湖北省武汉二中广雅中学2018—2019学年八年级(下)段测数学试卷(二) 解析版

合集下载

2018-2019学年人教新版湖北省武汉市武昌区八校联考八年级第二学期期中数学试卷 含解析

2018-2019学年人教新版湖北省武汉市武昌区八校联考八年级第二学期期中数学试卷 含解析

2018-2019学年八年级第二学期期中数学测试卷一、选择题1是同类二次根式的是()A B C D2x的取值范围是()A.3x>B.3x…且0x≠C.3x…D.3x<且0x≠3.下列各命题都成立,而它们的逆命题不能成立的是()A.两直线平行,同位角相等B.全等三角形的对应角相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和4.下列各组数能构成勾股数的是()A.2B.12,16,20 C.13,14,15D.23,24,255.已知a,b,c是ABC∆的三边,且满足222()()0a b a b c---=,则ABC∆是() A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形或直角三角形6.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.有一组邻边相等、一个角是直角的四边形是正方形7.已知3y=+,则yx的值为()A.43B.43-C.34D.34-8.如图,在菱形ABCD中,13AB=,对角线24BD=,若过点C作CE AB⊥,垂足为E,则CE的长为()A .12013B .10C .12D .240139.如图,在ABC ∆中,AD 平分CAB ∠交BC 于点E .若90BDA ∠=︒,E 是AD 中点,2DE =,5AB =,则AC 的长为( )A .1B .43C .32 D .5310.凸四边形ABCD 的两条对角线和两条边的长度都为1,则四边形ABCD 中最大内角度数为( ) A .150︒B .135︒C .120︒D .105︒二、填空题(本大题共6小题,共18分) 11.0ab <,则2a b 化简结果是 . 12.计算:2748+= .13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,3PO =,则菱形ABCD 的周长是 .14.如图,在等边三角形ABC 中,6BC cm =,射线//AG BC ,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,点F 从点B 出发沿射线BC 以2/cm s 的速度运动.如果点E 、F 同时出发,设运动时间为()t s 当t = s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.15.若0x >,0y >且24x y +=,求22169x y +++的最小值 .16.如图,正方形ABCD 的边长为1,点F 在线段CE 上,且四边形BFED 为菱形,则CF 的长为 .三、解答题(本大题共8小题,共72分) 17.计算:(1)(12518)(458)+- (2)1(486)124+÷. 18.阅读下列材料,并解决相应问题:2(53)2(53)5353(53)(53)++==--+应用:用上述类似的方法化简下列各式: (176+(2)若a 2的小数部分,求3a的值. 19.如图,在77⨯网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系,使点(3,4)A 、(4,2)C ,则点B 的坐标为 ; (2)求图中格点ABC ∆的面积;(3)判断格点ABC ∆的形状,并说明理由.(4)在x 轴上有一点P ,使得PA PC +最小,则PA PC +的最小值是 .20.如图,正方形ABCD 中,点P ,Q 分别为AD ,CD 边上的点,且DQ CP =,连接BQ ,AP .求证:BQ AP =.21.如图,在四边形ABCD 中,//AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.22.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,Q 2()20a b a ab b =-+…,∴2a b ab +…,当且仅当a b =时取等号.请利用上述结论解决以下问题: (1)当0x >时,1x x +的最小值为 ;当0x <时,1x x+的最大值为 . (2)当0x >时,求2316x x y x++=的最小值.(3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB ∆、COD ∆的面积分别为4和9,求四边形ABCD 面积的最小值.23.如图,ABCAC=,D是BC边上一动点,//DF ABDE AC交AB于E,//AB=,8∆中6交AC于F.(1)若10BC=,判断四边形AEDF的形状并证明;(2)在(1)的条件下,若四边形AEDF是正方形,求BD的长;(3)若60∠=︒,四边形AEDF是菱形,则BD=.BAC24.已知O为坐标原点,A,B分别在y轴、x轴正半轴上,D是x轴正半轴上一动点,AD DE=,ADEαAC BC=.∠=,矩形AOBC的面积为32且2α=︒时,直线CE交x轴于点F,求证:F为OB中点;(1)如图1,当90α=︒时,若D是OB中点,求E点坐标;(2)如图2,当60α=︒时,Q是AE的中点,求D点运动过程中BQ的最小值.(3)如图3,当120参考答案一、选择题1是同类二次根式的是( )A BC D【分析】可先将各二次根式化为最简,然后根据同类二次根式的被开方数相同即可作出判断.解:A =不是同类二次根式,故本选项错误;B =不是同类二次根式,故本选项错误;C =,与是同类二次根式,故本选项正确;D 不是同类二次根式,故本选项错误.故选:C .2x 的取值范围是( ) A .3x >B .3x …且0x ≠C .3x …D .3x <且0x ≠【分析】根据二次根式有意义的条件和分式有意义的条件得出30x -…且0x ≠,求出即可.30x -…且0x ≠, 解得:3x …且0x ≠, 故选:B .3.下列各命题都成立,而它们的逆命题不能成立的是( ) A .两直线平行,同位角相等 B .全等三角形的对应角相等 C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 解:A 、逆命题是同位角相等,两直线平行,成立;B 、逆命题是对应角相等的三角形是全等三角形,不成立;C 、逆命题是菱形是四边相等的四边形,成立;D 、逆命题是一条边的平方等于另外两条边的平方和的三角形是直角三角形,成立.故选:B .4.下列各组数能构成勾股数的是( )A .2B .12,16,20C .13,14,15D .23,24,25【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.解:A 、2222+=,但不是正整数,故选项错误; B 、222121620+=,能构成直角三角形,是整数,故选项正确; C 、222111()()()453+≠,不能构成直角三角形,故选项错误;D 、222222(3)(4)(5)+≠,不能构成直角三角形,故选项错误.故选:B .5.已知a ,b ,c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形【分析】由222()()0a b a b c ---=,可得:0a b -=,或2220a b c --=,进而可得a b =或222a b c =+,进而判断ABC ∆的形状为等腰三角形或直角三角形.解:222()()0a b a b c ---=Q , 0a b ∴-=,或2220a b c --=,即a b =或222a b c =+,ABC ∴∆的形状为等腰三角形或直角三角形.故选:D .6.下列说法不正确的是( ) A .一组邻边相等的矩形是正方形 B .对角线互相垂直的矩形是正方形 C .对角线相等的菱形是正方形D .有一组邻边相等、一个角是直角的四边形是正方形 【分析】利用正方形的判定方法分别判断得出即可.解:A 、一组邻边相等的矩形是正方形,说法正确,不合题意; B 、对角线互相垂直的矩形是正方形,说法正确,不合题意; C 、对角线相等的菱形是正方形,说法正确,不合题意;D 、有一组邻边相等、一个角是直角的平行四边形是正方形,原说法错误,符合题意;故选:D .7.已知443y x x =-+-+,则yx的值为( ) A .43B .43-C .34 D .34-【分析】根据二次根式有意义的条件列出不等式,解不等式求出x 、y 的值,计算即可.解:由题意得,40x -…,40x -…, 解得4x =, 则3y =, 则34y x =, 故选:C .8.如图,在菱形ABCD 中,13AB =,对角线24BD =,若过点C 作CE AB ⊥,垂足为E ,则CE 的长为( )A .12013B .10C .12D .24013【分析】连接AC 交BD 于O ,由菱形的性质得出12OA OC AC ==,1122OB OD BD ===,AC BD ⊥,由勾股定理求出OA ,得出AC ,再由菱形面积的两种计算方法,即可求出CE 的长.解:连接AC 交BD 于O ,如图所示: Q 四边形ABCD 是菱形, 12OA OC AC ∴==,1122OB OD BD ===,AC BD ⊥,90AOB ∴∠=︒,222213125OA AB OB ∴=-=-=,10AC ∴=,Q 菱形的面积12AB CE AC BD ==g g , 即11310242CE ⨯=⨯⨯, 解得:12013CE =. 故选:A .9.如图,在ABC ∆中,AD 平分CAB ∠交BC 于点E .若90BDA ∠=︒,E 是AD 中点,2DE =,5AB =,则AC 的长为( )A .1B .43C .32 D .53【分析】延长AC 、BD 交于点F ,过点D 作//DG AF 交BC 于G ,证明()DGE ACE AAS ∆≅∆,得出DG AC =,证出F ABD ∠=∠,得出5AF AB ==,BD FD =,证明DG 是BCF ∆的中位线,得出2CF DG =,得出33AF AC CF DG AC =+==,即可得出答案.解:延长AC 、BD 交于点F ,过点D 作//DG AF 交BC 于G ,如图所示: 则DGE ACE ∠=∠, E Q 是AD 中点, DE AE ∴=,在DGE ∆和ACE ∆中,DGE ACE DEG AEC DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DGE ACE AAS ∴∆≅∆, DG AC ∴=,AD Q 平分CAB ∠, BAD FAD ∴∠=∠, 90BDA ∠=︒Q ,AD BF ∴⊥,90FDA ∠=︒, F ABD ∴∠=∠, 5AF AB ∴==,BD FD ∴=, //DG AF Q ,DG ∴是BCF ∆的中位线, 2CF DG ∴=,33AF AC CF DG AC ∴=+==,1533AC DG AF ∴===; 故选:D .10.凸四边形ABCD 的两条对角线和两条边的长度都为1,则四边形ABCD 中最大内角度数为( ) A .150︒B .135︒C .120︒D .105︒【分析】首先,这两条相等的边不可能是对边,如果两条对边相等,则对角线至少有一条大于这两条边.也就是说这两条相等的边是邻边(设为AB 、)AC ,加上连接这两条边的那条对角线()BC ,就是一个等边三角形()ABC ;当另一条对角线()AD 垂直于对角线()BC 时,BDC ∠是最大内角150︒;当AD 不垂直于BC 时,BDC ∠介于150︒到90︒之间,而ABD ∠和ACD ∠都介于75︒到150︒之间.所以最大的内角是150︒.解:如图:AB AC BC ==Q ,ABC ∴∆是等边三角形,当另一条对角线AD BC ⊥时,150BDC ∠=︒;当AD 不垂直于BC 时,BDC ∠介于150︒到90︒之间,而ABD ∠和ACD ∠都介于75︒到150︒之间.所以最大的内角是150︒.故选:A .二、填空题(本大题共6小题,共18分)11.0ab <2a b 化简结果是 b - .2||a a =,利用0ab <2a b解:0ab <Q ,2a b0a ∴<,0b >, ∴2a b b =-,故答案为:b -.122748+= 73 . 【分析】根据二次根式的运算法则即可求出答案. 解:原式334373=+=,故答案为:313.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,3PO =,则菱形ABCD 的周长是 24 .【分析】根据菱形的性质可得AC BD ⊥,AB BC CD AD ===,再根据直角三角形的性质可得2AB OP =,进而得到AB 长,然后可算出菱形ABCD 的周长.解:Q 四边形ABCD 是菱形,AC BD ∴⊥,AB BC CD AD ===,Q 点P 是AB 的中点,2AB OP ∴=,3PO =Q ,6AB ∴=,∴菱形ABCD 的周长是:4624⨯=,故答案为:2414.如图,在等边三角形ABC 中,6BC cm =,射线//AG BC ,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,点F 从点B 出发沿射线BC 以2/cm s 的速度运动.如果点E 、F 同时出发,设运动时间为()t s 当t = 2或6 s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【分析】分别从当点F 在C 的左侧时与当点F 在C 的右侧时去分析,由当AE CF =时,以A 、C 、E 、F 为顶点四边形是平行四边形,可得方程,解方程即可求得答案. 解:①当点F 在C 的左侧时,根据题意得:AE tcm =,2BF tcm =,则62()CF BC BF t cm =-=-,//AG BC Q ,∴当AE CF =时,四边形AECF 是平行四边形,即62t t =-,解得:2t =;②当点F 在C 的右侧时,根据题意得:AE tcm =,2BF tcm =,则26()CF BF BC t cm =-=-,//AG BC Q ,∴当AE CF =时,四边形AEFC 是平行四边形,即26t t =-,解得:6t =;综上可得:当2t =或6s 时,以A 、C 、E 、F 为顶点四边形是平行四边形. 故答案为:2或6.15.若0x >,0y >且24x y +=,求22169x y +++的最小值 25 . 【分析】将代数式22169x y +++转化为2222(0)(04)(24)(03)x x -+-+-+-,理解为(,0)A x 到(0,4)B 、(24,3)C 的距离的最小值,利用勾股定理解答即可.解:24x y +=Q ,24y x ∴=-,原式可化为:222222216(24)9(0)(04)(24)(03)x x x x +=-+=-+-+-+-, 即可理解为(,0)A x 到(0,4)B 、(24,3)C 的距离的最小值.如图:22169x y +++的最小值即B C '的长度.2272425B C '=+=Q ,∴22169x y +++的最小值为25.故答案为:25.16.如图,正方形ABCD 的边长为1,点F 在线段CE 上,且四边形BFED 为菱形,则CF 的长为 622- .【分析】过点F 作FG BC ⊥交BC 延长线于G ,根据正方形性质可得:2BD =,45CBD ∠=︒,再由菱形性质可得://CE BD ,2BF BD ==,45FCG CBD ∠=∠=︒,因此CFG ∆是等腰直角三角形,设CG FG m ==,则2CF m =,由勾股定理可列方程求解. 解:如图,过点F 作FG BC ⊥交BC 延长线于G ,则90CGF ∠=︒Q 四边形ABCD 是正方形1BC CD ∴==,90BCD ∠=︒,45CBD ∠=︒,2BD ∴=Q 四边形BFED 为菱形//CE BD ∴,2BF BD ==45FCG CBD ∴∠=∠=︒,CFG ∴∆是等腰直角三角形,设CG FG m ==,则2CF m =1BG m ∴=+,Q 在Rt BFG ∆中,222BG FG BF +=222(1)(2)m m ∴++=,解得:1132m +=-(舍去),2312m -=, 3162222CF --∴=⨯=. 故答案为:622-.三、解答题(本大题共8小题,共72分)17.计算:(1)+-(2)+÷. 【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.解:(1)原式=+-+=+(2)原式=÷2=+. 18.阅读下列材料,并解决相应问题:==应用:用上述类似的方法化简下列各式:(1(2)若a 的小数部分,求3a 的值. 【分析】(1)直接找出分母有理化因式进而化简求出答案;(2)直接表示出a 的值,进而化简求出答案.解:(1==-;(2)由题意可得:1a =,33a ==. 19.如图,在77⨯网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系,使点(3,4)A 、(4,2)C ,则点B 的坐标为 (0,0) ;(2)求图中格点ABC ∆的面积;(3)判断格点ABC ∆的形状,并说明理由.(4)在x轴上有一点P,使得PA PC+最小,则PA PC+的最小值是.【分析】(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断;(4)作点C关于x轴的对称点C'连接AC'交x轴与点P,连接PC,依据轴对称图形的性质可得到PC PC=',然后依据两点之间线段最短可知当点A,P,C'在一条直线上时,AP PC+有最小值.解:(1)B的坐标是(0,0).故答案是(0,0);(2)111444234125222ABCS∆=⨯-⨯⨯-⨯⨯-⨯⨯=,(3)222125AC=+=Q,2222420BC=+=,2224325AB=+=,222AC BC AB∴+=,ABC∴∆是直角三角形.(4)如图1所示:作点C关于x轴的对称点C'连接AC'交x轴与点P,连接PC.Q点C与点C'关于x轴对称,PC PC∴='.AP PC AP PC∴+=+.∴当A,P,C'在一条直线上时,AP PC+有最小值,最小值为AC'的长.226137AC'=+=Q.AP PC∴+的最小值为37.故答案为:17.20.如图,正方形ABCD中,点P,Q分别为AD,CD边上的点,且DQ CP=,连接BQ,AP.求证:BQ AP=.【分析】直接利用正方形的性质得出AQ DP=,再利用全等三角形的判定与性质得出答案.【解答】证明:Q四边形ABCD是正方形,90BAQ ADP∴∠=∠=︒,AB DA=,DQ CP=Q,AQ DP∴=,在ABQ∆和DAP∆中,AQ DPBAQ ADPAB AD=⎧⎪∠=∠⎨⎪=⎩,()ABQ DAP SAS∴∆≅∆,BQ AP∴=.21.如图,在四边形ABCD中,//AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD∠,过点C作CE AB⊥交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求OE的长.【分析】(1)先判断出OAB DCA ∠=∠,进而判断出DAC DAC ∠=∠,得出CD AD AB ==,即可得出结论;(2)先判断出OE OA OC ==,再求出1OB =,利用勾股定理求出OA ,即可得出结论. 解:(1)//AB CD Q ,OAB DCA ∴∠=∠,AC Q 为DAB ∠的平分线,OAB DAC ∴∠=∠,DCA DAC ∴∠=∠,CD AD AB ∴==,//AB CD Q ,∴四边形ABCD 是平行四边形,AD AB =Q ,ABCD ∴Y 是菱形;(2)Q 四边形ABCD 是菱形,OA OC ∴=,BD AC ⊥,CE AB ⊥Q ,OE OA OC ∴==,2BD =Q ,112OB BD ∴==,在Rt AOB ∆中,AB =,1OB =,2OA ∴==,2OE OA ∴==.22.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,Q 20a b =-+…,∴a b +…,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为 2 ;当0x <时,1x x+的最大值为 . (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB ∆、COD ∆的面积分别为4和9,求四边形ABCD 面积的最小值.【分析】(1)当0x >时,按照公式a b ab +…(当且仅当a b =时取等号)来计算即可;0x <时,由于0x ->,10x->,则也可以按照公式2a b ab +…a b =时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设BOC S x ∆=,已知4AOB S ∆=,9COD S ∆=,则由等高三角形可知:::BOC COD AOB AOD S S S S ∆∆∆∆=,用含x 的式子表示出AOD S ∆,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.解:(1)当0x >时,1122x x x x+=g …; 当0x <时,11()x x x x+=--- 112()()2x x x x----=Q g … 1()2x x∴----… ∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为2-. 故答案为:2;2-;(2)由2316163x x y x x x++==++, 0x >Q , ∴16163311y x x x x=+++=g …, 当16x x=时,最小值为11. (3)设BOC S x ∆=,已知4AOB S ∆=,9COD S ∆=则由等高三角形可知:::BOC COD AOB AOD S S S S ∆∆∆∆=:94:AOD x S ∆∴= 36:AOD S x∆∴= ∴四边形ABCD 面积36364913225x x x x=++++=g … 当且仅当6x =时取等号,即四边形ABCD 面积的最小值为25.23.如图,ABC ∆中6AB =,8AC =,D 是BC 边上一动点,//DE AC 交AB 于E ,//DF AB 交AC 于F .(1)若10BC =,判断四边形AEDF 的形状并证明;(2)在(1)的条件下,若四边形AEDF 是正方形,求BD 的长;(3)若60BAC ∠=︒,四边形AEDF 是菱形,则BD = 6137.【分析】(1)首先判定平行四边形,然后证明一个内角为90︒,从而判定矩形;(2)首先根据面积法求得DE 的长,然后利用勾股定理求得BD 的长即可;(3)根据面积求得:3:4BD CD =,然后求得BD 的长.解:(1)AEDF 是矩形,理由如下2222226810AB AC BC +=+==Q ,由勾股定理得90BAC ∠=︒//DE AF Q 、//DF AE ,∴四边形AEDF 是平行四边形,又90BAC ∠=︒Q ,∴四边形AEDF 是矩形;(2)由(1)得,当DE DF =时,四边形AEDF 是正方形.设DE DF x ==,建立面积方程11()22ABC S AC BD DE AB AC ∆==+g ; 即:1168(68)22x ⨯⨯=⨯+, 解得:247x =,247DE AE ∴==,187BE AB AE =-=, 在Rt DEB ∆中,由勾股定理得:2222182430()()777BD BE DE =+=+=; (3)依题意得,当AD 是BAC ∠角平分线时,四边形AEDF 是菱形.点B 作AC 的垂线段交于点G ,又60BAG ∠=︒Q ,3AG ∴=,5CG =,33BG =,由勾股定理得:213BC =,AD Q 平分BAC ∠,:::ABD ACD S S AB AC BD CD ∴==▲▲,即:3:4BD CD =.∴6137BD =, 故答案为:6137. 24.已知O 为坐标原点,A ,B 分别在y 轴、x 轴正半轴上,D 是x 轴正半轴上一动点,AD DE =,ADE α∠=,矩形AOBC 的面积为32且2AC BC =.(1)如图1,当90α=︒时,直线CE 交x 轴于点F ,求证:F 为OB 中点;(2)如图2,当60α=︒时,若D 是OB 中点,求E 点坐标;(3)如图3,当120α=︒时,Q 是AE 的中点,求D 点运动过程中BQ 的最小值.【分析】(1)由题意得出4BC =,8AC =,过点E 作MN AC ⊥交AC 于点M 、交OB 于点N ,则四边形AONM 为矩形、四边形MNBC 为矩形,证明()END DOA AAS ∆≅∆,得出4OA DN ==,EN OD =,设OD EN x ==,则4ME MN EN x =-=-,844MC AC AM AC ON AC OD DN x x =-=-=--=--=-,证明CME ∆是等腰直角三角形,得出45MCE ∠=︒,证出CBF ∆是等腰直角三角形,得出4BC BF ==,证出OF BF =即可;(2)证明AOD∆是等腰直角三角形,得出AD=,连接OE,证明ADE∆为等边三角形,得出EA ED=,证明OE垂直平分AD,由等腰三角形的性质得出45AOE DOE∠=∠=︒,由勾股定理得出OE=,即可得出答案;(3)连接DQ、OQ,由等腰三角形的性质得出DQ AE⊥,证明A、O、D、Q四点共圆,由等腰三角形的性质得出30DAQ∠=︒,由圆周角定理得出30QOD∠=︒,得出Q点的运动轨迹为与x轴的一个夹角为30︒的射线,当BQ MN⊥时,BQ有最小值,由含30︒角的直角三角形的性质即可得出答案.【解答】(1)证明:Q矩形AOBC的面积为32且2AC BC=,22232AOBCS AC BC BC BC BC∴=⋅=⋅==矩形,4BC∴=,8AC∴=,过点E作MN AC⊥交AC于点M、交OB于点N,如图1所示:则四边形AONM为矩形、四边形MNBC为矩形,4OA MN BC∴===,8AM CM ON BN AC OB+=+===,90END DOA∠=∠=︒,90ADE∠=︒Q,90ADO EDN∴∠+∠=︒,90ADO DAO∠+∠=︒Q,EDN DAO∴∠=∠,在END∆和DOA∆中,EDN DAOEND DOADE AD∠=∠⎧⎪∠=∠⎨⎪=⎩,()END DOA AAS∴∆≅∆,4OA DN∴==,EN OD=,设OD EN x==,则4ME MN EN x=-=-,844MC AC AM AC ON AC OD DN x x=-=-=--=--=-,ME MC∴=,CME∴∆是等腰直角三角形,45MCE∴∠=︒,∴∠=︒,FCB45∴∆是等腰直角三角形,CBF∴==,BC BF4OF OB BF∴=-=-=,844∴=,OF BF∴为OB中点;F(2)解:DQ是OB中点,∴===,OB OA OD228∴==,4OA OD∴∆是等腰直角三角形,AODAD∴=连接OE,如图2所示:=Q,60AD DE∠=︒ADE∴∆为等边三角形,ADE∴=,EA EDQ,=AO DO∴垂直平分AD,OE∴∠=∠=︒,OE==,45AOE DOE∴2E=+,E∴点坐标为(2+,2+,(3)解:连接DQ、OQ,如图3所示:Q,Q是AE的中点,AD DE=∴⊥,DQ AEQ,⊥AO OD∴∠+∠=︒,AOD AOD180∴、O、D、Q四点共圆,A=,120Q,AD DE∠=︒ADE∴∠=∠=︒,30DAQ DEA30QOD DAQ ∴∠=∠=︒, Q ∴点的运动轨迹为与x 轴的一个夹角为30︒的射线, ∴当BQ MN ⊥时,BQ 有最小值, 118422BQ OB ==⨯=.。

2018-2019年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)(解析版)

2018-2019年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)(解析版)

