑室内热环境状
况,降低建筑能耗,发展可持续建筑的迫切需要。利用舒适温度与室外气候的相
关性分析,可以帮助建筑设计者判断利用被动式设计策略获得室内热舒适的可能
性。以热舒适适应性模型为基础确立的采暖与空调室内热环境设计温度指标具有
很大的节能潜力,在获得最佳舒适状态的同时又实现了建筑节能。
关键词:夏热冬冷地区 居住建筑 人体热舒适 气候适应模型 建筑节能
An adaptive thermal comfort model
for hot summer and cold winter context
Major: Architectural Technology and Science
Master Candidate: Junge Li
Supervisor: Prof. Jiaping Liu
Associate Prof. Liu Yang
ABSTRACT
The comfort temperature setpoint directly affected indoor thermal comfort and the energy consumption. The adaptive approach to modeling thermal comfort acknowledges that thermal perception in ‘real world’settings is influenced by the complexities of past thermal history, cultural context, nature of buildings and outdoor climate. And comfort temperature is more closely track patterms in outdoor climate. At the viewpoint of adaptive thermal comfort, in designing of air-conditioning systems, the conventional fixed temperature setpoint concept is not appropriates, which ignores the potential of control over indoor environment. The adaptive thermal comfort theory allows people greater control over their own indoor environment and indoor temperature to more closely track patterms in outdoor climate and meet the natural tendency to care for the changing nature. So the application of the adaptive approach to the thermal comfort standards can have potentially signigicant and positive impacts on both improving comfort and reducing energy consumption.
In hot summer and cold winter climatic zone, the thermal environment is poor in the free-running buildings, and people take measures to heat and cool with freedom. Due to the lack of guidance, the energy consumption in heating and cooling is largely increasing.
In order to improve the indoor thermal conditions and reduce the energy consumption, a large-scale field survey has been conducted in NanYang in the hot summer and cold winter zone. The indoor environmental conditions was measured and the subjective questionairs has been done, and a seven-point thermal sensation scale was used to evaluate thermal sensation. The statistical method was used to analyse the data and the conclusions are as follows:
1. The population in the hot summer and cold winter region could take some measures to reduce the degree of discomfort and have a large potential of adaptation to climate. In naturally ventilated buildings, control over indoor thermal conditions can be obtained by using commonly available controls such as openable windows, fans and air-condition. Clothing is an important factor in achieving comfort at different temperatures. The mean clothing value was observed to be 0.28clo in summer and 1.41clo in winter respectively. The Clo value varies with the outdoor climate.