2018-2019学年二中广雅中学八年级(下)段测数学试卷(六)一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是()A.B.C.D.2.若函数y=(3﹣m)是正比例函数,则m的值是()A.﹣3B.3C.±3D.﹣13.下列计算,正确的是()A.(﹣1)=1B.=C.﹣=1D.=3 4.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣x+b的图象上的点.y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.以上结论都有可能6.如图,在▱ABCD中,AC、BD相交于点O,若BD=10,AC=6,则AB的取值范围为()A.4<AB<16B.4<AB<10C.2<AB<8D.3<AB<57.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是()A.m<4B.m<﹣C.﹣<m<4D.无解8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.10.正方形ABCD中,E、F分别是AB、CB上的点,且AE=CF,CE交AF于M,∠CMF=45°,则的值为()A.B.C.D.二.填空题(共6小题)11.化简:=.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为.15.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是.16.在同一平面直角坐标系中,直线y=kx﹣k与函数y=的图象恰好有三个不同的交点,则k的取值范围是.三.解答题(共8小题)17.计算:(1)(2)18.已知一次函数的图象过M(3,5),N(﹣4,﹣9).(1)求这个一次函数的解析式;(2)将直线MN向上平移1个单位,得直线l,l的解析式为(填空).19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.20.已知点A(8,0)及在第四象限的动点P(x,y),且x+y=10.设△OP A的面积为S.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;(2)若AB=8,AD=4,求四边形BEDF的面积.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP =3OQ,求正比例函数的解析式.参考答案与试题解析一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案,即对于每个自变量x的值,函数y都有唯一确定的值与其对应.函数的意义反映在图象上简单的判断方法是:作垂直于x轴的直线,在左右平移的过程中与函数图象只会有一个交点.【解答】解:C图象作垂直于x轴的直线,在左右平移的过程中与函数图象会有无数个交点.故选:C.2.若函数y=(3﹣m)是正比例函数,则m的值是()A.﹣3B.3C.±3D.﹣1【分析】根据正比例函数的定义解答.【解答】解:∵函数y=(3﹣m)是正比例函数,∴m2﹣8=1,解得:mm1=3,m2=﹣3;且3﹣m≠0,∴m=﹣3.故选:A.3.下列计算,正确的是()A.(﹣1)=1B.=C.﹣=1D.=3【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【解答】解:A.(﹣1)=2﹣,此选项错误;B.==,此选项错误;C.与不是同类二次根式,不能合并,此选项错误;D.=|﹣3|=3,此选项正确;故选:D.4.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直【分析】根据矩形、菱形的性质逐个判断即可.【解答】解:菱形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线互相垂直,矩形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线相等;即菱形具有而矩形不一定具有的特征是对角线互相垂直,故选:D.5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣x+b的图象上的点.y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.以上结论都有可能【分析】先根据一次函数y=﹣x+b中k=﹣1判断出函数的增减性,再根据﹣<﹣进行解答即可.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,∴y随x的增大而减小,∵﹣<﹣,∴y1>y2.故选:B.6.如图,在▱ABCD中,AC、BD相交于点O,若BD=10,AC=6,则AB的取值范围为()A.4<AB<16B.4<AB<10C.2<AB<8D.3<AB<5【分析】由在▱ABCD中,对角线AC与BD相交于点O,若BD=10,AC=6,根据平行四边形的对角线互相平分,可求得OA与OB的长,然后由三角形三边关系,求得答案.【解答】解:∵在▱ABCD中,对角线AC与BD相交于点O,BD=10,AC=6,∴OA=AC=3,OB=BD=5,∴边长AB的取值范围是:2<AB<8.故选:C.7.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是()A.m<4B.m<﹣C.﹣<m<4D.无解【分析】若函数y=kx+b的图象过一、二、四象限,则此函数的k<0,b>0,据此求解.【解答】解:∵函数y=(m﹣4)x+2m+1的图象过一、二、四象限,∴m﹣4<0,2m+1>0解得﹣<m<4.故选:C.8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选:C.9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.10.正方形ABCD中,E、F分别是AB、CB上的点,且AE=CF,CE交AF于M,∠CMF=45°,则的值为()A.B.C.D.【分析】根据正方形的性质得到AB=BC,等量代换得到BE=BF,根据全等三角形的性质得到AM=CM,EM=FM,推出点M在点A和点C的对称轴上,连接BD,过M作MG⊥BC于G,则点M在BD上,根据等腰三角形的判定得到BE=BM,设BG=GM=x,得到BE=BM=x,根据相似三角形的性质即可得到结论.【解答】解:∵在正方形ABCD中,∴AB=BC,∵AE=CF,∴BE=BF,在△ABF与△CBE中,,∴△ABF≌△CBE(SAS),∴∠BAF=∠BCE,在△AEM与△CFM中,,∴△AEM≌△CFM(AAS),∴AM=CM,EM=FM,∴点M在点A和点C的对称轴上,连接BD,过M作MG⊥BC于G,则点M在BD上,∴∠ABM=∠CBM=45°,∵∠AME=∠CMF=45°,∴∠AME=∠CBM,∴∠BEM=∠BAM+∠AME=∠BME=∠CBM+∠BCM,∴BE=BM,∵MG⊥BC,∴BG=GM,设BG=GM=x,∴BE=BM=x,∵MG∥BE,∴△CMG∽△CEB,∴==,∴==+1,故选:A.二.填空题(共6小题)11.化简:=.【分析】原式被开方数变形后,开方即可得到结果.【解答】解:原式===.故答案为:.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为105°.【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为:105°.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为﹣2<x<﹣1.【分析】解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.【解答】解:根据题意得到y=kx+b与y=2x交点为A(﹣1,﹣2),解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,又B(﹣2,0),此时自变量x的取值范围,是﹣2<x<﹣1.即不等式2x<kx+b<0的解集为:﹣2<x<﹣1.故答案为:﹣2<x<﹣1.15.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是3.【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,设DN=EN =x,则CN=8﹣x,在Rt△ENC中,EN2=CN2+EC2,根据勾股定理就可以列出方程,从而解出CN的长.【解答】解:过点M作MH⊥CD于点H.连接DE.根据题意可知MN垂直平分DE,易证∠EDC=∠MHN,MH=AD,∵四边形ABCD是正方形,∴MH=AD=CD,∵∠MHN=∠C=90°,∴△MHN≌△DCE(ASA),∴DE=MN=4,在Rt△DEC中,CE===4,设DN=EN=x,则CN=8﹣x,在Rt△ENC中,EN2=CN2+EC2,∴x2=(8﹣x)2+42,解得x=5,∴CN=8﹣x=3.故答案为3.16.在同一平面直角坐标系中,直线y=kx﹣k与函数y=的图象恰好有三个不同的交点,则k的取值范围是﹣2<k<﹣.【分析】根据题意把y=kx﹣k分别代入各个分段函数解析式,用k表示出x的值,再根据x的取值范围确定k的范围.【解答】解:直线y=kx﹣k与函数y=﹣2x﹣6在x<﹣4时有交点,则x=<﹣4,解得﹣2<k<﹣;直线y=kx﹣k与函数y=2在﹣4≤x<1时有交点,则k≤﹣;直线y=kx﹣k与函数y=﹣2x+4在x≥1时有交点,则x=<﹣4,解得k>﹣2.因此k的取值范围是﹣2<k<﹣.故答案为:﹣2<k<﹣.三.解答题(共8小题)17.计算:(1)(2)【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)原式=4﹣2+12=14(2)原式=2﹣18.已知一次函数的图象过M(3,5),N(﹣4,﹣9).(1)求这个一次函数的解析式;(2)将直线MN向上平移1个单位,得直线l,l的解析式为y=2x(填空).【分析】(1)利用待定系数法求一次函数解析式;(2)根据直线平移的规律在解析式y=2x﹣1的右边加上1即可.【解答】解:(1)设一次函数解析式为y=kx+b,把M(3,5),N(﹣4,﹣9)代入得,解得,所以一次函数解析式为y=2x﹣1;(2)将直线MN向上平移1个单位,得直线l,则l的解析式为y=2x﹣1+1=2x.故答案为y=2x.19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【分析】(1)设购买B种树苗x棵,则购买A种树苗(21﹣x)棵,根据“总费用=A种树苗的单价×购买A种树苗棵树+B种树苗的单价×购买B种树苗棵树”即可得出y关于x的函数关系式;(2)根据购买B种树苗的数量少于A种树苗的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【解答】解:(1)设购买B种树苗x棵,则购买A种树苗(21﹣x)棵,由已知得:y=70x+90(21﹣x)=﹣20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21﹣x,解得:x<.∵y=﹣20x+1890中﹣20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种树苗11棵,B种树苗10棵,此时所需费用为1690元.20.已知点A(8,0)及在第四象限的动点P(x,y),且x+y=10.设△OP A的面积为S.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.【分析】(1)首先把x+y=10,变形成y=10﹣x,再利用三角形的面积求法:底×高÷2=S,可以得到S关于x的函数表达式;P在第四象限,故x>0,y>0,可得到x的取值范围;(2)利用描点法画出函数图象即可.【解答】解:(1)∵x+y=10,∴y=﹣x+10,∴S=×8×|y|=4(x﹣10)=4x﹣40,∵第四象限的动点P(x,y),∴x>0,y<0,∴,∴x>10,即S=4x﹣40(x>10);(2)∵解析式为S=4x﹣40(x>10),∴函数图象经过点(10,0)(15,20)(但不包括(10,0)的射线).图象如图所示21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;(2)若AB=8,AD=4,求四边形BEDF的面积.【分析】(1)根据邻边相等的平行四边形为菱形进行证明;(2)根据菱形面积公式底×高进行计算.【解答】解:(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC,根据题意可知△BCD≌△BDG,∴∠DBG=∠DBC,∴∠EDB=∠EBD,∴DE=BE,∵AD∥BC,DF∥BE,∴四边形BEDF为平行四边形,又∵DE=BE,∴四边形BEDF为菱形;(2)设菱形BEDF的边长为x,则AE=DE﹣AD=x﹣4,在Rt△AEB中,BE2=AE2+AB2,即x2=(x﹣4)2+82,解得x=10,∴菱形BEDF的面积=DE•AB=10×8=80.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.【分析】(1)解析式联立得到2x+4=﹣x+m,解得x=(m﹣4),根据题意得到(m ﹣4)<0,解得即可;(2)分三种情况讨论,根据正方形的性质三角形全等的性质,三角形相似的性质即可求得M,N两点的坐标.【解答】解:(1)联立y=2x+4与y=﹣x+m,得2x+4=﹣x+m,解得x=(m﹣4),∵交点在第二象限,∴(m﹣4)<0,∴m<4;(2)当x=0时,y=2x+4=4,∴A(0,4),当y=0时,0=2x+4,x=﹣2,∴B(﹣2,0),∴OA=4,OB=2.如图1,过点Q作QH⊥x轴于H,∵MN∥AB,∴△NMO∽△BAO,∴==,设ON=a,则OM=2a,∵∠MNQ=90°,∴∠QNH+∠MNO=∠MNO+∠NMO=90°,∴∠QNH=∠NMO,在△QNH和△NMO中∴△QNH≌△NMO(AAS),∴QH=ON=a,HN=OM=2a,又∵△BQH∽△BAO,∴==,∴BH=a,∵OB=BH+HN+ON,∴2=a+2a+a,解得a=,∴M(0,),N(﹣,0);如图2,过点P作PH⊥x轴于H,易证△PNH∽△BAO,∴==,设PH=b,则NH=2b,同理证得△PNH≌△NMO,∴PH=ON=b,HN=OM=2b,∴OH=HN﹣OH=b,又∵△BPH∽△BAO,∴==,∴BH=b,∵OB=BH+OH,∴2=b+b,解得b=,∴M(0,﹣),N(,0);如图3,过点P作PH⊥x轴于H,PE⊥y轴于E,QF⊥y轴于F,易证△P AE∽△BAO,∴==,设PE=c,则AE=2c,同理证得△PNH≌△PME,∴PH=PE=OE=c,则AE=2c,∵OA=AE+OE,∴4=2c+c,解得c=,∵△MQF≌△PME,∴MF=PE=OE,EM=FQ,∴EM=OF=FQ,设EM=OF=FQ=m,则Q(﹣m,﹣m),代入y=2x+4中,得﹣m =﹣2m+4,解得m=4,∴NO=NH+OH=,∴N(﹣,0),∵OF=m=4,∴M(0,﹣4).综上所述M(0,),N(﹣,0)或M(0,﹣),N(,0)或M(0,﹣4),N(﹣,0);.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.【分析】(1)将△ADE绕点D逆时针旋转90°得△CDM,证得∠CDE=∠ADM,得出∠E=∠M=180°﹣2∠DFM,可得出∠CDF=90°﹣∠DFM,则结论得证;(2)将△ADE绕点D逆时针旋转90°得△CDM,过点M作MH⊥DF于H.设BF=FC =x,则CD=2x,求出DF=x,证明△DFC∽△MFH,得出FM,AE=4x,则结论得证;(3)如图3﹣1中,取AD的中点N,连接GK,CK,当C、G、N三点共线时,CG最小.在图3﹣2中,证得四边形NCMD为平行四边形,得出CM=DN=AD,则答案可求出.【解答】(1)证明:如图1,将△ADE绕点D逆时针旋转90°得△CDM,∵∠DCB=∠DCM=90°,∴F、C、M三点共线,∵将△ADE绕点D逆时针旋转90°得△CDM,∴△ADE≌△CDM,∴∠E=∠M,∠EDA=∠CDM,∴∠CDE=∠ADM,∵∠CDE=2∠ADF,∴∠ADM=2∠ADF,∴∠FDM=∠ADF,∵正方形ABCD中AD∥BC,∴∠ADF=∠DFM=∠FDM,∴∠E=∠M=180°﹣2∠DFM,∵∠DCB=90°,∴∠CDF=90°﹣∠DFM,∴∠E=2∠CDF.(2)证明:如图2,将△ADE绕点D逆时针旋转90°得△CDM,作MH⊥DF于H.∵∠DCF=∠DCM=90°,∴F、C、M三点共线,过点M作MH⊥DF于H.∵若F是BC中点,设BF=FC=x,则CD=2x,在Rt△FDC中,DF==x,由(1)得,∠DFM=∠FDM,∴DM=FM,又∵HM⊥DF,∴FH=DF=x,∵∠DFC=∠MFH,∠DCB=∠MHF=90°,∴△DFC∽△MFH,∴,∴FM=x,∴CM=AE=FM﹣FC=x,∵DE=DM=FM=x,∴AE+DE=x+x=4x,∵CD=AD=2x,∴AE+DE=2AD=4x.(3)解:如图3﹣1中,取AD的中点K.∵AG⊥DF于点G,∴∠AGD=90°,∵AK=DK,∴GK=AD,∵CG≥CK﹣GK,∴当C、G、N三点共线时,CG最小.如图3﹣2中,当C、G、N共线时,将△ADE绕点D逆时针旋转90°得△CDM,∵∠DCF=∠DCM=90°,∴F、C、M三点共线,∵∠AGD=90°,N为AD中点,∴AN=NG=ND,∴∠NGD=∠ADF,由(1)∠ADF=∠FDM,∴∠NGD=∠FDM,∴DM∥NC,∵正方形ABCD中AD∥BC,∴四边形NCMD为平行四边形,∴CM=DN=AD,∵CM=AE,∴AE=AD=AB,∴AE:AB=1:2.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP =3OQ,求正比例函数的解析式.【分析】(1)分别求出点A、B的坐标,进而得出AB的长,再根据三角形的面积公式解答即可;(2)连接OD,过点D作DH⊥x轴于H,易证△AOB∽△OHD,根据相似三角形的性质求出点D的坐标,再利用待定系数法求解即可;(3)过点P作PM⊥x轴于M,点Q作QN⊥x轴于N,用k的代数式分别表示出OM、ON;由OP=3OQ可得ON=3OM,进而得出关于k的一元一次方程,求出k的值,问题得以解决.【解答】解:(1)∵直线AB解析式为y=﹣3x+3,∴A(0,3),B(1,0),∴OA=3,OB=1,∴AB=,∵S△AOB=OA•OB=AB•OC,∴OC==;(2)连接OD,过点D作DH⊥x轴于H,∵点O与点D关于AB对称,∴AB垂直平分OD,由(1)OC=,∴OD=2OC=,∵△AOB∽△OCB,△OCB∽△OHD,∴△AOB∽△OHD,∴,∴DH=,OH=,∴D(,).设直线BD解析式为y=kx+b,∵B(1,0),D(,),∴,解得,∴直线BD解析式为y=3x﹣3.(3)如图,过点P作PM⊥x轴于M,点Q作QN⊥x轴于N.∵正比例函数y=kx与直线BD交于P,∴kx=3x﹣3,解得x=,∴OM=.∵正比例函数y=kx与直线AB交于Q,∴kx=﹣3x+3,解得x=,∴ON=.∵OP=3OQ,∴ON=3OM,∴=3×,解得k=.∴正比例函数的解析式为.。

2018-2019学年湖北省武汉市武昌区八年级(下)期末数学试卷

2018-2019学年湖北省武汉市武昌区八年级(下)期末数学试卷

2018-2019学年湖北省武汉市武昌区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.(3分)若在实数范围内有意义,则x的取值范围()A.x≥2B.x≤2C.x>2D.x<22.(3分)下列二次根式是最简二次根式的是()A.B.C.D.3.(3分)点A(1,3)在一次函数y=2x+m的图象上,则m等于()A.﹣5B.5C.﹣1D.14.(3分)下表是校女子排球队12名队员的年龄分布:年龄(岁)13141516人数(名)1452则关于这12名队员的年龄的说法正确的是()A.中位数是14B.中位数是14.5C.众数是15D.众数是55.(3分)下列计算正确的是()A.B.3C.D.=6.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4或7.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是甲乙丙丁平均分94989896方差1 1.21 1.8()A.甲B.乙C.丙D.丁8.(3分)已知一次函数y=kx+b的图象与x轴交于点(2,0),且y随自变量x的增大而减小,则关于x的不等式kx+b≥0的解集是()A.x≥2B.x≤2C.x>2D.x<29.(3分)如图,在平面直角坐标系xOy中,一次函数y=﹣的图象与x轴、y轴分别相交于点A,B,点P的坐标为(m+1,m﹣1),且点P在△ABO的内部,则m的取值范围是()A.1<m<3B.1<m<5C.1≤m≤5D.m>1或m<3 10.(3分)如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB=4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.(3分)计算:=.12.(3分)直线y=﹣3x+1与x轴的交点坐标为.13.(3分)函数y=kx与y=6﹣x的图象如图所示,则k=.14.(3分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为分.15.(3分)将菱形ABCD以点E为中心,按顺时针方向分别旋转90°,180°,270°后形成如图所示的图形,若∠BCD=120°,AB=2,则图中阴影部分的面积为.16.(3分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为.三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)计算:(1);(2)(2﹣3)().18.(8分)如图,在▱ABCD中,点E,F分别在AB,CD上,且AE=CF,求证:四边形AECF是平行四边形.19.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成A,B,C,D四组,并绘制了统计图(部分).A组:t<0.5B组:0.5≤t<1C组:1≤t<1.5D组:t≥1.5请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.20.(8分)如图,在四边形ABCD中,∠B=∠C=90°,点E在BC上,AB=BE=1,ED =2,AD=.(1)求∠BED的度数;(2)直接写出四边形ABCD的面积为.21.(8分)如图,直线y=﹣x+b与x轴,y轴分别交于点A,点B,与函数y=kx的图象交于点M(1,2).(1)直接写出k,b的值和不等式0的解集;(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数y=﹣x+b和y=kx的图象于点C,点D.若2CD=OB,求点P的坐标.22.(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为元/件,乙种服装进价为元/件;(2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价a(0<a<20)元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?23.(10分)在矩形ABCD中,AB=6,AD=8,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角△AEF.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF⊥DF,求BE的长;(3)如图3,若动点E从点B出发,沿边BC向右运动,运动到点C停止,直接写出线段AF的中点Q的运动路径长.24.(12分)如图,在平面直角坐标系xoy中,直线y=﹣2x+4交y轴于点A,交x轴于点B.点C在y轴的负半轴上,且△ABC的面积为8,直线y=x和直线BC相交于点D.(1)求直线BC的解析式;(2)在线段OA上找一点F,使得∠AFD=∠ABO,线段DF与AB相交于点E.①求点E的坐标;②点P在y轴上,且∠PDF=45°,直接写出OP的长为.。

湖北省武昌八校2018-2019学年度第二学期八年级期中联考数学卷

湖北省武昌八校2018-2019学年度第二学期八年级期中联考数学卷

2018—2019学年度第二学期部分学校八年级期中联合测试 数学试卷考生注意:1.满分120分,考试用时120分钟.2.全部答案必须在答题卡上完成,答在其它位置上无效.一、选择题(本大题共10小题,共30分) 1.下列二次根式中,与是同类二次根式的是( )A. B. C. D.2.二次根式中x 的取值范围是( )A.B. 且C.D.且3.下列命题中逆命题不成立的是( )A. 两直线平行,同位角相等B. 全等三角形的对应角相等C. 四边相等的四边形是菱形D. 直角三角形中,斜边的平方等于两直角边的平方和 4.下列各组数能构成勾股数的是( )A. 2,,B. 12,16,20C.,,D.,,5.已知c b a ,,是ABC ∆的三边,且满足0))(222=---c b a b a (,则ABC ∆是( ) A. 直角三角形B.等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形6.下列说法不正确的是( )A. 一组邻边相等的矩形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线相等的菱形是正方形D. 有一组邻边相等、一个角是直角的四边形是正方形 7.已知y =,则xy的值为( ) A. B.C.D.8.如图,在菱形ABCD 中,AB =13,对角线BD =24,若过点C 作CE ⊥AB ,垂足为E ,则CE 的长为( )A.B. 10C. 12D.9.如图,在ABC 中, AD 平分∠CAB 交BC 于点E . 若∠BDA =90°,E 是AD 中点,DE =2,AB =5,则AC 的长为( )A.1 B . 34C. 23D.3510.凸四边形ABCD 的两条对角线和两条边的长度都为1,则四边形ABCD 中最大内角度数为( )A.0150 B. 0135 C. 0120 D. 0105二、填空题(本大题共6小题,共18分) 11.若ab <0,则化简结果是______. 12.计算:+= ______.13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,,则菱形ABCD 的周长是______.EDBCA14.如图,在等边三角形ABC 中,BC =6cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s )当t = s 时,以A 、C 、E 、F 为顶点四边形是平行四边形. 15.若0,0x y >>且24x y +=,求22169x y +++的最小值______.16.如图,正方形ABCD 的边长为1,点F 在线段CE 上,且四边形BFED 为菱形,则CF 的长为 .三、解答题(本大题共8小题,共72分) 17.(本小题8分)计算:(1))845(18125--+)(.(2)124648÷+)(. 18.(本小题8分)阅读下列材料,并解决相应问题:35)35)(35()35(2352+=+-+=-用上述类似的方法化简下列各式:(1)761+.(2)若a 是的小数部分,求a3的值. 19.(本小题8分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系,使点A (3,4)、C (4,2),则点B 的坐标为____________; (2)判断格点△ABC 的形状,并说明理由.(3)在x 轴上有一点P ,使得PA +PC 最小,则PA +PC 的最小值是__________.GECF BA FCEDBA第14题图第16题图20.(本小题8分)如图,正方形ABCD 中,点Q P ,分别为AD ,CD 边上的点,且DQ=CP ,连接BQ ,AP .求证:BQ=AP .21.(本小题8分)如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若AB =,BD =2,求OE 的长.22.(本小题10分)阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当,时,∵,∴,当且仅当时取等号.请利用上述结论解决以下问题:(1)当时,xx 1+的最小值为_______;当时,xx 1+的最大值为__________. (2)当时,求xx x y 1632++=的最小值.(3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.23.(本小题10分)如图,ABC ∆中8,6==AC AB ,D 是BC 边上一动点,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .(1)若10=BC ,判断四边形AEDF 的形状并证明; (2)在(1)的条件下,若四边形AEDF 是正方形,求BD 的长;(3)若∠BAC =60°,四边形AEDF 是菱形,则BD =_____________.ODCBAFE DCBA24.(本小题12分)已知O 为坐标原点,B A ,分别在y 轴、x 轴正半轴上,D 是x 轴正半轴上一动点,DE AD =,∠α=ADE ,矩形AOBC 的面积为32且BC AC 2=. (1)如图1,当α=90°时,直线CE 交x 轴于点F ,求证:F 为OB 中点; (2)如图2,当α=60°时,若D 是OB 中点,求E 点坐标;(3)如图3,当α=120°时,Q 是AE 的中点,求D 点运动过程中BQ 的最小值.xy FEDCB AOxyEDOA B CxyQEOA B CD图1 图2 图3武汉市八年级第二学期部分学校期中联考数学试卷参考答案一、选择题1-5:CBBBD 6-10:DCADA 二、填空题11.b a - 12.37 13.24 14.2或6 15.25 16.226- 三、解答题17. 解:(1)原式=5+3-3+2=2+5;(2)原式=(4+)÷2=2+.18. 解:(1)67)67)(67(67671761-=-+-=+=+(2)由题意可得:a =-1,==3+3.19.(1)(0,0);(2)∵AC 2=22+12=5,BC 2=22+42=20,AB 2=42+32=25,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形.(3)17.20.证明:在正方形ABCD 中,AB =AD =CD ,∠BAQ =∠D =90°, ∵DQ =CP ,∴AQ =DP ,在△ABQ 和△ADP 中, , ∴△ABQ ≌△ADP (SAS ), ∴BQ =AP .21.解:(1)∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 为∠DAB 的平分线,∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB , ∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴▱ABCD 是菱形; (2)∵四边形ABCD 是菱形,∴OA =OC ,BD ⊥AC ,∵CE ⊥AB ,∴OE =OA =OC , ∵BD =2,∴OB =BD =1,在Rt △AOB 中,AB =,OB =1,∴OA ==2,∴OE =OA =2.22.解:(1)2; ;(2)由3161632++=++=x x x x x y ,0>x Θ113162316=+⋅≥++=∴x x x x y ,当xx 16=时,最小值为11.(3)设x S BOC =∆,则xS AOC 36=∆∴四边形ABCD 面积,当且仅当时取等号, 即四边形ABCD 面积的最小值为25.23.(1) AEDF 是矩形,理由如下∵222222AB +AC =6+8=BC =10,由勾股定理得∠BAC=90°∵DE AF DF AE ∥、∥ ∴四边形AEDF 是平行四边形 又∵∠BAC=90°,∴四边形AEDF 是矩形(2) 由(1)得,当DE=DF 时,四边形AEDF 是正方形。

2018年湖北省武汉二中、广雅中学中考数学二模试卷(包含答案解析)

2018年湖北省武汉二中、广雅中学中考数学二模试卷(包含答案解析)

2018年湖北省武汉二中、广雅中学中考数学二模试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高()A.10℃B.-10℃C.6℃D.-6℃2、(3分) 若代数式1在实数范围内有意义,则x的取值范围是()2−xA.x>2B.x<2C.x≠-2D.x≠23、(3分) 运用乘法公式计算(3-a)(a+3)的结果是()A.a2-6a+9B.a2-9C.9-a2D.a2-3a+94、(3分) 在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.5B.10C.15D.205、(3分) 下列计算正确的是()A.x2+2x=3x2B.x6÷x2=x3C.x2•(2x3)=2x5D.(3x2)2=6x26、(3分) 已知点A(-2,4)关于y轴对称的点的坐标是()A.(-2,-4)B.( 2,-4)C.(2,4)D.(-2,4)7、(3分) 有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是()A. B. C. D.8、(3分) 某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示,已知这15个数据的中位数为5.这15名员工每人所创年利润的众数、平均数分别是()A.10,5B.7,8C.5,6.5D.5,69、(3分) 如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为()A.n(n+1)2B.n(n+2)2C.n(n+3)2D.n(n+4)210、(3分) 如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.√2B.2√2C.2D.4√3二、填空题(本大题共 6 小题,共 18 分)11、(3分) √6+(√2−√6)=______.12、(3分) 化简1a−2-2aa 2−4的结果等于______.13、(3分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是______. 14、(3分) 如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于______°.15、(3分) 如图,在四边形ABCD 中,AD∥BC ,∠B=90°,AD=8cm ,AB=6cm ,BC=10cm ,点Q 从点A 出发以1cm/s 的速度向点D 运动,点P 从点B 出发以2cm/s 的速度向C 点运动,P 、Q 两点同时出发,其中一点到达终点时另一点也停止运动.若DP≠DQ ,当t=______s 时,△DPQ 是等腰三角形.16、(3分) 已知抛物线y=x 2-mx-3与直线y=2x-5m 在-2≤x <2之间有且只有一个公共点,则m 的取值范围是______.三、计算题(本大题共 1 小题,共 8 分) 17、(8分) 解方程组:{x +2y =4x −y =1四、解答题(本大题共 7 小题,共 64 分)18、(8分) 如图,已知AB=AD ,AC=AE ,∠BAD=∠CAE .求证:BC=DE .19、(10分) 武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“B-比较喜欢”、“C-不太喜欢”、“D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是______,图②中A所在扇形对应的圆心角是______;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?20、(8分) 某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表.(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?21、(8分) 如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E . (1)求证:DE⊥AC ;(2)连接OC 交DE 于点F ,若sin∠ABC=34,求OFFC 的值.22、(10分) 在平面直角坐标系中,点A (1,0),B (0,2),将直线AB 平移与双曲线y=kx (x >0)在第一象限的图象交于C 、D 两点.(1)如图1,将△AOB 绕O 逆时针旋转90°得△EOF (E 与A 对应,F 与B 对应),在图1中画出旋转后的图形并直接写出E 、F 坐标; (2)若CD=2AB ,①如图2,当∠OAC=135°时,求k 的值;②如图3,作CM⊥x 轴于点M ,DN⊥y 轴于点N ,直线MN 与双曲线y=kx 有唯一公共点时,k 的值为______.23、(10分) 如图,Rt△ABC 中,∠ACB=90°,CE⊥AB 于E ,BC=mAC=nDC ,D 为BC 边上一点.(1)当m=2时,直接写出CE BE =______,AEBE =______.(2)如图1,当m=2,n=3时,连DE 并延长交CA 延长线于F ,求证:EF=32DE .(3)如图2,连AD 交CE 于G ,当AD=BD 且CG=32AE 时,求mn 的值.24、(10分) 如图,已知二次函数y=x 2-2mx+m 2+38m −14的图象与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C ,顶点为D .(1)当m=-2时,求四边形ADBC 的面积S ;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点P ,使∠PBA=2∠BCO ,求点P 的坐标;(3)如图2,将(1)中抛物线沿直线y=38x −14向斜上方向平移√734个单位时,点E 为线段OA上一动点,EF⊥x 轴交新抛物线于点F ,延长FE 至G ,且OE•AE=FE•GE ,若△EAG 的外角平分线交点Q 在新抛物线上,求Q 点坐标.2018年湖北省武汉二中、广雅中学中考数学二模试卷【答案】A【解析】解:8-(-2)=8+2=10℃.故选:A.用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.本题利用有理数的减法运算法则求解.【第 2 题】【答案】D【解析】解:由题意,得2-x≠0,解得x≠2,故选:D.根据分母不能为零,可得答案.本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.【第 3 题】【答案】C【解析】解:(3-a)(a+3)=32-a2=9-a2,故选:C.根据平方差公式计算可得.本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.【第 4 题】【答案】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,=0.5,∴5m解得:m=10.故选:B.利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.【第 5 题】【答案】C【解析】解:A、x2与2x不是同类项,不能合并,此选项错误;B、x6÷x2=x4,此选项错误;C、x2•(2x3)=2x5,此选项正确;D、(3x2)2=9x4,此选项错误;故选:C.根据合并同类项法则、同底数幂除法、单项式乘单项式、幂的乘方与积的乘方分别计算可得.本题主要考查合并同类项法则、同底数幂除法、单项式乘单项式、幂的乘方与积的乘方,熟练掌握其运算法则是解题的关键.【第 6 题】【答案】C【解析】解:点A(-2,4)关于y轴对称的点的坐标是:(2,4).故选:C.直接利用关于y轴对称点的性质得出答案.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.【第 7 题】【答案】解:从正面看一个正方形被分成三部分,两条分式是虚线,故C 正确; 故选:C .根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,主视图是从正面看得到的图形.【 第 8 题 】 【 答 案 】 D 【 解析 】解:∵这15个数据的中位数是第8个数据,且中位数为5, ∴x=5,则这15个数据为3、3、3、3、5、5、5、5、5、5、5、8、8、8、19,所以这组数据的众数为5万元,平均数为1×19+3×8+7×5+4×315=6万元,故选:D .先根据中位数为5得出x=5,据此可得这15个数据,再利用众数和平均数的定义求解可得. 本题考查众数和中位数、平均数,解答本题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.【 第 9 题 】 【 答 案 】 C 【 解析 】解:∵第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个, …,∴第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=n(n+3)2个, 故选:C .由第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,得第n 个图形中面积为1的正方形有2+3+4+…+(n+1)个.此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.【 第 10 题 】【 答 案 】 C 【 解析 】解:设⊙O 与MN 相切于点K ,设正方形的边长为2a .∵BC 、CD 、MN 是切线,∴BE=CE=CF=DF=a ,MK=ME ,NK=NF ,设MK=ME=x ,NK=NF=y , 在Rt△CMN 中,∵MN=x+y ,CN=a-y ,CM=a-x , ∴(x+y )2=(a-y )2+(a-x )2, ∴ax+ay+xy=a 2,∵S △AMN =S 正方形ABCD -S △ABM -S △CMN -S △ADN =4,∴4a 2-12×2a×(a+x )-12(a-x )(a-y )-12×2a×(a+y )=4, ∴32a 2-12(ax+ay+xy )=4,∴a 2=4,∴a=2或-2(负值舍去), ∴AB=2a=4,∴⊙O 的半径为2. 故选:C .设⊙O 与MN 相切于点K ,设正方形的边长为2a .因为BC 、CD 、MN 是切线,可得BE=CE=CF=DF=a ,MK=ME ,NK=NF ,设MK=ME=x ,NK=NF=y ,在Rt△CMN 中,因为MN=x+y ,CN=a-y ,CM=a-x ,可得到(x+y )2=(a-y )2+(a-x )2,推出ax+ay+xy=a 2,根据S △AMN =S 正方形ABCD -S △ABM -S △CMN -S △ADN ,构建方程求出a 即可解决问题.本题考查正方形的性质、勾股定理切线长定理等知识,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.【 第 11 题 】 【 答 案 】 √2 【 解析 】解:原式=√6+√2−√6 =√2故答案为:√2根据二次根式的性质即可求出答案本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.【 第 12 题 】【 答 案 】-1a+2【 解析 】解:原式=a+2(a+2)(a−2)-2a (a+2)(a−2)=2−a (a+2)(a−2)=−(a−2)(a+2)(a−2)=-1a+2,故答案为:-1a+2.根据异分母分式的加减运算顺序和运算法则计算可得.本题主要考查分式的加减法,解题的关键是掌握异分母分式的加减运算顺序和法则.【 第 13 题 】【 答 案 】59【 解析 】解:画树状图得:∵共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:59.故答案为:59. 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与至少有一辆汽车向左转的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【 第 14 题 】【 答 案 】50【 解析 】解:∵AD∥BC ,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF=65°,∴∠D′EF=65°,∴∠AED′=180°-65°-65°=50°.故答案是:50.先根据平行线的性质得出∠DEF 的度数,再根据翻折变换的性质得出∠D′EF 的度数,根据平角的定义即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.【 第 15 题 】【 答 案 】83或74【 解析 】解:由运动知,AQ=t ,BP=2t ,∵AD=8,BC=10,∴DQ=AD -AQ=(8-t )(cm ),PC=BC-BP=(10-2t )(cm ),∵△DPQ 是等腰三角形,且DQ≠DP ,∴①当DP=QP 时,∴点P 在DQ 的垂直平分线上, ∴AQ+12DQ=BP ,∴t+12(8-t )=2t ,∴t=83, ②当DQ=PQ 时,如图,Ⅰ、过点Q 作QE⊥BC 于E ,∴∠BEQ=∠OEQ=90°,∵AD∥BC ,∠B=90°,∴∠A=∠B=90°,∴四边形ABEQ 是矩形,∴EQ=AB=6,BE=AQ=t ,∴PE=BP -BE=t ,在Rt△PEQ 中,PQ=√PE 2+EQ 2=√t 2+36,∵DQ=8-t∴√t 2+36=8-t , ∴t=74,∵点P 在边BC 上,不和C 重合,∴0≤2t <10,∴0≤t <5,∴此种情况符合题意, 即t=83或74s 时,△DPQ 是等腰三角形.故答案为:83或74. 先由运动速度表示出AQ ,BP ,再分两种情况讨论计算,求出时间,判断时间是否符合题意. 主要考查了勾股定理,平行线的性质,等腰三角形的判定,关键是分情况讨论,是一道中等难度的题目.【 第 16 题 】【 答 案 】−57≤m <1或m=8-4√3【 解析 】解:联立{y =x 2−mx −3y =2x −5m可得:x 2-(m+2)x+5m-3=0,令y=x 2-(m+2)x+5m-3,∴抛物线y=x 2-mx-3与直线y=2x-5m 在-2≤x <2之间有且只有一个公共点,即y=x 2-(m+2)x+5m-3的图象在-2≤x <2上只有一个交点,当△=0时,即△=(m+2)2-4(5m-3)=0解得:m=8±4√3,当m=8+4√3时,x=m+22=5+2√3>2当m=8-4√3时,x=m+22=5-2√3,满足题意,当△>0,∴令x=-2,y=7m+5,令x=2,y=3m-3,∴(7m+5)(3m-3)<0,∴−57<m <1 令x=-2代入0=x 2-(m+2)x+5m-3解得:m=−57,此该方程的另外一个根为:−237,故m=−57也满足题意, 故m 的取值范围为:−57≤m <1或m=8-4√3根据二次函数图象与系数之间的关系即可求出答案.本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于难题.【第 17 题】【答案】解:{x+2y=4①x−y=1②,①-②,得:3y=3,解得:y=1,将y=1代入①,得:x+2=4,解得:x=2,则方程组的解为{x=2 y=1.【解析】利用加减消元法求解可得.本题考查了二元一次方程的解法.解二元一次方程实际上是通过消元,将二元一次方程转化为一元一次方程,通过解一元一次方程解得原方程组的解.【第 18 题】【答案】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,{AB=AD∠BAC=∠DAEAC=AE,∴△ABC≌△ADE(SAS),∴BC=DE.【解析】先求出∠BAC=∠DAE,再利用“边角边”证明△ABC和△ADE全等,根据全等三角形对应边相等证明即可.本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.【第 19 题】【答案】(1)∵被调查的学生总人数为6÷5%=120人,∴C 程度的人数为120-(18+66+6)=30人, 则A 的百分比为18120×100%=15%、B 的百分比为66120×100%=55%、C 的百分比为30120×100%=25%,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是B 、图②中A 所在扇形对应的圆心角是360°×15%=54°,故答案为:B 、54°;(3)估算该年级学生中对数学学习“不太喜欢”的有960×25%=240人.【 解析 】解:(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以得选C 的学生数和选AB 、C 的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数. 本题考查众数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.【 第 20 题 】【 答 案 】解:(1)设生产A 种产品x 件,则生产B 种产品(10-x )件,依题意得:x+3(10-x )=14,解得 x=8,则10-x=2,答:生产A 产品8件,生产B 产品2件;(2)设生产A 产品y 件,则生产B 产品(10-y )件{2y +5(10−y )≤44y +3(10−y )>22, 解得:2≤y <4.因为x 为正整数,故y=2或3;方案①,A种产品2件,则B种产品8件;方案②,A种产品3件,则B种产品7件.【解析】(1)设生产A种产品x件,则生产B种产品有(10-x)件,根据计划获利14万元,即两种产品共获利14万元,即可列方程求解;(2)根据计划投入资金不多于35万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数.本题考查了一元一次方程的应用,一元一次不等式组的应用.关键从表格种获得成本价和利润,然后根据利润这个等量关系列方程,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.【第 21 题】【答案】(1)证明:连接OD.∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC;(2)解:连接AD.∵OD∥AC,∴OF FC =ODEC.∵AB为⊙O的直径,∴∠ADB=∠ADC=90°.又∵D为BC的中点,∴AB=AC.∵sin∠ABC=ADAB =3 4,故设AD=3x,则AB=AC=4x,OD=2x.∵DE⊥AC,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD,∴△ADC∽△AED.∴AD AE =ACAD.∴AD2=AE•AC.∴AE=94x.∴EC=74x.∴OF FC =ODEC=87.【解析】(1)连接OD.根据三角形中位线定理判定OD是△ABC的中位线,则OD∥AC,所以∠DEC=∠ODE=90°,即DE⊥AC;(2)连接AD.通过解直角三角形得到sin∠ABC=ADAB =34,故设AD=3x,则AB=AC=4x,OD=2x;由相似三角形△ADC∽△AED的对应边成比例得到AD2=AE•AC.则AE=94x,EC=74x,所以OF FC =ODEC=87.本题考查了切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.【第 22 题】【答案】(1)∵点A (1,0),B (0,2),∴OA=1,OB=2,如图1,由旋转知,∠AOE=∠BOF=90°,∴点E在y轴正半轴上,点F在x轴负半轴上,由旋转知,△EOF≌△AOB,∴OE=OA=1,OF=OB=2,∴E(0,1),F(-2,0);(2)过点D作DG⊥x轴于G,过点C作CH⊥x轴于H,过点C作CP⊥DG于P,∴PC=GH,∠CPD=∠AOB=90°,∵CD∥AB,∴∠OAB=∠OQD,∵CP∥OQ,∴∠PCD=∠AQD,∴∠PCD=∠OAB,∵∠CPD=∠AOB=90°,∴△PCD∽△OAB,∴PC OA =PDOB=CDAB,∵OA=1,OB=2,CD=2AB,∴PC=2OA=2,PD=2OB=4,∴GH=PC=2,设D(m,n),∴C(m+2,n-4),∴CH=n-4,AH=m+2-1=m+1,∵点C,D在双曲线y=kx (x>0)上,∴mn=k=(m+2)(n-4),∴n=2m+4(Ⅰ)①∵∠OAC=135°,∴∠CAQ=45°,∵∠OHC=90°,∴AH=CH,∴m+1=n-4(Ⅱ),联立(Ⅰ)(Ⅱ)解得,m=1,n=6,∴k=mn=6;②如图3,∵D(m,n),C(m+2,n-4),∴M(m+2,0),N(0,n),∵n=2m+4,∴N(0,2m+4),∴直线MN的解析式为y=-2x+2m+4(Ⅲ),∵双曲线y=kx =mnx=m(2m+4)x(Ⅳ),联立(Ⅲ)(Ⅳ)得,-2x+2m+4=m(2m+4)x,即:x2-(m+2)x+(m2+2m)=0,∴△=(m+2)2-4(m2+2m),∵直线MN与双曲线y=kx 有唯一公共点,∴△=0,∴△=(m+2)2-4(m2+2m)=0,∴m=-2(舍)或m=23,∴n=2m+4=2×23+4=163,∴k=mn=329,故答案为:329.【 解析 】解:(1)利用旋转的性质得出点E 在y 轴坐标轴上,点F 在x 轴的负半轴上,再判断出OE=1,OF=2,即可得出结论;(2)先判断出△PCD∽△OAB ,进而得出PC=2OA=2,PD=2OB=4,设出D (m ,n ),得出C (m+2,n-4),进而判断出n=2m+4;①先判断出AH=CH ,得出m+1=n-4联立即可求出m ,n 的值,即可得出结论;②先确定出直线MN 的解析式,联立得出方程x 2-(m+2)x+(m 2+2m )=0,此方程△=0,进而求出m ,n 的值,即可得出结论.此题是反比例函数综合题,主要考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的性质,待定系数法,一元二次方程根的判别式,平行线的性质和判定,表示出点C ,D 坐标是解本题的关键.【 第 23 题 】【 答 案 】(1)解:如图1中,当m=2时,BC=2AC . ∵CE⊥AB ,∠ACB=90°,∴△BCE∽△CAE∽△BAC , ∴CE EB =AC BC =AE EC =12,∴EB=2EC ,EC=2AE , ∴AE EB =14,故答案为12,14.(2)证明:如图1-1中,作DH∥CF 交AB 于H .∵m=2,n=3,∴BE=4AE ,BD=2CD ,设AE=a ,则BE=4a , ∵DH∥AC , ∴BH AH =BD CD =2, ∴AH=53a ,FH=53a-a=23a ,∵DH∥AF , ∴EF DF =AE EH =a 23a=32,∴EF=32DF .(3)解:如图2中,作DH⊥AB 于H .∵∠ACB=∠CEB=90°,∴∠ACE+∠ECB=90°,∠B+∠ECB=90°, ∴∠ACE=∠B ,∵DA=DB ,∠EAG=∠B ,∴∠EAG=∠ACE ,∵∠AEG=∠AEC=90°, ∴△AEG∽△CEA ,∴AE 2=EG•EC , ∵CG=32AE ,设CG=3a ,AE=2a ,EG=x , 则有4a 2=x (x+3a ),解得x=a 或-4a (舍弃),∴tan∠EAG=tan∠ACE=tan∠B=EG AE =12,∴EC=4a ,EB=8a ,AB=10a ,∵DA=DB ,DH⊥AB ,∴AH=HB=5a ,∴DH=52a ,∵DH∥CE ,∴BD :BC=DH :CE=5:8,设BD=AD=5m ,BC=8m ,CD=3m ,在Rt△ACD 中,AC=√AD 2−CD 2=4m ,∴AC :CD=4:3,∵mAC=nDC ,∴AC :CD=n :m=4:3, ∴m n =34.【 解析 】(1)利用相似三角形的性质即可解决问题;(2)如图1-1中,作DH∥CF 交AB 于H .由m=2,n=3,推出BE=4AE ,BD=2CD ,设AE=a ,则BE=4a ,由DH∥AC ,推出BH AH =BD CD =2,推出AH=53a ,FH=53a-a=23a ,由DH∥AF ,推出EF DF =AE EH =a 23a=32; (3)如图2中,作DH⊥AB 于H .首先证明△AEG∽△CEA ,可得AE 2=EG•EC ,由CG=32AE ,设CG=3a ,AE=2a ,EG=x ,则有4a 2=x (x+3a ),解得x=a 或-4a (舍弃),推出tan∠EAG=tan∠ACE=tan∠B=EG AE =12,推出EC=4a ,EB=8a ,AB=10a ,由DA=DB ,DH⊥AB ,推出AH=HB=5a ,推出DH=52a ,由DH∥CE ,推出BD :BC=DH :CE=5:8,设BD=AD=5m ,BC=8m ,CD=3m ,在Rt△ACD 中,AC=√AD 2−CD 2=4m ,可得AC :CD=4:3,延长即可解决问题;本题考查相似三角形综合题、直角三角形的性质、勾股定理、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考压轴题.【 第 24 题 】【 答 案 】(1)当m=-2时,得到y=x 2+4x+3=(x+2)2-1,∴顶点D (-2,-1),由x 2+4x+3=0,得x 1=-3,x 2=-1;令x=0,得y=3;∴A (-3,0),B (-1,0),C (0,3),∴A B=2 ∴S=S △ABC +S △ABD =12AB×3+12AB×1=2AB=4.(2)如图1,设点P (t ,t 2+4t+3)是第二象限抛物线对称轴左侧上一点,将△BOC 沿y 轴翻折得到△COE ,点E (1,0),连接CE ,过点B 作BF⊥CE 于F ,过点P 作PG⊥x 轴于G ,由翻折得:∠BCO=∠ECO ,∴∠BCF=2∠BCO ;∵∠PBA=2∠BCO ,∴∠PBA=∠BCF ,∵PG⊥x 轴,BF⊥CE ,∴∠PGB=∠BFC=90°, ∴△PBG∽△BCF ,∴PG BG =BF CF 由勾股定理得:BC=EC=√OE 2+OC 2=√12+32=√10, ∵CO×BE=BF×CE ∴BF =OC×BE CE =√10=3√105, ∴CF =√BC 2−BF 2=√(√10)2−(3√105)2=4√105, ∴PG BG =BF CF =34,∴4PG=3BGPG=t 2+4t+3,BG=-1-t ,∴4(t 2+4t+3)=3(-1-t ),解得:t 1=-1(不符合题意,舍去),t 2=−154;∴P (−154,3316).(3)原抛物线y=(x+2)2-1的顶点D (-2,-1)在直线y=38x −14上, 直线y=38x −14交y 轴于点H (0,−14),如图2,过点D 作DN⊥y 轴于N ,DH=√DN 2+NH 2=√22+(34)2=√734; ∴由题意,平移后的新抛物线顶点为H (0,−14),解析式为y=x 2−14,设点E (m ,0),T (n ,0),则OE=-m ,AE=m+12,EF=14−m 2,过点Q 作QM⊥EG 于M ,QS⊥AG 于S ,QT⊥x 轴于T ,∵OE•AE=FE•GE ,∴GE=2m 2m−1,∴AG =√AE 2+EG 2=√(m +12)2+(2m2m−1)2=4m 2+12−4m∵GQ 、AQ 分别平分∠AGM ,∠GAT ,∴QM=QS=QT , ∵点Q 在抛物线上,∴Q (n ,n 2−14), 根据题意得:{m −n =n 2−144m 2+12−4m +12+n =n 2−14−2m 2m−1 解得:{m =−14n =−1 ∴Q (-1,34) 【 解析 】(1)当m=-2时,得到y=x 2+4x+3=(x+2)2-1,S=S △ABC +S △ABD =12AB×3+12AB×1,即可求解;(2)证明△PBG∽△BCF ,则PG BG =BF CF ,BC=EC=√OE 2+OC 2=√12+32=√10,CO×BE=BF×CE ,即可求解;(3)DH=√DN 2+NH 2=√22+(34)2=√734,而OE•AE=FE•GE ,QM=QS=QT ,即可求解. 本题考查的是二次函数综合运用,重点考查了二次函数图象平移,相似三角形,几何变换等,其中(3),GQ 、AQ 分别平分∠AGM ,∠GAT ,则QM=QS=QT ,是本题解题的关键,本题难度较大.。

2018-2019学年湖北省武汉二中广雅中学八年级(下)期中数学模拟试卷(1) 解析版

2018-2019学年湖北省武汉二中广雅中学八年级(下)期中数学模拟试卷(1)  解析版

2018-2019学年湖北省武汉二中广雅中学八年级(下)期中数学模拟试卷(1)一.选择题(共10小题)1.若在实数范围内有意义,则x的取值范围是()A.x>0B.x>3C.x≥3D.x≤32.下列二次根式中的最简二次根式是()A.B.C.D.3.下列计算正确的是()A.2B.C.5D.4.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是()A.4B.C.4或D.以上都不正确5.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1B.﹣1C.2D.6.下列命题:①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在同一个三角形中,等边对等角.其中逆命题成立的个数为()A.1个B.2个C.3个D.4个7.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间8.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n9.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④10.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD中点,则=.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题)11.计算:(1)=;(2)(2)2=;(3)=.12.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式.13.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.14.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.15.在△ABC中,AB=15,AC=13,AD为△ABC的高,且AD=12,则S△ABC=.16.如图,∠AOB=30°,点C、D分别在边OA、OB上,且OC=2,OD=4,点M、N 分别在OB、OA上,则CM+MN+ND的最小值是.三.解答题(共8小题)17.计算:18.已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2,(2)x2﹣y2.19.如图,一根竹子高10尺,折断后竹子的顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?20.如图,每个小正方形的边长为1,四边形ABCD的每个顶点都在格点上,且AB=,AD=.(1)请在图中补齐四边形ABCD,并求其面积;(2)判断∠BCD是直角吗?请说明理由;(3)直接写出点C到BD的距离为.21.等腰Rt△ABC中,∠ACB=90°且CA=CB.(1)如图1,若△ECD也是等腰Rt△且CE=CD,△ACB的顶点A在△ECD的斜边DE 上,求证:AE2+AD2=2AC2;(2)如图2,点M是△ACB外一点,CM∥AB,且BM=BA,求的值.22.“武黄城际铁路”是武汉市城市圈内一条连通武汉市和黄石市的快速城际铁路,如图1,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你解决以下问题:(1)求A、C之间的距离;(参考数据≈4.6);(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,应该选择哪种乘车方案?请说明理由.(不计候车时间)(3)“为了安全,请勿超速”.如图2,武黄城际列车通车后,在某直线路段MN限速180千米/小时,为了检测列车是否超速,铁路有关部门在铁路MN旁设立了观测点S,从观测点S测得列车从点P到达点Q行驶了1.5秒钟,已知∠SPN=45°,∠SQN=60°,SQ =200米,此列车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)23.已知△ABC中,AB=AC,∠BAC=2a,∠ADB=a(1)如图1,若a=30°,则线段AD、BD、CD之间的数量关系为;(2)若a=45°①如图2,线段AD、BD、CD满足怎样的数量关系?证明你的结论;②如图3,点E在线段BD上,且∠BAE=45°,AD=5,BD=4,则DE.24.在Rt△ABC中,∠C=90°,AC=BC,O是AB的中点,∠EOF=90°,(1)如图1,点E、F分别在线段AC和线段BC上.试确定EF、AE、BF之间的数量关系,并给出证明.(2)如图2,点E、F分别在线段AC和线段CB的延长线上,且OP平分∠EOF交直线CB于P点,试确定CP、PF、BF之间的数量关系,并加以证明.(3)如图3,在(2)的条件下,连接OC,过P作PM⊥OC于点M,过F作FN⊥OB 于点N,直线PM、FN交于D点,请判断DP、PM、NF之间的数量关系,并证明.参考答案与试题解析一.选择题(共10小题)1.若在实数范围内有意义,则x的取值范围是()A.x>0B.x>3C.x≥3D.x≤3【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:C.2.下列二次根式中的最简二次根式是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A.3.下列计算正确的是()A.2B.C.5D.【分析】利用二次根式的乘法法则对A进行判断;根据二次根式的加减法对B、C进行判断;根据分母有理化对D进行判断.【解答】解:A、原式=6×3=18,所以A选项错误;B、与不能合并,所以B选项错误;C、5与﹣2不能合并,所以C选项错误;D、原式==,所以D选项正确.故选:D.4.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是()A.4B.C.4或D.以上都不正确【分析】根据勾股定理的逆定理,可设第三条边长为x,如果满足32+52=x2或32+x2=52,即为直角三角形,解出x的值即可解答;【解答】解:设第三条边长为x,∵三角形是直角三角形,∴可得,32+52=x2或32+x2=52,解得,x=或x=4.故选:C.5.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1B.﹣1C.2D.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.【解答】解:∵AB=3,AD=1,∴AC==,∵点A为圆心,AC的长为半径作弧交数轴于点M,AM=AC=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:A.6.下列命题:①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在同一个三角形中,等边对等角.其中逆命题成立的个数为()A.1个B.2个C.3个D.4个【分析】分别写出命题的逆命题,判断即可.【解答】解:①同旁内角互补,两直线平行,逆命题是:两直线平行,同旁内角互补,正确;②如果两个角是直角,那么它们相等,逆命题是:如果两个角相等,那么他们是直角,不成立;③如果两个实数相等,那么它们的平方相等,逆命题是:如果两数的平方相等,那么这两个数相等,不成立;④在同一个三角形中,等边对等角,逆命题是:在同一个三角形中,相等的角对相等的边,成立.故成立的有2个.故选:B.7.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.8.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D.9.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④【分析】由题意,①﹣②可得2xy=45记为③,①+③得到(x+y)2=94由此即可判断.【解答】解:由题意,①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴①②③正确,④错误.故选:B.10.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD中点,则=.其中正确的有()A.1个B.2个C.3个D.4个【分析】①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,易证△ADM≌△ABH,△AHN≌△AMN,得MN=HN,最后根据勾股定理可作判断;②延长CB,截取BI=DE,连接AI,如图,易证△ADE≌△ABI,△AIF≌△AEF,得IF=EF,即DE+BF=EF,成立.③作辅助线,则可证△AFJ为等腰直角三角形,CK=BF=KJ,证明∠JCK=45°,推出四边形BCJK为平行四边形,所以GJ=BC=AD,可证△GJM≌△DAM,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,CF=2a ﹣x,CE=a,由勾股定理可知:3x=2a,则==,成立.【解答】解:①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADM,在△ADM和△ABM中,∵,∴△ADM≌△ABH(SAS),∴∠DAM=∠BAH,AM=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAM+∠BAN=∠BAH+∠BAN=45°,∴∠MAN=∠HAN=45°,在△AHN和△AMN中,∵,∴△AHN≌△AMN(SAS),∴MN=HN,Rt△BHN中,HN2=BH2+BN2,∴MN2=BN2+DM2,成立.②延长CB,截取BI=DE,连接AI,如图,在△ADE和△ABI中,∵∴△ADE≌△ABI(SAS),同理得△AIF≌△AEF(SAS),∴IF=EF,即DE+BF=EF,成立;③如图,过F作FJ⊥AF交AE的延长线于J,过J作JK⊥BC于K,连接CJ,过J作JG ∥BC交BD于G,∴∠AFJ=∠AFB+∠JFK=90°,∵∠AFB+∠BAF=90°,∴∠BAF=∠JFK,∵∠EAF=45°,∠AFJ=90°,∴△AFJ是等腰直角三角形,在△ABF和△FKJ中,∵,∴△ABF≌△FKJ(SAS),∴AB=FK=BC,BF=KJ,∴CK=BF=KJ,∴∠JCK=45°,∴∠DBC=∠JCK,∴BG∥CJ,∵JG∥BC,∴四边形BCJK为平行四边形,∴GJ=BC=AD,∵AD∥BC∥GJ,∴∠DAM=∠MJK,在△GJM和△DAM中,∵,∴△GJM≌△DAM(AAS),∴AM=MJ,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,∵E为CD中点,∴CD=BC=2a,∴CF=2a﹣x,CE=a,在Rt△EFC中,由勾股定理得:EF2=CE2+CF2∴(a+x)2=a2+(2a﹣x)2解得:3x=2a,则==,成立.故选:D.二.填空题(共6小题)11.计算:(1)=;(2)(2)2=20;(3)=.【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案.【解答】解:(1)==;(2)(2)2=4×()2=4×5=20;(3)===.故答案为:(1);(2)20;(3).12.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式(n≥2且n为整数).【分析】观察可发现整数部分与分子相同,分母为整数的平方减1,据此可解.【解答】解:观察可发现整数部分与分子相同,分母为整数的平方减1,∴用n(n为正整数,且n≥2)表示的等式为:=n.故答案为:=n(n为正整数,且n≥2).13.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.【分析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.【解答】解:如图所示,路径一:AB==13;路径二:AB==;路径三:AB==;∵>13>,∴cm为最短路径.14.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.【分析】连接AE,根据垂直平分线的性质可得AE=EC,然后在直角△ABE中利用勾股定理即可列方程求得EC的长,然后证明△AOD≌△COE,即可求得.【解答】解:连接AE.∵DE是线段AC的垂直平分线,∴AE=EC.设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,∵在直角△ABE中,AE2=AB2+BE2,∴x2=52+(12﹣x)2,解得:x=.即EC=.∵AD∥BC,∴∠D=∠OEC,在△AOD和△COE中,,∴△AOD≌△COE,∴AD=EC=.故答案是:.15.在△ABC中,AB=15,AC=13,AD为△ABC的高,且AD=12,则S△ABC=24或84.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的面积求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的面积求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD==9,在Rt△ACD中,CD==5∴BC=5+9=14∴△ABC的面积为:;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5,∴BC=9﹣5=4.∴△ABC的面积为:∴当△ABC为锐角三角形时,△ABC的面积为84;当△ABC为钝角三角形时,△ABC 的面积为24.综上所述,△ABC的面积是84或24.故答案为:84或24.16.如图,∠AOB=30°,点C、D分别在边OA、OB上,且OC=2,OD=4,点M、N 分别在OB、OA上,则CM+MN+ND的最小值是2.【分析】作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接C′D′,与OB、OA分别交于点M、N,连接CM、DN,此时CM+MN+ND=C′M+MN+ND′=C′D′最小,根据勾股定理即可求得CM+MN+ND的最小值.【解答】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接C′D′,与OB、OA分别交于点M、N,连接CM、DN,此时CM+MN+ND=C′M+MN+ND′=C′D′最小,∴CM+MN+ND的最小值是C′D′的长.连接OC′、OD′,由对称性可知:∠C′OB=∠COB=∠COD′=30°,OC′=OC,OC′=OC,∴∠COC′=DOD′=60°,∴△OMC,△ODN为等边三角形,∴∠D′OC′=90°,OC′=2,OD′=4由勾股定理得,C′D′==2.所以CM+MN+ND的最小值是2.故答案为2.三.解答题(共8小题)17.计算:【分析】在二次根式的加减运算中,先对各个二次根式化成最简二次根式,再把同类二次根式合并.【解答】解:原式===14.18.已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2,(2)x2﹣y2.【分析】(1)根据完全平方公式可以解答本题;(2)根据平方差公式可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴x+y=+1+﹣1=2,∴x2+2xy+y2=(x+y)2=(2)2=12;(2)∵x=+1,y=﹣1,∴x+y=+1+﹣1=2,x﹣y==2,x2﹣y2=(x+y)(x﹣y)==4.19.如图,一根竹子高10尺,折断后竹子的顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?【分析】杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解答】解:设杆子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=.答:折断处离地面的高度是尺.20.如图,每个小正方形的边长为1,四边形ABCD的每个顶点都在格点上,且AB=,AD=.(1)请在图中补齐四边形ABCD,并求其面积;(2)判断∠BCD是直角吗?请说明理由;(3)直接写出点C到BD的距离为2.【分析】(1)由AB==、AD==,结合网格与勾股定理可确定点A;(2)求出BC2、CD2、BD2,再利用勾股定理逆定理即可判断;(3)设点C到BD的距离为d,根据S△BCD=BC•CD=BD•d求解可得.【解答】解:(1)如图所示,四边形ABCD即为所求,其面积为5×5﹣×5×1﹣×2×4﹣×1×4﹣×(1+3)×1=14;(2)是,∵BC2=22+42=20,CD2=12+22=5,BD2=32+42=25,∴BC2+CD2=BD2,∴△BCD是直角三角形,且∠BCD=90°,(3)设点C到BD的距离为d,由(2)知,BC=2,CD=,BD=5,根据S△BCD=BC•CD=BD•d,则d===2.故答案为:2.21.等腰Rt△ABC中,∠ACB=90°且CA=CB.(1)如图1,若△ECD也是等腰Rt△且CE=CD,△ACB的顶点A在△ECD的斜边DE 上,求证:AE2+AD2=2AC2;(2)如图2,点M是△ACB外一点,CM∥AB,且BM=BA,求的值.【分析】(1)连结BD,由等腰直角三角形的性质得出∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2,得出2AC2=AB2.由SAS 证明△AEC≌△BDC,得出AE=BD,∠E=∠BDC=45°,CE=CD,证出∠BDA=∠BDC+∠ADC=90°,在Rt△ADB中.由勾股定理即可得出结论;(2)过M作MH⊥BC交BC的延长线于H,设AC=BC=a,求得AB=BM=a,根据平行线的性质得到∠HCM=∠ABC=45°,设MH=CH=x,根据勾股定理得到CM=CH=a,于是得到结论.【解答】(1)证明:连接BD,如图所示:∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2,∴2AC2=AB2.∠ECD﹣∠ACD=∠ACB﹣∠ACD,∴∠ACE=∠BCD在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).∴AE=BD,∠E=∠BDC.∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴AD2+BD2=AB2,∴AD2+AE2=2AC2;(2)过M作MH⊥BC交BC的延长线于H,设AC=BC=a,∵∠ACB=90°,∴AB=BM=a,∵CM∥AB,∴∠HCM=∠ABC=45°,∴MH=CH,设MH=CH=x,∴x2+(x+a)2=()2,解得x=a(负值舍去),∴CM=CH=a,∴==.22.“武黄城际铁路”是武汉市城市圈内一条连通武汉市和黄石市的快速城际铁路,如图1,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你解决以下问题:(1)求A、C之间的距离;(参考数据≈4.6);(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,应该选择哪种乘车方案?请说明理由.(不计候车时间)(3)“为了安全,请勿超速”.如图2,武黄城际列车通车后,在某直线路段MN限速180千米/小时,为了检测列车是否超速,铁路有关部门在铁路MN旁设立了观测点S,从观测点S测得列车从点P到达点Q行驶了1.5秒钟,已知∠SPN=45°,∠SQN=60°,SQ =200米,此列车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)【分析】(1)根据勾股定理解答即可;(2)根据路程与速度的关系得出时间即可;(3)根据三角函数得出PQ,进而判断即可.【解答】解:(1)过点C作AB的垂线,交AB的延长线于E点,∵∠ABC=120°,BC=20,∴BE=10,CE=10,在△ACE中,∵AC2=8100+300,∴AC=20=20×4.6=92km;(2)乘客车需时间t1==1(小时);乘列车需时间t2=+=1(小时);∴选择城际列车.(3)作SH⊥MN于H,如图,∵∠SPN=45°,∠SQN=60°,SQ=200米,∴HS=PH=100,QH=100,∴PQ=100(﹣1)≈73,则速度为m/s<180千米/小时,故为超速.23.已知△ABC中,AB=AC,∠BAC=2a,∠ADB=a(1)如图1,若a=30°,则线段AD、BD、CD之间的数量关系为DC2=DA2+DB2;(2)若a=45°①如图2,线段AD、BD、CD满足怎样的数量关系?证明你的结论;②如图3,点E在线段BD上,且∠BAE=45°,AD=5,BD=4,则DE=.【分析】(1)结论:DC2=DA2+DB2.如图1中,将△DCB绕点C顺时针旋转60°得到△MAC,连接DM.首先证明△DCM是等边三角形,再证明△ADM是直角三角形即可解决问题.(2)①结论:DC2=DB2+2DA2.如图2中,作AM⊥AD交DB的延长线于M,连接CM.由△DAB≌△MAC,推出BD=CM,∠ADB=∠AMC=45°推出∠DMC=90°,推出DC2=CM2+DM2,由CM=DB,DM=AD,即可证明.②如图3中,在图2的基础上将△AMB绕点A顺时针旋转90°得到△ADG.则△AEG≌△AEB,∠GDE=90°,可得EB=EG,设DE=x.EB=EG=4﹣x,由AD=AM=5,推出DM=5,BM=DG=5﹣4,在Rt△DEG中,根据DG2+DE2=EG2,列出方程即可解决问题.【解答】解:(1)结论:DC2=DA2+DB2.理由:如图1中,将△DCB绕点C顺时针旋转60°得到△MAC,连接DM.∵CD=CM,∠DCM=60°,∴△DCM是等边三角形,∴DM=CD=CM,∵∠ADB=30°,∴∠DAB+∠DBA=150°,∵∠MAC=∠DBC,∴∠MAC+∠DAB=∠DBC+∠DAB=∠DBA+∠ABC+∠DAB=150°+60°=210°,∴∠DAM=360°﹣210°﹣60°=90°,∴DM2=DA2+AM2,∵AM=DB,DM=DC,∴DC2=DA2+DB2.故答案为DC2=DA2+DB2.(2)①结论:DC2=DB2+2DA2.理由:如图2中,作AM⊥AD交DB的延长线于M,连接CM.∵∠ADM=45°,∠DAM=90°,∴∠ADM=∠AMD=45°,∴DA=AM,DM=DA,∵∠DAM=∠BAC,∴∠DAB=∠MAC,∵AB=AC,∴△DAB≌△MAC,∴BD=CM,∠ADB=∠AMC=45°∴∠DMC=90°,∴DC2=CM2+DM2,∵CM=DB,DM=AD,∴DC2=DB2+2DA2.②如图3中,在图2的基础上将△AMB绕点A顺时针旋转90°得到△ADG.则△AEG≌△AEB,∠GDE=90°,可得EB=EG,设DE=x.EB=EG=4﹣x,∵AD=AM=5,∴DM=5,BM=DG=5﹣4,在Rt△DEG中,∵DG2+DE2=EG2,∴(5﹣4)2+x2=(4﹣x)2,解得x=.故答案为=.24.在Rt△ABC中,∠C=90°,AC=BC,O是AB的中点,∠EOF=90°,(1)如图1,点E、F分别在线段AC和线段BC上.试确定EF、AE、BF之间的数量关系,并给出证明.(2)如图2,点E、F分别在线段AC和线段CB的延长线上,且OP平分∠EOF交直线CB于P点,试确定CP、PF、BF之间的数量关系,并加以证明.(3)如图3,在(2)的条件下,连接OC,过P作PM⊥OC于点M,过F作FN⊥OB 于点N,直线PM、FN交于D点,请判断DP、PM、NF之间的数量关系,并证明.【分析】(1)由“ASA”可证△CEO≌△BFO,可得CE=BF,由勾股定理可得结论;(2)连接OC,EP,由“ASA”可证△CEO≌△BFO,可得BF=CE,OE=OF,由“ASA”可证△EOP≌△FOP,可得PE=PF,由勾股定理可得结论;(3)由题意可证△PDF,△BNF均为等腰直角三角形,可得PF=DP,CP=PM,BF=NF,代入(2)的结论可求解.【解答】解:(1)AE2 +BF2 =EF2,理由如下:连接OC,EF,∵∠ACB=90°,AC=BC,点O是AB中点,∴AO=BO=CO,AB⊥CO,∠ACO=∠B=45°,∴∠COB=∠EOF=90°,∴∠EOC=∠FOB,且BO=CO,∠ECO=∠B=45°,∴△CEO≌△BFO(ASA)∴CE=BF,∵AC=BC,∴AE=CF,∵CE2+CF2=EF2,∴AE2 +BF2 =EF2;(2)CP2+BF2=PF2;理由如下:连接OC,EP,∵∠ACB=90°,AC=BC,点O是AB中点,∴AO=BO=CO,AB⊥CO,∠ACO=∠ABC=45°,∴∠COB=∠EOF=90°,∠OCE=∠OBF=135°,∴∠EOC=∠FOB,且BO=CO,∠OCE=∠OBF,∴△CEO≌△BFO(ASA)∴BF=CE,OE=OF,∵OP平分∠EOF,∴∠EOP=∠FOP=45°,且OE=OF,OP=OP,∴△EOP≌△FOP(ASA),∴PF=PE,∴CP2+BF2=CP2+CE2=PE2=PF2;(3)PM2+NF2=DP2.理由如下:∵∠OBC=∠NBF=∠DPF=45°,∴△PDF,△BNF均为等腰直角三角形,∴PF=DP,CP=PM,BF=NF,由(2)可知CP2+BF2=PF2,∴2PM2+2NF2=2DP2,即PM2+NF2=DP2.。

2018-2019学年湖北省武汉市八年级下期末数学试卷(含答案解析) (2)

2018-2019学年湖北省武汉市八年级下期末数学试卷(含答案解析) (2)

2018-2019学年湖北省武汉市新洲区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数x的取值范围是()A.x≥0B.x≠5C.x≥5D.x>52.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.3.(3分)下列函数中,正比例函数是()A.y=B.y=2x2C.y=D.y=2x+14.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是()A.85,90B.85,87.5C.90,85D.95,907.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米9.(3分)把直线y=3x沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB的解析式是()A.y=3x﹣2B.y=﹣3x+2C.y=﹣3x﹣2D.y=3x+210.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是.14.(3分)已知:一次函数y1=x+2与函数y2=|x﹣1|在同一平面直角坐标系中,若y2>y1,则x的取值范围是.15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为.三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷(2)(+2)218.(8分)一次函数y=kx+b经过点(﹣4,﹣2)和点(2,4),求一次函数y=kx+b的解析式19.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):测验类别平时期中考试期末考试测验1测验2测验3课题学习成绩8870968685x (1)计算该同学本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩x 至少为多少分才能保证达到总评成绩90分的最低目标?21.(8分)如图,直线AB:y=kx+2k交x轴于点A,交y轴正半轴于点B,且S△OAB=3(1)求A、B两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机x台,这120台手机全部销售的销售总利润为y元.①直接写出y关于x的函数关系式,x的取值范围是.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a 元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在x轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到x 轴的距离不大于3,直接写出m的取值范围(无需解答过程).2017-2018学年湖北省武汉市新洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数x的取值范围是()A.x≥0B.x≠5C.x≥5D.x>5【解答】解:由题意可知:x﹣5≥0,∴x≥5故选:C.2.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含能开得尽方的因数或因式,故D错误;故选:C.3.(3分)下列函数中,正比例函数是()A.y=B.y=2x2C.y=D.y=2x+1【解答】解:A、符合正比例函数的含义,故本选项正确;B、自变量次数不为1,故本选项错误;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选:A.4.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD【解答】解:A、∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,正确,不符合题意;C、∵四边形ABCD是平行四边形,∴CD=AB,正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意;故选:D.5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形【解答】解:A、两组对边分别平行的四边形是平行四边形,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、有一个角是直角的平行四边形是矩形,正确,不合题意;D、两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,符合题意.故选:D.6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是()A.85,90B.85,87.5C.90,85D.95,90【解答】解:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选:B.7.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选:D.8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故选:D.9.(3分)把直线y=3x沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB的解析式是()A.y=3x﹣2B.y=﹣3x+2C.y=﹣3x﹣2D.y=3x+2【解答】解:设直线y=3x沿着y轴平移后得到直线AB,则直线AB的解析式可设为y=3x+k,把点(p,q)代入得q=3p+k,则,解得k=﹣2.∴直线AB的解析式可设为y=3x﹣2.故选:A.10.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=3.【解答】解:=2+=3.故答案为:3.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是10.【解答】解:这组数据的极差是:9﹣(﹣1)=10;故答案为:10.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是9.【解答】解:如图,过A作AD⊥BC于点D,∵△ABC为等边三角形,∴BD=CD=BC=3,且AB=6,在Rt△ABD中,由勾股定理可得AD===3,=BC•AD=×6×3=9,∴S△ABC故答案为:9.14.(3分)已知:一次函数y1=x+2与函数y2=|x﹣1|在同一平面直角坐标系中,若y2>y1,则x的取值范围是x<﹣或x>6.【解答】解:∵y2>y1∴|x ﹣1|>x +2 ∴x ﹣1x +2或﹣x +1x +2∴x >6或x <﹣ 故答案为x >6或x <﹣15.(3分)如图,四边形ABCD 中,∠A =∠C =90°,∠ABC =135°,CD =6,AB =2,则四边形ABCD 的面积为 16 .【解答】解:延长AB 和DC ,两线交于O , ∵∠C =90°,∠ABC =135°, ∴∠OBC =45°,∠BCO =90°, ∴∠O =45°, ∵∠A =90°, ∴∠D =45°, 则OB =BC ,OD =OA ,OA =AD ,BC =OC , 设BC =OC =x ,则BO =x ,∵CD =6,AB =2, ∴6+x =(x +2), 解得:x =6﹣2,∴OB =x =6﹣4,BC =OC =6﹣2,OA =AD =2+6﹣4=6﹣2,∴四边形ABCD 的面积S =S △OAD ﹣S △OBC =×OA ×AD ﹣=×(6﹣2)×﹣=16,故答案为:16.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为(1346,0).【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2018=336×6+2,∴点B2向右平移1344(即336×4)到点B2018.∵B2的坐标为(2,0),∴B2018的坐标为(2+1344,0),∴B2018的坐标为(1346,0).故答案为:(1346,0);三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷(2)(+2)2【解答】解:(1)×﹣÷==2=;(2)(+2)2=3+4+4=7+4.18.(8分)一次函数y=kx+b经过点(﹣4,﹣2)和点(2,4),求一次函数y=kx+b的解析式【解答】解:∵一次函数y=kx+b经过点(﹣4,﹣2)和点(2,4),∴代入得:,解得:k=1,b=2,∴一次函数y=kx+b的解析式是y=x+2.19.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?【解答】解:(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)∵∠ADC=90°,∠ADB:∠CDB=2:3,∴∠ADB=36°∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ADB=36°,∴∠DOC=72°.∵DE⊥AC,∴∠BDE=90°﹣∠DOC=18°.20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):测验类别平时期中考试期末考试测验1测验2测验3课题学习成绩8870968685x (1)计算该同学本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩x 至少为多少分才能保证达到总评成绩90分的最低目标?【解答】解:(1)该学期的平时平均成绩为:(88+70+96+86)÷4=85(分).(2)按照如图所示的权重,依题意得:85×10%+85×30%+60% x≥90.解得:x≥93.33,又∵成绩均取整数,∴x≥94.答:期末考试成绩至少需要94分.21.(8分)如图,直线AB:y=kx+2k交x轴于点A,交y轴正半轴于点B,且S△OAB=3(1)求A、B两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.【解答】解:(1)∵直线AB:y=kx+2k,令x=0,则y=2k,即B(0,2k),令y=0,则x=﹣2,即A(﹣2,0),=3,∵S△OAB∴×2×2k=3,∴2k=3,∴A、B两点的坐标为(﹣2,0)、(0,3);(2)如图,过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.∵∠BAC=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵∠AOB=∠BHD=90°,∴∠ABO=∠BDH,∴△ABO≌△BDH,∴DH=BO=3,BH=AO=2,∴HO=3﹣2=1,∴D(3,1),设直线AC的解析式为y=ax+b,由A、D两点的坐标可得,解得,∴AC的解析式为y=x+.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机x台,这120台手机全部销售的销售总利润为y元.①直接写出y关于x的函数关系式y=60x+12000,x的取值范围是0<x≤40且x为正整数.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a 元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.【解答】解:(1)设每台甲手机的利润为x元,每台乙手机的利润为y元,由题意得:,解得∴每台甲手机的利润为160元,每台乙手机的利润为100元.(2)①y=60x+12000,0<x≤40且x为正整数故答案为:y=60x+12000;0<x≤40且x为正整数②∵y=60x+12000,0<x≤40且x为正整数,∴k=60>0,y随x的增大而增大,∴当x=40时,y=60×40+12000=14400最大.即该商店购进40台A手机,80台B手机才能使销售总利润最大.(3)有这种可能性,理由如下:由题意可知:y=60x+12000﹣ax,0<x≤40且x为正整数,∴y=(60﹣a)x+12000,当60﹣a=0,即a=60时利润y=12000元与进货方案无关.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).【解答】(1)解:如图1,过点B作BH⊥AD于H,在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH=,∴S▱ABCD=AD×BH=AF×BH=4;(2)证明:如图2,连接AC.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=∠EAF=60°,∴∠BAD=120°,在▱ABCD中,AB=BC,∴▱ABCD是菱形,∵AC是菱形对角线,∴∠ACD=∠BAC=60°=∠B,∴AB=AC,∴∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形;(3)解:如图3,延长AE交DC延长线于P,过点F作FG⊥AP与G.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C=∠ECP,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE,∴AE=PE,PC=AB=CD=3,CF=2DF,∴CF=2,∴PF=5,在Rt△AFG中,AF=4,∠EAF=60°,∴∠AFG=30°,∴AG=2,FG=2.在Rt△PFG中,PF=5,FG=2,根据勾股定理得,PG=.∴AP=AG+PG=2+,∴AE=PE=AP=.24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在x轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到x 轴的距离不大于3,直接写出m的取值范围(无需解答过程).【解答】(1)解.由点A(0,5),点P(m,5)可知PA⊥y轴,∵OP=6,OA=5,由勾股定理可求PA==,∴m=﹣;(2)证明:方法一:如图2,取CP、OP中点M、N,连接DM、DN、BM、AN.∵D、M、N分别为OC、PC、PO的中点,∴DM∥PO,DN∥PC,∴四边形PMDN是平行四边形,∴PM=DN,DM=PN,∠PMD=∠PND,又M、N分别为Rt△PBC、Rt△PAO斜边的中点,∴BM=MP,AN=PN,∵∠BPC=∠APO∴∠BMP=∠ANP,∴∠BMP+∠PMD=∠ANP+∠PND,∴∠DNA=∠BMD,∴△DNA≌△BMD,∴AD=BD.方法二:如图3,延长CB至M,使BM=BC,在y轴上面取点N使AN=OA,连接PM,PN,CN,OM.∵∠BPC=∠APO∴∠BPM=∠APN∴∠CPN=∠MPO∴△PCN≌△PMO,∴CN=OM.∵D、A、B分别为OC、ON、CM的中点,∴BD=OM,AD=CN,∴AD=BD.(3)由条件可知点E的纵坐标大于或等于﹣3小于或等于3.①当点E的纵坐标为3时,如图4,过点E作ES⊥x轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,可求OS=AR=4,RE=2,∵PA=PE=﹣m,PR=4+m,在Rt△PRE中,由22+(4+m)2=(﹣m)2,解得:m=﹣;②当点E的纵坐标为﹣3时,如图5,过点E作ES⊥x轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,∴OS=AR=4,∴PR=10﹣4=6由勾股定理得:RE==8,∵PA=PE=﹣m,PR=﹣4﹣m,在Rt△△PRE中,由82+(4+m)2=(﹣m)2,解得:m=﹣10;综上所述:当﹣10≤m≤﹣时,点E到x轴的距离不大于3.。

武汉二中广雅中学2018-2019学年度第二学期八下数学训练卷(一)

武汉二中广雅中学2018-2019学年度第二学期八下数学训练卷(一)

22. (10 分)如图所示,甲、乙两块边长为 a 米(a>1)的正方形田地,甲地修了两条互相乘直的宽为 1 米的通道,乙地正中间修了边长为 1 米的蓄水池,甲乙两田地的剩余地方全部种植小麦,一年后收获小麦 m 千克. (m>0) (1)甲地的小麦种植面积为 平方米,乙地的小麦种植面积为 平方米; (2 分) (2)甲乙两地小麦种植面积较小的是 地; (2 分) (3)若高的单位面积产量是低的单位面积产量的
5.下列等式从左到右的变形,属于因式分解的是( A.x2+2x+1=x(x+2)+1 C.x2+4=(x+2)2 6.若把分式
1 1 1 D. - x 2 + y 2 = ( x + y )( y - x ) 4 2 2
x- y 中 x 和 y 都缩小为原来的一半,那么分式的值( 2x + y
) D.不确定
第 10 题图 9.列车平均提速 v 千米/小时,用相同的时间,列车提速前行驶 S 千米,提速后比提速前多行驶 50 米,设 提速前列车的平均速度为 x 米/小时,下列方程不正确的是( A.
S S + 50 = x x+v
) D.
S S + 50 +v = x x
B.
x S = x + v S + 50
C. x + v =
S + 50 S x
10.如图,△ABC 中,∠ABC=30°,点 D 在△ABC 外,且 BD=2,连 AD、CD,则△ACD 的周长最小值 为( A.1 ) B. 3 C. 2 D. 2 3
二、填空题(每小题 3 分,共 18 分)
1 = ; 12 = ;( 2 5 )2= . 2 12.若 x+m 与 x-2 的乘积之中不含 x 的一次项,则 m=

2018-2019学年湖北省武汉二中广雅中学八年级下学期段测数学试卷 (解析版)

2018-2019学年湖北省武汉二中广雅中学八年级下学期段测数学试卷 (解析版)

2018-2019学年武汉二中广雅中学八年级第二学期段测数学试卷一、选择题1.有理数3的相反数是()A.﹣3B.﹣C.3D.2.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣33.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A.0.3B.0.7C.0.4D.0.64.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.由几个大小相同的小正方体组成的立体图形的俯视图如图所示,则这个立体图形应是下图中的()A.B.C.D.6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A.B.C.D.7.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.8.如图是某月的日历表,在此日历表上可以用一个长方形圈出2×2个位置相邻的4个数,若圈出的4个数的和为52,则最大数与最小数的积为()A.153B.272C.128D.1059.如图,△ABE中,点A、B是反比例函数y=(k≠0)图象上的两点,点E在x轴上,延长线段AB交y轴于点C,点B恰为线段AC中点,过点A作AD⊥x轴于点D.若S=,DE=2OE,则k的值为()△ABEA.6B.﹣6C.9D.﹣910.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56B.72C.56或72D.不存在二、填空题(本大题共6个小题,每小题3分,共18分)11.计算的结果是.12.对于一组统计数据2、7、6、4、3、3,这组数据的中位数是.13.计算﹣的结果是.14.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.15.平面直角坐标系中,点A(m,n)为抛物线y=ax2﹣(a+1)x﹣2(a>0)上一动点,当0<m≤3时,点A关于x轴的对称点始终在直线y=﹣x+2的上方,则a的取值范围是.16.如图,△ABC中,∠A=90°,点D、E分别在边AB、AC上,=m.若,则m=.三、解答题(共8题,共72分)17.计算:(1)a3•a4•a+(a2)4+(﹣2a4)2(2)28x4y2÷7x3y18.如图,AB∥CD,EF分别交AB,CD于点E、F,∠AEF、∠DFE的平分线分别为EG、FH,求证:EG∥FH.19.中华文化,源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)请补全条形分布直方图,本次调查一共抽取了名学生;(2)扇形统计图中“1部”所在扇形的圆心角为度;(3)若该中学有1000名学生,请估计至少阅读3部四大古典名著的学生有多少名?20.如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(﹣2,﹣2)、B(5,﹣3)、C(1,1)都是格点.(1)∠ACB的大小为;(2)要求在下图中仅用无刻度的直尺作图:以A为中心,取旋转角等于∠BAC.把△ABC逆时针旋转,得到△AB1C1,其中点C和点B的对应点分别为点C1和点B1,操作步骤如下:第一步:延长AC到格点B1,使得AB1=AB;第二步:延长BC到格点E,使得CE=CB,连接AE;第三步:取格点F,连接FB1交AE于点C1,则△AB1C1即为所求.请你按步骤完成作图,并直接写出B1、E、F三点的坐标.21.如图,△ABC中,AC为⊙O的直径,点D在BC上,AC=CD,∠ACB=2∠BAD (1)求证:AB与⊙O相切;(2)连接OD,若tan B =,求tan∠ADO.22.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)产品甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E为线段BC上一点,AE交CD于G,且GC=GE,EF⊥BC交AB于点F.(1)求证:AE2=AF•AB;(2)连FG,若BE=2CE,求tan∠AFG;(3)如图2,当tan B=时,CE=FE(请直接写出结果,不需要解答过程).24.已知抛物线y=ax2﹣2ax﹣3a与y轴交于C点,交x轴于A、B,且OB=OC.(1)求抛物线的解析式;(2)如图1,直线l:y=x+b(b<0)交x轴于M,交y轴于N.将△MON沿直线l 翻折,得到△MPN,点O的对应点为P.若O的对应点P恰好落在抛物线上,求直线l 的解析式;(3)如图2,将原抛物线向左平移1个单位,向下平移t个单位,得到新抛物线C1.若直线y=m与新抛物线C1交于P、Q两点,点M是新抛物线C1上一动点,连接PM,并将直线PM沿y=m翻折交新抛物线C1于N,过Q作QT∥y轴,交MN于点T,求的值.参考答案一、选择题(共10小题,每小题3分,共30分)1.有理数3的相反数是()A.﹣3B.﹣C.3D.【分析】依据相反数的定义求解即可.解:3的相反数是﹣3.故选:A.2.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣3【分析】根据二次根式的被开方数大于等于0列式进行计算即可得解.解:根据题意得,x+3≥0,解得x≥﹣3.故选:B.3.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A.0.3B.0.7C.0.4D.0.6【分析】根据利用频率估计概率得摸到黄球的频率稳定在0.3,进而可估计摸到黄球的概率.解:∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,∴估计摸到黄球的概率为0.3,故选:A.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.5.由几个大小相同的小正方体组成的立体图形的俯视图如图所示,则这个立体图形应是下图中的()A.B.C.D.【分析】由俯视图判断出组合的正方体的几何体的列数即可.解:根据给出的俯视图,这个立体图形的左边有2列正方体,右边1列正方体.故选:C.6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A.B.C.D.【分析】根据题意可得等量关系:人数×8﹣3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.解:设有x人,物品价值y元,由题意得:,故选:C.7.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.8.如图是某月的日历表,在此日历表上可以用一个长方形圈出2×2个位置相邻的4个数,若圈出的4个数的和为52,则最大数与最小数的积为()A.153B.272C.128D.105【分析】可设正方形框中的第一个数为x,第二个数比x大1,为x+1,第3个数比x大7,为x+7,第4个数比x+7大1,为x+8,再根据四个数的和为52,列出方程求解即可;解:(3)设最小的数为x,依题意有x+x+1+x+7+x+8=52,解得x=9则x+1=10x+7=16x+8=17.∴这四个数为9,10,16,17.∴最大数与最小数的积为9×17=153.故选:A.9.如图,△ABE中,点A、B是反比例函数y=(k≠0)图象上的两点,点E在x轴上,延长线段AB交y轴于点C,点B恰为线段AC中点,过点A作AD⊥x轴于点D.若S=,DE=2OE,则k的值为()△ABEA.6B.﹣6C.9D.﹣9【分析】根据题意设A(2a,b),则B(a,2b),E(,0),作BM⊥x轴于M,根据S△ABE=S梯形ABMD+S△BME﹣S△ADE得出﹣ab=,求得ab=﹣3,即可求得k=2ab =﹣6.解:∵点A、B是反比例函数y=(k≠0)图象上的两点,点B恰为线段AC中点,∴设A(2a,b),则B(a,2b),∴k=2ab,∵DE=2OE,∴E(,0),作BM⊥x轴于M,∵S△ABE=S梯形ABMD+S△BME﹣S△ADE,S△ABE=,∴(﹣a)•(b+2b)+(﹣a)•2b﹣(﹣2a)•b=,整理得﹣ab=,解得ab=﹣3,∴k=2ab=﹣6.故选:B.10.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56B.72C.56或72D.不存在【分析】根据相同时间内速度的比等于路程的比,可得v1:v2的值,根据相似三角形的性质,可得∠ADB=∠BDP,根据等腰三角形的判定,可得BP与DP的关系,根据勾股定理,可得DP的长,根据有理数的加法,可得P点移动的距离;根据相似三角形的性质,可得EO1的长,分类讨论:当⊙O首次到达⊙O1的位置时,当⊙O在返回途中到达⊙O1位置时,根据v1:v2的值,可得答案.解:存在这种情况,设点P移动速度为v1cm/s,⊙O2移动的速度为v2cm/s,由题意,得==,如图②:设直线OO1与AB交于E点,与CD交于F点,⊙O1与AD相切于G点,若PD与⊙O1相切,切点为H,则O1G=O1H.易得△DO1G≌△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD∴∠BDP=∠CBD,∴BP=DP.设BP=xcm,则DP=xcm,PC=(80﹣x)cm,在Rt△PCD中,由勾股定理,得PC2+CD2=PD2,即(80﹣x)2+402=x2,解得x=50,此时点P移动的距离为40+50=90(cm),∵EF∥AD,∴△BEO1∽△BAD,∴=,即=,EO1=64cm,OO1=56cm.①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为40cm,此时点P与⊙O移动的速度比为==,∵≠,∴此时PD与⊙O1不能相切;②当⊙O在返回途中到达⊙O1位置时,⊙O移动的距离为2(80﹣16)﹣56=72(cm),∴此时点P与⊙O移动的速度比为==,此时PD与⊙O1恰好相切.此时⊙O移动了72cm,故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算的结果是4.【分析】根据二次根式的性质求出即可.解:=4,故答案为:4.12.对于一组统计数据2、7、6、4、3、3,这组数据的中位数是 3.5.【分析】根据中位数的定义直接解答即可.解:把这些数从小到大排列为2、3、3、4、6、7,则这组数据的中位数是(3+4)÷2=3.5.故答案为:3.5.13.计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.解:原式=+=故答案为:14.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.15.平面直角坐标系中,点A(m,n)为抛物线y=ax2﹣(a+1)x﹣2(a>0)上一动点,当0<m≤3时,点A关于x轴的对称点始终在直线y=﹣x+2的上方,则a的取值范围是0<a<1.【分析】求得直线y=﹣x+2,当x=3时的函数值为﹣1,根据题意当x=3时,抛物线的函数值小于1,得到关于a的不等式,解不等式即可求得a的取值范围,解:直线y=﹣x+2中,当x=3时,y=﹣x+2=﹣1,∵A(m,n)关于x轴的对称点始终在直线y=﹣x+2的上方,∴当x=3时,n<1,∴9a﹣3(a+1)﹣2<1,解得a<1,∴a的取值范围是0<a<1,故答案为0<a<1.16.如图,△ABC中,∠A=90°,点D、E分别在边AB、AC上,=m.若,则m=.【分析】作EF⊥BE,CF⊥CE交于点F,易得△ABE∽△CEF,易证四边形BDCF为平行四边形,设BE=2a,CD=BF=3a,可求EF=a,即可求出m的值.解:作EF⊥BE,CF⊥CE交于点F,则∠AEB+∠CEF=90°=∠AEB+∠ABE,∴∠ABE=∠CEF,∵∠A=∠ECF=90°∴△ABE∽△CEF,∴===m,∵=m.∴CF=BD,∵∠A=∠ECF=90°,∴AB∥CF,∴四边形BDCF为平行四边形,设BE=2a,CD=BF=3a,在Rt△BEF中,EF==a,=m,∴=m,∴m=,故答案为.三、解答题(共8题,共72分)17.计算:(1)a3•a4•a+(a2)4+(﹣2a4)2(2)28x4y2÷7x3y【分析】(1)直接利用积的乘方运算法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案;(2)直接利用整式的除法运算法则计算得出答案.解:(1)a3•a4•a+(a2)4+(﹣2a4)2=a8+a8+4a8=6a8;(2)28x4y2÷7x3y=4xy.18.如图,AB∥CD,EF分别交AB,CD于点E、F,∠AEF、∠DFE的平分线分别为EG、FH,求证:EG∥FH.【分析】由AB与CD平行,利用两直线平行,内错角相等得到一对角相等,再由EG 与FH为角平分线,利用角平分线定义及等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】证明:∵AB∥CD,∴∠AEF=∠EFD(两直线平行,内错角相等).∵EG平分∠AEF,FH平分∠EFD,∴∠GEF=∠AEF,∠HFE=∠EFD(角平分线定义),∴∠GEF=∠HFE,∴EG∥FH(内错角相等,两直线平行).19.中华文化,源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)请补全条形分布直方图,本次调查一共抽取了40名学生;(2)扇形统计图中“1部”所在扇形的圆心角为126度;(3)若该中学有1000名学生,请估计至少阅读3部四大古典名著的学生有多少名?【分析】(1)由2部人数及其所占百分比可得总人数,总人数减去0、2、3、4部的人数即可求出1部的人数,从而补全图形;(2)用360°乘以1部人数所占比例可得;(3)用总人数乘以样本中3、4部人数占被调查人数的比例即可得.解:(1)本次调查的总人数为10÷25%=40(人),则“1部”的人数为40﹣(2+10+8+6)=14(人),补全图形如下:故答案为:40;(2)扇形统计图中“1部”所在扇形的圆心角为360°×=126°,故答案为:126;(3)估计至少阅读3部四大古典名著的学生有1000×=350(人).20.如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(﹣2,﹣2)、B(5,﹣3)、C(1,1)都是格点.(1)∠ACB的大小为90°;(2)要求在下图中仅用无刻度的直尺作图:以A为中心,取旋转角等于∠BAC.把△ABC逆时针旋转,得到△AB1C1,其中点C和点B的对应点分别为点C1和点B1,操作步骤如下:第一步:延长AC到格点B1,使得AB1=AB;第二步:延长BC到格点E,使得CE=CB,连接AE;第三步:取格点F,连接FB1交AE于点C1,则△AB1C1即为所求.请你按步骤完成作图,并直接写出B1、E、F三点的坐标.【分析】(1)利用CA和CB为网格的对角线可判断∠ACB的度数;(2)利用勾股定理得到AB1=AB=5,则利用网格特点可确定B1点的位置,利用∠EAC=∠BAC且AE=AB可确定E点位置,要得到B1C1⊥AE,利用网格特点取F点使B1F⊥AE.解:(1)∠ACB=90°,故答案为90°;(2)如图所示,△AB1C1即为所求.其中B1(3,3);E(﹣3,5),F(﹣4,2).21.如图,△ABC中,AC为⊙O的直径,点D在BC上,AC=CD,∠ACB=2∠BAD(1)求证:AB与⊙O相切;(2)连接OD,若tan B=,求tan∠ADO.【分析】(1)设线段AD与⊙O交于E,连接CE,根据圆周角定理得到CE⊥AD,求得∠ACE=∠DAB,于是得到结论;(2)根据切线的性质得到∠CAB=90°,延长CE交AB于M,则CM为AD的垂直平分线,连接DM,根据全等三角形的性质得到∠CDM=∠CAB=90°,设AM=MD=3a,DB=4a,MB=5a,得到AB=8a,AC=6a,设EN=k,得到AE=DE=2k,CE=4k,过O作ON⊥AD于N,根据三角形的中位线定理得到ON=CE=2k,AN=AE=k,于是得到结论.【解答】(1)证明:设线段AD与⊙O交于E,连接CE,∵AC为⊙O的直径,∴CE⊥AD,∵AC=CD,∴∠ACD=2∠ACE,∵∠ACB=2∠BAD,∴∠ACE=∠DAB,∵∠CAE=90°,∴∠CAE+∠DAB=90,∴∠CAB=90°,∴AB与⊙O相切;(2)解:∵AB与⊙O相切,∴∠CAB=90°,延长CE交AB于M,则CM为AD的垂直平分线,连接DM,∴DM=AM,∵AC=CD,CM=CM,∴△ACM≌△DCM(SSS),∴∠CDM=∠CAB=90°,∴∠BDM=90°,∵tan B =,∴设AM=MD=3a,DB=4a,MB=5a,AB=8a,AC=6a,∴tan∠ACM=tan∠EAM =,∴CE=2AE,AE=2EM,设EN=k,∴AE=DE=2k,CE=4k,过O作ON⊥AD于N,∴ON∥CE,∴ON =CE=2k,AN =AE=k,∴DN=3AN=3k,∴tan∠ADO ==.22.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)品甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【分析】(1)根据利润=销售数量×每件的利润即可解决问题.(2)根据一次函数的增减性,二次函数的增减性即可解决问题.(3)根据题意分三种情形分别求解即可:①(1180﹣200a)=440,②(1180﹣200a)>440,③(1180﹣200a)<440.解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=(1180﹣200a)万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①1180﹣200a=440,解得a=3.7,②1180﹣200a>440,解得a<3.7,③1180﹣200a<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.23.如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E为线段BC上一点,AE交CD于G,且GC=GE,EF⊥BC交AB于点F.(1)求证:AE2=AF•AB;(2)连FG,若BE=2CE,求tan∠AFG;(3)如图2,当tan B=时,CE=FE(请直接写出结果,不需要解答过程).【分析】(1)根据等腰三角形的性质、同角的余角相等得到∠AEF=∠B,证明△AEF ∽△ABE,根据相似三角形的性质证明结论;(2)设CE=a,则BE=2a,证明△AEC∽△BAC,得到AC=a,求出∠AFG=60°,得到答案;(3)设BE=a,CE=EF=b,证明△AEC∽△BAC,得到AC=,证明△BEF ∽△BCA,求出a、b的关系,根据正切的定义解答即可.【解答】(1)证明:∵GC=GE,∴∠GCE=∠GEC,∵CD⊥AB,∴∠DCE+∠B=90°,∵EF⊥BC,∴∠GEC+∠AEF=90°,∴∠AEF=∠B,又∠EAF=∠BAE,∴△AEF∽△ABE,∴=,∴AE2=AF•AB;(2)设CE=a,则BE=2a,∵∠DCB+∠B=90°,∠CAB+∠B=90°,∴∠DCB=∠CAB,∵∠GCE=∠GEC,∴∠CAB=∠GEC,又∠ACE=∠BCA=90°,∴△AEC∽△BAC,∴=,即=,解得,AC=a,∴∠CAE=∠BAE=∠AEF=30°,∴FA=FE,∵∠GAC=∠GCA=30°,∴GA=GC,∵GC=GE,∴GA=GE,又FA=FE,∴∠AFG=60°,∴tan∠AFG=;(3)设BE=a,CE=EF=b,∵△AEC∽△BAC,∴=,即=,解得,AC2=b(a+b),∴AC=,∵EF∥AC,∴△BEF∽△BCA,∴=,即=,整理得,b2+ab﹣a2=0,则()2+﹣1=0,解得,=,∴tan B==,故答案为:.24.已知抛物线y=ax2﹣2ax﹣3a与y轴交于C点,交x轴于A、B,且OB=OC.(1)求抛物线的解析式;(2)如图1,直线l:y=x+b(b<0)交x轴于M,交y轴于N.将△MON沿直线l 翻折,得到△MPN,点O的对应点为P.若O的对应点P恰好落在抛物线上,求直线l 的解析式;(3)如图2,将原抛物线向左平移1个单位,向下平移t个单位,得到新抛物线C1.若直线y=m与新抛物线C1交于P、Q两点,点M是新抛物线C1上一动点,连接PM,并将直线PM沿y=m翻折交新抛物线C1于N,过Q作QT∥y轴,交MN于点T,求的值.【分析】(1)OB=OC=3a,故点B(3a,0),将点B的坐标代入y=ax2﹣2ax﹣3a,即可求解;(2)求出点P的坐标(﹣b,b),将点P的坐标代入抛物线表达式,即可求解;(3)计算x P+x M=k,同理可得:x P+x N=﹣k,而x T=x Q=﹣x P,而TH∥MG,故,即==1.解:(1)∵c=﹣3a,∴OB=OC=3a,故点B(3a,0),将点B的坐标代入y=ax2﹣2ax﹣3a并解得:a=1或﹣(舍去﹣),故抛物线的表达式为:y=x2﹣2x﹣3;(2)连接OP,交MN于点K,则OP⊥MN,则直线OP的表达式为:y=﹣2x,而直线MN的表达式为:y=x+b,联立上述两个表达式并解得:x=﹣b,则点K(﹣b,b),∵点K是OP的中点,由中点公式得:点P的坐标为(﹣b,b),将点P的坐标代入抛物线表达式得:(﹣b)2﹣2(﹣b)﹣3=b,解得:b=﹣(不合题意值已舍去);故直线l的表达式为:y=x﹣;(3)平移后抛物线的表达式C1:y=x2﹣4﹣t①,设直线PM的表达式为:y=kx+c②;则PN的表达式为:y=﹣kx+d,联立①②并整理得:x2﹣kx﹣(4+t+c)=0,∴x P+x M=k,同理可得:x P+x N=﹣k,而x T=x Q=﹣x P,如图2,过点N作x轴的平行线交过点M与y轴的平行线于点G,延长TQ交NG于点H,∴TH∥MG,故,即==1.。

武汉二中广雅数学八下周练精选试卷四套

武汉二中广雅数学八下周练精选试卷四套

武汉二中广雅中学八年级(下)数学周练(一)一、选择题。

(10×3′=30′)1.x 的取值范围是( )A .1≥xB . 1≤xC . 1-≥xD .1-≤x 2.下列计算正确的是( ) A.752=+B.2C. 3=D.333=3.在□ABCD 中,对角线AC 、BD 交于点O ,且AC+BD=20,BC=8,则△AOD 的周长( ) A .28 B .24 C .18 D .144. 菱形ABCD 的边长为10,一条对角线的长为16,则另一条对角线的长为( ) A. 6 B. 8 C. 10 D. 125. 下列图形:①等腰三角形;②平行四边形;③菱形;④矩形;⑤正方形,其中对称轴只有两条的个数是( )A .1B .2C .3D .4 6. 下列命题中,假命题是( )A .一组对边平行,一组对角相等的四边形是平行四边形B .有三个角是直角的四边形是矩形C .四边都相等的四边形是菱形D .对角线互相垂直平分的四边形是正方形7.如图,在正方形ABCD 的内部作等边△ADE ,则∠AEB 度数为( ) A. 80° B. 75° C. 70° D. 60°8. 已知菱形ABCD 周长为20,两条对角线BD 、AC 的长度比为3︰4,DH ⊥BC 于点H ,那么DH 长为( )A .3B .4C .4.8D .5第7题 第8题 第9题9.如图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为6根火柴棍时,摆出的正方形所用的火柴棍的根数为( )A .60B .84C .96D .11210.在矩形ABCD 中,AB=8,BC=7,以CD 为边在矩形外部作△CDE ,且S △CDE =16,连接BE ,则BE DE +的最小值为( ) A .15 B .16 C .17 D .18 …… n =1 n =2 n =3 O H D C BA ED C BAED C BA二、填空题(6×3′=18′)11.=;=;2= . 12.如图,在□ABCD 中,AB=5,AD=7,AE 、DF 分别平分∠BAD 、∠ADC , 则EF 长为__________.13. 如图, 将两张对边平行且宽度相等的纸条交叉叠放在一起, 若∠ABC =120°, AD =2, 则重合部分的面积为__________.14.如图, 将一张矩形纸片ABCD 沿CE 折叠, 使D 点落在D ’点处, 若CD ’∥DB , ∠ABD =66°,则∠DCE 的度数为________15.如图所示,在菱形ABCD 中,∠B =80°,E , F 分别是边AB 和AD 的中点,EH ⊥CD 于点H ,则∠FEH 的度数是__________16.如图,在正方形ABCD中,对角线BD=点E 、F 分别在边AB 、对角线BD 上,AE=3,DF=G 在边BC 上,FG=FE ,则BG 长为__________三、解答题(共72分)17.(8分)计算:(1)-(218. (8分)先化简, 再求值:211(1)22x x x --÷++,其中x 1.19.(8分)如图,正方形ABCD 中,点E 、F 分别为 边CD 、AD 上的点,CE=DF ,AE 、BF 交于点H . (1)求证:AE=BF ;(2)若AB=4,CE=1,求AH 的长.HEFDCBA第15题 H F EC B A 第13题 第12题 第14题 F E DC B A E D'D C B A FE D CB A 第16题20.(8分)如图, 直角坐标系中的网格由单位正方形构成, △ABC 的顶点A (3-,5), B (7-,2) C (42--,). (1)画出△ABC 关于y 轴对称的△111C B A , 点1A 、1C 的坐标分别为 ; ; (2)画出△ABC 先向右平移5个单位后,再向下 平移5个单位后的△222C B A ,点2B 、2C 的坐标 分别为 ; ;(3)则以A 、C 、2C 、2A 为顶点的四边形的形状为 。

湖北省武汉二中广雅中学2018-2019学年八年级(下)段测数学试卷(五) 解析版

湖北省武汉二中广雅中学2018-2019学年八年级(下)段测数学试卷(五) 解析版

2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(五)一.选择题(共10小题)1.二次根式中,字母a的取值范围是()A.a<1B.a≤1C.a≥1D.a>12.下列运算正确的是()A.+=B.﹣=C.×=3D.÷=4 3.下列二次根式,最简二次根式是()A.B.C.D.4.四边形ABCD对角线互相垂直,顺次连接四边形ABCD四边中点所得到的四边形是()A.一般的平行四边形B.矩形C.菱形D.正方形5.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:16.正方形和矩形都具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7.如图,等腰Rt△ACD,斜边AD=4,分别以的边AD、AC、CD为直径画半圆,所得两个月形图案AGCE和DHCF的面积之和是()A.4B.4πC.2πD.8.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.79.如图,已知△ABC中,AC=BC,∠ACB=90°.直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC、BC于点D,E两点.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),给出以下个结论:①CD=BE;②AD2+BE2=DE2;③四边形CDFE 不可能是正方形;④△DFE是等腰直角三角形;⑤S四边形CDEF=S△ABC,上述结论正确的个数为()A.2B.3C.4D.510.在面积为6的平行四边形ABCD中,过点A作AE⊥BC于点E,作AF⊥CD于F,若AB=3,BC=2,则CE+CF的值为()A.10+5B.2+C.10+5或2+D.10+5或5﹣10二.填空题(共6小题)11.(2)2=,=,()﹣1=.12.当x=﹣1,代数式x2+2x+3的值是.13.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=.14.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式.15.如图,正方形ABCD中,E是AD上一点,F是AB延长线上一点,DE=BF.点G,H分别在边AB、CD上,且GH=,GH交EF于M.若∠EMH=45°,则EF的长为16.如图,∠ABC=90°,AB=BC,点P在BC边上,CP>BP,点D为AC中点,AB边上有一点N,使△BPN的周长等于BC的长,若DP=2,DN=3,则AN2+CP2的值为.三.解答题(共8小题)17.计算:(1)﹣+;(2)2.18.如图,在▱ABCD中,AH⊥BD于H,CG⊥BD于G,连接CH和AG,求证:∠1=∠2.19.如图1,每个小正方形的边长都为1,点A、B、C在正方形网格的格点上,AB=5,AC =2,BC=.(1)请在网格中画出△ABC.(2)如图2,直接写出:①AC=,BC=.②△ABC的面积为.③AB边上的高为.20.已知三角形三边为a、b、c,其中a、b两边满足a2﹣12a+36+=0.(1)求这个三角形的最大边c的取值范围.(2)已知三角形三边为a、b、c,且满足,求这个三角形的周长.21.如图,在▱ABCD中,AB=6,BC=4,∠B=60°.点E、F分别是AB、CD上的点,将▱ABCD沿EF折叠,得到四边形EFGC,点A、D的对应点分别为C、G.(1)求证:CE=CF.(2)求S△CEF.22.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.23.如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交BE,BF于M,N,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=,正方形ABCD的边长=;(2)如图2,将∠AED绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.参考答案与试题解析一.选择题(共10小题)1.二次根式中,字母a的取值范围是()A.a<1B.a≤1C.a≥1D.a>1【分析】根据二次根式的性质,被开方数大于或等于0,即可求a的取值范围.【解答】解:根据题意得:a﹣1≥0,解得a≥1.故选C.2.下列运算正确的是()A.+=B.﹣=C.×=3D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法对C进行判断;根据二次根式的除法对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2﹣=,所以B选项正确;C、原式==,所以C选项错误;D、原式==2,所以D选项错误.故选:B.3.下列二次根式,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=,故B不是最简二次根式;(D)原式=2,故D不是最简二次根式;故选:C.4.四边形ABCD对角线互相垂直,顺次连接四边形ABCD四边中点所得到的四边形是()A.一般的平行四边形B.矩形C.菱形D.正方形【分析】根据四边形对角线互相垂直,运用三角形中位线平行于第三边证明四个角都是直角,判断是矩形.【解答】解:如图,∵E、F、G、H分别为各边中点,∴EF∥GH∥AC,EF=GH=AC,EH=FG=BD,EH∥FG∥BD,∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形.故选:B.5.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:1【分析】根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.【解答】解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选:C.6.正方形和矩形都具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直【分析】分别根据正方形、矩形、菱形的性质进行判断即可.【解答】解:正方形的对角线互相垂直、平分、相等且平分一组对角,矩形的对角线相等且平分,菱形的对角线互相垂直平分且平分每一组对角,∴正方形和矩形都具有而菱形不一定具有的是对角线相等,故选:B.7.如图,等腰Rt△ACD,斜边AD=4,分别以的边AD、AC、CD为直径画半圆,所得两个月形图案AGCE和DHCF的面积之和是()A.4B.4πC.2πD.【分析】由勾股定理可得AC2+CD2=AD2,然后确定出S半圆ACD=S半圆AEC+S半圆CFD,从而得证.【解答】解:∵△ACD是直角三角形,∴AC2+CD2=AD2,∵以等腰Rt△ACD的边AD、AC、CD为直径画半圆,∴S半圆ACD=•AD2,S半圆AEC=•AC2,S半圆CFD=•CD2,∴S半圆ACD=S半圆AEC+S半圆CFD,∴所得两个月型图案AGCE和DHCF的面积之和=Rt△ACD的面积=×2×4=4.故选:A.8.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.7【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD =AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF =∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF =BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.9.如图,已知△ABC中,AC=BC,∠ACB=90°.直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC、BC于点D,E两点.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),给出以下个结论:①CD=BE;②AD2+BE2=DE2;③四边形CDFE 不可能是正方形;④△DFE是等腰直角三角形;⑤S四边形CDEF=S△ABC,上述结论正确的个数为()A.2B.3C.4D.5【分析】连接CF,如图,根据等腰直角三角形的性质得AC=BC,∠ACB=90°.点F 是AB中点,先证明△AFD≌△CFE,则AD=CE,DF=EF,于是可对①②④⑤进行判断;由于FD⊥AC时,四边形CDFE为矩形,利用FE=FD可判断四边形CDFE是正方形,则可对③进行判断.【解答】解:连接CF,如图,∵AC=BC,∠ACB=90°.点F是AB中点,∴CF=AF=BF,CF⊥AB,∠A=∠BCF=45°,∵∠AFD+∠CFD=90°,∠CFD+∠CFE=90°,∴∠AFD=∠CFE,∴△AFD≌△CFE(ASA),∴AD=CE,DF=EF,∴CD=BE,所以①正确;在Rt△CDE中,CE2+CD2=DE2,∴AD2+BE2=DE2;所以②正确;当FD⊥AC时,四边形CDFE为矩形,而FE=FD,则此时四边形CDFE是正方形,所以③错误;∵DF=EF,∠DFE=90°,∴△DFE是等腰直角三角形,所以④正确;∵S四边形CDEF=S△CDF+S△CEF,而△AFD≌△CFE,∴S四边形CDEF=S△CDF+S△ADF=S△ACF,∴S四边形CDEF=S△ABC,所以⑤正确.故选:C.10.在面积为6的平行四边形ABCD中,过点A作AE⊥BC于点E,作AF⊥CD于F,若AB=3,BC=2,则CE+CF的值为()A.10+5B.2+C.10+5或2+D.10+5或5﹣10【分析】根据平行四边形面积求出AE和AF,有两种情况,求出CE和CF的值,相加即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3,BC=AD=2,①如图1中:由平行四边形面积公式得:BC×AE=CD×AF=6,∴AE=3,AF=2.在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=3,AE=3代入求出BE=6>2,即E在BC延长线上.同理DF=4<3,即F在DC上(如图1),∴CE=6﹣2,CF=3﹣4,即CE+CF=2+.②如图2中:∵AB=3,AE=3,在△ABE中,由勾股定理得:BE=6,同理DF=4,∴CE=6+2,CF=3+4,∴CE+CF=10+5.∴综上可得:CE+CF=2+或10+5.故选:C.二.填空题(共6小题)11.(2)2=20,=,()﹣1=.【分析】直接利用二次根式的性质化简求出答案.【解答】解:(2)2=20,=,()﹣1==.故答案为:20,,.12.当x=﹣1,代数式x2+2x+3的值是25.【分析】将所求式子进行配方处理,再将已知条件代入即可.【解答】解:x2+2x+3=(x+1)2+2,∵x=﹣1,∴x2+2x+3=(x+1)2+2=23+2=25,故答案为25.13.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=112.5°.【分析】由于CE=AC,∠ACB=45°,可根据外角定理求得∠E的值,同样根据外角定理∠AFC=∠FCE+∠E,从而求得∠AFC.【解答】解:∵四边形ABCD是正方形,∴∠ACB=45°,∠DCB=90°,∵AC=CE,∴∠E=∠CAF,∵∠ACB是△ACE的外角,∴∠E=∠ACB=22.5°,∵∠AFC是△CFE的外角,∴∠AFC=∠FCE+∠E=112.5°,故答案为:112.5°.14.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式(n≥2且n为整数).【分析】观察可发现整数部分与分子相同,分母为整数的平方减1,据此可解.【解答】解:观察可发现整数部分与分子相同,分母为整数的平方减1,∴用n(n为正整数,且n≥2)表示的等式为:=n.故答案为:=n(n为正整数,且n≥2).15.如图,正方形ABCD中,E是AD上一点,F是AB延长线上一点,DE=BF.点G,H 分别在边AB、CD上,且GH=,GH交EF于M.若∠EMH=45°,则EF的长为3【分析】连接CE、CF,证明△FBC≌△EDC(SAS),得出CF=CE,∠FCB=∠ECD,证出△CEF是等腰直角三角形,得出∠EFC=45°,EF=CF,证出四边形FCHG是平行四边形,得出CF=GH=3,进而得出答案.【解答】解:连接CE、CF,如图:∵四边形ABCD是正方形,∴AB∥DC,BC=DC,∠ABC=∠D=90°,∴∠FBC=90°=∠D,在△FBC和△EDC中,,∴△FBC≌△EDC(SAS),∴CF=CE,∠FCB=∠ECD,∴∠ECF=∠ECB+∠FCB=∠ECB+∠ECD=90°,∴△CEF是等腰直角三角形,∴∠EFC=45°,EF=CF,∵∠EMH=45°,∴∠EFC=∠EMH,∴GH∥FC,∵AF∥DC,∴四边形FCHG是平行四边形,∴CF=GH=3,∴EF=CF=3;故答案为:3.16.如图,∠ABC=90°,AB=BC,点P在BC边上,CP>BP,点D为AC中点,AB边上有一点N,使△BPN的周长等于BC的长,若DP=2,DN=3,则AN2+CP2的值为29.【分析】作∠PDN=45°,在线段CB上截取CN'=BN,连接BD,根据等腰直角三角形的性质得到BD=CD=AC,∠ABD=∠ACB=45°,延长ND到F,使DN=DF,连接CF,根据全等三角形的性质得到AN=CF,∠FCD=∠A=45°,作PM⊥ND,根据勾股定理即可得到结论.【解答】解:作∠PDN=45°,在线段CB上截取CN'=BN,连接BD,∵∠ABC=90°,AB=BC,点D为AC中点,∴BD=CD=AC,∠ABD=∠ACB=45°,∴△DNB≌△DN'C(SAS),∵△BPN的周长等于BC的长,∴PN=PN′,延长ND到F,使DN=DF,连接CF,∵AD=CD,∠ADN=∠CDF,∴△ADN≌△CDF(SAS),∴AN=CF,∠FCD=∠A=45°,∴∠PCF=90°,作PM⊥ND于M,∴△PMD是等腰直角三角形,∵DP=2,∴PM=DM=2,∴MF=DM+DF=5,AN2+CP2=PF2=22+52=29,故答案为:29.三.解答题(共8小题)17.计算:(1)﹣+;(2)2.【分析】(1)分别化简每个二次根式,再由加法运算法则运算即可;(2)先化简二次根式,再由左向右依次运算即可.【解答】解:(1)原式=4﹣2+=3;(2)原式=2×2×=4×3=12=12×=6.18.如图,在▱ABCD中,AH⊥BD于H,CG⊥BD于G,连接CH和AG,求证:∠1=∠2.【分析】首先证明AH∥CG,再利用平行四边形的性质证明△ABD≌△CDB(SSS),可得S△ABD=S△BCD,进而可得AH=CG,再根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵AH⊥BD,CG⊥BD,∴AH∥CG,∵四边形ABCD是平行四边形,∴CD=AB,AD=BC,在△ADB和△CBD中,∴△ABD≌△CDB(SSS),∴S△ABD=S△BCD,∴AH=CG,∴四边形AGCH为平行四边形,∴CH∥AG,∴∠1=∠2.19.如图1,每个小正方形的边长都为1,点A、B、C在正方形网格的格点上,AB=5,AC =2,BC=.(1)请在网格中画出△ABC.(2)如图2,直接写出:①AC=,BC=.②△ABC的面积为.③AB边上的高为.【分析】(1)根据点A、B、C在正方形网格的格点上,AB=5,AC=2,BC=,即可在网格中画出△ABC;(2)①根据勾股定理即可求出AC、BC的长;②根据割补法即可求出三角形ABC的面积;③根据等面积法即可求出AB边上的高.【解答】解:(1)△ABC即为所求;(2)①AC==,BC==;②S△ABC=2×2﹣×1﹣1×2﹣1×2=,③如图2,AB边上的高为CD,垂足为D,∵S△ABC=AB•CD=,∵AB==,∴CD=,∴CD=.故答案为:、、、.20.已知三角形三边为a、b、c,其中a、b两边满足a2﹣12a+36+=0.(1)求这个三角形的最大边c的取值范围.(2)已知三角形三边为a、b、c,且满足,求这个三角形的周长.【分析】(1)首先利用完全平方公式因式分解,进一步根据两个非负数的和是0,可以求得a,b的值.再由三角形的三边关系就可以求得第三边的范围;(2)首先利用非负数的性质得出b+c=8,进一步利用非负数的性质建立方程组求得a、b、c的数值,求得三角形的周长即可.【解答】解:(1)∵a2﹣12a+36+=0,∴(a﹣6)2+=0,∴a﹣6=0,b﹣8=0,则a=6,b=8,∴8﹣6<c<8+6,即2<c<14,∵c是三角形的最大边,∴8<c<14.(2)∵,∴,解得,∴b+c=8,∴a﹣5=0,解得a=5,∴这个三角形的周长为:a+b+c=5+8=13.21.如图,在▱ABCD中,AB=6,BC=4,∠B=60°.点E、F分别是AB、CD上的点,将▱ABCD沿EF折叠,得到四边形EFGC,点A、D的对应点分别为C、G.(1)求证:CE=CF.(2)求S△CEF.【分析】(1)连接AC、AF,设AC交EF于H.利用全等三角形的性质证明即可.(2)过C点作CG⊥AB于G点,令AE=CE=x,则EG=4﹣x,在Rt△CEG中,根据CE2=EG2+CG2,构建方程即可解决问题.【解答】(1)证明:连接AC、AF,设AC交EF于H.∵AB∥CD,∴∠EAC=∠ACD,∵EA=EC,∴∠ECA=∠EAC=∠ACD,∵CA⊥EF,∴∠CHE=∠CHF=90°,∵CH=CH,∴△CEH≌△CFH(ASA),∴CF=CE=AE=AF,∴四边形AECF为菱形.(2)过C点作CG⊥AB于G点,∵CB=4,∠B=60°,∠CGB=90°∴BG=BC=2,CG=BG=2,令AE=CE=x,则EG=4﹣x,在Rt△CEG中,∵CE2=EG2+CG2,∴x2=(4﹣x)2+(2)2,∴x=,∴S△CEF=S△ACE=.22.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.【分析】(1)连接AC,过P点作PG⊥BC交AC于G点,根据全等三角形的判定求出△P AG≌△PEC即可;(2)延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,根据全等三角形的判定求出△ABQ≌△ADF,△QAP≌△F AP,△PEH≌△APB,根据全等三角形的性质得出QP=PE,设EH=CH=BP=x,求出PC=4﹣x,PF=1+x,在Rt△PCF中,由勾股定理得出(1+x)2=(4﹣x)2+32,求出x即可.【解答】(1)证明:连接AC,过P点作PG⊥BC交AC于G点,∵四边形ABCD是正方形,∴∠ACB=45°,∠BCD=90°,∵PG⊥BC,∴∠GPC=90°,∴∠PGC=45°,∴PG=PC,∵∠DCE=45°,∴∠AGP=∠ECP=90°+45°=135°,∴∠APE=∠GPC=90°,∴∠APG=∠EPC=90°﹣∠GPE,在△P AG和△PEC中∴△P AG≌△PEC(ASA),∴PE=P A;(2)解:延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,∵四边形ABCD是正方形,∴∠D=∠DAB=∠ABC=90°,AD=AB,∴∠ABQ=∠D=90°,在△ABQ和△ADF中∴△ABQ≌△ADF(SAS),∴AQ=AF,∠DAF=∠QAB,∵∠APE=90°,AP=PE,∴∠P AE=∠AEP=45°,∴∠AQP=∠QAB+∠BAP=∠DAF+∠BAP=∠DAB﹣∠P AE=90°﹣45°=45°=∠P AE,在△QAP和△F AP中∴△QAP≌△F AP(SAS),∵EH⊥BC,∠ABP=90°,∠APE=90°,∴∠ABP=∠H=90°,∠APB=∠PEH=90°﹣∠EPH,在△PEH和△APB中∴△PEH≌△APB(AAS),∴BP=EH,∵∠H=90°,∠DCE=45°,∴∠ECH=45°=∠CEH,∴CH=EH=BP,设EH=CH=BP=x,∴PC=4﹣x,PF=BQ+BP=DF+BP=4﹣3+x=1+x,在Rt△PCF中,由勾股定理得:(1+x)2=(4﹣x)2+32,解之得:x=,即CH=EH=,∴在Rt△CHE中,由勾股定理得:CE=CH=.23.如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交BE,BF于M,N,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为﹣1(直接写出结果).【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S四边形BMDN=BD×MN=×6×2=12;(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=a+a=(+1)a,∴==﹣1.故答案为:﹣1.24.如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=1,正方形ABCD的边长=;(2)如图2,将∠AED绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.【分析】(1)利用已知得出△AED≌△DGC(AAS),即可得出AE,以及正方形的边长;(2)①过点B′作B′M垂直于l1于点M,进而得出Rt△AE′D′≌Rt△B′MA(HL),求出∠B′AD′与α的数量关系即可;②首先过点E′作ON垂直于l1分别交l1,l2于点O,N,若α=30°,则∠E′D′N=60°,可求出AE′=1,E′O,E′N,ED′的长,进而由勾股定理可知菱形的边长.【解答】解:(1)由题意可得:∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△AED和△DGC中,,∴△AED≌△DGC(AAS),∴AE=GD=1,又∵DE=1+2=3,∴正方形ABCD的边长==,故答案为:1,;(2)①∠B′AD′=90°﹣α;理由:过点B′作B′M垂直于l1于点M,在Rt△AE′D′和Rt△B′MA中,,∴Rt△AE′D′≌Rt△B′MA(HL),∴∠D′AE′+∠B′AM=90°,∠B′AD′+α=90°,∴∠B′AD′=90°﹣α;②过点E′作ON垂直于l1分别交l1,l3于点O,N,若α=30°,则∠E′D′N=60°,AE′=1,故E′O=,E′N=,E′D′=,由勾股定理可知菱形的边长为:==.。

武汉二中广雅中学下学期八年级数学周练卷

武汉二中广雅中学下学期八年级数学周练卷

武汉二中广雅中学下学期八年级数学周练卷一、选择题(共10小题,每小题3分,共30分) 1.下列各式:① 21;② x 2;③22y x +;④5-;⑤35,其中一定是二次根式的个数有( ) A .1个B .2个C .3个D .4个2.如果1-x 无意义,那么字母x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <13.计算2)3(-结果正确的是( ) A .3 B .-3 C .±3 D .9 4.已知点M (3,-4),那么M 到原点的距离是( )A .3B .4C .-4D .5 5.如图,AB =BC =CD =DE =1,且BC ⊥AB ,CD ⊥AC ,DE ⊥AD ,则线段AE 的长为( ) A .1.5B .2C .2.5D .36.如图,在Rt △ABC 中,∠ACB =90°,AB =6,若以AC 边和BC 边向外作等腰直角三角形AFC 和等腰直角三角形BEC .若△BEC 的面积为S 1,△AFC 的面积为S 2,则S 1+S 2=( ) A .4B .9C .18D .367.k 、m 、n 为三整数,若15135k =,m 15450=,n 6180=,则下列有关于k 、m 、n 的大小关系正确的是( ) A .k <m =nB .m =n <kC .m <n <kD .m <k <n8.如图,一根长36米的木棒(AB ),斜靠在与地面(OM )垂直的墙(ON )上,与地面的倾斜角(∠ABO )为60°.当木棒A 端沿墙下滑1米至点A ′时,B 端沿地面向右滑行至点B ′,则BB ′长为( ) A .1B .336-C .112D .33112-9.如图,一束光线从y 轴上点A (0,1)发出,经过x 轴上点C 反射后,经过点B (6,2),则光线从A 点到B 点经过的路线的长度为( )A .6B .53C .33D .10210.如图,矩形ABCD 中,AB =3,AD =1,AB 在数轴上.若以点A 为圆心,对角线AC 的长为半径作弧交数轴于点M ,则点M 表示的数为( )A .2B .15-C .110-D .110+二、填空题(本大题共6个小题,每小题3分,共18分) 11.化为最简二次根式:48= ,21= ,311=12.木杆在离地面3米处折断,木杆顶端落在离木杆底端4米处,木杆折断之前高 米 13.若a +a1=10,则aa 1+=14.直角三角形的两边长分别为5、13,则第三边长为15.我国现代数学家赵爽为了证明勾股定律,创作了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1、S 2、S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3=16.如图,圆柱形玻璃杯,高为12 cm ,底面周长为18 cm ,在杯底离杯底4 cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为_________cm三、解答题(共7题,共72分) 17.(本题10分)计算:(1) 650÷(2) )()(532012--+18.(本题10分)计算:(1) 0218143124)(-⨯⨯-⨯(2) 18)21(2+-19.(本题8分)已知一个三角形的三边长分别为x 932、46x 、x x 12 (1) 求它的周长(2) 请你给一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值20.(本题8分)已知Rt △ABC 中,∠C =90°,CH ⊥AB ,AC =5,CH =4,求AH 、BC21.(本题10分)在△ABC 中,AB =AC =10,BC =16,点D 是BC 边上一点,且AD ⊥AC 求 (1) △ABC 的面积 (2) BD 的长(3) 请直接写出点D 到AB 与AC 的距离之和22.(本题12分)大华服装厂生产一件秋冬外套需面料12米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元 (1) 求面料和里料的单价(2) 该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元① 设10月份厂方的打折数为m ,求m 的最小值;(利润=销售价-布料成本-固定费用) ② 进入11月份以后,销售情况出现好转,厂方决定对VIP 客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP 客户的降价率和对普通客户的提价率相等,结果一个VIP 客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP 客户享受的降价率23.(本题14分)已知点A 为第一象限内一点,点B 为x 轴正半轴上一点,点A (a ,a ),点B (b ,0),且a 、b 满足:844+-+-=a a b(1) 如图1,求A 、B 两点坐标并判断△AOB 的形状(2) 如图2,M 、N 分别为坐标轴上的点,且AM ⊥AN ,探究:OM 、ON 、OA 之间的数量关系并证明(3) 如图3,延长BA 交y 轴于点C 、E 、F 分别为x 轴、y 轴负半轴上的一点,连接AE 交y 轴于D ,且∠AEO +∠AFO =45° ① 求∠EAF 的度数② 探究:CD 2、DF 2、OF 2之间的数量关系,并证明武汉二中广雅中学下学期八年级数学周练卷一、选择题(共10小题,每小题3分,共30分) 1.二次根式x -5中x 的取值范围是( ) A .x ≥5B .x ≤5C .x ≥-5D .x <52.下列计算正确的是( ) A .752=+B .2222=+C .3223=-D .333=3.如图,在□ABCD 中,AC 、BD 交于点O ,且AB ≠AD ,则下列式子不正确的是( )A .AB =CDB .∠BAC =∠DAC C .BO =ODD .∠BAD =∠BCD4.下列命题的逆命题不正确的是( ) A .同旁内角互补,两直线平行 B .如果两个角是直角,那么它们相等 C .两个全等三角形的对应边相等D .如果两个实数的平方相等,那么它们相等5.如图,下列四组条件中不能判定四边形ABCD 是平行四边形的是( ) A .AB =DC ,AD =BC B .AB ∥CD ,AD ∥BC C .AB ∥DC ,AD =BCD .∠B =∠D ,∠A =∠C6.甲、乙两艘客轮同时离开港口,航行的速度都是40 m /min ,甲客轮用15 min 到达点A ,乙用20 min 到达点B .若A 、B 两点的直线距离为1000 m ,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是( ) A .北偏西30°B .南偏西60°C .南偏东60°D .南偏西30°7.如图,是一扇高为2 m ,宽为1.5 m 的门框,童师傅有3块薄木板,尺寸如下:① 号木板长3 m ,宽2.7 m ;② 号木板长2.8 m ,宽2.8 m ;③ 号木板长4 m ,宽2.4 m .可以从这扇门通过的木板是( )号 A .②B .③C .②③D .都不能通过8.在□ABCD 中,对角线AC 、BD 交于点O ,且AC +BD =20,BC =8,则△AOD 的周长( ) A .28B .24C .18D .149.如图所示,为2002年8月北京第24届国际数学家大会会标,由4个相同的直角三角形拼合而成.如果图中大、小正方形(四角为直角,四边长相等)的面积为20和5,那么阴影部分中一个直角三角形的两个直角边的和等于( ) A .5B .15C .35D .5310.如图,在等边三角形△ABC 中,射线AD 四等分∠BAC 交BC 于点D ,其中∠BAD >∠CAD ,则BDCD的值为( ) A .31 B .43C .213- D .313- 二、填空题(本大题共6个小题,每小题3分,共18分)11.2)52(=__________,32=__________,2)3(-=__________ 12.已知直角三角形的两边分别为3、4,则第三边的长为__________ 13.在实数范围内因式分解:2x 2-4=_______________14.如图,在□ABCD 中,AB =5,AD =7,AE 、DF 分别平分∠BAD 、∠ADC ,则EF 长为___15.已知,322322=,833833=,15441544=……,请你用含n 的式子将其中的规律表示出来__________________________16.如图,已知OP =1,OQ =4,且∠AOB =20°,C 、D 是OA 、OB 上的两个动点,则PC +CD +DQ 的最小值为__________ 三、解答题(共8题,共72分) 17.(本题8分)计算:(1) )681()2124(+-- (2) 5043122÷⨯18.(本题8分)如图,E 、F 是□ABCD 的对角线BD 所在直线上两点,且BE =DF ,求证:四边形AECF 是平行四边形19.(本题8分)如图,AB =OC ,OB =CD ,∠ABO =∠OCD =90°,且B 、O 、C 三点在一条直线上(1) 判定△AOD 的形状,并证明你的结论 (2) 结合该图证明勾股定理:在Rt △ABO 中,设AB =a ,OB =b ,OA =c ,求证:a 2+b 2=c 220.(本题8分)如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3) (1) AC 的长为_________ (2) 求证:AC ⊥BC(3) 若以A 、B 、C 及点D 为顶点的四边形为□ABCD ,画出□ABCD ,并写出D 点的坐标_________21.(本题8分)如图,已知:在Rt△ABC中,∠ACB=90°,AC=12,AB=13(1)尺规作图:在线段AB的下方以AB为斜边作等腰Rt△ABD(不要求证明,不要求写作法,保留作图痕迹)(2) 连接CD,求CD的长22.(本题10分)如图,一架2.6 m长的梯子AB斜靠在一竖直墙AO上,这时AO=2.4 m,梯子(1) 如果梯子底端B沿地面外移0.6 m,那么梯子顶端也下移0.6 m吗?(2) 试问梯子底端B沿地面外移多少米时与梯子顶端下移的距离相等?23.(本题10分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E(1) 求证:四边形ABCE是平行四边形(2) 如图2,在图1中的△ABD内有一点P.若∠BPD=150°,且BP=32,AP=4,求△ABD的边长(3) 如图3,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,直接写出OG ∶BF 的比值为_________24.(本题12分)已知:在平面直角坐标系中,P 在第二象限上的一点,P A ⊥x 轴于A .若P (a ,b )且满足096622=++++b ab a a (1) 求OP 的长度(2) 在坐标轴上是否存在点C ,使CP =OC ,若存在,求出C 点坐标;若不存在,说明理由 (3) 如图,在y 轴正半轴上取点B ,使得OA =OB ,D (m ,n )为第二象限上一点,过点D 作x 轴、y 轴的垂线,垂足分别为E 、F ,且交线段AB 于G 、H 两点,先写出m 、n 关系.当满足这个关系时,∠GOH =45°,并用m 、n 满足的这个关系证明∠GOH =45°。

2018-2019年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)(解析版)

2018-2019年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)(解析版)

2018-2019 学年二中广雅中学八年级(下)段测数学试卷(六)一.选择题(共10 小题)1.以下各图象不可以表示y 是 x 的函数的是()A .B.C.D.2.若函数 y=( 3﹣ m)是正比率函数,则m 的值是()A .﹣ 3B .3C.± 3D.﹣ 13.以下计算,正确的选项是()A .(﹣ 1)= 1B .=C.﹣= 1D.= 34.菱形拥有而矩形不必定拥有的特点是()A.对角相等B.对角线相互均分C.一组对边平行,另一组对边相等D.对角线相互垂直5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣ x+b 的图象上的点.y1, y2的大小关系为()A .y1< y2B. y1> y2C. y1= y2D.以上结论都有可能6.如图,在 ? ABCD 中,AC、BD 订交于点O,若 BD= 10,AC= 6,则 AB 的取值范围为()A .4< AB< 16B .4< AB< 10C. 2< AB< 8D. 3<AB< 57.已知一次函数y=( m﹣ 4)x+2m+1 的图象过一、二、四象限,则 m 的取值范围是()A .m<4B .m<﹣C.﹣<m<4D.无解8.甲乙两同学从 A 地出发,骑自行车在同一条路上行驶到 B 地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如下图.依据图中供给的信息,有下列说法:①他们都行驶了18 千米.②甲车逗留了0.5 小时.③乙比甲晚出发了0.5 小时.④ 相遇后甲的速度<乙的速度.⑤ 甲、乙两人同时抵达目的地.此中切合图象描绘的说法有()A .2 个B .3 个C. 4 个D. 5 个9.以下图形中,表示一次函数y= mx+n 与正比率函数y= mnx( m, n 为常数,且mn≠ 0)的图象的是()A .B.C.D.10.正方形ABCD 中, E、F 分别是 AB 、CB 上的点,且AE=CF , CE 交 AF 于 M ,∠ CMF= 45°,则的值为()A .B .C.D.二.填空题(共 6 小题)11.化简:=.12.已知对于 x的方程 mx+n= 0 的解是 x=﹣ 2,则直线 y= mx+n 与 x 轴的交点坐标是.13.如图,将平行四边形ABCD 沿对角线BD 折叠,使点 A 落在点 A'处.若∠ 1=∠ 2=50°,则∠ A'为.14.如图,直线y= kx+b 经过点 A(﹣ 1,﹣ 2)和点 B(﹣ 2,0),直线 y= 2x 过点 A,则不等式 2x< kx+b< 0 的解集为.15.如图,将边长为8 的正方形纸片 ABCD 折叠,使点 D 落在 BC 边的点 E 处,点 A 落在点 F 处,折痕为MN ,若 MN = 4,则线段CN的长是.16.在同一平面直角坐标系中,直线y=kx﹣ k 与函数 y=的图象恰巧有三个不一样的交点,则k 的取值范围是.三.解答题(共8 小题)17.计算:( 1)( 2)18.已知一次函数的图象过M( 3, 5), N(﹣ 4,﹣ 9).( 1)求这个一次函数的分析式;( 2)将直线 MN 向上平移 1 个单位,得直线l , l 的分析式为(填空).19.为绿化校园,某校计划购进A、B 两种树苗,共21 课.已知 A 种树苗每棵90 元, B 种树苗每棵70 元.设购置 B 种树苗 x 棵,购置两种树苗所需花费为y 元.( 1)求 y 与 x 的函数表达式;( 2)若购置 B 种树苗的数目少于 A 种树苗的数目,请给出一种花费最省的方案,并求出该方案所需花费.20.已知点A( 8,0)及在第四象限的动点P( x, y),且 x+y= 10.设△ OPA 的面积为S.( 1)求 S 对于 x 的分析式,并直接写出x 的取值范围;( 2)画出函数S 的图象.21.已知矩形ABCD ,把△ BCD 沿 BD 翻折,得△ BDG ,BG,AD 所在的直线交于点E,过点D 作 DF ∥BE 交 BC 所在直线于点F.( 1)求证:四边形 DEBF 是菱形;( 2)若 AB =8, AD = 4,求四边形 BEDF 的面积.22.在平面直角坐标系中,直线y= 2x+4 与两坐标轴分别交于A, B 两点.( 1)若一次函数y=﹣x+m 与直线 AB 的交点在第二象限,求m 的取值范围;( 2)若M 是y 轴上一点,N 是x 轴上一点,直线AB 上能否存在两点P,Q,使得以M,N,P, Q 四点为极点的四边形是正方形.若存在,求出M, N两点的坐标,若不存在,请说明原因.23.如图,已知正方形ABCD ,点 E 在 BA 延伸线上,点 F 在 BC 上,且∠ CDE =2∠ ADF .(1)求证:∠ E= 2∠CDF ;(2)若 F 是 BC 中点,求证: AE+DE = 2AD ;( 3)作 AG⊥ DF 于点 G,连 CG.当 CG 取最小值时,直接写出AE: AB 的值.24.已知,如图:直线AB: y=﹣ 3x+3 与两坐标轴交于A, B 两点.(1)过点 O 作 OC⊥ AB 于点 C,求 OC 的长;(2)将△ AOB 沿 AB 翻折到△ ABD ,点 O 与点 D 对应,求直线 BD 的分析式;(3)在( 2)的条件下,正比率函数 y= kx 与直线 BD 交于 P,直线 AB 交于 Q,若 OP = 3OQ,求正比率函数的分析式.参照答案与试题分析一.选择题(共 10 小题)1.以下各图象不可以表示 y 是x 的函数的是()A .B .C .D .【剖析】 依据函数的意义即可求出答案,即对于每个自变量x 的值,函数 y 都有独一确定的值与其对应.函数的意义反应在图象上简单的判断方法是:作垂直于x 轴的直线,在左右平移的过程中与函数图象只会有一个交点.【解答】 解: C 图象作垂直于x 轴的直线,在左右平移的过程中与函数图象会有无数个交点.应选: C .2.若函数y =( 3﹣ m )是正比率函数,则m 的值是()A .﹣ 3B .3C .± 3D .﹣ 1【剖析】 依据正比率函数的定义解答.【解答】 解:∵函数y =( 3﹣ m )是正比率函数,∴ m 2﹣ 8= 1,解得: mm 1= 3, m 2=﹣ 3;且 3﹣m ≠ 0,∴ m =﹣ 3.应选: A .3.以下计算,正确的选项是()A .(﹣ 1)= 1B .=C .﹣= 1D .= 3【剖析】 依据二次根式的混淆运算次序和运算法例逐个计算可得.【解答】 解: A . ( ﹣ 1)= 2﹣ ,此选项错误;B.==,此选项错误;C.与不是同类二次根式,不可以归并,此选项错误;D .=|﹣3|=3,此选项正确;应选: D .4.菱形拥有而矩形不必定拥有的特点是()A.对角相等B.对角线相互均分D.对角线相互垂直【剖析】依据矩形、菱形的性质逐个判断即可.【解答】解:菱形的性质有:对角相等、对角线相互均分、一组对边平行,另一组对边相等、对角线相互垂直,矩形的性质有:对角相等、对角线相互均分、一组对边平行,另一组对边相等、对角线相等;即菱形拥有而矩形不必定拥有的特点是对角线相互垂直,应选: D .5.已知A(﹣,y1),B(﹣关系为()A .y1< y2C. y1= y2, y2)是一次函数y=﹣ x+b 的图象上的点.B. y1> y2D.以上结论都有可能y1, y2的大小【剖析】先依据一次函数y=﹣ x+b 中k=﹣ 1 判断出函数的增减性,再依据﹣<﹣进行解答即可.【解答】解:∵一次函数y=﹣ x+b 中k=﹣ 1<0,∴y 随 x 的增大而减小,∵﹣<﹣,∴y1> y2.应选: B.6.如图,在 ? ABCD 中,AC、BD 订交于点O,若 BD= 10,AC= 6,则 AB 的取值范围为()A .4< AB< 16B .4< AB< 10C. 2< AB< 8D. 3<AB< 5【剖析】由在 ?ABCD中,对角线AC 与BD订交于点O,若BD= 10,AC= 6,依据平行四边形的对角线相互均分,可求得OA与OB 的长,而后由三角形三边关系,求得答案.【解答】解:∵在 ? ABCD 中,对角线AC 与 BD 订交于点O, BD= 10,AC=6,∴OA= AC= 3, OB= BD= 5,∴边长 AB 的取值范围是:2<AB<8.应选: C.7.已知一次函数y=( m﹣ 4)x+2m+1 的图象过一、二、四象限,则m 的取值范围是()A .m<4B .m<﹣C.﹣< m< 4D.无解【剖析】若函数 y= kx+b 的图象过一、二、四象限,则此函数的k< 0,b>0,据此求解.【解答】解:∵函数y=( m﹣4) x+2 m+1 的图象过一、二、四象限,∴m﹣ 4< 0,2m+1> 0解得﹣< m< 4.应选: C.8.甲乙两同学从 A 地出发,骑自行车在同一条路上行驶到 B 地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如下图.依据图中供给的信息,有下列说法:①他们都行驶了18 千米.②甲车逗留了0.5 小时.③乙比甲晚出发了0.5 小时.④ 相遇后甲的速度<乙的速度.⑤ 甲、乙两人同时抵达目的地.此中切合图象描绘的说法有()A .2 个B .3 个C. 4 个D. 5 个【剖析】要能依据函数图象的性质和图象上的数据剖析得出函数的种类和所需要的条件,联合实质意义获得正确的结论.【解答】解:依据题意和图象可知:① 他们都行驶了18 千米.② 甲车逗留了0.5 小时.③乙比甲晚出发了1﹣ 0.5= 0.5 小时.④相遇后甲的速度<乙的速度.⑤ 乙先抵达目的地.故只有⑤ 不正确.应选: C.9.以下图形中,表示一次函数y= mx+n 与正比率函数y= mnx( m, n 为常数,且mn≠ 0)的图象的是()A .B.C.D.【剖析】依据“两数相乘,同号得正,异号得负”分两种状况议论mn 的符号,而后依据m、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当 mn>0, m, n 同号,同正时y= mx+n 过 1,3, 2 象限,同负时过2,4, 3 象限;②当 mn< 0 时, m, n 异号,则y= mx+n 过 1, 3, 4 象限或 2,4, 1 象限.应选: A.10.正方形ABCD 中, E、F 分别是 AB 、CB 上的点,且AE=CF , CE 交 AF 于 M ,∠ CMF= 45°,则的值为()A .B .C.D.【剖析】依据正方形的性质获得AB= BC,等量代换获得BE= BF,依据全等三角形的性质获得 AM= CM ,EM = FM ,推出点M 在点 A 和点 C 的对称轴上,连结BD ,过 M 作MG ⊥BC 于 G,则点 M 在 BD 上,依据等腰三角形的判断获得BE= BM ,设 BG= GM =x,获得 BE= BM=x,依据相像三角形的性质即可获得结论.【解答】解:∵在正方形ABCD 中,∴AB=BC,∵ AE= CF ,∴BE= BF ,在△ ABF 与△ CBE 中,,∴△ ABF ≌△ CBE ( SAS),∴∠ BAF =∠ BCE ,在△ AEM 与△ CFM 中,,∴△ AEM≌△ CFM (AAS),∴AM =CM , EM=FM ,∴点 M 在点 A 和点 C 的对称轴上,连结 BD ,过 M 作 MG ⊥ BC 于 G,则点 M 在 BD 上,∴∠ ABM=∠ CBM = 45°,∵∠ AME=∠ CMF = 45°,∴∠ AME=∠ CBM ,∴∠ BEM=∠ BAM +∠ AME=∠ BME =∠ CBM +∠BCM ,∴BE= BM ,∵MG ⊥ BC,∴ BG= GM,设 BG= GM = x,∴BE= BM = x,∵ MG ∥ BE,∴△ CMG ∽△ CEB,∴==,∴==+1,应选: A.二.填空题(共 6 小题)11.化简:=.【剖析】原式被开方数变形后,开方即可获得结果.【解答】解:原式===.故答案为:.y=mx+n 与x 轴的交点坐标是(﹣12.已知对于x 的方程 mx+n= 0 的解是 x=﹣ 2,则直线2, 0).【剖析】求直线与x 轴的交点坐标,需使直线y= mx+n的y 值为0,则mx+n= 0;已知此方程的解为x=﹣ 2.所以可得答案.【解答】解:∵方程的解为x=﹣ 2,∴当 x=﹣ 2 时 mx+n= 0;又∵直线 y= mx+n 与 x 轴的交点的纵坐标是0,∴当 y=0 时,则有mx+n= 0,∴ x=﹣ 2 时, y= 0.∴直线 y= mx+n 与 x 轴的交点坐标是(﹣2, 0).13.如图,将平行四边形ABCD 沿对角线 BD 折叠,使点 A 落在点 A'处.若∠ 1=∠ 2=50°,则∠A'为 105° .【剖析】由平行四边形的性质和折叠的性质,得出∠ ADB =∠ BDG=∠ DBG,由三角形的外角性质求出∠ BDG=∠ DBG=∠ 1= 25°,再由三角形内角和定理求出∠ A,即可获得结果.【解答】解:∵ AD∥ BC,∴∠ ADB=∠ DBG,由折叠可得∠ADB=∠ BDG ,∴∠ DBG=∠ BDG ,又∵∠ 1=∠ BDG+∠ DBG = 50°,∴∠ ADB=∠ BDG= 25°,又∵∠ 2= 50°,∴△ ABD 中,∠ A= 105°,∴∠ A'=∠ A= 105°,故答案为: 105°.14.如图,直线y= kx+b 经过点 A(﹣ 1,﹣ 2)和点 B(﹣ 2,0),直线 y= 2x 过点 A,则不等式 2x< kx+b< 0 的解集为﹣2<x<﹣1.【剖析】解不等式2x< kx+b< 0 的解集,就是指函数图象在A,B 之间的部分的自变量的取值范围.【解答】解:依据题意获得y= kx+b 与 y= 2x 交点为 A(﹣ 1,﹣ 2),解不等式2x< kx+b< 0 的解集,就是指函数图象在A,B 之间的部分,又 B(﹣ 2, 0),此时自变量 x 的取值范围,是﹣ 2< x <﹣ 1.即不等式 2x < kx+b < 0 的解集为:﹣ 2< x <﹣ 1.故答案为:﹣ 2< x <﹣ 1.15.如图,将边长为 8 的正方形纸片点 F 处,折痕为 MN ,若 MN = 4ABCD 折叠,使点 D ,则线段 CN 的长是落在3BC .边的点 E 处,点A 落在【剖析】 依据折叠的性质,只需求出DN 就能够求出 NE ,在直角△ CEN 中,设 DN = EN= x ,则 CN = 8﹣ x ,在 Rt △ ENC 中, EN 2=CN 2+EC 2,依据勾股定理就能够列出方程,从而解出 CN 的长.【解答】 解:过点 M 作 MH ⊥ CD 于点 H .连结 DE .依据题意可知 MN 垂直均分 DE ,易证∠ EDC =∠ MHN , MH =AD ,∵四边形 ABCD 是正方形,∴ MH = AD = CD ,∵∠ MHN =∠ C =90°, ∴△ MHN ≌△ DCE (ASA ), ∴ DE = MN = 4 ,在 Rt △DEC 中, CE === 4,设 DN =EN = x ,则 CN = 8﹣ x ,在 Rt △ENC 中, EN 2=CN 2+EC 2,∴ x 2=( 8﹣ x ) 2+42,解得 x =5,∴ CN = 8﹣x = 3.故答案为 3.16.在同一平面直角坐标系中,直线y=kx﹣ k 与函数y=的图象恰巧有三个不一样的交点,则k 的取值范围是﹣2<k<﹣.【剖析】依据题意把y= kx﹣ k 分别代入各个分段函数分析式,用k 表示出x 的值,再根据 x 的取值范围确立k 的范围.【解答】解:直线y= kx﹣k 与函数 y=﹣ 2x﹣ 6 在 x<﹣ 4 时有交点,则 x=<﹣4,解得﹣ 2< k<﹣;直线 y=kx﹣ k 与函数 y= 2 在﹣ 4≤ x< 1 时有交点,则k≤﹣;直线 y=kx﹣ k 与函数 y=﹣ 2x+4 在 x≥ 1 时有交点,则x=<﹣4,解得 k>﹣ 2.所以 k 的取值范围是﹣2<k<﹣.故答案为:﹣2< k<﹣.三.解答题(共8 小题)17.计算:( 1)( 2)【剖析】依据二次根式的运算法例即可求出答案.【解答】解:( 1)原式= 4﹣2+12=14( 2)原式= 2﹣18.已知一次函数的图象过M( 3, 5), N(﹣ 4,﹣ 9).( 1)求这个一次函数的分析式;( 2)将直线 MN 向上平移 1 个单位,得直线l , l 的分析式为y= 2x(填空).【剖析】( 1)利用待定系数法求一次函数分析式;( 2)依据直线平移的规律在分析式y= 2x﹣ 1 的右侧加上 1 即可.【解答】解:( 1)设一次函数分析式为y= kx+b,把 M( 3,5), N(﹣ 4,﹣ 9)代入得,解得,所以一次函数分析式为y=2x﹣ 1;(2)将直线 MN 向上平移 1 个单位,得直线 l ,则 l 的分析式为 y= 2x﹣1+1 = 2x.故答案为 y= 2x.19.为绿化校园,某校计划购进A、B 两种树苗,共21 课.已知 A 种树苗每棵90 元, B 种树苗每棵70 元.设购置 B 种树苗 x 棵,购置两种树苗所需花费为y 元.( 1)求 y 与 x 的函数表达式;( 2)若购置 B 种树苗的数目少于 A 种树苗的数目,请给出一种花费最省的方案,并求出该方案所需花费.【剖析】( 1)设购置 B 种树苗 x 棵,则购置 A 种树苗( 21﹣ x)棵,依据“总花费= A 种树苗的单价×购置 A 种树苗棵树 +B 种树苗的单价×购置 B 种树苗棵树” 即可得出y 对于x 的函数关系式;( 2)依据购置B 种树苗的数目少于 A 种树苗的数目可得出对于x 的一元一次不等式,解不等式即可求出x 的取值范围,再联合一次函数的性质即可得出结论.【解答】解:( 1)设购置 B 种树苗 x 棵,则购置 A 种树苗( 21﹣ x)棵,由已知得:y=70x+90 (21﹣x)=﹣20x+1890 (x 为整数且0≤x≤21).( 2)由已知得: x< 21﹣ x,解得: x<.∵y=﹣ 20x+1890 中﹣ 20<0,∴当x=10 时, y 取最小值,最小值为1690.答:花费最省的方案为购置 A 种树苗11 棵, B 种树苗10 棵,此时所需花费为1690 元.20.已知点A( 8,0)及在第四象限的动点P( x, y),且x+y= 10.设△OPA 的面积为S.( 1)求 S 对于( 2)画出函数x 的分析式,并直接写出 S 的图象.x 的取值范围;【剖析】( 1)第一把 x+y= 10,变形成 y= 10﹣ x,再利用三角形的面积求法:底×高÷2=S,能够获得 S 对于 x 的函数表达式; P 在第四象限,故 x> 0,y> 0,可获得 x 的取值范围;( 2)利用描点法画出函数图象即可.【解答】解:(1)∵x+y=10,∴ y=﹣ x+10 ,∴ S=× 8× |y|= 4( x﹣ 10)= 4x﹣ 40,∵第四象限的动点P( x, y),∴x> 0, y< 0,∴,∴x> 10,即S=4x﹣ 40( x>10);( 2)∵分析式为S= 4x﹣40( x> 10),∴函数图象经过点(10,0)( 15,20)(但不包含(10, 0)的射线).图象如下图21.已知矩形ABCD ,把△ BCD 沿 BD 翻折,得△ BDG ,BG,AD 所在的直线交于点E,过点D 作 DF ∥BE 交 BC 所在直线于点F.( 1)求证:四边形 DEBF 是菱形;( 2)若 AB =8, AD = 4,求四边形 BEDF 的面积.【剖析】( 1)依据邻边相等的平行四边形为菱形进行证明;( 2)依据菱形面积公式底×高进行计算.【解答】解:( 1)证明:∵四边形ABCD 为矩形,∴AD∥ BC,∴∠ EDB=∠ DBC,依据题意可知△BCD ≌△ BDG ,∴∠ DBG=∠ DBC ,∴∠ EDB=∠ EBD,∴ DE = BE,∵AD∥ BC,DF ∥ BE,∴四边形 BEDF 为平行四边形,又∵ DE =BE,∴四边形 BEDF 为菱形;( 2)设菱形 BEDF 的边长为 x,则 AE=DE ﹣ AD= x﹣ 4,在Rt△AEB 中, BE 2= AE2+AB2,222,即 x =( x﹣ 4) +8解得 x=10,∴菱形 BEDF 的面积= DE ?AB = 10× 8= 80.22.在平面直角坐标系中,直线y= 2x+4 与两坐标轴分别交于A, B 两点.( 1)若一次函数y=﹣x+m 与直线 AB 的交点在第二象限,求m 的取值范围;( 2)若M 是y 轴上一点,N 是x 轴上一点,直线AB 上能否存在两点P,Q,使得以M,N,P, Q 四点为极点的四边形是正方形.若存在,求出M, N两点的坐标,若不存在,请说明原因.【剖析】(1)分析式联立获得2x+4=﹣x+m,解得 x=(m﹣4),依据题意获得(m ﹣ 4)< 0,解得即可;(2)分三种状况议论,依据正方形的性质三角形全等的性质,三角形相像的性质即可求得 M, N 两点的坐标.【解答】解:(1)联立 y= 2x+4 与 y=﹣x+m,得 2x+4=﹣x+m,解得 x=(m﹣4),∵交点在第二象限,∴( m﹣4)< 0,∴ m< 4;( 2)当 x= 0 时, y= 2x+4=4,∴ A( 0, 4),当 y= 0 时, 0=2x+4, x=﹣ 2,∴ B(﹣ 2, 0),∴ OA= 4,OB= 2.如图 1,过点 Q 作 QH⊥ x 轴于 H ,∵ MN ∥ AB,∴△ NMO ∽△ BAO,∴==,设ON=a,则 OM = 2a,∵∠ MNQ =90°,∴∠ QNH +∠ MNO =∠ MNO +∠ NMO =90°,∴∠ QNH =∠ NMO ,在△ QNH 和△ NMO 中∴△ QNH ≌△ NMO ( AAS),∴QH =ON= a, HN =OM = 2a,又∵△ BQH ∽△ BAO,∴==,∴BH= a,∵OB= BH+HN+ON,∴2= a+2 a+a,解得 a=,∴M( 0,), N(﹣, 0);如图 2,过点 P 作 PH ⊥ x 轴于 H ,易证△ PNH ∽△ BAO,∴==,设PH = b,则 NH = 2b,同理证得△ PNH≌△ NMO ,∴PH= ON=b, HN =OM = 2b,∴OH =HN﹣ OH = b,又∵△ BPH ∽△ BAO,∴==,∴ BH=b,∵OB= BH+OH,∴2= b+b,解得 b=,∴M( 0,﹣),N(, 0);如图 3,过点 P 作 PH ⊥ x 轴于 H ,PE⊥ y 轴于 E, QF⊥ y 轴于 F ,易证△ PAE∽△ BAO ,∴==,设PE= c,则 AE=2c,同理证得△ PNH≌△ PME,∴ PH= PE= OE=c,则 AE= 2c,∵ OA= AE+OE,∴ 4= 2c+c,解得 c=,∵△ MQF ≌△ PME ,∴MF =PE=OE, EM = FQ,∴EM =OF= FQ ,设 EM= OF = FQ =m,则 Q(﹣ m,﹣ m),代入 y= 2x+4 中,得﹣ m =﹣ 2m+4 ,解得 m= 4,∴ NO= NH+OH =,∴ N(﹣,0),∵OF= m= 4,∴ M( 0,﹣ 4).综上所述 M( 0,),N(﹣,0)或 M( 0,﹣),N(,0)或 M(0,﹣ 4),N(﹣,0);.23.如图,已知正方形ABCD ,点 E 在 BA 延伸线上,点 F 在 BC 上,且∠ CDE =2∠ ADF .(1)求证:∠ E= 2∠CDF ;(2)若 F 是 BC 中点,求证: AE+DE = 2AD ;( 3)作 AG⊥ DF 于点 G,连 CG.当 CG 取最小值时,直接写出AE: AB 的值.【剖析】( 1)将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,证得∠ CDE =∠ ADM ,得出∠ E=∠ M= 180°﹣ 2∠ DFM ,可得出∠ CDF = 90°﹣∠ DFM ,则结论得证;( 2)将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,过点 M 作 MH ⊥ DF 于 H.设 BF=FC =x,则 CD =2x,求出 DF = x,证明△ DFC ∽△ MFH ,得出 FM ,AE= 4x,则结论得证;( 3)如图 3﹣ 1 中,取 AD 的中点 N,连结 GK, CK,当 C、 G、 N 三点共线时, CG 最小.在图3﹣ 2 中,证得四边形NCMD 为平行四边形,得出CM= DN=AD ,则答案可求出.【解答】( 1)证明:如图1,将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,∵∠ DCB=∠ DCM = 90°,∴ F、 C、 M 三点共线,∵将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,∴△ ADE≌△ CDM ,∴∠ E=∠ M,∠ EDA =∠ CDM ,∴∠ CDE=∠ ADM ,∵∠ CDE= 2∠ADF ,∴∠ ADM = 2∠ ADF ,∴∠ FDM =∠ ADF ,∵正方形ABCD 中 AD ∥ BC,∴∠ ADF =∠ DFM =∠ FDM ,∴∠ E=∠ M= 180°﹣ 2∠DFM ,∵∠ DCB= 90°,∴∠ CDF = 90°﹣∠ DFM ,∴∠ E= 2∠ CDF .( 2)证明:如图2,将△ ADE 绕点 D 逆时针旋转90°得△ CDM ,作 MH ⊥ DF 于 H.∵∠ DCF =∠ DCM = 90°,∴F、 C、 M 三点共线,过点 M 作 MH ⊥ DF 于H .∵若 F 是 BC 中点,设 BF = FC= x,则 CD= 2x,=x,在 Rt△FDC 中, DF =由( 1)得,∠ DFM =∠ FDM ,∴ DM = FM ,又∵ HM ⊥ DF ,∴ FH =DF =x,∵∠ DFC =∠ MFH ,∠ DCB =∠ MHF = 90°,∴△ DFC ∽△ MFH ,∴,∴FM = x,∴CM = AE=FM ﹣ FC = x,∵ DE= DM = FM = x,∴AE+DE = x+ x= 4x,∵CD = AD=2x,∴AE+DE = 2AD = 4x.( 3)解:如图3﹣ 1 中,取 AD 的中点 K .∵AG⊥ DF 于点 G,∴∠ AGD= 90°,∵AK= DK ,∴GK = AD,∵CG≥ CK﹣GK ,∴当 C、 G、 N 三点共线时,CG 最小.如图 3﹣ 2 中,当 C、 G、 N 共线时,将△ADE 绕点 D 逆时针旋转90°得△ CDM ,∵∠ DCF =∠ DCM = 90°,∴ F、 C、 M 三点共线,∵∠ AGD= 90°, N 为 AD 中点,∴AN= NG=ND ,∴∠ NGD =∠ ADF ,由( 1)∠ ADF =∠ FDM ,∴∠ NGD =∠ FDM ,∴DM ∥ NC,∵正方形ABCD 中 AD ∥ BC,∴四边形NCMD 为平行四边形,∴CM = DN= AD,∵CM = AE,∴AE= AD= AB,∴AE: AB= 1:2.24.已知,如图:直线AB: y=﹣ 3x+3 与两坐标轴交于A, B 两点.(1)过点 O 作 OC⊥ AB 于点 C,求 OC 的长;(2)将△ AOB 沿 AB 翻折到△ ABD ,点 O 与点 D 对应,求直线 BD 的分析式;(3)在( 2)的条件下,正比率函数 y= kx 与直线 BD 交于 P,直线 AB 交于 Q,若 OP = 3OQ,求正比率函数的分析式.【剖析】(1)分别求出点A、B 的坐标,从而得出AB 的长,再依据三角形的面积公式解答即可;(2)连结 OD ,过点 D 作 DH ⊥x 轴于 H ,易证△ AOB∽△ OHD ,依据相像三角形的性质求出点 D 的坐标,再利用待定系数法求解即可;( 3)过点 P 作 PM⊥ x 轴于 M,点 Q 作 QN⊥x 轴于 N,用 k 的代数式分别表示出OM 、ON;由 OP=3OQ 可得 ON= 3OM ,从而得出对于k 的一元一次方程,求出k的值,问题得以解决.【解答】解:( 1)∵直线 AB 分析式为y=﹣ 3x+3,∴A( 0, 3),B( 1, 0),∴OA= 3,OB= 1,∴ AB=,∵S△AOB= OA ?OB= AB?OC,∴ OC==;( 2)连结 OD ,过点 D 作 DH ⊥ x 轴于 H,∵点 O 与点 D 对于 AB 对称,∴ AB 垂直均分OD,由( 1) OC=,∴ OD =2OC=,∵△ AOB∽△ OCB,△ OCB∽△ OHD ,∴△ AOB∽△ OHD ,∴,∴DH =, OH =,∴D(,).设直线 BD 分析式为y= kx+b,∵ B( 1, 0),D (,),∴,解得,∴直线 BD 分析式为y= 3x﹣ 3.( 3)如图,过点P 作 PM ⊥ x 轴于 M ,点 Q 作 QN⊥x 轴于 N.∵正比率函数y=kx 与直线 BD 交于 P,∴ kx= 3x﹣3,解得 x=,∴OM =.∵正比率函数y=kx 与直线 AB 交于 Q,∴ kx=﹣ 3x+3 ,解得 x=,∴ON=.∵OP=3OQ,∴ ON= 3OM ,∴=3×,解得k=.∴正比率函数的分析式为.。

2018年二中广雅八年级下期中考试数学试题

2018年二中广雅八年级下期中考试数学试题

⼆二中⼴广雅2017-2018年年⼋八下期中考试卷⼀一、选择题(30分)1.若在实数范围内有意义,则x的取值范围是()A、B、C、D、x为任意实数2.下列列⼆二次根式中与是同类⼆二次根式的是()A、B、C、D、3.能判定⼀一个四边形是菱形的条件是()A、对⻆角线互相平分,⼀一组邻⻆角相等B、两组对边分别相等,对⻆角线互相平分C、两组对⻆角分别相等,对⻆角线互相垂直D、对⻆角线互相垂直,⼀一组邻边相等4.下列列计算正确的是()A、B、C、D、5.如图,在直⻆角坐标系中,的顶点A(1,4),C(5,0),则B点坐标为()A、(5,4)B、(6,4)C、(6,5)D、(5,6)6.如图所示,⼀一个圆柱体⾼高8cm,底⾯面直径,⼀一只蚂蚁从点A爬到点B处吃⻝⾷食,要爬⾏行行的最短路路径是()A、12cmB、10cmC、20cmD、第5题第6题第8题7.菱形周⻓长为,它的⼀一条对⻆角线⻓长为6cm,则菱形的⾯面积为()A、48B、12C、24D、368.如图,Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD、AE分别是其⻆角平分线和中线,过点B作BG⊥AD于G,交AC于F,连接EG,则线段EG的⻓长为()A、B、1C、D、29.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,分别以△ABC的三条边为直径作半圆,则图中阴影部分的⾯面积之间的关系是()A、B、C、D、10.如图,正⽅方形ABCD中,M为AB上⼀一点,DM交AC于G,DM的垂直平分线PQ交AC于Q,交正⽅方形的边于E、F,连接MQ,则下列列结论:①∠AQM=∠ADM;②;③为定值;④;⑤PQ=PE+QF;其中正确的结论有()个.A、2B、3C、4D、5⼆二、填空题(18分)11.计算:__________,__________,__________.12.已知n是正整数,是整数,n的最⼩小值是__________.13.已知,则__________.14.如图,将正⽅方形纸⽚片ABCD折叠,使点D落在BC边点E处,点A落在点F处,折痕为MN,若∠NEC=36°,则∠FMN=__________.15.如图,铁路路MN和公路路PQ在点O处交汇,∠QON=30°,公路路PQ上A处距离O点240⽶米,如果⽕火⻋车⾏行行驶时,⽕火⻋车头周围150⽶米以内会受到噪⾳音的影响,那么⽕火⻋车在铁路路MN上沿MN⽅方向以72千⽶米/⼩小时的速度⾏行行驶时,A处受到噪⾳音影响的时间为__________. 16.如图,Rt△ABC中,∠ABC=90°,AB=3,AC=4,分别以AB、AC为边作正⽅方形ABDE 和正⽅方形ACGF,连接CD、BG交于P,△BPC的⾯面积为__________.14题15题16题三、解答题(72分)17.计算题(8分)计算:(1)(2)18.(8分)如图,四边形ABCD是平⾏行行四边形,DM平分∠ADC交AB于M,BN平分∠ABC交DC于N,求证:四边形MBND是平⾏行行四边形.19.(8分)如图,中,.(1)若,,求;(2)若,,求边上的⾼高.20.(8分)如图,每个⼩小三⻆角形的边⻓长都为1.(1)四边形的周⻓长=______________.(2)四边形ABCD的⾯面积=______________.(3)是直⻆角吗?判断并说明理理由.21.(8分)如图所示,⼀一根⻓长2.5⽶米的⽊木棍,斜靠在与地⾯面垂直的墙上,此时墙⻆角与⽊木棍端的距离为1.5⽶米,设⽊木棍的中点为,此时⽊木棍端沿墙下滑,B端沿地⾯面向右滑⾏行行.(1)⽊木棍在滑动的过程中,线段的⻓长度发⽣生改变吗?说明理理由;若不不变,求OP 的⻓长.(2)如果⽊木棍的底端向外滑出0.9⽶米,那么⽊木棍的顶端沿墙下滑多少距离?22.(10分)如图在平⾯面直⻆角坐标系中,AB∥y轴且AB=24,点从点出发,以个单位⻓长度/s的速度向点运动;点从点出发,以y个单位⻓长度/s的速度向点运动,规定其中⼀一个动点到达端点时,另⼀一个点也随之停⽌止运动,设运动的时间为t秒.(1)若①当四边形是平⾏行行四边形时,求t的值;②当时,求t的值;(2)当恰好垂直平分时,求的值.23.(10分)如图,正⽅方形的边⻓长为1,以为边作菱形,点在同⼀一直线上,是的中点,,且交于点.(1)求证:;(2)求的度数;(3)直接写出=____________.(提示:)24.(12分)如图所示,在平⾯面直⻆角坐标系中,正⽅方形的点分别在x轴和y轴的正半轴上,点在第⼀一象限.平分交于.(1)求的度数和的⻓长.(2)将正⽅方形绕点逆时针旋转⾄至图2的位置,为(1)中线段上⼀一点,轴于为中点,试探究的关系并证明.(3)绕点旋转正⽅方形⾄至图3,此时,x轴上有⼀一点,分别为x轴负半轴和线段上的动点,试求的最⼩小值,并在图中画出取最⼩小值时的位置.(简要说明作图过程)图1图2图3。

武汉二中广雅中学初中数学八年级下期中经典练习卷(培优)

武汉二中广雅中学初中数学八年级下期中经典练习卷(培优)

一、选择题1.(0分)[ID :9932]下列运算正确的是( )A .347+=B .1232=C .2(-2)2=-D .142136= 2.(0分)[ID :9929]如右图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .3.(0分)[ID :9903]已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB BC =时,它是菱形B .当AC BD ⊥时,它是菱形 C .当90ABC ︒∠=时,它是矩形D .当AC BD =时,它是正方形 4.(0分)[ID :9899]下列条件中,不能判断△ABC 为直角三角形的是 A .21a =,22b =,23c =B .a :b :c=3:4:5C .∠A+∠B=∠CD .∠A :∠B :∠C=3:4:5 5.(0分)[ID :9897]平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( )A .8和14B .10和14C .18和20D .10和34 6.(0分)[ID :9896]已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x +3的值为( )A .3B .﹣3C .1D .0 7.(0分)[ID :9889]如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A.B.C.D.8.(0分)[ID:9867]如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.83B.8C.43D.69.(0分)[ID:9865]如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<10.(0分)[ID:9858]菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A.13B.52C.120D.24011.(0分)[ID:9854]如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A .42dmB .22dmC .25dmD .45dm12.(0分)[ID :9850]如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE⊥BC,垂足为E,则AE 的长为( )A .4B .2.4C .4.8D .513.(0分)[ID :9841]下列运算正确的是( )A .235+=B .3262=C .235=D .1333÷= 14.(0分)[ID :9839]为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A .∠BCA =45°B .AC =BD C .BD 的长度变小 D .AC ⊥BD15.(0分)[ID :9835]如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题16.(0分)[ID :10014]函数21x y x +=-中,自变量x 的取值范围是 .17.(0分)[ID :9995]已知一个三角形的周长是48cm ,以这个三角形三边中点为顶点的三角形的周长为_______cm .18.(0分)[ID :9976]如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.19.(0分)[ID :9975]把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.20.(0分)[ID :9959]如果最简二次根式22x-3与9-4x 是同类二次根式,那么x =______.21.(0分)[ID :9947]如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .22.(0分)[ID :9943]果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系: 时间t (秒)0.5 0.6 0.7 0.8 0.9 1 落下的高度h (米) 50.25⨯ 50.36⨯ 50.49⨯ 50.64⨯ 50.81⨯ 51⨯ 如果果子经过2秒落到地上,那么此果子开始落下时离地面的高度大约是__________米.23.(0分)[ID :9940]如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .24.(0分)[ID :9935]如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =2,则菱形ABCD 的周长是_________.25.(0分)[ID :9957]如图,ABC 是以AB 为斜边的直角三角形,4AC =,3BC =,P 为AB 上一动点,且PE AC ⊥于E ,PF BC ⊥于F ,则线段EF 长度的最小值是________.三、解答题26.(0分)[ID :10114]先阅读,后解答:(1)由根式的性质计算下列式子得:①√32=3,②√(23)2=23,③√(−13)2=13,④√(−5)2=5,⑤√0=0. 由上述计算,请写出√a 2的结果(a 为任意实数).(2)利用(1)中的结论,计算下列问题的结果:①√(3.14−π)2;②化简:√x 2−4x +4(x <2).(3)应用:若√(x −5)2+√(x −8)2=3,求x 的取值范围.27.(0分)[ID :10064]某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机 电冰箱 甲连锁店200 170 乙连锁店 160 150设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?28.(0分)[ID :10042]端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时m 千米的速度匀速行驶,途中体息了一段时间后,仍按照每小时m 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程()y km 甲,()y km 乙与时间()x h 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:()1图中E 点的坐标是______,题中m =______km/h ,甲在途中休息______h ; ()2求线段CD 的解析式,并写出自变量x 的取值范围;()3两人第二次相遇后,又经过多长时间两人相距20km ?29.(0分)[ID :10036]已知:如图,在四边形ABCD 中,∠B =90°,AB =BC =2,CD =3,AD =1,求∠DAB 的度数.30.(0分)[ID :10073]如图在8×8的正方形网格中,△ABC 的顶点在边长为1的小正方形的顶点上.(1)填空:∠ABC= ,BC= ;(2)若点A 在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D ,并作出以A 、B 、C 、D 四个点为顶点的平行四边形,求出满足条件的D 点的坐标.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.D5.C6.B7.A8.D9.C10.B11.A12.C13.D14.B二、填空题16.x≠1【解析】x≠117.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=18.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF =AC=15∴DF=DE﹣E19.【解析】【分析】先利用等腰直角三角形的性质求出BC=2BF=AF=1再利用勾股定理求出DF即可得出结论【详解】如图过点A作AF⊥BC于F在Rt△ABC中∠B=45°∴BC=AB=2BF=AF=AB=20.2【解析】由题意得:2x-3=9-4x解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式21.8【解析】【分析】设A′C=xcm先根据已知利用AAS证明△A′BC≌△DCE得出A′C=DE=xcm则BC=AD=(9+x)cmA′B=AB=15cm然后在Rt△A′BC中由勾股定理可得BC2=A22.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是2023.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB24.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=25.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC则PC=EF 所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B三、解答题26.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A2,所以A选项错误;B、原式=B选项错误;C、原式=2,所以C选项错误;=,所以D选项正确.D3故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.A解析:A【解析】【分析】先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∠AOB=∠ADC,∠OAB=∠DAC,AB=AC∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.3.D解析:D【解析】【分析】根据特殊平行四边形的判定方法判断即可.【详解】解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.故答案为:D【点睛】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.4.D解析:D【解析】【分析】【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形; B 、设a=3x ,b=4x ,c=5x ,可知222+=a b c ,故能判定是直角三角形;C 、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形;D 、而由3+4≠5,可知不能判定三角形是直角三角形.故选D考点:直角三角形的判定5.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18 故选C .【点睛】本题考查平行四边形的性质.6.B解析:B【解析】【分析】根据点P (x ,y )是直线y=1322x -上的点,可以得到y 与x 的关系,然后变形即可求得所求式子的值.【详解】∵点P (x ,y )是直线y=1322x -上的点,∴y=13 22x ,∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.7.A解析:A【解析】【分析】当OP垂直于直线y=kx+b时,由垂线段最短可知:OP<2,故此函数在y轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x<0时,函数有最小值,且最小值小于2是解题的关键.8.D解析:D【解析】【分析】连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【详解】解:如图,连接OB,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴3,∴22AC BC -22(43)(23)-6,故选D .【点睛】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.9.C解析:C【解析】【分析】【详解】解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32. ∴点A 的坐标是(32,3). ∵当3x 2<时,y=2x 的图象在y=ax+4的图象的下方, ∴不等式2x <ax+4的解集为3x 2<.故选C.10.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,2213∴=+=,AB OA BO故菱形的周长为52.故选B.11.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,圆柱底面的周长为4dm,圆柱高为2dm,BC BC dm,2AB dm,222222448AC,AC dm,22∴这圈金属丝的周长最小为242AC dm.故选:A.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.12.C解析:C【解析】【分析】连接BD ,根据菱形的性质可得AC ⊥BD ,AO=12AC ,然后根据勾股定理计算出BO 长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD 可得答案. 【详解】连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=,∵AC =6,∴AO =3, ∴2594BO =-=, ∴DB =8,∴菱形ABCD 的面积是11682422AC DB ⨯⋅=⨯⨯=, ∴BC ⋅AE =24, 245AE =, 故选C.13.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】 A 、原式23+B 362=,故错误;C 、原式6,故C 错误;D 1333=,正确;【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.14.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD 是平行四边形,又∵AB ⊥BC ,∴∠ABC =90°,∴四边形ABCD 是矩形,∴AC =BD .故选B .【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】 D 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题16.x≠1【解析】x≠1【解析】10x-≠,x≠117.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=解析:24【解析】【分析】根据三角形中位线定理得到DE=12BC,DF=12AC,EF=12AB,根据三角形的周长公式计算,得到答案.【详解】解:根据题意,画出图形如图所示,点D、E、F分别是AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=12AB,∵原三角形的周长为48,∴AB+AC+BC=48,则新三角形的周长=DE+DF+EF=12×(AB+AC+BC)=24(cm)故答案为:24cm.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5,∴DF=DE﹣EF=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.19.【解析】【分析】先利用等腰直角三角形的性质求出BC=2BF=AF=1再利用勾股定理求出DF即可得出结论【详解】如图过点A作AF⊥BC于F在Rt△ABC 中∠B=45°∴BC=AB=2BF=AF=AB=解析:31-【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴2AB=2,BF=AF=22AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,22AD AF-3∴33,3-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.20.2【解析】由题意得:2x-3=9-4x解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式解析:2【解析】由题意得:2x-3=9-4x ,解得:x=2,故答案为:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.21.8【解析】【分析】设A′C=xcm 先根据已知利用AAS 证明△A′BC≌△DCE 得出A′C=DE=xcm 则BC=AD=(9+x )cmA′B=AB=15cm 然后在Rt△A′BC 中由勾股定理可得BC2=A解析:8【解析】【分析】设A ′C=xcm ,先根据已知利用AAS 证明△A ′BC ≌△DCE ,得出A ′C=DE= xcm ,则BC=AD=(9+x )cm ,A ′B=AB=15cm ,然后在Rt △A ′BC 中,由勾股定理可得BC 2=A ′B 2+A ′C 2,即可得方程,解方程即可求得答案【详解】解:∵四边形ABCD 是矩形,∴AB=CD=15cm ,∠A=∠D=90°,AD ∥BC ,AD=BC ,∴∠DEC=∠A ′CB ,由折叠的性质,得:A ′B=AB=15cm ,∠BA ′E=∠A=90°,∴A ′B=CD ,∠BA ′C=∠D=90°,在△A ′BC 和△DCE 中,BA C D A CB DEC A B CD ∠=∠⎧⎪∠=∠=''⎨'⎪⎩∴△A ′BC ≌△DCE (AAS ),∴A ′C=DE ,设A ′C=xcm ,则BC=AD=DE+AE=x+9(cm ),在Rt △A ′BC 中,BC 2=A ′B 2+A ′C 2,即(x+9)2=x 2+152,解得:x=8,∴A ′C=8cm .故答案为:8.【点睛】此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系. 22.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h 随着时间t 的增大而增大,h 与t 的关系为:25h t =,把2t =代入25h t =,再进行计算即可.【详解】解:由表格得,用时间()t s 表示高度()h m 的关系式为:25h t =,当2t =时,2525420h =⨯=⨯=.所以果子开始落下时离地面的高度大约是20米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h 和t 的关系是解题的关键.23.【解析】【分析】根据作法判定出四边形OACB 是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC =BC =OA∵OA=OB∴OA=OB =BC =AC∴四边形OACB 是菱形∵AB解析:【解析】【分析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC =BC =OA ,∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2, ∴12AB •OC =12×2×OC =4, 解得OC =4cm .故答案为:4.【点睛】 本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.24.16【解析】【分析】根据菱形的性质可得AC ⊥BDAB=BC=CD=AD 再根据直角三角形的性质可得AB=2OP 进而得到AB 长然后可算出菱形ABCD 的周长【详解】∵四边形ABCD 是菱形∴AC ⊥BDAB=解析:16【解析】【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故答案为:16.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.25.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC 则PC=EF所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B解析:12 5【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.三、解答题26.(1)√a2=|a|={a(a>0) 0(a=0)−a(a<9);(2)①π﹣3.14,②2﹣x;(3)x的取值范围是5≤x≤8.【解析】【分析】(1)将a分为正数、0、负数三种情况得出结果;(2)①当a=3.14﹣π<0时,根据(1)中的结论可知,得其相反数﹣a,即得π﹣3.14;②先将被开方数化为完全平方式,再根据公式得结果;(3)根据(1)式得:√(x−5)2+√(x−8)2 =|x﹣5|+|x﹣8|,然后分三种情况讨论:①当x<5时,②当5≤x≤8时,③当x>8时,分别计算,哪一个结果为3,哪一个就是它的取值.【详解】(1)√a2=|a|={a(a>0) 0(a=0)−a(a<0);(2)①√(3.14−π)2=|3.14﹣π|=π﹣3.14,②√x2−4x+4(x<2),=√(x−2)2,=|x﹣2|,∵x<2,∴x﹣2<0,∴√x2−4x+4=2﹣x;(3)∵√(x−5)2+√(x−8)2=|x﹣5|+|x﹣8|,①当x<5时,x﹣5<0,x﹣8<0,所以原式=5﹣x+8﹣x=13﹣2x;②当5≤x≤8时,x﹣5≥0,x﹣8≤0,所以原式=x﹣5+8﹣x=3;③当x>8时,x﹣5>0,x﹣8>0,所以原式=x﹣5+x﹣8=2x﹣13,∵√(x−5)2+√(x−8)2=3,所以x的取值范围是5≤x≤8.【点睛】本题考查了二次根式的性质和化简,明确二次根式的两个性质:①(√a)2=a (a≥0)(任何一个非负数都可以写成一个数的平方的形式);②√a2=|a|={a(a>0)0(a=0)−a(a<0);尤其是第2个性质的运用,注意被开方数是完全平方式时,如第(3)小题,要分情况进行讨论.27.(1)y=20x+16800 (10≤x≤40,且x为整数);(2)当0<a<20时,x=40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10≤x≤40内的所有方案利润相同;当20<a<30时,x=10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.【解析】试题分析:(1)首先设调配给甲连锁店电冰箱(70-x)台,调配给乙连锁店空调机(40-x)台,电冰箱60-(70-x)=(x-10)台,列出不等式组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.试题解析:(1)由题意可知,调配给甲连锁店电冰箱(70-x)台,调配给乙连锁店空调机(40-x)台,电冰箱为60-(70-x)=(x-10)台,则y=200x+170(70-x)+160(40-x)+150(x-10),即y=20x+16800.∵0 700 {400100 xxxx≥-≥-≥-≥∴10≤x≤40.∴y=20x+16800(10≤x≤40);(2)由题意得:y=(200-a)x+170(70-x)+160(40-x)+150(x-10),即y=(20-a)x+16800.∵200-a >170,∴a <30.当0<a <20时,20-a >0,函数y 随x 的增大而增大,故当x=40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x 的取值在10≤x≤40内的所有方案利润相同;当20<a <30时,20-a <0,函数y 随x 的增大而减小,故当x=10时,总利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.28.()()12,160,100,1;()2直线CD 的解析式为:()y 100x 1405x 7=-≤≤;()3两人第二次相遇后,又经过0.25时或1.5时两人相距20km.【解析】【分析】(1)根据速度和时间列方程:60×1+m=160,可得m=100,根据D 的坐标可计算直线OD 的解析式,从图中知E 的横坐标为2,可得E 的坐标,根据点E 到D 的时间差及速度可得休息的时间;(2)利用待定系数法求直线CD 的解析式;(3)先计算第二次相遇的时间:y=360时代入y=80x 可得x 的值,再计算x=5时直线OD 的路程,可得路程差为40km ,所以存在两种情况:两人相距20km ,列方程可得结论.【详解】()1由图形得()D 7,560,设OD 的解析式为:y kx =,把()D 7,560代入得:7k 560=,k 80=,OD ∴:y 80x =,当x 2=时,y 280160=⨯=,()E 2,160∴,由题意得:601m 160⨯+=,m 100=,()725601601001---÷=,故答案为()2,160,100,1;()()2A 1,60,()E 2,160,∴直线AE :y 100x 40=-,当x 4=时,y 40040360=-=,()B 4,360∴,()C 5,360∴,()D 7,560,∴设CD 的解析式为:y kx b =+,把()C 5,360,()D 7,560代入得:{5k b 3607k b 560+=+=,解得:{k 100b 140==-, ∴直线CD 的解析式为:()y 100x 1405x 7=-≤≤;()3OD 的解析式为:()y 80x 0x 7=≤≤,当x 5=时,y 580400=⨯=,40036040-=,∴出发5h 时两个相距40km ,把y 360=代入y 80x =得:x 4.5=,∴出发4.5h 时两人第二次相遇,①当4.5x 5<<时,80x 36020-=,x 4.75=,()4.75 4.50.25h -=,②当x 5>时,()80x 100x 14020--=,x 6=,()6 4.5 1.5h -=,答:两人第二次相遇后,又经过0.25时或1.5时两人相距20km.【点睛】本题考查了一次函数的应用,读懂函数图象,理解横、纵坐标表示的含义,熟练掌握一次函数的相关知识、利用数形结合思想是解题的关键.29.135º.【解析】【分析】在直角△ABC 中,由勾股定理求得AC 的长,在△ACD 中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ACD 是不是直角三角形.【详解】解:∵∠B =90°,AB =BC =2,∴AC ,∠BAC =45°, 又∵CD =3,DA =1,∴AC 2+DA 2=8+1=9,CD 2=9,∴AC 2+DA 2=CD 2,∴△ACD 是直角三角形,∴∠CAD =90°,∴∠DAB =45°+90°=135°.30.(1)135°,22;(2)D 1(3,-4)或D 2(7,-4)或D 3(-1,0).【解析】【分析】(1)根据图形知道CB 是一个等腰三角形的斜边,所以容易得出ABC 的度数,利用勾股定理可以求出BC 的长度;(2)根据A 点的坐标(1,-2),并且ABCD 为平行四边形,如图D 的位置有三种情况.【详解】解:(1)由图形可得:∠ABC=45°+90°=135°,BC=222+2=22;故答案为:135°,22;(2)满足条件的D 点共有3个,以A 、B 、C 、D 四个点为顶点的四边形为平行四边形分别是123ABCD ABD C AD BC ,,.其中第四个顶点的坐标为:D 1(3,-4)或D 2(7,-4)或D 3(-1,0)【点睛】本题考查等腰三角形的性质;勾股定理;平行四边形的判定和性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(二)一.选择题(共10小题)1.二次根式中a的取值范围是()A.a≥0B.a<3C.a≥﹣3D.a≤32.下列计算错误的是()A.B.C.D.=4 3.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4B.1,1,C.5,8,11D.5,13,234.已知a、b、c分别为△ABC中∠A、∠B、∠C的对边,下列说法错误的是()A.∠C=90°,则a2+b2=c2B.∠B=90°,则a2+c2=b2C.∠A=90°,则b2+c2=a2D.总有a2+b2=c25.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC中,边长为无理数的边数是()A.0B.1C.2D.36.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm27.把(2﹣x)的根号外的(2﹣x)移入根号内得()A.B.C.﹣D.﹣8.下面四个命题:①同旁内角相等,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.其中逆命题是真命题的个数是()A.1B.2C.3D.49.如图,A(0,1),B(3,2),点P为x轴上任意一点,则P A+PB的最小值为()A.3B.C.D.10.在四边形ABCD中,∠ABC=∠C=90°,DC=DA,∠D=60°,AB=2.将四边形ABCD折叠,使点D和点B重合,折痕为EF,则EF的长为()A.B.C.D.二.填空题(共6小题)11.化简:=;=;=.12.a、b、c为三角形的三条边,则=.13.如果是整数,则正整数n的最小值是.14.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为米.15.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是.16.已知点A(2,0)、B(0,4),点C是第一象限内一点且满足△ABC是等腰直角三角形,连OC,则线段OC=.三.解答题(共8小题)17.计算:(1)()+(2)(2﹣3)÷18.如图,在△ABC中,∠BAC=90°,AB=4,AC=8,AD⊥BC,垂足为D,求AD的长.19.若实数x、y满足y<++1.(1)x=,y<;(2)化简:.20.如图,每个小正方形的边长都为1.(1)求四边形ABCD的周长;(2)求四边形ABCD的面积.21.(1)已知x=﹣,y=+,求﹣的值;(2)若a﹣=,求a+的值.22.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.23.在Rt△ABC中,AC⊥BC,CA=CB,点D是△ABC外一点,且∠ADC=45°,连DC、DB、DA.(1)如图1,若AD⊥AC且AC=2,求BD的长度;(2)如图2,若DA=1,DC=3,求DB的长度;(3)在(1)的条件下,点E是直线AC上一点,连DE.当∠EDB=45°时,直接写出AE的长.24.如图1,在直角坐标系中,△ABC是等边三角形,点E是边BC上一动点.(1)若△ABC的面积是4,求点A的坐标;(2)如图2,点F在边AB上,EO⊥FO,连接EF.若CE=4,AF=2,求EF的长度;(3)如图3,连接OE,将OE绕原点O逆时针旋转60°到OG,连接BG、CG.当BE =CG时,求的值.参考答案与试题解析一.选择题(共10小题)1.二次根式中a的取值范围是()A.a≥0B.a<3C.a≥﹣3D.a≤3【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:3﹣a≥0,∴a≤3,故选:D.2.下列计算错误的是()A.B.C.D.=4【分析】直接利用二次根式的混合运算法则分别计算得出答案.【解答】解:A、×=7,计算正确,不合题意;B、÷=,计算正确,不合题意;C、+=8,计算正确,不合题意;D、4﹣=3,原式计算错误,符合题意.故选:D.3.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4B.1,1,C.5,8,11D.5,13,23【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、52+82≠112,故不是直角三角形,故此选项错误;D、52+132≠232,故不是直角三角形,故此选项错误.故选:B.4.已知a、b、c分别为△ABC中∠A、∠B、∠C的对边,下列说法错误的是()A.∠C=90°,则a2+b2=c2B.∠B=90°,则a2+c2=b2C.∠A=90°,则b2+c2=a2D.总有a2+b2=c2【分析】按照勾股定理分析即可得出答案.【解答】解:选项A:∠C=90°,则c为△ABC中斜边,a,b为直角边,由勾股定理可得:a2+b2=c2,故A正确,不符合题意;同理可得,选项B和选项C正确,故选项B和选项C不符合题意;选项D:只有直角三角形,且∠C为直角时,a2+b2=c2,故D错误,符合题意.故选:D.5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC中,边长为无理数的边数是()A.0B.1C.2D.3【分析】利用勾股定理计算出AB、BC、AC的长即可.【解答】解:AB==5,AC==,BC==,边长为无理数的边数是2条,故选:C.6.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.7.把(2﹣x)的根号外的(2﹣x)移入根号内得()A.B.C.﹣D.﹣【分析】根据负数没有平方根得到2﹣x<0,利用二次根式将2﹣x移入根号内即可.【解答】解:(2﹣x)=﹣=﹣,故选:D.8.下面四个命题:①同旁内角相等,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.其中逆命题是真命题的个数是()A.1B.2C.3D.4【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,错误;②如果两个角是直角,那么它们相等的逆命题是如果两个角相等,那么这两个角是直角,不成立;③全等三角形的对应边相等的逆命题是对应边相等的三角形全等,成立;④如果两个实数相等,那么它们的平方相等的逆命题是如果两个实数的平方相等,那么这两个实数相等,不成立;逆命题成立的有1个;故选:A.9.如图,A(0,1),B(3,2),点P为x轴上任意一点,则P A+PB的最小值为()A.3B.C.D.【分析】作点A关于x轴的对称点A′.连接BA′交x轴于点P,此时P A+PB的值最小.根据勾股定理求出BA′即可;【解答】解:作点A关于x轴的对称点A′.连接BA′交x轴于点P,此时P A+PB的值最小.P A+PB的最小值=BA′==3,故选:B.10.在四边形ABCD中,∠ABC=∠C=90°,DC=DA,∠D=60°,AB=2.将四边形ABCD折叠,使点D和点B重合,折痕为EF,则EF的长为()A.B.C.D.【分析】过点E作EQ⊥AB于点Q,交CD于P.易得△DAC为等边三角形,由∠ABC =∠C=90°,∠ACB=30°,得出AC=2AB=2×2=4,BC=2,AD=CD=4,再由折叠可知BF=DF=CD﹣CF=4﹣CF,在Rt△BCF中由勾股定理CF2+BC2=BF2,设AE =2x,则EQ=x,AQ=x,BE=DE=4﹣2x,列出方程(x)2+(2+x)2=(4﹣2x)2,解得x=,即AE=,所以DE=4﹣AE=4﹣=,在Rt△DPE中,DP=DE =,PE=,所以PF=DF﹣DP=﹣=,在Rt△EPF中,由勾股定理,求出EF=.【解答】解:过点E作EQ⊥AB于点Q,交CD于P.∵∠ABC=∠C=90°,∴CD∥AB,∴EP⊥CD,∵DC=DA,∠D=60°,∴△DAC为等边三角形,∵∠ABC=∠C=90°∴∠ACB=30°,∴AC=2AB=2×2=4,BC=2,∴AD=CD=4,由折叠可知BF=DF=CD﹣CF=4﹣CF,在Rt△BCF中CF2+BC2=BF2,即CF2+(2)2=(4﹣CF)2,解得CF=,∴BF=4﹣=,DF=∵∠ABC=∠C=90°,∠D=60°∴∠DAB=120°,∠EAQ=60°,∠AEQ=30°,设AE=2x,则EQ=x,AQ=x,BE=DE=4﹣2x,在Rt△EQB中EQ2+BQ2=BE2,即(x)2+(2+x)2=(4﹣2x)2,x=,即AE=,∴DE=4﹣AE=4﹣=,在Rt△DPE中,DP=DE=,PE=,∴PF=DF﹣DP=﹣=,在Rt△EPF中,由勾股定理,EF2=PF2+PE2=()2+()2=,∴EF==.故选:C.二.填空题(共6小题)11.化简:=3;=;=.【分析】根据二次根式的性质化简,得到答案.【解答】解:==3,==,==,故答案为:3;;.12.a、b、c为三角形的三条边,则=2a.【分析】三角形三边满足的条件是:两边的和大于第三边,两边的差小于第三边,据此来确定绝对值和括号内的式子的符号,进而化简计算即可.【解答】解:∵a、b、c是三角形的三边长,∴a+b﹣c>0,b﹣a﹣c<0,∴=|a+b﹣c|﹣b+c+a=a+b﹣c﹣b+c+a=2a,故答案为:2a.13.如果是整数,则正整数n的最小值是3.【分析】因为是整数,且==2,则3n是完全平方数,满足条件的最小正整数n为3.【解答】解:∵==2,且是整数;∴2是整数,即3n是完全平方数;∴n的最小正整数值为3.故答案是:3.14.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为(2+2)米.【分析】求地毯的长度实际是求AC与BC的长度和,利用勾股定理及相应的三角函数求得相应的线段长即可.【解答】解:根据题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.15.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是6.【分析】设AB=AF=x,则AC=x+4,由折叠可得∠AFE=∠B=90°,依据勾股定理在Rt△CEF中求出CF=4,在Rt△ABC中,根据勾股定理得出方程,解方程即可得出AB 的长.【解答】解:∵四边形ABCD是长方形,∴AB=CD,由折叠的性质可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴BC=BE+CE=3+5=8,在Rt△CEF中,CF===4,设AB=AF=CD=x,则AC=x+4,∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2,解得:x=6,∴CD=6,故答案为:6.16.已知点A(2,0)、B(0,4),点C是第一象限内一点且满足△ABC是等腰直角三角形,连OC,则线段OC=2或2或3.【分析】如图1,当∠ABC=90°,AB=BC时,过C作CD⊥y轴于D,如图2,当∠BAC =90°,AB=AC时,过点C作CD⊥x轴于点D,同理可证得:△OAB≌△DCA,如图3,当∠ACB=90°,AC=BC时,根据全等三角形的性质和勾股定理即可得到结论.【解答】解:如图1,当∠ABC=90°,AB=BC时,过C作CD⊥y轴于D,∴∠CDB=∠AOB=90°,∴∠DCB+∠CBD=∠CBD+∠ABO=90°,∴∠BCD=∠ABO,∴△AOB≌△BDC(AAS),∴BD=OA=2,CD=OB=4,∴OD=OB+BD=6,∴点C的坐标为(6,4);∴OC=2,如图2,当∠BAC=90°,AB=AC时,过点C作CD⊥x轴于点D,同理可证得:△OAB≌△DCA,∴AD=OB=4,CD=OA=2,∴OA=OA+AD=6,∴点C的坐标为(6,2);OC=2,如图3,当∠ACB=90°,AC=BC时,过点C作CD⊥y轴于D,CE⊥x轴于E.则△ACD≌△BCE(AAS),∴CD=CE=OE,AD=BE,∵AB==2,∴AC=AB=,∵CE2+(CE﹣2)2=AC2=10,解得CE=3或﹣1(不合题意舍去).则点C坐标为(3,3),OC=3.综上所述,OC的长为2或2或3,故答案为:2或2或3.三.解答题(共8小题)17.计算:(1)()+(2)(2﹣3)÷【分析】(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)原式=2﹣+=2;(2)原式=2÷﹣3÷=2﹣3=4﹣=﹣.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=8,AD⊥BC,垂足为D,求AD的长.【分析】根据勾股定理求出BC,根据三角形的面积公式求出AD.【解答】解:在Rt△BAC中,BC===4,∵S△ABC=×4×8=×4×AD∴AD=.19.若实数x、y满足y<++1.(1)x=1,y<1;(2)化简:.【分析】(1)根据二次根式的性质即可求出答案.(2)根据二次根式的性质以及绝对值的性质即可求出答案.【解答】解:(1)由题意可知:,∴x=1,∴y<1故答案为:1,1;(2)∵y<1,∴y﹣2<0,3﹣2y>0,原式=|y﹣2|+|3﹣2y|=2﹣y+3﹣2y=5﹣3y.20.如图,每个小正方形的边长都为1.(1)求四边形ABCD的周长;(2)求四边形ABCD的面积.【分析】(1)根据勾股定理得出边长,进而解答即可;(2)根据割补法得出面积即可.【解答】解:(1)AB=,AD=,CD=,BC=,周长=;(2)面积=5×6﹣×1×6﹣×2×4﹣×2×4﹣×(2+4)×1=16.21.(1)已知x=﹣,y=+,求﹣的值;(2)若a﹣=,求a+的值.【分析】(1)先求出xy与y+x与y﹣x的值,再代入计算即可;(2)先根据完全平方公式求出a2+()2,进一步得到(a+)2,从而得到a+的值.【解答】解:(1)∵x=﹣,y=+,∴xy=1,y+x=2,y﹣x=2,∴﹣====4;(2)∵a﹣=,∴(a﹣)2=21,∴a2+()2=23,(a+)2=25,∴a+=±5.22.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.23.在Rt△ABC中,AC⊥BC,CA=CB,点D是△ABC外一点,且∠ADC=45°,连DC、DB、DA.(1)如图1,若AD⊥AC且AC=2,求BD的长度;(2)如图2,若DA=1,DC=3,求DB的长度;(3)在(1)的条件下,点E是直线AC上一点,连DE.当∠EDB=45°时,直接写出AE的长.【分析】(1)过点D作DE⊥AB于E,证明△ADE为等腰直角三角形,求出DE,根据勾股定理可得出答案;(2)将线段CD绕点C顺时针旋转90°到CE,证得△BDC≌△AEC,得出BD=AE,求出DE长,则可求出答案;(3)过点D作DF⊥DC交CE的延长线于F,可得△CDF为等腰直角三角形,则DC=DF,∠FDC=90°,将△DFE绕点D逆时针旋转90°到△DCN,连接NO,证明△EDO ≌△NDO,得出∠DFE=∠DCN=45°,EO=ON,设AE=x,则OE=x+1,CE=1,EF =2﹣x,得出(x+1)2=(2﹣x)2+12,解方程即可得出答案.【解答】解:(1)过点D作DE⊥AB于E,∵∠ADC=45°,AD⊥AC,∠BAC=45°,∴∠ADC+∠DAB=180°,∴CD∥AB,∴∠ADC=∠DAE=45°,∴△ADE为等腰直角三角形,∵AC=AD=2,∴AE=DE=,AB=2,∴BE=AE+AB=3,∴BD===2;(2)将线段CD绕点C顺时针旋转90°到CE,∵CE=CD,∠ACE=∠BCD,BC=AC,∴△BDC≌△AEC(SAS),∴BD=AE,∵∠ADC=45°,∠CDE=45°,∴∠ADE=90°,∵CD=3,∴DE==3,∴BD=AE===.(3).理由:四边形ABCD为平行四边形.设AC、BD交于点O.如图3,∵AC=2,∴OA=OC=1,过点D作DF⊥DC交CE的延长线于F,∴△CDF为等腰直角三角形,∴DC=DF,∠FDC=90°,将△DFE绕点D逆时针旋转90°到△DCN,连接NO,∴DE=DN,∠FDE=∠NDC,EF=NC,∵∠EDO=45°,∴∠FDE+∠ODC=45°,∴∠ODC+∠NDC=45°,∴∠EDO=∠NDO,∵DO=DO,∴△EDO≌△NDO(SAS),∴∠DFE=∠DCN=45°,EO=ON,∴∠OCN=90°,∴CN2+OC2=ON2.∴OE2=EF2+OC2,设AE=x,则OE=x+1,CE=1,EF=2﹣x,∴(x+1)2=(2﹣x)2+12,解得:x=.∴AE=.24.如图1,在直角坐标系中,△ABC是等边三角形,点E是边BC上一动点.(1)若△ABC的面积是4,求点A的坐标;(2)如图2,点F在边AB上,EO⊥FO,连接EF.若CE=4,AF=2,求EF的长度;(3)如图3,连接OE,将OE绕原点O逆时针旋转60°到OG,连接BG、CG.当BE =CG时,求的值.【分析】(1)先设出点A的坐标,根据等边三角形的性质得出点C的坐标,进而得出AB,再用勾股定理表示出OB,最后用三角形ABC的面积建立方程求解即可得出结论;(2)利用倍长中线法构造出全等三角形,进而求出∠AGH=30°,判断出FG=EF,再求出FH,GH,最后用勾股定理即可得出结论;(3)先构造出△OCG≌△OME(SAS),得出ME=CG=BE,∠CGO=∠MEO,设出BE=ME=CG=x,则CM=MO=MB=2x,∴AB=BC=4x,再用勾股定理表示出BG,即可得出结论.【解答】解:(1)设点A(a,0),∴OA=a,∵△ABC是等边三角形,OB⊥AC,∴AC=AB,OC=OA,∴C(﹣a,0),∴AC=2a,∴AB=2a,在Rt△AOB中,根据勾股定理得,OB==a,∵S△ABC=4,∴AC•OB=4,∴×=4,∴a=2或a=﹣2(舍去),∴A(2,0);(2)如图2,∵△ABC是等边三角形,OB⊥AC,∴∠BAC=∠ACB=60°,OC=OA,延长EO至G,且使OG=OE,连接FG、AG,∵∠COE=∠AOG,OC=OA,∴△COE≌△AOG(SAS),∴AG=CE=4,∠OAG=∠ACB=60°,∴∠F AG=120°∵OF⊥OE,∴∠EOF=∠GOF=90°,∵OE=OG,OF=OF,∴△EOF≌△GOF(SAS),∴EF=FG,过点G作GH⊥AB交BA的延长线于H,∵∠AGH=30°,AG=4,∴AH=2,GH=2,∴FH=AF+AH=4,∴EF=FG===2;(3)如图3,在CB上截取CM=CO,∵∠BCA=60°,∴△COM为等边三角形,∴∠COM=60°,由旋转知,OG=OE,∠EOG=60°,∴∠COM=∠EOG,∴∠COG=∠MOE,∴△OCG≌△OME(SAS),∴ME=CG=BE,∠CGO=∠MEO,∴∠GCB=∠GOE=60°,过点B作BN⊥CG于N,设BE=ME=CG=x,则CM=MO=MB=2x,∴AB=BC=CM+ME+BE=2x+x+x=4x,∵∠BCN=60°,∠CBN=30°∴CN=BC=MB=2x,GN=x,根据勾股定理得,BN==2x,∴BG==x∴=.。

相关文档
最新文档